
Referee comment

anonymous author

1 General comments

The study Recovery of sparse urban greenhouse gas emissions addresses the problem
of localizing and quantifying greenhouse gas emissions in urban settings. The authors
compare di�erent approaches to solve the inverse problem that arises when an unknown
emission �eld is estimated by local (column) observations of trace gas enhancements.
The reconstruction quality of the methods is analyzed in several synthetic and idealized
settings. The theoretical study can be considered as a preparational work for current
projects to monitor trace gas emissions from cities.

The content of the study is presented in a structured form and the clear language is easy
to follow. In some places the description of the experimental setup is incomplete.

The study uses a simpli�ed atmospheric transport model in an idealized setting to crea-
te a test environment for inverse methods. Modern inverse modeling approaches, sparse
reconstruction and sparse reconstruction in the wavelet domain, are compared to the
standard method applied in most environmental applications, Bayesian inversion with
Gaussian prior. Even though the introduced methods are well studied in the inverse
problem and compressed sensing communities, these methods have only been applied a
few times to environmental problems. Despite some shortcomings in the evaluation, the
presentation of their potential is welcome.

Code and �gures are uploaded as supplementary material. Some instructions and com-
ments are included to run the code. However, some scripts require input not shared by
the authors.

In total, an interesting study that includes new modeling approaches in this setup. The
experimental setup and the evaluation leave room for improvement. I recomment the
publication after considering the following comments.
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2 Speci�c comments

Inverse problem

The authors make a well structured introduction of the inverse problem and their solution
methods. Though many readers will be familiar with some inverse problem, the methods
used are rather unknown in the atmospheric research community. The introduction is
therefore instructive. However, underdetermination is only one characteristic di�culty of
inverse problems. Another typical property not discussed in detail in the manuscript is
the sensitivity of the estimate to (noisy) data. I recommend to mention this property in
the abstract (line 3) and include a small discussion in Sect. 2.1.

It could also be instructive to show a row of the sensing matrix as a footprint (as an ad-
dition to Fig. 2), though I assume that the currently shown matrix is only for illustration
purposes and to small to hold a meaningful footprint.

Sparse reconstruction

Bayesian inversion with Gaussian prior is commonly applied to inverse problems in en-
vironmental studies. It is therefore the correct method to compare against. The method
introduced by the authors, sparse reconstruction, has only been applied in atmospheric
studies a few times. References are provided. A relation between least squares, Bayesian
inversion with Gaussian prior and sparse reconstruction is nicely presented, but there are
a few points to address:
The Bayesian inversion approach calculates a posterior distribution. Often, this posterior
distribution is assessed by its maximum a posteriori solution as a best estimate and the
(co-)variances as uncertainties. In the Gaussian case the interpretation of the posterior
distribution is completely described by these parameters. Variational methods, Eq. (8),
mainly focus on the best estimate by assuming certain properties via the penalty func-
tion, e.g. smoothness or sparsity. The penalty functions R(·) can be chosen more freely.
Particularly, C2 can be more general than a correlation matrix (cp. line 112). Some choi-
ces may be di�cult to formulate as a Bayesian prior or the analysis of the posterior
may become too di�cult. However, the Bayesian equivalent to sparse reconstruction uses
a Laplacian prior. This being said, I cannot completely agree with some formulations
in the text, e.g. 'sparse reconstruction [...] does not require a prior emission �eld' (line
5). In this sense, neither does l2-regularization. My feeling is that both inverse modeling
interpretations are mixed and I recommend to review the text for imprecise formulations.

As a side note: I think the l0-norm and the lp-norm should also be de�ned for readers
new to the topic (lines 133 and 167). Actually, I found the l0-norm in Table 1, but the
reader is not guided there in the �rst reading.

Implementation of the methods

The authors reduce the dimensionality of the optimization problems by removing in-
sensitive grid cells and setting their values to zero. While a physical interpretation of
insensitive grid cells is given, an explanation why this preprocessing step is justi�ed is
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missing (around line 247). In the standard domain the emissions on insensitive grid cells
should be estimated as zero for both approaches. However, in the wavelet domain, I
suppose that these emissions could (slightly) deviate as they may be parameterized by
some wavelets with nonzero coe�cients. Are the wavelets created prior to the removal
or on the reduced system? In the latter case, the removal may in�uence the wavelet setup.

Experimental setup

During the �rst reading, I was not aware that most scenarios, e.g. Sect. 4.2, are evaluated
without any noise on the measurements. The setup in each experiment should be clearly
pointed out. Also, I am not sure which wind �elds are used in the scenarios. Are they
arti�cially generated? Is the wind uniform? I found some incomplete information in the
Appendix.

In general, the setup in all experiments is idealized. It seems that most scenarios are
evaluated with noiseless data. In the noisy case only measurement noise is included.
Transport errors, uncertainties from the background and temporal variability of emissi-
ons are not considered. Also, the wind variation may be less ideal, assuming they are
arti�cal, in an applied scenario. Aren't the results overly optimistic for any application?

In a theoretical study some simpli�cation may be reasonable, but to me the methods
lack a realistic test. For example, experiment 4.2.3 aims at discovering emissions not
included in a good prior, e.g. an inventory. Small deviations from a good prior emission
�eld should only produce small deviations in the observed enhancements. Are these de-
tectable in the noisy case (cp. Sect. 4.2.5), particularly when including other sources of
uncertainty (transport, background, etc.)?

Also, it seems that many results from the noiseless case do not transfer to the noisy
evaluation, e.g. the wavelet approach performs less convincing.

In the noisy case, relative noise related to the measurement uncertainty and observed
enhancements for the city of Indianapolis (not further evaluated) are considered. As
measurement uncertainties are identical and expected trace gas enhancements can be
calculated for each city, I wonder why a �xed SNR is used for all cities.

Analysis

While the discussion of compressed sensing is interesting in general, I am not convinced
that this debate is that helpful. The options to design the sensing matrix in an optimal
way for sparse methods are rather limited. As observations from the same location under
similar wind conditions tend to have similar footprints, variety of measurement informa-
tion can only come from changing wind conditions and di�erent measurement locations.
The authors �nd that even with full wind direction coverage the reconstruction criteria
cannot be met, even in the noiseless case (also cp. App. Lines 443).

What is meant by Line 444: Some parameterization of the emissions as in the wavelet
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approach may create di�erent dependencies, but the footprints will always create some
structure to the sensing matrix. Do you have an example?

Then, I doubt that the results of Fig. 5 should be interpreted with respect to the co-
herence, since the coherence measures the maximum similarity between columns. An
identity matrix extended by the copy of one column has a terrible coherence of 1, but is
the perfect sensing matrix for all but the two underdetermined parameters. Therefore,
the coherence may be a measure for the maximum error - I do not know - but the results
in Fig. 5 are probably better explained by a sensitivity analysis.

An explanation for the increase of the relative error of regularized least squares is miss-
ing. I also wonder why the results for sparse reconstruction in the wavelet domain is not
included. Does it show similar behaviour to SR?

Results

In Fig. 4 it is a bit surprising to see that regularized least squares produce a somewhat
sparse emission �eld, particularly in the outskirts. To me it looks as oscillations (negative
emissions are not shown) originating from a regularization parameter λ (Eq. 8) that is
too small. This would also explain the large number of negative emissions. Many classical
parameter choice rules reduce the model-data mismatch to a factor greater than 1 times
noise level, before instabilities are introduced to the estimate. The same issue may apply
to the sparse reconstruction approaches. Though the sparsity is increased with sparse
reconstruction, the solution is not really sparse (only 10% or 20%) as discussed in Table
2. As it seems that this scenario considers noiseless data, forcing equality between model
and data may be too strict or tolerances in the optimization routine could be �ne tuned.
In the noisy case, the authors also seem to observe over�tting (line 361).

It would be interesting to see the l2-errors for the reconstructions in Fig. 4.

In general, it is also a bit surprising to see relative errors much larger than 1, e.g. in Fig.
8, for a stable inversion. What is the interpretation?

In Fig. 8, scenario (b) uses the highest emission resolution with varying number of ob-
servations. Shouldn't the results from scenario (a) at 1 km× km line up at m

n = 0.75 in
panel (b)? Maybe, I missunderstand.

Code

Thanks for including the code. Useful comments and instructions are provided. Inputs,
except the inventories, are available for download. Maybe pseudo-inventories (with a
warning in the code) could be created to make all codes executable. Overall, great e�ort
to make the programming approaches available.
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3 Technical corrections

Line 155: '... make good estimates of ...', estimation is the process of making an estimate

Line 255 and others: 'good compressible' and 'not good compressible', a better formula-
tion should be found, e.g. 'compressible' and 'incompressible' (de�ne what is meant by
incompressible)

Line 234: 'sensing matrix matrix A', delete one 'matrix'

Line 243: '... sensitivity is beneath a certain threshold', 'below' works better

Line 332: '... descent ...', should be 'decent'

The code is more clear if variable x_l2 is used in the l2-case in �le optimizeL2_noise.m.
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