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Abstract. The daily highest air temperature (Tmax) is a key parameter for global and regional high 14 

temperature analysis, which is very difficult to be obtained in areas where there are no 15 

meteorological observation stations. This study proposes an estimation framework for obtaining 16 

high-precision Tmax. Firstly, we build a near surface air temperature diurnal variation model to 17 

estimate Tmax with a spatial resolution of 0.1° for China from 1979 to 2018 based on multi-source 18 

data. Then in order to further improve the estimation accuracy, we divided China into six regions 19 

according to climate conditions and topography, and established calibration models for different 20 

regions. The analysis shows that the mean absolute error (MAE) of the dataset 21 

(https://doi.org/10.5281/zenodo.6322881) after correction with the calibration models is about 22 

1.07°C, and the root mean square errors (RMSE) is about 1.52°C, which is higher than that before 23 

correction to nearly 1°C. The spatial-temporal variations analysis of Tmax in China indicated that the 24 

annual and seasonal mean Tmax in most areas of China showed an increasing trend. In summer and 25 

autumn, the Tmax in northeast China increased the fastest among the six regions, which were 26 

0.4℃/10a and 0.39℃/10a, respectively. The number of summer days and warm days showed an 27 
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increasing trend in all regions, while the number of icing days and cold days showed a decreasing 28 

trend. The abnormal temperature changes mainly occurred in El Niño years or La Niña years. We 29 

found that the influence of the Indian Ocean Basin Warming (IOBW) on air temperature in China 30 

were generally greater than those of the North Atlantic Oscillation and the NINO3.4 area sea surface 31 

temperature after making analysis of ocean climate modal indices with air temperature. In general, 32 

this Tmax dataset and analysis are of great significance to the study of climate change in China, 33 

especially for environmental protection. 34 

Keywords：Near surface air temperature diurnal variation model; Daily highest air temperature; High temperature; 35 

Spatial-temporal analysis; Climate change 36 

1 Introduction 37 

In the context of global warming, the frequency of high temperature events is increasing, and high 38 

temperature tends to increase electricity demand and energy consumption (Zhang et al., 2021; 39 

Sathaye et al., 2013), adversely affecting human health, social economy and ecosystem (Sehra et al., 40 

2020; Basu, 2009; Gasparrini and Armstrong, 2011). The daily highest air temperature (Tmax) is the 41 

basic parameter for studying regional scale high-temperature events. It has a great influence on the 42 

ozone concentration (Abdullah et al., 2017; Kleinert et al., 2021) and the start time of the plant 43 

growth season on the Tibetan Plateau (Yang et al., 2017). Tmax is not only an important factor for 44 

high temperature disaster risk assessment, but also a key input parameter for crop growth models 45 

and carbon emission models. Sustained and abnormally high Tmax will cause high temperature heat 46 

damage and adversely affect crop growth. Therefore, it is very important to accurately obtain the 47 

temporal and spatial distribution of Tmax and study the characteristics of high temperature weather. 48 

Generally, Tmax is measured on a thermometer in a louvered box 1.5 meters above the ground in the 49 
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field. Although the Tmax measured by this method has high accuracy but not spatial continuity. 50 

Therefore, some scholars spatialized the station based Tmax through methods such as Kriging 51 

interpolation and spline function interpolation. However, the number of meteorological stations is 52 

limited, and stations in remote areas and areas with complex terrain are even sparser, which makes 53 

the accuracy of Tmax obtained by interpolation difficult to meet the requirements of regional scale 54 

research in China. 55 

In order to obtain information about the spatial distribution of the Tmax, many scholars began to 56 

use satellite remote sensing to solve this problem. There are three commonly remote sensing 57 

methods to estimate Tmax. The first method is regression analysis, which uses the correlation 58 

between retrieved land surface temperature (LST) and Tmax to establish a regression model to 59 

estimate Tmax (Shen and Leptoukh, 2011; Evrendilek et al., 2012; Lin et al., 2012). The second 60 

method is machine learning, which can flexibly estimate Tmax in urban areas with complex features 61 

(Yoo et al., 2018). The third method is to use a diurnal temperature change model to extend the 62 

instantaneous air temperature (Ta) to calculate Tmax, either by the Temperature-Vegetation Index 63 

(TVX) method (Wloczyk et al., 2011; Zhu et al., 2013), the energy balance method (Sun et al., 2005; 64 

Zhu et al., 2017), the atmospheric temperature profile extrapolation method (Fabiola and Mario, 65 

2010), or other methods. The above methods of estimating Tmax with LST can better reflect the 66 

spatial distribution of Tmax, but regression analysis and machine learning require sufficient and 67 

representative samples, and the established model is not universal. TVX cannot estimate Ta at night 68 

and in sparse vegetation areas. Many parameters required by the energy balance method cannot 69 

usually be obtained by remote sensing technology. The estimation accuracy of atmospheric 70 

temperature profile extrapolation method is greatly affected by the accuracy of the atmospheric 71 
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temperature profile. The China Meteorological Administration (CMA) provided the grid dataset of 72 

daily surface temperature in China (V2.0), which contains Tmax data, but the spatial resolution of the 73 

data is only 0.5°, and the data accuracy in local areas needs to be improved. Therefore, a new method 74 

for estimating Tmax needs to be proposed. 75 

At present, most researches mainly used the extreme climate indices defined by the Expert Team 76 

on Climate Change Detection and Indices (ETCCDI) to analyze the temporal and spatial distribution 77 

characteristics of high temperature and its changing laws (Khan et al., 2018; Mcgree et al., 2019; 78 

Poudel et al., 2020; Ruml et al., 2017; Salman et al., 2017; Wang et al., 2019; Zhang et al., 2019). 79 

Zhou et al. (2016) analyzed the temperature indices changes in China from 1961 to 2010, and the 80 

results indicated that the warm extremes in China exhibited an increasing trend. In addition, the 81 

researchers analyzed the characteristics of high temperature changes in the Three River Headwaters, 82 

Yangtze River Basin, Loess Plateau, Inner Mongolia and Songhua River Basin (Ding et al., 2018; 83 

Guan et al., 2015; Sun et al., 2016; Tong et al., 2019; Zhong et al., 2017). In addition to analyzing 84 

the temporal and spatial changes of high temperature events, many scholars have also studied the 85 

influencing factors of high temperature events. Studies showed that extreme high temperature over 86 

China was related to abnormal atmospheric circulation disturbances (You et al., 2011; Zhong et al., 87 

2017) and abnormal sea surface temperature (Li et al., 2019b; Wu et al., 2011). However, previous 88 

studies on the cause of high temperature events usually only analyzed the correlation between 89 

atmospheric circulation modes and the temperature indices along the time dimension, without 90 

considering the spatial characteristics of the correlation.  91 

From the above analysis, most of the researches mainly used the meteorological observation 92 

temperature data interpolation to analyze local temperature changes, and as far as we know, no one 93 
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constructed continuous high-temporal resolution Tmax for high temperature analysis in China. In 94 

order to better study regional high temperature events, this study proposes an estimation framework 95 

for obtaining high-precision Tmax. Firstly, we used multi-source data and established near surface Ta 96 

diurnal variation model to build Tmax dataset in China from 1979 to 2018 with a spatial resolution 97 

of 0.1°. To further improve the accuracy, we divided China into six regions according to climate 98 

conditions and topography, and established calibration models respectively. On this basis, we 99 

further analyzed the spatial-temporal variation characteristics of Tmax and corresponding influencing 100 

factors in China. This can provide evidence for mitigating global climate change and reducing 101 

regional carbon emissions for environmental protection. 102 

2 Study area  103 

In order to establish a more high-precision Tmax dataset to analyze the temporal and spatial 104 

characteristics of high-temperature in China, we divided China into six regions mainly based on 105 

topographic conditions (elevation), and climatic conditions (Ta and precipitation), as shown in Fig.1. 106 

(I) The northeast region has a temperate monsoon climate. Affected by the monsoon, Ta in the 107 

southern part of the region is higher than that in the north in winter. The topography of this area is 108 

dominated by plains, hills, and mountains. Due to the influence of topography, the variability of Ta 109 

is large in local areas. (II) The northwestern region is dominated by a temperate continental climate 110 

(cold in winter and hot in summer) with a large annual and daily Ta range. The area exhibits little 111 

annual precipitation which decreases from east to west. The topography of this area is dominated 112 

by plateau basins and rivers are scarce. (III) North China is located in a semi-humid and humid zone 113 

in the warm temperate zone. Precipitation is mainly concentrated in summer. This area is dominated 114 

by plains and plateaus, bounded by Taihang Mountain, the Loess Plateau in the west, and the North 115 
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China Plain in the east. (IV) The southeast region is dominated by mountains and hills, which 116 

belongs to the warm and humid subtropical oceanic monsoon climate zone, and the tropical 117 

monsoon climate zone. The climate is mild, with an annual average Ta of 17-21°C and an average 118 

rainfall of 1400-2000mm. (V) The southwestern region has a subtropical monsoon climate, affected 119 

by the southeast monsoon and southwest monsoon. It is hot and rainy in summers, and the landforms 120 

in this area are dominated by plateaus and mountains. (VI) The Qinghai-Tibet Plateau is located in 121 

southwest China, with an average elevation of more than 4,000 meters. The towering terrain has a 122 

great impact on the climate in eastern and southwestern China. It has a plateau mountainous climate, 123 

with cold winters and warm summers, with aridity and little rain throughout the year. 124 

 125 

Figure 1. Overview of the study area. 126 

3 Data 127 

3.1 China Meteorological Forcing Dataset (CMFD) 128 

CMFD is developed by the Hydro-meteorological Research Group of the Institute of Tibetan Plateau 129 

Research, Chinese Academy of Sciences. The dataset can be obtained from the National Qinghai-130 
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Tibet Plateau Science Data Center (https://data.tpdc.ac.cn/). The near surface Ta data of CMFD has 131 

a time resolution of 3h and a spatial resolution of 0.1°, and its accuracy in China is better than Global 132 

Land Data Assimilation System (GLDAS) data (He et al., 2020). CMFD data used ANUSPLIN 133 

software to interpolate the difference between GLDAS Ta data and the measured Ta data to obtain 134 

grid data, and then the difference grid data and the spatially downscaled GLDAS Ta data were 135 

spatially added to generate high resolution Ta data. The Ta data of CMFD have been widely used in 136 

climate simulation, hydrological simulation, vegetation greenness research, and cross-validation of 137 

new Ta datasets (Luan et al., 2020; Gu et al., 2020; Wang et al., 2020). Although this dataset has 138 

become one of the most widely used climate datasets in China, it does not provide the Tmax value. 139 

In order to perform high temperature analysis, we need to construct a Tmax dataset. 140 

3.2 ERA5 data 141 

ERA5 data is the fifth generation of global climate reanalysis data produced by the European Centre 142 

for Medium-range Weather Forecast (ECMWF) after ERA-Interim. The model version used by 143 

ERA5 is IFS Cycle 41r2, and its spatial-temporal resolution and number of vertical layers are much 144 

higher than the ERA-Interim data (Hoffmann et al., 2019; Urraca et al., 2018; Hersbach et al., 2020). 145 

ERA5 reanalysis data provide a variety of meteorological elements, including atmospheric 146 

parameters, land parameters, and ocean parameters, spanning a time range from 1950 to present. 147 

The data can be obtained from Copernicus Climate Data Store (https://cds.climate.copernicus.eu/). 148 

The ERA5 dataset also does not provide the Tmax. This study used Ta data from 1979 to 2018 with 149 

a time resolution of 1 h and a spatial resolution of 0.25° to help build a Tmax estimation model to 150 

generate Tmax value, and we sampled the ERA5 data to the same spatial resolution as the CMFD 151 

data. 152 
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3.3 Meteorological station data 153 

Tmax data from the China Surface Climatic Data Daily Dataset (V3.0) from 1979 to 2018 were used 154 

to verify the accuracy of Tmax estimations. The hourly Ta observation data from China 155 

meteorological stations were used to determine the occurrence times of Tmax and daily lowest air 156 

temperature (Tmin). Both datasets are from CMA National Meteorological Information Center 157 

(http://data.cma.cn/). The data were subjected to preliminary quality control and evaluation by CMA, 158 

and all elements in the observational data are of high quality and completeness, with the validity 159 

rate generally above 99%. These datasets have been widely used in Chinese climate research (Li et 160 

al., 2019a; Tong et al., 2019). To ensure the validity of the site data, manual checks were performed 161 

on all observed data, including extreme value tests and spatial-temporal consistency tests, and 162 

continuous missing data due to instrument damage and other reasons were eliminated. There are 163 

824 stations for Tmax observation data and 2633 stations for hourly Ta observation data. After 164 

performing checks and tests, we used Tmax data from 760 meteorological ground stations and hourly 165 

Ta data from 2421 meteorological ground stations. 166 

3.4 Ocean climate modal indices 167 

The ocean occupies about 71% of the earth's surface area, which has a great impact on climate 168 

change. After considering the distribution characteristics of China's land and sea, we analyzed the 169 

effects of the following ocean climate modal indices on high temperature in China: Indian Ocean 170 

Basin warming (IOBW) index, North Atlantic Oscillation (NAO) index, and NINO3.4 area sea 171 

surface temperature (NINO3.4) index. Among them, the IOBW index comes from the National 172 

Climate Center of CMA (http://cmdp.ncc-cma.net/cn/index.htm), and the NAO index and NINO3.4 173 

index are from the National Oceanic and Atmospheric Administration of the United States 174 
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(https://psl.noaa.gov/data/climateindices/list/). The time range of the three indices is 1979-2018, and 175 

the time scale is monthly.  176 

Table 1. Overview of the data used in this study. 177 

Data 

China 

Meteorolo

gical 

Forcing 

Dataset 

ERA5 

China 

Surface 

Climatic 

Data Daily 

Dataset 

Hourly Ta 

observatio

n data 

Indian 

Ocean 

Basin 

warming  

index 

North 

Atlantic 

Oscillatio

n index 

NINO3.4 

area sea 

surface 

temperat

ure  

index 

Source 

National 

Qinghai-

Tibet 

Plateau 

Science 

Data 

Center 

Copernicus 

Climate 

Data Store 

CMA 

National 

Meteorologi

cal 

Information 

Center 

CMA 

National 

Meteorolo

gical 

Informatio

n Center 

National 

Climate 

Center of 

CMA 

National 

Oceanic 

and 

Atmosphe

ric 

Administr

ation of 

the United 

States 

National 

Oceanic 

and 

Atmosph

eric 

Administ

ration of 

the 

United 

States 

Description Ta Ta Tmax Ta – – – 

Time span 1979-2018 1979-2018 1979-2018 
1979-

2018 

1979-

2018 

1979-

2018 

1979-

2018 

Spatial/tem

poral 

resolution 

0.1°/3 h 0.25°/1 h –/1 d –/1 h –/1 month –/1 month 
–/1 

month 

Reference 
(He et al., 

2020) 

(Hersbach et 

al., 2020) 

– – – – – 

Version – – V3.0 – – – – 

DOI/URL 

10.11888/

Atmospher

icPhysics.t

10.24381/cd

s.adbb2d47 

– – – – – 
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pe.249369.

file 

4 Methodology 178 

4.1 Tmax dataset construction 179 

At present, the data used in the research on high temperature characteristics is mostly meteorological 180 

station data, or grid data obtained by interpolation of station data. A limited number of stations 181 

cannot represent the high temperature distribution at large scale. For regions where the stations are 182 

very sparse, grid data obtained by spatial interpolation can hardly meet the accuracy requirements 183 

of high temperature feature analysis. Although LST can be used to estimate Tmax, LST has degraded 184 

value in the presence of clouds or rainfall. Therefore, in order to obtain a Tmax dataset with high 185 

temporal and spatial resolution, we propose a Tmax construction model that combines meteorological 186 

station data and reanalysis data, and consider the Tmax construction under clear sky and non-clear 187 

sky conditions (see Section 4.1.1 for details). The data processing process is shown in Fig. 2, and 188 

the data construction model is divided into two steps: Tmax estimation and Tmax correction. First, the 189 

occurrence time of Tmax and Tmin was determined pixel by pixel (see Section 4.1.1 for details). Then, 190 

Tmax was determined according to the weather state. (1) In clear sky conditions, CMFD 3h near-191 

surface Ta data was used to construct the Ta diurnal variation model which in turn yielded Tmax. (2) 192 

In non-clear sky conditions, the site and reanalysis data were used to fill pixels. Finally, the 193 

correction model was used to correct the poor quality pixels to generate the final Tmax dataset in 194 

China. 195 
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 196 

Figure 2. Technical roadmap for Tmax estimation. 197 

4.1.1 Tmax estimation 198 

The changes of Ta under different weather conditions are different. The changes of Ta under clear 199 

sky conditions are relatively smooth and regular. Under non-clear sky conditions, Ta changes more 200 

drastically. In order to improve the accuracy of Tmax estimation, we determined the occurrence time 201 

of Tmax and Tmin pixel by pixel. If there was a meteorological station at the pixel location, the analysis 202 

could be divided into two situations. (1) If hourly Ta data was valid, it was directly used to determine 203 

the occurrence time of Tmax and Tmin. (2) If there was a missing value in the hourly Ta data at a 204 

certain time, then we used the valid data from adjacent stations at the same time or adjacent time at 205 

the same stations to fill in the missing values. At present, there are not many meteorological stations 206 

in China, and the pixels without stations account for 97.5%. If there was no meteorological station 207 

at the pixel location, we used ERA5 hourly Ta data to determine the occurrence time of Tmax and 208 
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Tmin. Since the spatial resolution of the ERA5 data is lower than that of the dataset we produce, in 209 

order to match the two data spatially, we sample the two data to the same resolution, and then use 210 

latitude and longitude as control conditions to match the different data. 211 

Studies have shown that the change of Ta under clear sky conditions follows a certain law: the 212 

change curve of Ta during the day is close to a sine function (Ephrath et al., 1996; Johnson and 213 

Fitzpatrick, 1977; Parton and Logan, 1981; Zhu et al., 2013), so we used sine function to simulate 214 

the change of Ta during the day. The appearance time of Tmin is 𝑡𝑚𝑖𝑛, and the appearance time of 215 

Tmax is 𝑡𝑚𝑎𝑥. According to the periodicity of the sine function, the model of the change of Ta during 216 

the day is obtained like Eq. (1).  217 

𝑇𝑎(𝑡) = 𝐴𝑠𝑖𝑛 (
𝜋(𝑡−𝑡𝑚𝑖𝑛)

𝑡𝑚𝑎𝑥−𝑡𝑚𝑖𝑛
−
𝜋

2
) + 𝐵                      (1) 218 

{
 
 

 
 
𝜕𝛿

𝜕𝐴
= ∑ {2 ∗ 𝑠𝑖𝑛 (

𝜋(𝑡𝑖−𝑡𝑚𝑖𝑛)

𝑡𝑚𝑎𝑥−𝑡𝑚𝑖𝑛
−
𝜋

2
) ∗ [𝐴 ∗ 𝑠𝑖𝑛 (

𝜋(𝑡𝑖−𝑡𝑚𝑖𝑛)

𝑡𝑚𝑎𝑥−𝑡𝑚𝑖𝑛
−
𝜋

2
) + 𝐵 − 𝑇𝑎𝑖]} = 0

𝑛
𝑖=1

𝜕𝛿

𝜕𝐵
= ∑ {2 ∗ [𝐴 ∗ 𝑠𝑖𝑛 (

𝜋(𝑡𝑖−𝑡𝑚𝑖𝑛)

𝑡𝑚𝑎𝑥−𝑡𝑚𝑖𝑛
−
𝜋

2
) + 𝐵 − 𝑇𝑎𝑖]}

𝑛
𝑖=1 = 0                                        

𝛿 = ∑ [𝐴 ∗ 𝑠𝑖𝑛 (
𝜋(𝑡𝑖−𝑡𝑚𝑖𝑛)

𝑡𝑚𝑎𝑥−𝑡𝑚𝑖𝑛
−
𝜋

2
) + 𝐵 − 𝑇𝑎𝑖]

2
𝑛
𝑖=1                                                        

  (2) 219 

 220 

Here n is the number of CMFD near surface Ta data used to construct the Ta change model in a 221 

day. CMFD can obtain Ta data 8 times a day. This study uses four daytime Ta data to construct a Ta 222 

variation model, so n is 4. 𝑇𝑎𝑖  is the near surface Ta data at the ith time of CMFD, and δ is the sum 223 

of squares of the difference between the model estimated Ta and the near surface Ta of the CMFD.  224 

Since the change of Ta under non-clear sky conditions does not conform to the sine curve change, 225 

we divided the estimation of Tmax under non-clear sky conditions into two situations. (1) If there 226 

was a station at the location of the pixel, the measured Tmax at the station was directly used as the 227 

Tmax of the pixel. (2) If there was no measured Tmax at the pixel location, the highest value of hourly 228 

Ta of ERA5 in a day was taken as Tmax. Then Tmax determined by the ERA5 data was assigned to 229 

the pixel at the corresponding position of the Tmax image we established using the spatial matching 230 

method. 231 

4.1.2 Tmax correction 232 

The validation of Tmax showed some differences between the estimated Tmax and the measured Tmax. 233 

In order to further improve the accuracy of Tmax, the measurements taken at weather stations should 234 

be used to correct the estimated Tmax, as shown in Fig. 3. First, determine whether there is station 235 
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data at the pixel location. For pixels with stations, if the difference between the estimated Tmax and 236 

the measured Tmax is less than 1°C, we consider the Tmax of this pixel to be valid. For a pixel with 237 

poor quality, if there is station data at the location of the pixel, the low-quality pixel will be replaced 238 

with the measured data from the station. If there is no station data at the pixel location, the data is 239 

corrected by linear regression method (Ninyerola et al., 2000; Zhao et al., 2020; Zheng et al., 2013). 240 

By establishing the regression relationship on each day between station Tmax and estimated Tmax, the 241 

residuals were calculated according to the measured values and Tmax regression predicted values, 242 

and the spatial distribution of the residuals on each day was obtained by the inverse distance weight 243 

(IDW) interpolation method. Finally, the estimated Tmax and the residual were added to obtain the 244 

corrected Tmax. The calibration model is like Eq. (3) and Eq. (4). 245 

𝑇𝑎𝑓𝑡𝑒𝑟(𝑖, 𝑗) = 𝑇𝑏𝑒𝑓𝑜𝑟𝑒(𝑖, 𝑗) + �̂�(𝑖, 𝑗)                  (3) 246 

�̂�(𝑖, 𝑗) = 𝑇𝑡𝑟𝑢𝑒(𝑖, 𝑗) − 𝑇𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡(𝑖, 𝑗)                  (4) 247 

Here i and j are the row and column numbers of the image, 𝑇𝑎𝑓𝑡𝑒𝑟(𝑖, 𝑗) is Tmax after correction, 248 

𝑇𝑏𝑒𝑓𝑜𝑟𝑒(𝑖, 𝑗) is Tmax before correction, �̂�(𝑖, 𝑗) is the residual, 𝑇𝑡𝑟𝑢𝑒(𝑖, 𝑗) is the measured Tmax, and 249 

𝑇𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡(𝑖, 𝑗) is Tmax predicted by the regression model. 250 

We used the jackknife method to randomly divide the station data into calibration and 251 

verification data (Benali et al., 2012; Zhao et al., 2020). We selected 80% of the meteorological 252 

stations to establish the regression relationship between the measured and estimated Tmax values. 253 

The other 20% of the meteorological stations were used to verify the accuracy of the corrected data. 254 

In order to improve data accuracy, the dataset used in the subsequent analysis of spatial-temporal 255 

variation of high temperature was the data corrected by all stations. Due to the different topographic 256 

and climatic characteristics of the six natural regions, the linear models of estimated Tmax and 257 

measured Tmax in each region were different. In order to obtain a higher-precision correction, the six 258 

regions were corrected separately.  259 
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 260 

Figure 3. Flow chart of Tmax correction. 261 

4.2 Extreme temperature indices 262 

ETCCDI proposed a set of extreme climate indices in the Climate Change Monitoring conference, 263 

which became the unified standard for climate change research (Hong and Ying, 2018; Mcgree et 264 

al., 2019; Poudel et al., 2020; Zhang et al., 2019; Zhou et al., 2016). Among them, 27 indices are 265 

considered as core indices, which are calculated from daily Ta and precipitation data and have the 266 

characteristics of weak extremeness, low noise, and strong significance. These indices 267 

comprehensively capture the frequency, intensity and duration of extreme climate events, and are 268 

recommended as the core indicators for extreme climate event analysis by the STARDEX program 269 

of the European Union (Guan et al., 2015; Ruml et al., 2017). In this study, six temperature indices 270 

related to Tmax were used to analyze high temperature characteristics, and their definitions are shown 271 

in Table 1. Among them, the 90th percentile in TX90p and the 10th percentile in TX10p were 272 

obtained in ascending order based on the Tmax data of each month during 1979-2018. 273 

Table 2. Definition of extreme temperature indices. 274 

Index Name Definition Category Unit 

SU Summer days Annual count of days when Tmax >25℃ Frequency d 

TX90p Warm days Annual count of days when Tmax >90th 

percentile 

Frequency d 

TXn Minimum Tmax Annual minimum value of Tmax Intensity ℃ 

TXx Maximum Tmax Annual maximum value of Tmax Intensity ℃ 
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ID Icing days Annual count of days when Tmax <0℃ Frequency d 

TX10p Cold days Annual count of days when Tmax <10th 

percentile 

Frequency d 

4.3 Trend analysis 275 

4.3.1 Sen’s slope estimation 276 

In this study, the trends of Tmax and extreme temperature indices were calculated using Sen's slope 277 

estimation. Sen’s slope estimation is a nonparametric estimation method. Even if there are some 278 

outliers in the sample, it can reliably estimate the change trend of the time series, so it is widely used 279 

in trend analysis (Sen, 1968; Zhang et al., 2017). The Eq. (5) is used to calculate the slope of each 280 

pair of data. 281 

   𝐾𝑖 =
𝑥𝑘−𝑥𝑗

𝑘−𝑗
 (𝑖 = 1,2,⋯ ,𝑁)                      (5) 282 

Where 𝑁 =
𝑛(𝑛−1)

2
, 𝑥𝑘  and 𝑥𝑗 are the time series values of the kth and jth samples respectively 283 

(1 ≤ 𝑗 < 𝑘 ≤ 𝑛 ). Arranging the N, 𝐾𝑖  values in ascending order, the median Sen’s slope is 284 

estimated as Eq. (6). 285 

𝑆𝑙𝑜𝑝𝑒 = {
𝐾[(𝑁+1)/2]           , 𝑁 𝑖𝑠 𝑜𝑑𝑑  
𝐾[𝑁/2]+𝐾[(𝑁+2)/2]

2
  , 𝑁 𝑖𝑠 𝑒𝑣𝑒𝑛

                   (6) 286 

4.3.2 Mann-Kendall trend test 287 

Mann-Kendall trend test is used to test the trends of Tmax and extreme temperature indices. Mann-288 

Kendall method does not require samples to follow a certain distribution and is not disturbed by a 289 

few outliers, and it can test the change trend of time series (Seenu and Jayakumar, 2021; Tan et al., 290 

2019). Eq. (7) is used to calculate the statistic of the Mann-Kendall trend test. 291 

𝑆 = ∑ ∑ sgn(𝑥𝑗 − 𝑥𝑖)
𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1                      (7) 292 

sgn(𝑥𝑗 − 𝑥𝑖) = {

1    , 𝑥𝑗 − 𝑥𝑖 > 0

0    , 𝑥𝑗 − 𝑥𝑖 = 0

−1 , 𝑥𝑗 − 𝑥𝑖 < 0
                   (8) 293 

Var(𝑆) =
𝑛(𝑛−1)(2𝑛+5)

18
                         (9) 294 

Here 𝑥𝑖  and 𝑥𝑗  are the ith and jth data values of the time series, and n is the length of the time 295 

series, where n is 40. Var(𝑆) is the variance of S. The standardized statistic 𝑍𝑐  is computed by using 296 

Eq. (10). 297 
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𝑍𝑐 =

{
 
 

 
 

𝑆−1

√𝑉𝑎𝑟(𝑆)
, 𝑆 > 0

     0      , 𝑆 = 0
𝑆+1

√𝑉𝑎𝑟(𝑆)
, 𝑆 < 0

                        (10) 298 

When|𝑍𝑐| > 𝑍1−𝛼/2 , the change trend is considered to be significant. Here, 𝑍1−𝛼/2 is the 299 

standard normal variance, α is the significance test level, when  α = 0.05,  𝑍1−𝛼/2 = 1.96, and 300 

when α = 0.01, 𝑍1−𝛼/2 = 2.58. 301 

4.4 Mann-Kendall test for abrupt change analysis 302 

Climate system change is an unstable and discontinuous change process, and one of the commonly 303 

used methods to test its change is the Mann-Kendall mutation test, which is very effective in testing 304 

the change of elements from a relatively stable state to another state (Ruml et al., 2017). We used 305 

Mann-Kendall mutation test to test whether extreme temperature indices has mutation. For a time 306 

series x with n samples, Eq. (11) is used to construct an ordered sequence. 307 

 𝑠𝑘 = ∑ 𝑟𝑖     (𝑘 = 2,3,⋯ , 𝑛)
𝑘
𝑖=1                       (11) 308 

   𝑟𝑖 = {
+1, 𝑥𝑖 > 𝑥𝑗
 0  , 𝑥𝑖 ≤ 𝑥𝑗

(𝑗 = 1,2,⋯ , 𝑖)                     (12) 309 

𝑈𝐹𝑘 =
𝑠𝑘−E(𝑠𝑘)

√Var(𝑠𝑘)
   (𝑘 = 1,2,⋯ , 𝑛)                    (13) 310 

E(𝑠𝑘) =
𝑘(𝑘−1)

4
                            (14) 311 

Var(𝑠𝑘) =
𝑘(𝑘−1)(2𝑘+5)

72
                       (15) 312 

Where 𝑠𝑘 is the cumulative count of the number of values at time i greater than that at time j. 313 

E(𝑠𝑘) and Var(𝑠𝑘) are the mean and variance of the cumulative number 𝑠𝑘 respectively. 𝑈𝐹𝑘  is a 314 

standard normal distribution, given the significance level α, and can be obtained from the normal 315 

distribution table. If |𝑈𝐹𝑘| > 𝑈𝛼, which indicates that the variation trend of time series is significant. 316 

Reverse the time series x to  𝑥𝑛, 𝑥𝑛−1,⋯ , 𝑥1 , and repeat the above process with  𝑈𝐵𝑘 =317 

−𝑈𝐹𝑘(𝑘 = 𝑛, 𝑛 − 1,⋯ ,1). 318 
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4.5 Correlation analysis 319 

Pearson correlation coefficient is often used to accurately measure the degree of correlation between 320 

two variables, and its size can reflect the strength of the correlation of the variables. For 321 

variables  𝑥1, 𝑥2,⋯ , 𝑥𝑛 and variables  𝑦1, 𝑦2, ⋯ , 𝑦𝑛 , the correlation coefficient between them is 322 

calculated as Eq. (16). 323 

𝑅 =
𝑛∑ (𝑥𝑖×𝑦𝑖)−∑ 𝑥𝑖∑ 𝑦𝑖

𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1

√𝑛∑ 𝑥𝑖
2−(∑ 𝑥𝑖

𝑛
𝑖=1 )

2𝑛
𝑖=1

√𝑛∑ 𝑦𝑖
2−(∑ 𝑦𝑖

𝑛
𝑖=1 )

2𝑛
𝑖=1

             (16) 324 

Here n is the total length of the time series. The value of R is between -1 and 1. R<0 indicates a 325 

negative correlation. R>0 indicates a positive correlation. The closer the absolute value of R is to 1, 326 

the closer the relationship between the two elements is.  327 

5 Results 328 

5.1 Validation 329 

5.1.1 Validation of Tmax in each region 330 

In order to verify the feasibility of Tmax estimation using the Ta diurnal variation model and to 331 

analyze the accuracy of Tmax estimation in different regions, scatter plots of estimated Tmax and 332 

measured Tmax in six natural regions (I, II, III, IV, V and VI) were drawn according to the regional 333 

division in Fig. 1. The results are shown in Fig. 4, and the validation in each region shows that the 334 

root mean square errors (RMSE) is between 2.38-2.94°C, and the mean absolute error (MAE) is 335 

between 1.88-2.45°C, and the coefficient of determination (R2) is between 0.95-0.99. In six regions, 336 

the accuracy in region IV is the highest, while the accuracy is the lowest in region VI. As can be 337 

seen from Fig. 4, although most of the data is very accurate, some have some room for improvement. 338 

Therefore, further correction is needed to improve the accuracy of the Tmax dataset. 339 
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 340 

Figure 4. Validation of Tmax estimation results in each region. 341 

The correction method in Sect. 4.1.2 was used to correct the Tmax estimation results of six regions 342 

separately. The comparison between Tmax before and after correction with the measured Tmax is 343 

shown in Fig. 5. It can be seen that Tmax corrected by the regression model is more consistent with 344 

the measured Tmax. The RMSE decreases from 2.38-2.94°C to 1.14-1.81°C, and the MAE decreases 345 

from 1.88-2.45°C to 0.84-1.38°C, and the R2 increases from 0.96-0.99 to 0.97-0.99. The accuracy 346 

of Tmax is improved in each region after correction. The number of meteorological stations in region 347 

I is denser, and the accuracy of Tmax after calibration is significantly improved. The RMSE reduced 348 

from 2.32℃ to 1.14℃, and the error is reduced by 51%. The number of meteorological stations in 349 

region VI is small, and the topography is undulating and the spatial heterogeneity is large. Therefore, 350 

the accuracy in this region is still the lowest among the six natural areas after correction. In general, 351 

the corrected Tmax dataset has higher consistency with the measured data, and which can be applied 352 

to research related to regional scale Tmax.  353 
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 354 

Figure 5. Validation of Tmax after correction. 355 

5.1.2 Validation of Tmax in the whole China region 356 

Figure 6 shows the accuracy of Tmax before correction and Tmax after correction for the entire China 357 

region. It can be seen that the MAE of the corrected dataset is about 1.07°C, and the RMSE is 1.52°C, 358 

which is nearly 1°C higher than that before correction. The accuracy evaluation result of the dataset 359 

for different years shows that the dataset in 2008 has the highest accuracy and the lowest in 2014 360 

(Fig. 7). It can be seen from Fig. 8 that the dataset has the highest accuracy in September and the 361 

lowest accuracy in December. This may be because there are more clear sky weather in China in 362 

September, and the daily temperature change curve is closer to a sine function, which makes the 363 

Tmax estimation result more accurate. 364 

In general, the Tmax dataset has a time range of 1979-2018, in Celsius, with a temporal resolution 365 

of 1d and a spatial resolution of 0.1°. It is produced by using meteorological station data and Ta 366 

reanalysis data (CMFD and ERA5) combined with diurnal variation model of Ta to establish Tmax 367 

data, and then a correction model is constructed to further correct the data to improve the data 368 

accuracy according to different geographic partitions. The accuracy assessments indicate that the 369 

dataset exhibits high accuracy and can be used for climate change analysis in China. 370 
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 371 

Figure 6. Box plots of the R2, MAE, and RMSE of comparison between Tmax before correction and Tmax after 372 

correction in the whole China region. 373 

 374 

Figure 7. Box plots of the R2, MAE, and RMSE of Tmax after correction for each year in the whole China region. 375 

 376 

Figure 8. Box plots of the R2, MAE, and RMSE of Tmax after correction for each month in the whole China region. 377 
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5.2 Temporal and spatial changes of Tmax  378 

5.2.1 Inter-annual variability 379 

Fig. 9 shows the annual average change of Tmax in each region of China during 1979-2018. The Tmax 380 

in each region exhibited an upward trend. However, due to the different geographical locations and 381 

the influence of atmospheric circulation in various regions, the change of Tmax was also different. 382 

The order of the Tmax increase in each region was: V>IV>III>Whole>VI>II>I. The Tmax anomaly 383 

ranges of region I-VI and the whole China region were -1.41-1.53, -1.54-1.16, -1.47-1.12, -1.34-384 

0.92, -0.97-1.33, -1.31-1.15, and -1.09-0.98℃, respectively. The Tmax variation coefficients were 385 

0.082, 0.045, 0.036, 0.024, 0.03, 0.088 and 0.038, respectively. It can be seen that Tmax fluctuated 386 

the most in region VI and the least in region IV. The minimum values of region I-VI and China 387 

region appeared in 1987, 1984, 1984, 1984, 1989, 1983, and 1984, respectively which were 388 

distributed in the 1980s. The highest values of Tmax appeared in 2007, 2007, 2017, 2007, 2013, 1999, 389 

and 2007 respectively. Zhai et al. (2016) found that 1999, 2007, and 2013 were among the 10 years 390 

with the highest average Ta in China from 1900 to 2015. From 1998 to 2012, global surface 391 

temperature experienced a warming hiatus (Du et al., 2019; Li et al., 2015), and Tmax in all regions 392 

of China showed a downward trend during this period. 393 
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 394 

Figure 9. Inter-annual changes of Tmax anomalies in six regions of China during 1979-2018. 395 

In order to understand the spatial pattern and regional differences of Tmax changes with more 396 

detail in China, Sen's slope estimation was used to calculate the annual average Tmax change rate 397 

from 1979 to 2018 at the pixel scale (Fig. 10a). The significance test of the Tmax change trend was 398 

conducted by the Mann-Kendall trend test (Fig. 10b). At the same time, the average change rate of 399 

Tmax in each region and the area percentage of significant increase and decrease (P<0.05) of Tmax 400 

were calculated (Table 3). The results indicated that the annual average Tmax change rate in most 401 

regions of China (78.24% of the study area) passed the significance test with a significance level of 402 

0.05, and 65.84% of the pixels showed very significant changes in Tmax (P<0.01). Fig. 10a showed 403 

that the annual average Tmax in most regions of China was on the rise, and the fastest rising rate of 404 

Tmax was in western Yunnan. Only 8.13% of the regions in China showed a downward trend in Tmax. 405 

These were concentrated mainly in the north and south of Xinjiang, and the northwest and south of 406 

Tibet. Among the six regions, the average Tmax change rate of region V was the largest (0.38℃/10a), 407 

and the average Tmax change rate of region I and region II was the lowest (0.31℃/10a) (Table 3).  408 
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 409 

Figure 10. Inter-annual change rate of Tmax (a) and results of Mann-Kendall trend test (b). 410 

Table 3. Statistics of Tmax change trends in various regions of China from 1979 to 2018. 411 

Region I II III IV V VI Whole 

Mean (℃/10a) 0.31 0.31 0.33 0.35 0.38 0.33 0.33 

Significant 

upward (%) 
65.21 69.45 87.03 92.29 87.00 67.93 75.13 

Significant 

downward (%) 
0.09 3.14 0 0.32 0.75 7.92 3.11 

5.2.2 Seasonal changes 412 

On the basis of the annual analysis, we also analyzed the seasonal changes. The seasons are divided 413 

according to the months (spring from March to May, summer from June to August, autumn from 414 

September to November, and winter from December to February). We plotted the seasonal variation 415 

curve of Tmax in China from 1979 to 2018 (Fig. 11), and some information on the trend of Tmax 416 

changes is shown in Table 4. The results indicated that Tmax in each region fluctuated the most in 417 

winter and the least in summer. The highest Tmax in each region in spring, summer, autumn and 418 

winter mostly occurred in 2018, 2013, 1998 and 2007, while the minimum Tmax in each region in 419 

spring, summer, autumn and winter mostly occurred in 1988, 1993, 1981 and 1984. In 2013, Tmax 420 

of region IV-VI in summer reached the highest since 1979, mainly due to the influence of the 421 

southwest monsoon, East Asian summer monsoon and other factors. Under the influence of El Niño, 422 
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Tmax in winter in region I, II and the whole study area was the highest in 2007. Under the influence 423 

of La Niña, the minimum Tmax in spring and winter in most areas of China appeared in 1988 and 424 

1984, respectively. In the same season, the variation trend of Tmax in each region was significantly 425 

different, and some even had opposite trends. However, influenced by La Niña and the Eurasian 426 

atmospheric circulation, Tmax in winter in each region showed a consistent decreasing trend from 427 

2007 to 2008. As can be seen from Table 4, in spring, summer, autumn and winter, the regions with 428 

the fastest Tmax rise are III, I, I and VI respectively, and the regions with the lowest Tmax change rate 429 

are VI, VI, III and II respectively.  430 

 431 

Figure 11. Changes of Tmax anomalies in various regions of China in spring (a), summer (b), autumn (c), winter 432 

(d) during 1979-2018. 433 

Table 4. Seasonal change rate of Tmax in various regions of China from 1979 to 2018.  434 

 I II III IV V VI Whole 

Spring 0.035 0.063** 0.072** 0.063** 0.051** 0.026* 0.048** 

Summer 0.040** 0.035** 0.033** 0.022** 0.039** 0.020* 0.031** 

Autumn 0.039* 0.024 0.014 0.025** 0.035** 0.025* 0.023** 

Winter 0.009 -0.002 0.027 0.037 0.034* 0.058** 0.027 
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(*, ** represent the trends are significant at the level of p=0.05, p=0.01, respectively.) 435 

In order to display the seasonal variation characteristics of Tmax in China more intuitively, we 436 

drew the spatial distribution of the trend of Tmax and conducted a significance test (Fig. 12). 437 

Meanwhile, we counted the percentage of significant increase and decrease of Tmax in each region 438 

(Table 5). The results indicated that the areas with increasing Tmax were more than those with 439 

decreasing Tmax in all seasons. From 1979 to 2018, the increasing trend of Tmax was most significant 440 

in spring, which accounted for 92.73% of the total study area, followed by autumn and summer, 441 

while Tmax increased the least in winter. Specifically, Tmax increased significantly in most parts of 442 

China in spring, and the region where Tmax decreased significantly were mainly concentrated in the 443 

region VI (Fig. 12a). In summer, Tmax in most part of China showed a significant increasing trend, 444 

but Tmax in southern Xinjiang and northwestern Tibet exhibited a decreasing trend (Fig. 12b). 445 

Compared with spring and summer, the area with a significant increasing trend of Tmax in autumn 446 

was smaller, and the regions with a significant decreasing trend of Tmax were mainly distributed in 447 

Xinjiang and Tibet (Fig. 12c). 79.02% of the regions experienced an increase in Tmax in winter, 448 

which was significantly lower than in other seasons. A significant increasing trend of Tmax was 449 

observed in the east of region IV, the southwest of regions V and VI, while the areas where Tmax 450 

decreased significantly were mainly observed in Xinjiang (Fig. 12d). We also observed no 451 

significant decrease in Tmax in regions I and III in spring, I in summer, I and IV in autumn, and III 452 

in winter (Table 5). Further statistics showed that Tmax of the whole region III showed an upward 453 

trend in spring. 454 
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 455 

Figure 12. Spatial distribution of the change trend of Tmax in spring (a), summer (b), autumn (c), winter (d) over 456 

China during 1979-2018. The shaded areas indicate trends that are significant at the 0.05 level.  457 

Table 5. Change trend statistics of Tmax in different seasons over China from 1979 to 2018. 458 

 
Significant upward (%)  Significant downward (%) 

Spring Summer Autumn Winter Spring Summer Autumn Winter 

I 35.12 74.75 65.75 6.89  0 0 0 0.10 

II 81.56 73.47 36.07 8.10 1.01 7.04 3.15 10.87 

III 97.71 69.05 14.67 15.99 0 0.38 0.06 0 

IV 96.20 46.80 57.26 29.47 0.35 0.68 0 0.44 

V 76.48 75.11 58.56 31.62 1.24 1.53 0.06 0.12 

VI 50.20 55.11 49.54 68.58 7.00 14.17 10.34 2.28 

Whole 71.46 65.39 45.86 29.40 2.29 6.04 3.61 4.01 

5.3 Temporal and spatial changes of extreme temperature indices 459 

5.3.1 Change of time 460 



27 
 

We plotted the inter-annual variation of extreme temperature indices anomalies in various regions 461 

of China from 1979 to 2018 (Fig. 13), and used Sen's slope estimation and the Mann-Kendall trend 462 

test to calculate statistics on the trend of extreme temperature indices (Fig. 14). The results indicated 463 

that SU, TX90p, TXn and TXx increased at a rate of 3.83d/10a, 6.57d/10a, 0.11℃/10a and 464 

0.32℃/10a, respectively (Fig. 14). Influenced by the strong El Niño in 1997, the SU in all regions 465 

exhibited a consistent upward trend from 1996 to 1997 (Fig. 13). The change rate of SU in all regions 466 

passed the significance test of 0.01, indicating a significant upward trend (Fig. 14). The increasing 467 

trend of TX90p in all regions was also very significant. The decadal average of TX90p in region 468 

III-VI and the whole study area had an increasing trend, while the decadal average of TX90p in 469 

region I and region II increased first and then decreased slightly. The TXn of region II showed a 470 

weak decreasing trend, and the sliding average of the 3-year and 5-year periods also exhibited a 471 

weak fluctuation downward trend. TXn of other regions showed an upward trend in general, and 472 

only region VI had a significant increasing trend (P <0.05) (Fig. 14). Except for region VI, the 473 

change rate of TXx in other regions was higher than that of TXn. The rate of change of TXx 474 

exhibited that the upward trend of region VI was not significant, while all other regions passed the 475 

significance test of 0.01. During 1979-2018, ID and TX10p decreased significantly at the rate of -476 

1.48d/10a and -3.78d /10a, respectively (P <0.01) (Fig. 14). The ID of all regions exhibited a 477 

downward trend, with region VI and the whole study area showing the most obvious decline, passing 478 

the significance test of 0.01 (Fig. 14). Compared with ID, TX10p decreased more sharply, and the 479 

highest value of TX10p in all regions occurred before 1988 (Fig. 13). The above results indicate 480 

that the frequency of high temperature events in China is on the rise, which is in line with the 481 

expected results of global change. In addition, we also found that the occurrence time of maximum 482 
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and minimum values of SU, TXn, TXx and ID during 1979-2018 was consistent with previous 483 

research results by Hong and Ying (2018), which further proved the correctness of the Tmax dataset 484 

constructed by us, indicating that the dataset can be used to analyze the spatial-temporal changes of 485 

high temperature in China. 486 

 487 

Figure 13. Inter-annual trend of extreme temperature indices anomalies in different regions of China during 1979-488 

2018. 489 

 490 

Figure 14. Variation trend of extreme temperature indices in different regions of China from 1979 to 2018. (* 491 

significant at the 0.05 level, ** significant at the 0.01 level.) 492 
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In order to analyze the variation rules of extreme temperature indices in China from 1979 to 493 

2018, the Mann-Kendall mutation test was applied to test the mutation characteristics of six extreme 494 

temperature indices at the significance level of 0.05. The results are shown in Fig. 15. We found 495 

that all the extreme temperature indices had abrupt change from 1979 to 2018, and 40% of the years 496 

where the abrupt changes occurred were El Niño years, while 46.7% were La Niña years. This 497 

finding further confirms that China is greatly affected by global climate change. TX90p in region I-498 

II and the whole study area displayed an abrupt change from a period with lower value to one with 499 

higher value in 1996. After mutation in region II in 2003, TXn turned from an upward trend to a 500 

downward trend, but the downward trend was not obvious. The ID of the whole study area and its 501 

six sub-regions tended to increase first and then decrease.  502 

 503 

Figure 15. MK abrupt change detection for the extreme temperature indices in different regions of China during 504 

1979-2018. 505 

5.3.2 Spatial change 506 
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The spatial distribution of the extreme temperature indices trends in China during 1979-2018 is 507 

shown in Fig. 16 (a-f), while the area percentage of the increasing and decreasing trend of extreme 508 

temperature indices in each region is shown in Fig. 17 (a-f). For SU, TX90p, TXn and TXx, the area 509 

with rising trend is larger than the area with declining trend. The change of SU in most regions of 510 

China passed the significance test of 0.05, and the areas with significant increase accounted for 63.3% 511 

of the whole study area (Fig. 17a). The regions with no significant change in SU were mainly 512 

distributed in region VI (Fig. 16a). There were few days in a year when Tmax exceeded 25℃ in 513 

region VI, and Tmax in some regions was even lower than 25℃ throughout the year, so the change 514 

range of SU was small. The areas with a downward trend of TX90p were mainly distributed in 515 

southern Xinjiang and northern Tibet (Fig. 16b). TX90p increased significantly in 75% of regions 516 

in China (P <0.05), and the area percentage of TX90p significantly increased in region V was the 517 

largest among the six regions (Fig. 17b). The trend of TXn change in most regions of China was not 518 

significant, and the significant decrease was mainly concentrated in region II and region VI (Fig. 519 

16c). While other regions were dominated by increasing trend of the TXn, 69.7% of regions in 520 

region II showed a downward trend (Fig. 17c). For TXx, its upward trend was slightly stronger than 521 

TXn, and the region with the highest change rate was located in western China (Fig. 16d). The 522 

regions with significantly decreased ID were mainly distributed in region VI (Fig. 16e). 75.7% of 523 

the regions had a declining ID, and 53% of the regions passed the significance test (Fig. 17e). As 524 

far as TX10p is concerned, its cooling trend was much stronger than that of ID, and the areas of 525 

significant decline were widely distributed through all regions of China (Fig. 16f). The area with a 526 

significant decrease in region IV accounted for 75.9% of the region, which was the largest among 527 

the six regions (Fig. 17f). 528 
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 529 

Figure 16. Spatial distribution of trends in extreme temperature indices over China during 1979-2018. The shaded 530 

areas indicate trends that are significant at the 0.05 level. 531 

 532 

Figure 17. Area percentage of the trend of extreme temperature indices in different regions of China during 1979-533 

2018 534 

6 Discussion 535 
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6.1 The influence of ocean climate modalities on Tmax  536 

The correlation between Tmax anomalies and three climate modal indices in China during 1979-2018 537 

is shown in Fig. 18 (a-c). The results show that there is a significant positive correlation between 538 

Tmax and IOBW in 54.18% of the regions in China, which indicates that the warming of the Indian 539 

Ocean will contribute to the warming trend of Tmax in these regions. Tmax had a moderate positive 540 

correlation (0.4<R<0.6, P<0.01) with IOBW in southern Yunnan and eastern Hainan (Fig. 18a). 541 

Tmax and NAO had a significant positive correlation in northeast China, but the correlation was very 542 

weak (R<0.2). The percentage of Tmax anomaly value negatively correlated with NAO (16.55%) 543 

was higher than that of NAO positively correlated (5.27%), mainly distributed in the west and south 544 

of region II, west of region III, south of region IV and V, and northeast of region VI. This indicated 545 

that the positive phase of NAO contribute to the decrease of Tmax in these regions (Fig. 18b). Tmax 546 

was significantly positively correlated with NINO3.4 in southern China, central Xinjiang and 547 

southern Gansu, indicating that El Niño events will lead to higher temperatures in these regions. In 548 

western China and the middle part of region IV, Tmax was significantly negatively correlated with 549 

NINO3.4, indicating that El Niño events will lead to cooling phenomena in these regions (Fig. 18c). 550 

 551 

Figure 18. Correlation analysis between Tmax and IOBW (a), NAO (b) and NINO3.4 (c) in China during 1979-552 

2018. The shaded areas indicate correlations that are significant at the 0.05 level. 553 
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6.2 The influence of ocean climate mode on extreme temperature indices 554 

Fig. 19 (a-f) indicates the spatial distribution of the correlation between extreme temperature indices 555 

anomalies and IOBW in China during 1979-2018. It can be seen that SU, TX90p, TXn and TXx 556 

over most of China are positively correlated with the IOBW. The region with significant positive 557 

correlation between the SU and IOBW accounted for 42.67% of the whole study area, which 558 

indicated that a warming Indian Ocean would lead to the number of days over 25℃ in these regions 559 

to increase. Significant negative correlations were found in northwest and southeast Tibet and the 560 

mountainous regions of southern Xinjiang (Fig. 19a). The area with the largest correlation 561 

coefficient is in the northeast of Hainan (R=0.48). The significant negative correlation between 562 

TX90p and IOBW was mainly distributed in region VI, but the negative correlation was not strong 563 

(|R| < 0.4) (Fig. 19b). The correlation coefficient between TXn and IOBW ranged from -0.34 to 564 

0.34, and the regions with significant positive correlation accounted for 16.65% of the whole study 565 

area. TXn and IOBW were significantly negatively correlated mainly in western China (Fig. 19c). 566 

Compared with TXn, the regions with significant correlation between TXx and IOBW were more 567 

widely distributed in China, among which the correlation coefficients in southern Yunnan and 568 

eastern Hainan were moderately positive (0.4<R<0.6) (Fig. 19d). ID and TX10p were negatively 569 

correlated with IOBW in most of China. The regions with significant negative correlation between 570 

ID and IOBW were mainly distributed in region VI, and the regions with significant positive 571 

correlation were mainly distributed in the west of region II (Fig. 19e). TX10p has a significant 572 

negative correlation with IOBW in more areas than ID, and the significant positive correlation was 573 

mainly located in western China (Fig. 19f).  574 
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 575 

Figure 19. Correlation analysis between extreme temperature indices and IOBW in China during 1979-2018. The 576 

shaded areas indicate correlations that are significant at the 0.05 level. 577 

The influence of NAO on the extreme temperature indices is shown in Fig. 20 (a-f). SU, TX90p, 578 

TXx and TXn were negatively correlated with the NAO more than they were positively correlated 579 

with NAO, indicating that the positive phase of NAO would lead to the decline of SU, TX90p, TXx 580 

and TXn over most of China. SU and NAO had a significant positive correlation in southern 581 

Xinjiang, western Tibet, northern Qinghai and northern Guizhou, but the correlation was very weak 582 

(R<0.2). There was no significant correlation between SU and NAO in southern Qinghai, which 583 

was consistent with previous observations (Ding et al., 2018). The region with the strongest negative 584 

correlation between SU and NAO was located in Tibet (R=-0.18) (Fig. 20a). TX90p had a weak 585 

negative correlation with NAO in eastern Xinjiang (R=-0.22, P <0.01). TX90p was significantly 586 

positively correlated with NAO in the west and south of region VI, but the correlation was extremely 587 

weak (Fig. 20b). Shi et al. (2019) indicated that more regions had a significant positive correlation 588 

between TXn and NAO in China than had a significant negative correlation, which was consistent 589 
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with our results. The areas of TXn had a significant positive correlation with NAO were mainly 590 

distributed in northeast China, while the regions with significant negative correlation were mainly 591 

located in central Tibet, eastern Qinghai and Yunnan (Fig. 20c). The correlation coefficient between 592 

TXx and NAO varied from -0.16 to 0.21. The regions with significant positive correlation between 593 

TXx and NAO were mainly located in Tibet, and the region with the strongest correlation was 594 

located in southern Tibet (Fig. 20d). The areas of ID was significantly positively correlated with 595 

NAO accounted for 5.86% of the whole study area, and the strongest correlation was found in 596 

western Xinjiang (R=0.23). The regions with significant negative correlation between ID and NAO 597 

were mainly distributed in eastern and northeastern China (Fig. 20e). Sun et al. (2016) found a very 598 

weak positive correlation between TX10p and NAO in the Loess Plateau, which was consistent with 599 

our results. The regions with a significant negative correlation were mainly concentrated in 600 

northeastern China (Fig. 20f). 601 

 602 

Figure 20. Correlation analysis between extreme temperature indices and NAO in China during 1979-2018. The 603 

shaded areas indicate correlations that are significant at the 0.05 level. 604 
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Fig. 21 (a-f) shows the correlation between NINO3.4 and extreme temperature indices. The 605 

regions with significant positive correlation between SU and NINO3.4 were mainly distributed in 606 

eastern China, indicating that the events of El Niño would lead to an upward trend of SU in these 607 

regions. There were few regions with significant negative correlation between SU and NINO3.4, 608 

only accounting for 1.15% of the entire research area, mainly distributed in southeast Tibet and 609 

southwest Yunnan (Fig. 21a). The correlation coefficient between TX90p and NINO3.4 was -0.19-610 

0.26. The areas of TX90p had a significant negative correlation with NINO3.4 were mainly 611 

distributed in region IV and VI (Fig. 21b). There was a significant negative correlation between 612 

TXn and NINO3.4 in 24.59% of regions, and the region with the strongest negative correlation was 613 

located in Tibet (R=-0.25). TXn was positively correlated with NINO3.4 in only 10.46% of regions 614 

in China, and the region with the largest correlation coefficient was northwest Xinjiang (R=0.11) 615 

(Fig. 21c). There was a weak positive correlation between TXx and NINO3.4 in southern 616 

Guangdong and northern Hainan (0.2<R<0.4). The regions of TXx was significantly negatively 617 

correlated with NINO3.4 were mainly distributed in the south of region V and region VI (Fig. 21d). 618 

The significant negative correlation between ID and NINO3.4 was mainly concentrated in southern 619 

China. The areas with significant positive correlation were mainly distributed in the western region 620 

II and southern region VI, and the region with the strongest correlation was located in the western 621 

Sichuan (R=0.31) (Fig. 21e). TX10p in most regions of regional VI was significantly affected by 622 

NINO3.4, and the significant positive correlation area accounted for 69.31% of the whole region VI. 623 

TX10p was significantly negatively correlated with NINO3.4 in only 0.65% of regions in China, 624 

mainly distributed in Hainan and southern Gansu (Fig. 21f).  625 
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 626 

Figure 21. Correlation analysis between extreme temperature indices and NINO3.4 in China during 1979-2018. 627 

The shaded areas indicate correlations that are significant at the 0.05 level. 628 

7 Conclusions 629 

The global temperature continues to rise and extreme weather events continue to increase (IPCC, 630 

2021). It is great significance to study regional high temperature changes. In order to obtain the key 631 

parameters of high temperature spatial-temporal variation analysis, this study proposed a daily Tmax 632 

estimation frame based on the near-surface Ta grid data and Ta diurnal variation model to build a 633 

Tmax dataset in China from 1979 to 2018. Validation of Tmax estimation data in six natural regions 634 

indicated that the RMSE of each region was between 2.38-2.94°C, the MAE was between 1.88-635 

2.45°C, and R2 was between 0.95-0.99. After using the regression model to calibrate the dataset, the 636 

accuracy of the estimated Tmax has been significantly improved. The RMSE of the Tmax after 637 

calibration reduced to 1.14-1.81°C, and the MAE reduced to 0.84-1.38°C, and the R² increased to 638 

0.97-0.99. 639 
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This dataset was used to study the spatial-temporal variation characteristics of Tmax and the 640 

corresponding influencing factors in China, and to discuss the correlation between Tmax, extreme 641 

temperature indices and ocean climate modal indices. Tmax in all regions of China exhibited an 642 

upward trend from 1979 to 2018, with the largest rise in region V and the smallest rise in region I. 643 

In spring, Tmax in China increased significantly in most regions, and the region III is with the fastest 644 

rising speed. In winter, Tmax in China had the least significant rise, and the region II was with the 645 

slowest rise rate. SU, TX90p and TXx in all regions showed an upward trend. Except for region II, 646 

TXn in other regions also exhibited an upward trend, while ID and TX10p in all regions showed a 647 

downward trend. All extreme temperature indices had abrupt changes during 1979-2018, and most 648 

of the abrupt changes occurred in El Niño or La Niña years. The region with the largest increase of 649 

SU, TX90p and TXx and the region with the largest decrease of TX10p were located in the western 650 

Yunnan. The correlation analysis between Tmax and extreme temperature indices and ocean climate 651 

modal indices indicated that the increase of the IOBW usually coincides with the increase of Tmax, 652 

SU, TX90p, TXn and TXx and the decrease of ID and TX10p. NAO had the opposite relationships. 653 

In most regions of China, Tmax, SU, TX90p and TXn were negatively correlated with NINO.3.4, 654 

while TXx, ID and TX10p were positively correlated with NINO.3.4.  655 

The Tmax dataset we produced can not only be used as the input parameters of climate change 656 

models, crop growth models and carbon emission models, but also can be used to evaluate the risk 657 

of high temperature disasters, which has high practical value. Currently, due to the limitation of the 658 

temporal and spatial scope of the basic data, we have only produced the dataset of China. If global 659 

station data and temperature data can be obtained in the future, we can continue to produce Tmax 660 

dataset on a global scale. The analysis of regional high temperature temporal and spatial changes 661 
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shows that the temperature changes in different regions of China are inconsistent, and the 662 

mechanism that affects the temperature rise is different in different regions, and some regions are 663 

highly correlated with ocean temperature changes. China is located in the eastern Eurasian continent 664 

and the western Pacific Ocean. With the influence of the unique topography of the Qinghai-Tibet 665 

Plateau, China's climate system is very complex. The temperature change in China is affected by a 666 

combination of factors, and the ocean is only one of the factors affecting the temperature change in 667 

China. Our study found that the influence of the ocean on China's temperature change is not 668 

particularly strong, and we can continue to study the driving factors that have a strong impact on 669 

China's climate change in the future. In order to strengthen environmental protection and control 670 

temperature rise, and formulate reasonable carbon emission reduction measures, we need further 671 

research in the future.  672 
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