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Abstract. The daily highest air temperature (Tmax) is a key parameter for global and regional high 19 

temperature analysis, which is very difficult to be obtained in areas where there are no 20 

meteorological observation stations. This study proposes an estimation framework for obtaining 21 

high-precision Tmax. Firstly, we build a near surface air temperature diurnal variation model to 22 

estimate Tmax for China from 1979 to 2018 based on multi-source data. Then in order to further 23 

improve the estimation accuracy, we divided China into six regions according to climate conditions 24 

and topography, and established calibration models for different regionregions. The analysis shows 25 

that the mean absolute error (MAE) of the dataset (https://doi.org/10.5281/zenodo.56028976322881) 26 

is about 1.07 °C and RMSE is 1.52 °C, which improves the accuracy of the traditional method by 27 

nearly 1 °C. The spatial-temporal variations analysis of Tmax in China indicated that the annual and 28 

seasonal mean Tmax in most areas of China showed an increasing trend. In summer and autumn, the 29 
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Tmax in northeast China increased the fastest among the six regions, which were 0.4℃/10a and 30 

0.39℃/10a, respectively. The number of summer days and warm days showed an increasing trend 31 

in all regions, while the number of icing days and cold days showed a decreasing trend. The 32 

abnormal temperature changes mainly occurred in El Niño years or La Niña years. We found that 33 

the influence of the Indian Ocean Basin Warming (IOBW) on air temperature in China were 34 

generally greater than those of the North Atlantic Oscillation and the NINO3.4 area sea surface 35 

temperature after making analysis of ocean climate modal indices with air temperature. In general, 36 

this Tmax dataset and analysis are of great significance to the study of climate change in China, 37 

especially for environmental protection. 38 

Keywords：Near surface air temperature diurnal variation model; Daily highest air temperature; High temperature; 39 

Spatial-temporal analysis; Climate change 40 

1 Introduction 41 

In the context of global warming, the frequency of high temperature events is increasing, and high 42 

temperature tends to increase electricity demand and energy consumption (Zhang et al., 2021; 43 

Sathaye et al., 2013), adversely affecting human health, social economy and ecosystem (Sehra et al., 44 

2020; Basu, 2009; Gasparrini and Armstrong, 2011). The daily highest air temperature (Tmax) is the 45 

basic parameter for studying regional scale high-temperature events. It has a great influence on the 46 

ozone concentration (Abdullah et al., 2017; Kleinert et al., 2021) and the start time of the plant 47 

growth season on the Tibetan Plateau (Yang et al., 2017). Tmax is not only an important factor for 48 

high temperature disaster risk assessment, but also a key input parameter for crop growth models 49 

and carbon emission modelmodels. Sustained and abnormally high Tmax will cause high temperature 50 

heat damage and adversely affect crop growth. Therefore, it is very important to accurately obtain 51 
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the temporal and spatial distribution of Tmax and study the characteristics of high temperature 52 

weather. Generally, Tmax is measured on a thermometer in a louvered box 1.5 meters above the 53 

ground in the field. Although the Tmax measured by this method has high accuracy but not spatial 54 

continuity. Therefore, some scholars spatializespatialized the station based Tmax through methods 55 

such as Kriging interpolation and spline function interpolation. However, the number of 56 

meteorological stations is limited, and stations in remote areas and areas with complex terrain are 57 

even sparser, which makes the accuracy of Tmax obtained by interpolation difficult to meet the 58 

requirements of regional scale research in China. 59 

In order to obtain information about the spatial distribution of the Tmax, many scholars began to 60 

use satellite remote sensing to solve this problem. There are three commonly remote sensing 61 

methods to estimate Tmax. The first method is regression analysis, which uses the correlation 62 

between retrieved land surface temperature (LST) and Tmax to establish a regression model to 63 

estimate Tmax (Shen and Leptoukh, 2011; Evrendilek et al., 2012; Lin et al., 2012). The second 64 

method is machine learning, which can flexibly estimate Tmax in urban areas with complex features 65 

(Yoo et al., 2018). The third method is to use a diurnal temperature change model to extend the 66 

instantaneous air temperature (Ta) to calculate Tmax, either by the Temperature-Vegetation Index 67 

(TVX) method (Wloczyk et al., 2011; Zhu et al., 2013), the energy balance method (Sun et al., 2005; 68 

Zhu et al., 2017), the atmospheric temperature profile extrapolation method (Fabiola and Mario, 69 

2010), or other methods. The above methods of estimating Tmax with LST can better reflect the 70 

spatial distribution of Tmax, but regression analysis and machine learning require sufficient and 71 

representative samples, and the established model is not universal. TVX cannot estimate Ta at night 72 

and in sparse vegetation areas. Many parameters required by the energy balance method cannot 73 
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usually be obtained by remote sensing technology. The estimation accuracy of atmospheric 74 

temperature profile extrapolation method is greatly affected by the accuracy of the atmospheric 75 

temperature profile. Therefore, a new method for estimating Tmax needs to be proposed. 76 

At present, most researches mainly used the extreme climate indices defined by the Expert 77 

Team on Climate Change Detection and Indices (ETCCDI) to analyze the temporal and spatial 78 

distribution characteristics of high temperature and its changing laws (Khan et al., 2018; Mcgree et 79 

al., 2019; Poudel et al., 2020; Ruml et al., 2017; Salman et al., 2017; Wang et al., 2019; Zhang et 80 

al., 2019). Zhou et al. (2016) analyzed the temperature indices changes in China from 1961 to 2010, 81 

and the results indicated that the warm extremes in China exhibited an increasing trend. In addition, 82 

the researchers analyzed the characteristics of high temperature changes in the Three River 83 

Headwaters, Yangtze River Basin, Loess Plateau, Inner Mongolia and Songhua River Basin (Ding 84 

et al., 2018; Guan et al., 2015; Sun et al., 2016; Tong et al., 2019; Zhong et al., 2017). In addition 85 

to analyzing the temporal and spatial changes of high temperature events, many scholars have also 86 

studied the influencing factors of high temperature events. Studies showed that extreme high 87 

temperature over China was related to abnormal atmospheric circulation disturbances (You et al., 88 

2011; Zhong et al., 2017) and abnormal sea surface temperature (Li et al., 2019b; Wu et al., 2011). 89 

However, previous studies on the cause of high temperature events usually only analyzed the 90 

correlation between atmospheric circulation modes and the temperature indices along the time 91 

dimension, without considering the spatial characteristics of the correlation.  92 

From the above analysis, most of the researches mainly useused the meteorological observation 93 

temperature data interpolation to analyze local temperature changes, and almostas far as we know, 94 

no one constructsconstructed continuous high-temporal resolution Tmax for high temperature 95 
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analysis in China. In order to better study regional high temperature events, this study proposes an 96 

estimation framework for obtaining high-precision Tmax. Firstly, we used multi-source data and 97 

established near surface Ta diurnal variation model to build Tmax dataset in China from 1979 to 2018. 98 

To further improve the accuracy, we divided China into six regions according to climate conditions 99 

and topography, and established calibration models respectively. On this basis, we further analyzed 100 

the spatial-temporal variation characteristics of Tmax and corresponding influencing factors in China. 101 

This can provide evidence for mitigating global climate change and reducing regional carbon 102 

emissions for environmental protection. 103 

2 Study area  104 

In order to establish a more high-precision Tmax dataset to analyze the temporal and spatial 105 

characteristics of high-temperature in China, we divided the countryChina into six regions mainly 106 

based on topographic conditions (elevation), and climatic conditions, (Ta and precipitation), as 107 

shown in Fig.1. (I) The northeast region has a temperate monsoon climate. Affected by the monsoon, 108 

Ta is higher in winter in the southern part of the region, but it is the oppositehigher than that in the 109 

northern partnorth in winter. The topography of this area is dominated by plains, hills, and 110 

mountains. Due to the influence of topography, the variability of Ta is large in local areas. (II) The 111 

northwestern region is dominated by a temperate continental climate (cold in winter and hot in 112 

summer) with a large annual and daily Ta range. The area is withexhibits little annual precipitation 113 

decreasingwhich decreases from east to west. The topography of this area is dominated by plateau 114 

basins and rivers are scarce. (III) North China is located in a semi-humid and humid zone in the 115 

warm temperate zone. Precipitation is mainly concentrated in summer. This area is dominated by 116 

plains and plateaus, bounded by Taihang Mountain, the Loess Plateau in the west, and the North 117 
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China Plain in the east. (IV) The southeast region is dominated by mountains and hills, which 118 

belongs to the warm and humid subtropical oceanic monsoon climate zone, and the tropical 119 

monsoon climate zone. The climate is mild, with an annual average Ta of 17-21°C and an average 120 

rainfall of 1400-2000mm. (V) The southwestern region has a subtropical monsoon climate, affected 121 

by the southeast monsoon and southwest monsoon. It is hot and rainy in summers, and the landforms 122 

in this area are dominated by plateaus and mountains. (VI) The Qinghai-Tibet Plateau is located in 123 

southwest China, with an average elevation of more than 4,000 meters. The towering terrain has a 124 

great impact on the climate in eastern and southwestern China. It has a plateau mountainous climate, 125 

with cold winters and warm summers, with aridity and little rain throughout the year. 126 

 127 

Figure 1. Overview of the study area. 128 

3 Data 129 

3.1 China Meteorological Forcing Dataset (CMFD) 130 

CMFD is developed by the Hydro-meteorological Research Group of the Institute of Tibetan Plateau 131 

Research, Chinese Academy of Sciences. The dataset can be obtained from the National Qinghai-132 
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Tibet Plateau Science Data Center (https://data.tpdc.ac.cn/). The near surface Ta data of CMFD has 133 

a time resolution of 3h and a spatial resolution of 0.1°, and its accuracy in China is better than Global 134 

Land Data Assimilation System (GLDAS) data (He et al., 2020).. CMFD data used ANUSPLIN 135 

software to interpolate the difference between GLDAS Ta data and the measured Ta data to obtain 136 

grid data, and then the difference grid data and the spatially downscaled GLDAS Ta data were 137 

spatially added to generate high resolution Ta data. The Ta data of CMFD have been widely used in 138 

climate simulation, hydrological simulation, vegetation greenness research, and cross-validation of 139 

new Ta datasets (Luan et al., 2020; Gu et al., 2020; Wang et al., 2020). Although this dataset has 140 

become one of the most widely used climate datasets in China, it does not provide the Tmax value. 141 

In order to perform high temperature analysis, we need to construct a Tmax dataset. 142 

3.2 ERA5 data 143 

ERA5 data is the fifth generation of global climate reanalysis data produced by the European Centre 144 

for Medium-range Weather Forecast (ECMWF) after ERA-Interim. The model version used by 145 

ERA5 is IFS Cycle 41r2, and its spatial-temporal resolution and number of vertical layers are much 146 

higher than the ERA-Interim data (Hoffmann et al., 2019; Urraca et al., 2018).; Hersbach et al., 147 

2020). ERA5 reanalysis data provide a variety of meteorological elements, including atmospheric 148 

parameters, land parameters, and ocean parameters, spanning a time range from 1950 to present. 149 

The data can be obtained from the ECMWF ERA5 data websiteCopernicus Climate Data Store 150 

(https://cds.climate.copernicus.eu/). The ERA5 dataset also does not provide the Tmax. This study 151 

used Ta data from 1979 to 2018 with a time resolution of 1 h and a spatial resolution of 0.25° to help 152 

build a Tmax estimation model to generate Tmax value, and we have performed multiple kinds of data 153 

assimilation. 154 
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3.3 Meteorological station data 155 

Tmax data from the China Surface Climatic Data Daily Dataset (V3.0) from 1979 to 2018 were used 156 

to verify the accuracy of Tmax estimations. The hourly Ta observation data from China 157 

meteorological stations were used to determine the occurrence times of Tmax and daily lowest air 158 

temperature (Tmin). Both datasets are from CMA National Meteorological Information Center 159 

(http://data.cma.cn/). The data were subjected to preliminary quality control and evaluation by CMA, 160 

and all elements in the observational data are of high quality and completeness, with the validity 161 

rate generally above 99%. These datasets have been widely used in Chinese climate research (Li et 162 

al., 2019a; Tong et al., 2019). To ensure the validity of the site data, manual checks were performed 163 

on all observed data, including extreme value tests and spatial-temporal consistency tests, and 164 

continuous missing data due to instrument damage and other reasons were eliminated. There are 165 

824 stations for Tmax observation data and 2633 stations for hourly Ta observation data. After 166 

performing checks and tests, we used Tmax data from 760 meteorological ground stations and hourly 167 

Ta data from 2421 meteorological ground stations. 168 

3.4 Ocean climate modal indices 169 

The ocean occupies about 71% of the earth's surface area, which has a great impact on climate 170 

change. After considering the distribution characteristics of China's land and sea, we analyzed the 171 

effects of the following ocean climate modal indices on high temperature in China: Indian Ocean 172 

Basin warming (IOBW) index, North Atlantic Oscillation (NAO) index, and NINO3.4 area sea 173 

surface temperature (NINO3.4) index. Among them, the IOBW index comes from the National 174 

Climate Center of CMA (http://cmdp.ncc-cma.net/cn/index.htm), and the NAO index and NINO3.4 175 

index are from the National Oceanic and Atmospheric Administration of the United States 176 
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(https://psl.noaa.gov/data/climateindices/list/). The time range of the three indices is 1979-2018, and 177 

the time scale is monthly.  178 

4 Methodology 179 

4.1 Tmax dataset construction 180 

At present, the data used in the research on high temperature characteristics is mostly meteorological 181 

station data, or grid data obtained by interpolation of station data. A limited number of stations 182 

cannot represent the high temperature distribution at large scale. For regions where the stations are 183 

very sparse, grid data obtained by spatial interpolation can hardly meet the accuracy requirements 184 

of high temperature feature analysis. Although LST can be used to estimate Tmax, LST has degraded 185 

value in the presence of clouds or rainfall. Therefore, in order to obtain a Tmax dataset with high 186 

temporal and spatial resolution, we propose a Tmax construction model that combines meteorological 187 

station data and reanalysis data, and consider the Tmax construction under clear sky and 188 

non-clear sky conditions (see Section 4.1.1 for details). The data processing process is shown in 189 

Fig. 2, and the data construction model is divided into two steps: Tmax estimation and Tmax correction. 190 

First, the occurrence time of Tmax and Tmin was determined pixel by pixel (see Section 4.1.1 for 191 

details). Then, Tmax was determined according to the weather state. (1) In clear sky conditions, 192 

CMFD 3h near-surface Ta data was used to construct the Ta diurnal variation model which in turn 193 

yielded Tmax. (2) In non-clear sky conditions, the site and reanalysis data were used to fill pixels. 194 

Finally, the correction model was used to correct the poor quality pixels to generate the final Tmax 195 

dataset in China. 196 
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 197 

Figure 2. Technical roadmap for Tmax estimation. 198 

4.1.1 Tmax estimation 199 

The changes of Ta under different weather conditions are different. The changes of Ta under clear 200 

sky conditions are relatively smooth and regular. Under non-clear sky conditions, Ta changes more 201 

drastically. In order to improve the accuracy of Tmax estimation, we determined the occurrence time 202 

of Tmax and Tmin pixel by pixel. If there was a meteorological station at the pixel location, the analysis 203 

could be divided into two situations. (1) If hourly Ta data was valid, it was directly used to determine 204 

the occurrence time of Tmax and Tmin. (2) If there was a missing value in the hourly Ta data at a 205 

certain time, then we used the valid data from adjacent stations at the same time or adjacent time at 206 

the same stations to fill in the missing point.values. At present, there are not many meteorological 207 

stations in China, and the pixels without stations account for 97.5%. If there was no meteorological 208 

station at the pixel location, we used ERA5 hourly Ta data to determine the occurrence time of Tmax 209 
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and Tmin. Since the spatial resolution of the ERA5 data is lower than that of the dataset we produce, 210 

in order to match the two data spatially, we sample the two data to the same resolution, and then use 211 

latitude and longitude as control conditions to match the different data. 212 

Studies have shown that the change of Ta under clear sky conditions follows a certain law: the 213 

change curve of Ta during the day is close to a sine function (Ephrath et al., 1996; Johnson and 214 

Fitzpatrick, 1977; Parton and Logan, 1981; Zhu et al., 2013), so we used sine function to simulate 215 

the change of Ta during the day. The appearance time of Tmin is 𝑡𝑚𝑖𝑛, and the appearance time of 216 

Tmax is 𝑡𝑚𝑎𝑥. According to the periodicity of the sine function, the model of the change of Ta during 217 

the day is obtained like Eq. (1).  218 

𝑇𝑎(𝑡) = 𝐴𝑠𝑖𝑛 (
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 222 

Here n is the number of CMFD near surface Ta data used to construct the Ta change model in a 223 

day. CMFD can obtain Ta data 8 times a day. This study uses four daytime Ta data to construct a Ta 224 

variation model, so n is 4. 𝑇𝑎𝑖 is the near surface Ta data at the ith time of CMFD, and δ is the sum 225 

of squares of the difference between the model estimated Ta and the near surface Ta of the CMFD.  226 

Since the change of Ta under non-clear sky conditions does not conform to the sine curve change, 227 

we divided the estimation of Tmax under non-clear sky conditions into two situations. (1) If there 228 

was a station at the location of the pixel, the measured Tmax at the station was directly used as the 229 

Tmax of the pixel. (2) If there was no measured Tmax at the pixel location, the highest value of hourly 230 

Ta of ERA5 in a day was taken as Tmax. Then Tmax determined by the ERA5 data was assigned to 231 

the pixel at the corresponding position of the Tmax image we established using the spatial matching 232 

method. 233 

4.1.2 Tmax correction 234 
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The validation of Tmax showed some differences between the estimated Tmax and the measured Tmax. 235 

In order to further improve the accuracy of Tmax, the measurements taken at weather stations should 236 

be used to correct the estimated Tmax, as shown in Fig. 3. First, determine whether there is station 237 

data at the pixel location. For pixels with stations, it is further judged whether the estimated Tmax is 238 

valid by comparing the measured Tmax with the estimated Tmax. For a pixel with poor quality, if there 239 

is station data at the location of the pixel, the low-quality pixel will be replaced with the measured 240 

data from the station. If there is no station data at the pixel location, the data is corrected by multiple 241 

linear regression method (Ninyerola et al., 2000; Zhao et al., 2020; Zheng et al., 2013). By 242 

establishing the regression relationship between station Tmax and estimated Tmax, the residuals were 243 

calculated according to the measured values and Tmax regression predicted values, and the spatial 244 

distribution of the residuals was obtained by the inverse distance weight (IDW) interpolation method. 245 

Finally, the estimated Tmax and the residual were added to obtain the corrected Tmax. The calibration 246 

model is like Eq. (3) and Eq. (4). 247 

𝑇𝑎𝑓𝑡𝑒𝑟(𝑖, 𝑗) = 𝑇𝑏𝑒𝑓𝑜𝑟𝑒(𝑖, 𝑗) + �̂�(𝑖, 𝑗)                  (3) 248 

�̂�(𝑖, 𝑗) = 𝑇𝑡𝑟𝑢𝑒(𝑖, 𝑗) − 𝑇𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡(𝑖, 𝑗)                  (4) 249 

Here i and j are the row and column numbers of the image, 𝑇𝑎𝑓𝑡𝑒𝑟(𝑖, 𝑗) is Tmax after correction, 250 

𝑇𝑏𝑒𝑓𝑜𝑟𝑒(𝑖, 𝑗) is Tmax before correction, �̂�(𝑖, 𝑗) is the residual, 𝑇𝑡𝑟𝑢𝑒(𝑖, 𝑗) is the measured Tmax, and 251 

𝑇𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡(𝑖, 𝑗) is Tmax predicted by the regression model. 252 

We used the jackknife method to randomly divide the station data into calibration and 253 

verification data (Benali et al., 2012; Zhao et al., 2020). We selected 80% of the meteorological 254 

stations to establish the regression relationship between the measured and estimated Tmax values. 255 

The other 20% of the meteorological stations were used to verify the accuracy of the corrected data. 256 

In order to improve data accuracy, the dataset used in the subsequent analysis of spatial-temporal 257 

variation of high temperature was the data corrected by all stations. Due to the different topographic 258 

and climatic characteristics of the six natural regions, the linear models of estimated Tmax and 259 

measured Tmax in each region were different. In order to obtain a higher-precision correction, the six 260 

regions were corrected separately.  261 
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 262 

Figure 3. Flow chart of Tmax correction. 263 

4.2 Extreme temperature indices 264 

ETCCDI proposed a set of extreme climate indices in the Climate Change Monitoring conference, 265 

which became the unified standard for climate change research (Hong and Ying, 2018; Mcgree et 266 

al., 2019; Poudel et al., 2020; Zhang et al., 2019; Zhou et al., 2016). Among them, 27 indices are 267 

considered as core indices, which are calculated from daily Ta and precipitation data and have the 268 

characteristics of weak extremeness, low noise, and strong significance. These indices 269 

comprehensively capture the frequency, intensity and duration of extreme climate events, and are 270 

recommended as the core indicators for extreme climate event analysis by the STARDEX program 271 

of the European Union (Guan et al., 2015; Ruml et al., 2017). In this study, six temperature indices 272 

related to Tmax were used to analyze high temperature characteristics, and their definitions are shown 273 

in Table 1. Among them, the 90th percentile in TX90p and the 10th percentile in TX10p were 274 

obtained in ascending order based on the Tmax data of each month during 1979-2018. 275 

Table 1. Definition of extreme temperature indices. 276 

Index Name Definition Category Unit 

SU Summer days Annual count of days when Tmax >25℃ Frequency d 

TX90p Warm days Annual count of days when Tmax >90th 

percentile 

Frequency d 

TXn Minimum Tmax Annual minimum value of Tmax Intensity ℃ 
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TXx Maximum Tmax Annual maximum value of Tmax Intensity ℃ 

ID Icing days Annual count of days when Tmax <0℃ Frequency d 

TX10p Cold days Annual count of days when Tmax <10th 

percentile 

Frequency d 

4.3 Trend analysis 277 

4.23.1 Sen’s slope estimation 278 

In this study, the trends of Tmax and extreme temperature indices were calculated using Sen's slope 279 

estimation. Sen’s slope estimation is a nonparametric estimation method. Even if there are some 280 

outliers in the sample, it can reliably estimate the change trend of the time series, so it is widely used 281 

in trend analysis (Sen, 1968; Zhang et al., 2017). The Eq. (5) is used to calculate the slope of each 282 

pair of data. 283 

   𝐾𝑖 =
𝑥𝑘−𝑥𝑗

𝑘−𝑗
 (𝑖 = 1,2,⋯ ,𝑁)                      (5) 284 

Where 𝑁 =
𝑛(𝑛−1)

2
, 𝑥𝑘  and 𝑥𝑗 are the time series values of the kth and jth samples respectively 285 

(1 ≤ 𝑗 < 𝑘 ≤ 𝑛 ). Arranging the N, 𝐾𝑖  values in ascending order, the median Sen’s slope is 286 

estimated as Eq. (6). 287 

𝑆𝑙𝑜𝑝𝑒 = {
𝐾[(𝑁+1)/2]           , 𝑁 𝑖𝑠 𝑜𝑑𝑑  
𝐾[𝑁/2]+𝐾[(𝑁+2)/2]

2
  , 𝑁 𝑖𝑠 𝑒𝑣𝑒𝑛

                   (6) 288 

4.23.2 Mann-Kendall trend test 289 

Mann-Kendall trend test is used to test the trends of Tmax and extreme temperature indices. Mann-290 

Kendall method does not require samples to follow a certain distribution and is not disturbed by a 291 

few outliers, and it can test the change trend of time series (Seenu and Jayakumar, 2021; Tan et al., 292 

2019). Eq. (7) is used to calculate the statistic of the Mann-Kendall trend test. 293 

𝑆 = ∑ ∑ sgn(𝑥𝑗 − 𝑥𝑖)
𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1                      (7) 294 

sgn(𝑥𝑗 − 𝑥𝑖) = {

1    , 𝑥𝑗 − 𝑥𝑖 > 0

0    , 𝑥𝑗 − 𝑥𝑖 = 0

−1 , 𝑥𝑗 − 𝑥𝑖 < 0
                   (8) 295 

Var(𝑆) =
𝑛(𝑛−1)(2𝑛+5)

18
                         (9) 296 
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Here 𝑥𝑖  and 𝑥𝑗  are the ith and jth data values of the time series, and n is the length of the time 297 

series, where n is 40. Var(𝑆) is the variance of S. The standardized statistic 𝑍𝑐  is computed by using 298 

Eq. (10). 299 

𝑍𝑐 =

{
 
 

 
 

𝑆−1

√𝑉𝑎𝑟(𝑆)
, 𝑆 > 0

     0      , 𝑆 = 0
𝑆+1

√𝑉𝑎𝑟(𝑆)
, 𝑆 < 0

                        (10) 300 

When|𝑍𝑐| > 𝑍1−𝛼/2 , the change trend is considered to be significant. Here, 𝑍1−𝛼/2 is the 301 

standard normal variance, α is the significance test level, when α = 0.05,  𝑍1−𝛼/2 = 1.96, and 302 

when α = 0.01, 𝑍1−𝛼/2 = 2.58. 303 

4.4 Mann-Kendall test for abrupt change analysis 304 

Climate system change is an unstable and discontinuous change process, and one of the commonly 305 

used methods to test its change is the Mann-Kendall mutation test, which is very effective in testing 306 

the change of elements from a relatively stable state to another state (Ruml et al., 2017). We used 307 

Mann-Kendall mutation test to test whether extreme temperature indices has mutation. For a time 308 

series x with n samples, Eq. (11) is used to construct an ordered sequence. 309 

 𝑠𝑘 = ∑ 𝑟𝑖     (𝑘 = 2,3,⋯ , 𝑛)
𝑘
𝑖=1                       (11) 310 

   𝑟𝑖 = {
+1, 𝑥𝑖 > 𝑥𝑗
 0  , 𝑥𝑖 ≤ 𝑥𝑗

(𝑗 = 1,2,⋯ , 𝑖)                     (12) 311 

𝑈𝐹𝑘 =
𝑠𝑘−E(𝑠𝑘)

√Var(𝑠𝑘)
   (𝑘 = 1,2,⋯ , 𝑛)                    (13) 312 

E(𝑠𝑘) =
𝑘(𝑘−1)

4
                            (14) 313 

Var(𝑠𝑘) =
𝑘(𝑘−1)(2𝑘+5)

72
                       (15) 314 

Where 𝑠𝑘 is the cumulative count of the number of values at time i greater than that at time j. 315 

E(𝑠𝑘) and Var(𝑠𝑘) are the mean and variance of the cumulative number 𝑠𝑘 respectively. 𝑈𝐹𝑘  is a 316 

standard normal distribution, given the significance level α, and maycan be obtained from the 317 

normal distribution table. If |𝑈𝐹𝑘| > 𝑈𝛼, which indicates that there is an obviousthe variation trend 318 
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change in the sequenceof time series is significant. Reverse the time series x to 𝑥𝑛, 𝑥𝑛−1,⋯ , 𝑥1, and 319 

repeat the above process with 𝑈𝐵𝑘 = −𝑈𝐹𝑘(𝑘 = 𝑛, 𝑛 − 1,⋯ ,1). 320 

 321 

 322 

Table 1. Definition of extreme temperature indices. 323 

Index Name Definition Category Unit 

SU Summer days Annual count of days when Tmax >25℃ Frequency d 

TX90p Warm days Annual count of days when Tmax >90th 

percentile 

Frequency d 

TXn Minimum Tmax Annual minimum value of Tmax Intensity ℃ 

TXx Maximum Tmax Annual maximum value of Tmax Intensity ℃ 

ID Icing days Annual count of days when Tmax <0℃ Frequency d 

TX10p Cold days Annual count of days when Tmax <10th 

percentile 

Frequency d 

4.5 Correlation analysis 324 

Pearson correlation coefficient is often used to accurately measure the degree of correlation between 325 

two variables, and its size can reflect the strength of the correlation of the variables (Cao et al., 2020; 326 

Yan et al., 2021).. For variables 𝑥1, 𝑥2,⋯ , 𝑥𝑛 and variables 𝑦1, 𝑦2,⋯ , 𝑦𝑛 , the correlation coefficient 327 

between them is calculated as Eq. (16). 328 

𝑅 =
𝑛∑ (𝑥𝑖×𝑦𝑖)−∑ 𝑥𝑖∑ 𝑦𝑖

𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1

√𝑛∑ 𝑥𝑖
2−(∑ 𝑥𝑖

𝑛
𝑖=1 )

2𝑛
𝑖=1 √𝑛∑ 𝑦𝑖

2−(∑ 𝑦𝑖
𝑛
𝑖=1 )

2𝑛
𝑖=1

             (16) 329 

Here n is the total length of the time series. The value of the correlation coefficient R is between 330 

-1 and 1. R<0 indicates a negative correlation. R>0 indicates a positive correlation. The closer the 331 

absolute value of R is to 1, the closer the relationship between the two elements is.  332 

5 Results 333 

5.1 Validation 334 

In order to verify the feasibility of Tmax estimation using the Ta diurnal variation model and to 335 

analyze the accuracy of Tmax estimation in different regions, scatter plots of estimated Tmax and 336 

measured Tmax in six natural regions (I, II, III, IV, V and VI) were drawn according to the regional 337 

division in Fig. 1. The results are shown in Fig. 4, and the validation in each region shows that the 338 

root mean square errors (RMSE) is between 2.38-2.94°C, and the mean absolute error (MAE) is 339 
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between 1.88-2.45°C, and the coefficient of determination (R2) is between 0.95-0.99. Among themIn six regions, 340 

the accuracy in region IV is the highest, while the accuracy is the lowest in region VI. As can be 341 

seen from Fig. 4, although most of the data is very accurate, some have some room for improvement. 342 

Therefore, further correction is needed to improve the accuracy of the Tmax dataset. 343 

 344 

 345 

Figure 4. Validation of Tmax estimation results in each region. 346 
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The correction method in Sect. 4.1.2 was used to correct the Tmax estimation results of six regions 347 

separately. The comparison between Tmax before and after correction with the measured Tmax is 348 

shown in Fig. 5. It can be seen that Tmax corrected by the regression model is more consistent with 349 

the measured Tmax. The RMSE decreases from 2.38-2.94°C to 1.14-1.81°C, and the MAE decreases 350 

from 1.88-2.45°C to 0.84-1.38°C, and the R2 increases from 0.96-0.99 to 0.97-0.99. The accuracy 351 

of Tmax is improved in each region after correction. The number of meteorological stations in region 352 

I is denser, and the accuracy of Tmax after calibration is significantly improved. The RMSE reduced 353 

from 2.32℃ to 1.14℃, and the error is reduced by 51%. The number of meteorological stations in 354 

region VI is small, and the topography is undulating and the spatial heterogeneity is large. Therefore, 355 

the accuracy in this region is still the lowest among the six natural areas after correction. In general, 356 

the corrected Tmax dataset has higher consistency with the measured data, and which can be applied 357 

to research related to regional scale Tmax.  358 

 359 
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Figure 5. Validation of Tmax after correction. 360 

5.2 Temporal and spatial changes of Tmax  361 

5.2.1 Inter-annual variability 362 

Fig. 6 shows the annual average change of Tmax in each region of China during 1979-2018. The Tmax 363 

in each region exhibited an upward trend. However, due to the different geographical locations and 364 

the influence of atmospheric circulation in various regions, the change of Tmax was also different. 365 

The order of the Tmax increase in each region was: V>IV>III>Whole>VI>II>I. The Tmax anomaly 366 

ranges of region I-VI and the whole China region were -1.41-1.53, -1.54-1.16, -1.47-1.12, -1.34-367 

0.92, -0.97-1.33, -1.31-1.15, and -1.09-0.98℃, respectively. The Tmax variation coefficients were 368 

0.082, 0.045, 0.036, 0.024, 0.03, 0.088 and 0.038, respectively. It can be seen that Tmax fluctuated 369 

the most in region VI and the least in region IV. The minimum values of region I-VI and China 370 

region appeared in 1987, 1984, 1984, 1984, 1989, 1983, and 1984, respectively which were 371 

distributed in the 1980s. The highest values of Tmax appeared in 2007, 2007, 2017, 2007, 2013, 1999, 372 

and 2007 respectively. Zhai et al. (2016) found that 1999, 2007, and 2013 were among the 10 years 373 

with the highest average Ta in China from 1900 to 2015. From 1998 to 2012, global surface 374 

temperature experienced a warming hiatus (Du et al., 2019; Li et al., 2015), and Tmax in all regions 375 

of China showed a downward trend during this period. 376 
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 377 

Figure 6. Inter-annual changes of Tmax anomalies in six regions of China during 1979-2018. 378 

In order to understand the spatial pattern and regional differences of Tmax changes with more 379 

detail in China, Sen's slope estimation was used to calculate the annual average Tmax change rate 380 

from 1979 to 2018 at the pixel scale (Fig. 7a). The significance test of the Tmax change trend was 381 

conducted by the Mann-Kendall trend test (Fig. 7b). At the same time, the average change rate of 382 

Tmax in each region and the area percentage of significant increase and decrease (P<0.05) of Tmax 383 

were calculated (Table 2). The results indicated that the annual average Tmax change rate in most 384 

regions of China (78.24% of the study area) passed the significance test with a confidence of 0.05, 385 

and 65.84% of the pixels showed very significant changes in Tmax (P<0.01). Fig. 7a showed that the 386 

annual average Tmax in most regions of China was on the rise, and the fastest rising rate of Tmax was 387 

in western Yunnan. Only 8.13% of the regions in China showed a downward trend in Tmax. These 388 

were concentrated mainly in the north and south of Xinjiang, and the northwest and south of Tibet. 389 

Among the six regions, the average Tmax change rate of region V was the largest (0.38℃/10a), and 390 

the average Tmax change rate of region I and region II was the lowest (0.31℃/10a) (Table 2).  391 



21 

 
 

 392 

Figure 7. Inter-annual change rate of Tmax (a) and results of Mann-Kendall trend test (b). 393 

Table 2. Statistics of Tmax change trends in various regions of China from 1979 to 2018. 394 

Region I II III IV V VI Whole 

Mean (℃/10a) 0.31 0.31 0.33 0.35 0.38 0.33 0.33 

Significant 

upward (%) 
65.21 69.45 87.03 92.29 87.00 67.93 75.13 

Significant 

downward (%) 
0.09 3.14 0 0.32 0.75 7.92 3.11 

5.2.2 Seasonal changes 395 

On the basis of the annual analysis, we also analyzed the seasonal changes. The seasons are divided 396 

according to the months (spring from March to May, summer from June to August, autumn from 397 

September to November, and winter from December to February). We plotted the seasonal variation 398 

curve of Tmax in China from 1979 to 2018 (Fig. 8), and some information on the trend of Tmax 399 

changes is shown in Table 3. The results indicated that Tmax in each region fluctuated the most in 400 

winter and the least in summer. The highest Tmax in each region in spring, summer, autumn and 401 

winter mostly occurred in 2018, 2013, 1998 and 2007, while the minimum Tmax in each region in 402 

spring, summer, autumn and winter mostly occurred in 1988, 1993, 1981 and 1984. In 2013, Tmax 403 

of region IV-VI in summer reached the highest since 1979, mainly due to the influence of the 404 

southwest monsoon, East Asian summer monsoon and other factors. Under the influence of El Niño, 405 
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Tmax in winter in region I, II and the whole study area was the highest in 2007. Under the influence 406 

of La Niña, the minimum Tmax in spring and winter in most areas of China appeared in 1988 and 407 

1984, respectively. In the same season, the variation trend of Tmax in each region was significantly 408 

different, and some even had opposingopposite trends. However, influenced by La Niña and the 409 

Eurasian atmospheric circulation, Tmax in winter in each region showed a consistent decreasing trend 410 

from 2007 to 2008. As can be seen from Table 3, in spring, summer, autumn and winter, the regions 411 

with the fastest Tmax rise in spring, summer, autumn and winter are III, I, I and VI respectively, and 412 

the regions with the lowest Tmax change rate are VI, VI, III and II respectively. We found that Tmax 413 

in winter of region II exhibited a very slight downward trend, but the sliding average of the 3-year 414 

and 5-year unit exhibited a weak upward trend. 415 

 416 

Figure 8. Changes of Tmax anomalies in various regions of China in spring (a), summer (b), autumn (c), winter (d) 417 

during 1979-2018. 418 

Table 3. Seasonal variation trend of Tmax in various regions of China from 1979 to 2018.  419 

 I II III IV V VI Whole 
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Spring 0.035 0.063** 0.072** 0.063** 0.051** 0.026* 0.048** 

Summer 0.040** 0.035** 0.033** 0.022** 0.039** 0.020* 0.031** 

Autumn 0.039* 0.024 0.014 0.025** 0.035** 0.025* 0.023** 

Winter 0.009 -0.002 0.027 0.037 0.034* 0.058** 0.027 

(*, ** represent the trends are significant at the level of p=0.05, p=0.01, respectively.) 420 

In order to display the seasonal variation characteristics of Tmax in China more intuitively, we 421 

drew the spatial distribution of the trend of Tmax and conducted a significance test (Fig. 9). 422 

Meanwhile, we counted the percentage of significant increase and decrease of Tmax in each region 423 

(Table 4). The results indicated that the areas with increasing Tmax were more than those with 424 

decreasing Tmax in all seasons. From 1979 to 2018, the increasing trend of Tmax was most significant 425 

in spring, which accounted for 92.73% of the total study area, followed by autumn and summer, 426 

while Tmax increased the least in winter. Specifically, Tmax increased significantly in most parts of 427 

China in spring, and the region where Tmax decreased significantly were mainly concentrated in the 428 

region VI (Fig. 9a). In summer, Tmax in most part of China showed a significant increasing trend, 429 

but Tmax in southern Xinjiang and northwestern Tibet exhibited a decreasing trend (Fig. 9b). 430 

Compared with spring and summer, the area with a significant increasing trend of Tmax in autumn 431 

was smaller, and the regions with a significant decreasing trend of Tmax were mainly distributed in 432 

Xinjiang and Tibet (Fig. 9c). 79.02% of the regions experienced an increase in Tmax in winter, which 433 

was significantly lower than in other seasons. A significant increasing trend of Tmax was observed 434 

in the east of region IV, the southwest of regions V and VI, while the areas where Tmax decreased 435 

significantly were mainly observed in Xinjiang (Fig. 9d). We also observed no significant decrease 436 

in Tmax in regions I and III in spring, I in summer, I and IV in autumn, and III in winter (Table 4). 437 

Further statistics showed that Tmax of the whole region III showed an upward trend in spring. 438 
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 439 

Figure 9. Spatial distribution of the change trend of Tmax in spring (a), summer (b), autumn (c), winter (d) over 440 

China during 1979-2018. The shaded areas indicate trends that are significant at the 0.05 level.  441 

Table 4. Change trend statistics of Tmax in different seasons over China from 1979 to 2018. 442 

 
Significant upward (%)  Significant downward (%) 

Spring Summer Autumn Winter Spring Summer Autumn Winter 

I 35.12 74.75 65.75 6.89  0 0 0 0.10 

II 81.56 73.47 36.07 8.10 1.01 7.04 3.15 10.87 

III 97.71 69.05 14.67 15.99 0 0.38 0.06 0 

IV 96.20 46.80 57.26 29.47 0.35 0.68 0 0.44 

V 76.48 75.11 58.56 31.62 1.24 1.53 0.06 0.12 

VI 50.20 55.11 49.54 68.58 7.00 14.17 10.34 2.28 

Whole 71.46 65.39 45.86 29.40 2.29 6.04 3.61 4.01 

5.3 Temporal and spatial changes of extreme temperature indices 443 

5.3.1 Change of time 444 
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We plotted the inter-annual variation of extreme temperature indices anomalies in various regions 445 

of China from 1979 to 2018 (Fig. 10), and used Sen's slope estimation and the Mann-Kendall trend 446 

test to calculate statistics on the trend of extreme temperature indices (Fig. 11). The results indicated 447 

that SU, TX90p, TXn and TXx increased at a rate of 3.83d/10a, 6.57d/10a, 0.11℃/10a and 448 

0.32℃/10a, respectively (Fig. 11). Influenced by the strong El Niño in 1997, the SU in all regions 449 

exhibited a consistent upward trend from 1996 to 1997 (Fig. 10). The change rate of SU in all regions 450 

passed the significance test of 0.01, indicating a significant upward trend (Fig. 11). The increasing 451 

trend of TX90p in all regions was also very significant. The decadal average of TX90p in region 452 

III-VI and the whole study area had an increasing trend, while the decadal average of TX90p in 453 

region I and region II increased first and then decreased slightly. The TXn of region II showed a 454 

weak decreasing trend, and the sliding average of the 3-year and 5-year periods also exhibited a 455 

weak fluctuation downward trend. TXn of other regions showed an upward trend in general, and 456 

only region VI had a significant increasing trend (P <0.05) (Fig. 11). Except for region VI, the 457 

change rate of TXx in other regions was higher than that of TXn. The rate of change of TXx 458 

exhibited that the upward trend of region VI was not significant, while all other regions passed the 459 

significance test of 0.01. During 1979-2018, ID and TX10p decreased significantly at the rate of -460 

1.48d/10a and -3.78d /10a, respectively (P <0.01) (Fig. 11). The ID of all regions exhibited a 461 

downward trend, with region VI and the whole study area showing the most obvious decline, passing 462 

the significance test of 0.01 (Fig. 11). Compared with ID, TX10p decreased more sharply, and the 463 

highest value of TX10p in all regions occurred before 1988 (Fig. 10). The above results indicate 464 

that the frequency of high temperature events in China is on the rise, which is in line with the 465 

expected results of global change. In addition, we also found that the occurrence time of maximum 466 
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and minimum values of SU, TXn, TXx and ID during 1979-2018 was consistent with previous 467 

research results (by Hong and Ying,  (2018), which further proved the correctness of the Tmax 468 

dataset constructed by us, indicating that built datathe dataset can be used to analyze the spatial-469 

temporal changes of high temperature in China. 470 

 471 

Figure 10. Inter-annual trend of extreme temperature indices anomalies in different regions of China during 1979-472 

2018. 473 

 474 
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Figure 11. Variation trend of extreme temperature indices in different regions of China from 1979 to 2018. (* 475 

significant at the 0.05 level, ** significant at the 0.01 level.) 476 

In order to analyze the variation rules of extreme temperature indices in China from 1979 to 477 

2018, the Mann-Kendall mutation test was applied to test the mutation characteristics of six extreme 478 

temperature indices at the significance level of 0.05. The results are shown in Fig. 12. During 1979-479 

2018, We found that all the extreme temperature indices had abrupt changeschange from 1979 to 480 

2018, and 40% of the years where the abrupt changes occurred were El Niño years, while 46.7% 481 

were La Niña years. As can be seen from the intersection of the UF and UB curves, the SU of This 482 

finding further confirms that China is greatly affected by global climate change. TX90p in region 483 

III, V and VI had significant mutation in 2003, 1996 and 1990, respectively, while the other regions 484 

had no significant mutation in the whole I-II and the whole study area displayed an abrupt change 485 

from a period of 1979-2018. TX90p in each region exhibited an overall trend of decreasing first and 486 

then increasing. TX90p in region III was significantly mutated in 2011 and 2013, but the two 487 

mutations did not have much influence on the trend of TX90p. The TXn of region V showed a trend 488 

of first decreasing and then increasing, in contrast with the other regions, which all experienced a 489 

process of increasing and decreasing many times.lower value to one with higher value in 1996. After 490 

mutation in region II in 2003, TXn turned from an upward trend to a downward trend. Since the UF 491 

curve did not exceed the significance level, the , but the downward trend was not obvious. The TXx 492 

of region V exhibited a decreasing trend from 1979 to 1984 but was not significant. After 1984, the 493 

TXx kept rising. The UF and UB curves intersected in 1999 and were outside the significance line 494 

at the level of 0.05, indicating that the TXx of region V had a significant mutation in 1999. The ID 495 

of the whole study area and its six sub-regions tended to increase first and then decrease, but the 496 
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upward trend was not significant. Except for region II, ID of other regions all showed a significant 497 

downward trend. There was a long period of decline in TX10p in all regions, and the UF value in 498 

region II was positive only in 1987. TX10p in region III-VI and the whole study area has been in a 499 

state of significant decline since 1996, 1997, 1998, 2000 and 1993, respectively..  500 

 501 

Figure 12. MK abrupt change detection for the extreme temperature indices in different regions of China during 502 

1979-2018. 503 

5.3.2 Spatial change 504 

The spatial distribution of the extreme temperature indices trends in China during 1979-2018 is 505 

shown in Fig. 13 (a-f), while the area percentage of the increasing and decreasing trend of extreme 506 

temperature indices in each region is shown in Fig. 14 (a-f). For SU, TX90p, TXn and TXx, the area 507 

with rising trend is larger than the area with declining trend. The change of SU in most regions of 508 

China passed the significance test of 0.05, and the areas with significant increase accounted for 63.3% 509 

of the whole study area (Fig. 14a). The regions with no significant change in SU arewere mainly 510 
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distributed in region VI (Fig. 13a). There arewere few days in a year when Tmax exceedsexceeded 511 

25℃ in region VI, and Tmax in some regions iswas even lower than 25℃ throughout the year, so the 512 

change range of SU iswas small. The areas with a downward trend of TX90p were mainly distributed 513 

in southern Xinjiang and northern Tibet (Fig. 13b). TX90p increased significantly in 75% of regions 514 

in China (P <0.05), and the area percentage of TX90p significantly increased in region V was the 515 

largest among the six regions (Fig. 14b). The trend of TXn change in most regions of China was not 516 

significant, and the significant decrease was mainly concentrated in region II and region VI (Fig. 517 

13c). While other regions were dominated by increasing trend of the TXn, 69.7% of regions in 518 

region II showed a downward trend (Fig. 14c). For TXx, its upward trend was slightly stronger than 519 

TXn, and the region with the highest change rate was located in western China (Fig. 13d). The 520 

regions with significantly decreased ID were mainly distributed in region VI (Fig. 13e). 75.7% of 521 

the regions had a declining ID, and 53% of the regions passed the significance test (Fig. 14e). As 522 

far as TX10p is concerned, its cooling trend was much stronger than that of ID, and the areas of 523 

significant decline were widely distributed through all regions of China (Fig. 13f). The area with a 524 

significant decrease in region IV accounted for 75.9% of the region, which was the largest among 525 

the six regions (Fig. 14f). 526 
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 527 

Figure 13. Spatial distribution of trends in extreme temperature indices over China during 1979-2018. The shaded 528 

areas indicate trends that are significant at the 0.05 level. 529 

 530 

Figure 14. Area percentage of the trend of extreme temperature indices in different regions of China during 1979-531 

2018 532 

6 Discussion 533 
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6.1 The influence of ocean climate modalities on Tmax  534 

The correlation between Tmax anomalies and three climate modal indices in China during 1979-2018 535 

is shown in Fig. 15 (a-c). The results show that there is a significant positive correlation between 536 

Tmax and IOBW in 54.18% of the regions in China, which indicates that the warming of the Indian 537 

Ocean will contribute to the warming trend of Tmax in these regions. Tmax had a moderate 538 

positive correlation (0.4<R<0.6, P<0.01) with IOBW in southern Yunnan and eastern Hainan539 

 (Fig. 15a). Tmax and NAO had a significant positive correlation in northeast China, but the 540 

 (Fig. 15a). Tmax and NAO had a significant positive correlation in northeast China, but the 541 

 (Fig. 15a). Tmax and NAO 542 

had a significant positive correlation in northeast China, but the correlation was very weak (R<0.2). 543 

The percentage of Tmax anomaly value negatively correlated with NAO (16.55%) was higher than 544 

that of NAO positively correlated (5.27%), mainly distributed in the west and south of region II, 545 

west of region III, south of region IV and V, and northeast of region VI. This indicated that the 546 

positive phase of NAO contribute to the decrease of Tmax in these regions (Fig. 15b). Tmax was 547 

significantly positively correlated with NINO3.4 in southern China, central Xinjiang and southern 548 

Gansu, indicating that El Niño events will lead to higher temperatures in these regions. In western 549 

China and the middle part of region IV, Tmax was significantly negatively correlated with NINO3.4, 550 

indicating that El Niño events will lead to cooling phenomena in these regions (Fig. 15c). 551 
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 552 

Figure 15. Correlation analysis between Tmax and IOBW (a), NAO (b) and NINO3.4 (c) in China during 1979-553 

2018. The shaded areas indicate correlations that are significant at the 0.05 level. 554 

6.2 The influence of ocean climate mode on extreme temperature indices 555 

Fig. 16 (a-f) indicates the spatial distribution of the correlation between extreme temperature indices 556 

anomalies and IOBW in China during 1979-2018. It can be seen that SU, TX90p, TXn and TXx 557 

over most of China are positively correlated with the IOBW. The region with significant positive 558 

correlation between the SU and IOBW accounted for 42.67% of the whole study area, which 559 

indicated that a warming Indian Ocean would lead to the number of days over 25℃ in these regions 560 

to increase. Significant negative correlations were found in northwest and southeast Tibet and the 561 

mountainous regions of southern Xinjiang (Fig. 16a). The area with the largest correlation 562 

coefficient is in the northeast of Hainan (R=0.48). The significant negative correlation between 563 

TX90p and IOBW was mainly distributed in region VI, but the negative correlation was not strong 564 

(|R| < 0.4) (Fig. 16b). The correlation coefficient between TXn and IOBW ranged from -0.34 to 565 

0.34, and the regions with significant positive correlation accounted for 16.65% of the whole study 566 

area. TXn and IOBW were significantly negatively correlated mainly in western China (Fig. 16c). 567 

Compared with TXn, the regions with significant correlation between TXx and IOBW were more 568 

widely distributed in China, among which the correlation coefficients in southern Yunnan and 569 

eastern Hainan were moderately positive (0.4<R<0.6) (Fig. 16d). ID and TX10p were negatively 570 
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correlated with IOBW in most of China. The regions with significant negative correlation between 571 

ID and IOBW were mainly distributed in region VI, and the regions with significant positive 572 

correlation were mainly distributed in the west of region II (Fig. 16e). TX10p has a significant 573 

negative correlation with IOBW in more areas than ID, and the significant positive correlation was 574 

mainly located in western China (Fig. 16f).  575 

 576 

Figure 16. Correlation analysis between extreme temperature indices and IOBW in China during 1979-2018. The 577 

shaded areas indicate correlations that are significant at the 0.05 level. 578 

The influence of NAO on the extreme temperature indices is shown in Fig.17 (a-f). SU, TX90p, 579 

TXx and TXn were negatively correlated with the NAO more than they were positively correlated 580 

with NAO, indicating that the positive phase of NAO would lead to the decline of SU, TX90p, TXx 581 

and TXn over most of China. SU and NAO had a significant positive correlation in southern 582 

Xinjiang, western Tibet, northern Qinghai and northern Guizhou, but the correlation was very weak 583 

(R<0.2). There was no significant correlation between SU and NAO in southern Qinghai, which 584 

was consistent with previous observations (Ding et al., 2018). The region with the strongest negative 585 
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correlation between SU and NAO was located in Tibet (R=-0.18) (Fig. 17a). TX90p had a weak 586 

negative correlation with NAO in eastern Xinjiang (R=-0.22, P <0.01). TX90p was significantly 587 

positively correlated with NAO in the west and south of region VI, but the correlation was extremely 588 

weak (Fig. 17b). Shi et al. (2019) indicated that more regions had a significant positive correlation 589 

between TXn and NAO in China than had a significant negative correlation, which was consistent 590 

with our results. The areas of TXn had a significant positive correlation with NAO were mainly 591 

distributed in northeast China, while the regions with significant negative correlation were mainly 592 

located in central Tibet, eastern Qinghai and Yunnan (Fig. 17c). The correlation coefficient between 593 

TXx and NAO varied from -0.16 to 0.21. The regions with significant positive correlation between 594 

TXx and NAO were mainly located in Tibet, and the region with the strongest correlation was 595 

located in southern Tibet (Fig. 17d). The areas of ID was significantly positively correlated with 596 

NAO accounted for 5.86% of the whole study area, and the strongest correlation was found in 597 

western Xinjiang (R=0.23). The regions with significant negative correlation between ID and NAO 598 

were mainly distributed in eastern and northeastern China (Fig. 17e). Sun et al. (2016) found a very 599 

weak positive correlation between TX10p and NAO in the Loess Plateau, which was consistent with 600 

our results. The regions with a significant negative correlation were mainly concentrated in 601 

northeastern China (Fig. 17f). 602 
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 603 

Figure 17. Correlation analysis between extreme temperature indices and NAO in China during 1979-2018. The 604 

shaded areas indicate correlations that are significant at the 0.05 level. 605 

Fig.18 (a-f) shows the correlation between NINO3.4 and extreme temperature indices. The 606 

regions with significant positive correlation between SU and NINO3.4 were mainly distributed in 607 

eastern China, indicating that the events of El Niño would lead to an upward trend of SU in these 608 

regions. There were few regions with significant negative correlation between SU and NINO3.4, 609 

only accounting for 1.15% of the entire research area, mainly distributed in southeast Tibet and 610 

southwest Yunnan (Fig. 18a). The correlation coefficient between TX90p and NINO3.4 was -0.19-611 

0.26. The areas of TX90p had a significant negative correlation with NINO3.4 were mainly 612 

distributed in region IV and VI (Fig. 18b). There was a significant negative correlation between 613 

TXn and NINO3.4 in 24.59% of regions, and the region with the strongest negative correlation was 614 

located in Tibet (R=-0.25). TXn was positively correlated with NINO3.4 in only 10.46% of regions 615 

in China, and the region with the largest correlation coefficient was northwest Xinjiang (R=0.11) 616 

(Fig. 18c). There was a weak positive correlation between TXx and NINO3.4 in southern 617 
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Guangdong and northern Hainan (0.2<R<0.4). The regions of TXx was significantly negatively 618 

correlated with NINO3.4 were mainly distributed in the south of region V and region VI (Fig. 18d). 619 

The significant negative correlation between ID and NINO3.4 was mainly concentrated in southern 620 

China. The areas with significant positive correlation were mainly distributed in the western region 621 

II and southern region VI, and the region with the strongest correlation was located in the western 622 

Sichuan (R=0.31) (Fig. 18e). TX10p in most regions of regional VI was significantly affected by 623 

NINO3.4, and the significant positive correlation area accounted for 69.31% of the whole region VI. 624 

TX10p was significantly negatively correlated with NINO3.4 in only 0.65% of regions in China, 625 

mainly distributed in Hainan and southern Gansu (Fig. 18f).  626 

 627 

Figure 18. Correlation analysis between extreme temperature indices and NINO3.4 in China during 1979-2018. 628 

The shaded areas indicate correlations that are significant at the 0.05 level. 629 

7 Conclusions 630 

The global temperature continues to rise and extreme weather events continue to increase. (IPCC, 631 

2021). It is great significance to study regional high temperature changes. In order to obtain the key 632 
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parameters of high temperature spatial-temporal variation analysis, this study proposed a daily Tmax 633 

estimation frame based on the near-surface Ta grid data and Ta diurnal variation model to build a 634 

Tmax dataset in China from 1979 to 2018. Validation of Tmax estimation data in six natural regions 635 

indicated that the RMSE of each region was between 2.38-2.94°C, the MAE was between 1.88-636 

2.45°C, and R2 was between 0.95-0.99. After using the regression model to calibrate the dataset, the 637 

accuracy of the estimated Tmax has been significantly improved. The RMSE of the Tmax after 638 

calibration reduced to 1.14-1.81°C, and the MAE reduced to 0.84-1.38°C, and the R² increased to 639 

0.97-0.99. 640 

This dataset was used to study the spatial-temporal variation characteristics of Tmax and the 641 

corresponding influencing factors in China, and to discuss the correlation between Tmax, extreme 642 

temperature indices and ocean climate modal indices. Tmax in all regions of China exhibited an 643 

upward trend from 1979 to 2018, with the largest rise in region V and the smallest rise in region I. 644 

In spring, Tmax in China increased significantly in most regions, and the region III is with the fastest 645 

rising speed. In winter, Tmax in China had the least significant rise, and the region II was with the 646 

slowest rise rate. SU, TX90p and TXx in all regions showed an upward trend. Except for region II, 647 

TXn in other regions also exhibited an upward trend, while ID and TX10p in all regions showed a 648 

downward trend. All extreme temperature indices had abrupt changes during 1979-2018, and most 649 

of the abrupt changes occurred in El Niño or La Niña years. The region with the largest increase of 650 

SU, TX90p and TXx and the region with the largest decrease of TX10p were located in the western 651 

Yunnan. The correlation analysis between Tmax and extreme temperature indices and ocean climate 652 

modal indices indicated that the increase of the IOBW usually led tocoincides with the increase of 653 

Tmax, SU, TX90p, TXn and TXx and the decrease of ID and TX10p. NAO had the opposite 654 
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relationships. In most regions of China, Tmax, SU, TX90p and TXn were negatively correlated with 655 

NINO.3.4, while TXx, ID and TX10p were positively correlated with NINO.3.4.  656 

The Tmax dataset we produced can not only be used as the input parameters of climate change 657 

models, crop growth models and carbon emission models, but also can be used to evaluate the risk 658 

of high temperature disasters, which has high practical value. Currently, due to the limitation of the 659 

temporal and spatial scope of the basic data, we have only produced the dataset of China. If global 660 

station data and temperature data can be obtained in the future, we can continue to produce Tmax 661 

dataset on a global scale. The analysis of regional high temperature temporal and spatial changes 662 

shows that the temperature changes in different regions of China are inconsistent, and the 663 

mechanism that affects the temperature rise is different in different regions, and some regions are 664 

highly correlated with ocean temperature changes. China is located in the eastern Eurasian continent 665 

and the western Pacific Ocean. With the influence of the unique topography of the Qinghai-Tibet 666 

Plateau, China's climate system is very complex. The temperature change in China is affected by a 667 

combination of factors, and the ocean is only one of the factors affecting the temperature change in 668 

China. Our study found that the influence of the ocean on China's temperature change is not 669 

particularly strong, and we can continue to study the driving factors that have a strong impact on 670 

China's climate change in the future. In order to strengthen environmental protection and control 671 

temperature rise, and formulate reasonable carbon emission reduction measures, we need further 672 

research in the future.  673 
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