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Abstract. Data assimilation is a relevant framework to merge a dynamical model with noisy observations. When various models

are in competition, the question is to find the model that best matches the observations. This matching can be measured by

using the model evidence, defined by the likelihood of the observations given the model. This study explores the performance of

model selection based on model evidence computed using data-driven data assimilation, where dynamical models are emulated

using machine learning methods. In this work, the methodology is tested with the three-variable Lorenz’ model and with an5

intermediate complexity atmospheric general circulation model (a.k.a. the SPEEDY model). Numerical experiments show that

the data-driven implementation of the model selection algorithm performs as well as the one that uses the dynamical model.

The technique is able of selecting the best model among a set of possible models and also to characterize the spatio-temporal

variability of the model sensitivity. Moreover, the technique is able to detect differences among models in terms of local

dynamics in both time and space which are not reflected in the first two moments of the climatological probability distribution.10

This suggests the implementation of this technique using available long-term observations and model simulations.

1 Introduction

Data assimilation (DA) methods aim to provide the best estimation of the state of a dynamical system based on a set of noisy

and partial observations (see Carrassi et al., 2018; Reich, 2019; Van Leeuwen et al., 2019, and references therein). Current

state-of-the-art DA systems are based on robust mathematical grounds, allowing to expand their use beyond their original aim.15

One application that has recently received increasing attention is the use of DA methods for model optimization and model

selection. The former is concerned with obtaining better estimates for model parameters and configuration with the ultimate

goal of quantifying and reducing model error and dispersion in various applications (e.g., Schirber et al., 2013; Ruiz et al.,

2013; Ruiz and Pulido, 2015; Lauvaux et al., 2019; Kotsuki et al., 2020). Model selection aims at identifying the model which
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best describes a set of observations in a finite set of possible models. In meteorology and oceanography, model selection may20

be useful for example to find the best physics for forecast applications or for detecting the forcing terms that better explain the

evolution of a dynamical system for attribution purposes.

So far model selection, in the context of DA, seems to have received less attention than model optimization. In Hannart

et al. (2016), the authors show that the fraction of attributable risk in the context of climate change (Pearl, 2000) can be

estimated as a by-product of two DA systems. One of these systems is run with a model which includes forcing consistent25

with anthropogenic emissions, and another is run without considering those emissions. This approach was proven to be more

sensitive to differences between the two scenarios at a lower computational cost than other available attribution techniques.

One usual approach to conduct model selection is based on the computation of model evidence, which is defined as the log-

likelihood of the available observations for a given model configuration (Reich and Cotter, 2015). Carson et al. (2018) proposed

to use model evidence to select a model consistent with data records in paleoclimate science. This work succeeds in both fitting30

conceptual models and identifying the one with the most appropriate orbital forcing to represent the glacial–interglacial cycle.

Estimating model evidence, however, is generally complex for practical applications since geophysical models are usually

high-dimensional and nonlinear. In such circumstances, it is crucial to develop and to implement DA methods which allow

accurate estimations of model evidence.

Carrassi et al. (2017) introduced the concept of Contextual Model Evidence (CME) which can be roughly defined as the35

log-likelihood of a set of observations over a short time period for a given dynamical model. Based on this approach, the

model selection can be obtained by running several DA systems (i.e. each one using a particular dynamical model) and then

comparing their corresponding CME values. Metref et al. (2019) extended this idea to high dimensional systems and studied

the impact of domain localization upon the computation of the CME in the context of an ensemble Kalman filter (EnKF). A

similar idea has been implemented by Otsuka and Miyoshi (2015) for the online optimization of a multi-model EnKF. They40

run a particle filter that assigns weights to each model configuration based on the likelihood of the observations given different

model configurations. The approach successfully identifies the most accurate model improving the performance of both the

assimilation and the forecast.

The articles cited above perform model selection using classical DA methods where the different competing models that

represent the dynamics of a particular system must be solved several time at each time step. Recently, Tandeo et al. (2015);45

Lguensat et al. (2017) introduced the concept of Analog DA (AnDA). This approach can be particularly beneficial in cases

where the numerical model is not known explicitly or extremely computationally expensive (as it is usually the case with state-

of-the-art numerical models of the climate system) or when such models are not available and only the observation dataset

exists. In this case, AnDA can take advantage of existing long-term climate model simulations or observations and perform DA

by emulating the dynamical model using nearest neighbor regression, also called analog forecasting in meteorology (Lorenz,50

1969).

In this paper, we combine the AnDA method with the computation of the CME. The objective is to provide a proof of concept

using numerical experiments on the low dimensional modified Lorenz-63 toy model (Lorenz, 1963) and the intermediate
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complexity atmospheric general circulation model SPEEDY (Molteni, 2003). This proof of concept suggest the possible use of

existing model simulations to efficiently compare, based on observations, different models and physics.55

The paper is organized as follows. Section 2 provides a brief review of model evidence and introduces an algorithm to

compute CME using AnDA. Section 3 presents the numerical results and Section 4 presents final remarks and perspectives for

future research.

2 Methodology

Model evidence measures the ability of a dynamical model M to describe a sequence of multivariate, noisy, and partial60

observations y0:K = (y0, . . . ,yK) (from a sufficient long time in the past and up to time K). It is a useful tool to identify the

model best fitting a set of observations in a list of competing models. In this section, after defining model evidence, we discuss

its computation by combining DA and analog forecasting.

2.1 Contextual model evidence

2.1.1 Definition65

Model selection or comparison is usually performed using the climatological Model Evidence (ME), see Metref et al. (2019)

and references herein. It corresponds to lnp(y0:K |M), the global log-likelihood of the observations y0:K for the dynamical

model M. This ME metric is roughly measuring the adequacy between the observations available up to time K and the

climatological distribution of the model. Though, this global metric is probably not descriptive enough for studying the model

performance over a particular time period or the transition between different states of the system.70

Alternatively, Carrassi et al. (2017) proposed to compute the Contextual Model Evidence (CME) defined as the local log-

likelihood on a short interval of time. More precisely, it is defined as

CMEk:k+h(M) = lnp(yk:k+h|y0:k−1;M)

where p(yk:k+h|y0:k−1;M) denotes the conditional (forecast) distribution of the observations yk:k+h between times k and

k+h given the observations up to time k− 1 for modelM and h is the width of the evidencing window. As stated in Metref

et al. (2019), a key difference between CME and ME is that the former takes into account the actual state of the system. This

information is considered in the a-priori estimation of the state of the system at the beginning of the evidencing window which

is assumed to be approximately known. So, CME computes the evidence taking into account the context, which can provide a75

more detailed local evaluation of the system dynamics.

Remark that as shown by Carrassi et al. (2017), for a Markovian system and for independent observations

CMEk:k+h(M) =

k+h∑
i=k

lnp(yi|y0:i−1;M) =

k+h∑
i=k

CMEi(M) (1)

where CMEi(M) = lnp(yi|y0:i−1;M) is the CME in the particular case where evidencing window is reduced to a single

time. This last quantity corresponds to the Logarithmic Score (also known as the Ignorance Score, see e.g. Siegert et al. (2019)80
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and references therein) of the forecast distribution p(yi|y0:i−1;M) associated to model M. Also when k is set to 0 in the

CME (i.e. there is no observation prior to the evidencing window), we obtain the ME.

CME cannot be evaluated directly because the observations y are often incomplete, intermittent and uncertain. To tackle

these issues, a latent variable which represents the true state of the system is introduced leading to the following state-space

model85

xk =M(xk−1)+ηk, (2)

yk =H (xk)+ ϵk, (3)

where xk denotes the latent state and ηk represents the model noise (i.e. the part of the system dynamics which is not repre-

sented by the numerical model) at time k. In Eq. (3), H is the observation operator, representing the link between the latent

state x (i.e., what we want to estimate) and the observations y. The additive term ϵk represents observation errors.90

For a state-space model CMEk(M) can be expressed as follows

CMEk(M) = ln

∫
p(yk|xk) p(xk|y0:k−1;M)dxk. (4)

The forecast distribution p(xk|y0:k−1;M) which appears in the previous expression can again be decomposed into two terms

p(xk|y0:k−1;M) =

∫
p(xk|xk−1;M)p(xk−1|y0:k−1;M)dxk−1. (5)

where the analysis distribution p(xk−1|y0:k−1;M) represents the estimation of the state of the system at time k− 1 given all95

the previous available observations (i.e. the context which is usually provided by a DA system).

2.1.2 Contextual model evidence and the ensemble Kalman filter

In an ensemble Kalman filter (EnKF), the forecast distribution p(xk|y0:k−1;M) is approximated using a Monte Carlo approach

performing multiple evaluations of the model M, initialized from a sample of states drawn from the analysis distribution

p(xk−1|y0:k−1;M). More precisely, a sample of the forecast distribution is generated as follows100

xf
(j),k =M(xa

(j),k−1)+η(j),k (6)

where
{
xa
(j),k−1

}
j=1:N

is a sample of N members from the analysis distribution at time k− 1 and η(j),k is a realization

of a stochastic process representing model imperfections typically drawn from a Gaussian distribution with zero mean and

covariance Q (see Tandeo et al., 2020). The different members
{
xf
(j),k

}
j=1:N

of the forecast are used to approximate the first

two moments of the forecast distribution through the sample mean105

xf
k =

1

N

N∑
j=1

xf
(j),k, (7)
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and covariance

Σf
k =

1

N − 1

N∑
j=1

(xf
(j),k −xf

k)(x
f
(j),k −xf

k)
T . (8)

When observations are available at time k, the state distribution can be updated based on the information provided by the

observations. This update is performed based on the Bayes theorem assuming that both the observation likelihood and the110

forecast distributions are Gaussian and that their moments are well approximated by the sample moments. The update can be

conducted in different ways, one possible approach is the so called stochastic EnKF update (Burgers et al., 1998) in which each

member of the analysis sample is obtained as

xa
(j),k = xf

(j),k +Kk

(
yk −H(xf

(j),k)+ ϵ(j),k

)
(9)

with Kk the Kalman filter gain defined as115

Kk =Σf
kH

T (HΣf
kH

T +R)−1. (10)

where H denotes the tangent linear of the observation operatorH.

Eqs. (6-10) can be used sequentially to produce an estimate of the state conditioned on previous observations (y0:k−1) at

each time k. Given an EnKF sequential cycle, based again on Gaussian assumptions, CMEk(M) can be approximated as

(Carrassi et al., 2017):120

CMEk(M)≈−1

2
(yk −H(xf

k))(HΣf
kH

T +R)−1(yk −H(xf
k))

T − 1

2
ln |HΣf

kH
T +R| − n

2
ln(2π), (11)

where n is the number of available observations at time k. Combining Eqs. (1) and (11) (also with Eqs. (6-10)) we can compute

CMEk:k+h from an ensemble Kalman filter based DA system for an arbitrary time window [k,k+h]. When both forecast mean

and covariance are well estimated, Carrassi et al. (2017) showed that this CME approach is able to detect the model candidates

which best describe a given set of observations.125

Ensemble Kalman filters usually suffer from systematic underestimation of the forecast error variance. To compensate for

this issue an ad-hoc multiplicative inflation coefficient γ is usually applied such that

Σf
k ←− γΣf

k . (12)

The inflation coefficient γ can be estimated online using different techniques which are based on the work of Desroziers et al.

(2005). In particular Li et al. (2009) propose the following estimation approach, in which at each time k the inflation value is130

updated according to

γk+1 = ρ

(
Tr(do−f

Tdo−f ◦R−1)− p

Tr(HΣf
kH

T ◦R−1)

)
+(1− ρ)γk (13)

with 0≤ ρ≤ 1 a time smoothing parameter, p the number of observations, do−f the difference between the forecast and the

observations in the observation space and, ◦ the elementwise product.
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2.2 Data-driven contextual model evidence135

2.2.1 The analog ensemble Kalman filter

In a DA system, the numerical model is required to propagate the information in time. Particularly, in the case of ensemble

based assimilation techniques, the numerical model has to be run several times (once for each of the ensemble members and

each time step). An alternative to this computationally intensive approach is to use analog forecasting. This method, initially

introduced by Lorenz (1969) in meteorology, is a data-driven procedure which uses a catalog of historical data, most of the140

time corresponding to simulation runs or analysis (i.e., outputs of DA procedures). The idea is to search in the catalog, using

an appropriate distance, the nearest analogs of the initial condition from which we want to get a forecast. Then, the successors

of these closest analogs are combined to get a probabilistic forecast. Analog forecasting is popular because of its simplicity

and robustness. Several studies confirm these advantages in the context of environmental sciences (Barnett and Preisendorfer,

1978; Bannayan and Hoogenboom, 2008; Yiou, 2014; Atencia and Zawadzki, 2015; Ayet and Tandeo, 2018; Sévellec and145

Drijfhout, 2018).

The combination of DA and analog forecasting has been proposed in Tandeo et al. (2015); Lguensat et al. (2017) leading

to the Analog Data Assimilation (hereinafter AnDA) method. It is a flexible framework that can be adapted to a large set of

problems. An interesting feature of AnDA is that, it can be applied locally, without the need to approximate the full model.

On the contrary, only a part of the state space (e.g. a particular region or physical variable) can be used to select the analogs150

and to emulate the dynamics of that particular part of the system. This is particularly advantageous when dealing with high

dimensional systems. Also, as most DA systems, AnDA can handle complex observations with irregular spatio-temporal dis-

tributions as long as an appropriate observation operator is available. More precisely, AnDA corresponds to running a DA

algorithm using the state-space model (2-3) with (2) replaced by

xk = M̂(xk−1)+ηk, (14)155

where M̂ denoting the analog-based approximation of the dynamical modelM.

An efficient statistical forecast operator used in Lguensat et al. (2017) and detailed in Platzer et al. (2021) is the local linear

regression originally introduced in Cleveland and Devlin (1988). It consists in first searching in the catalog the M-nearest

neighbors (i.e. the analogs) of a given state x along with their corresponding successors in time. Then, a multiple linear

regression is fitted between the M analogs and their successors. The coefficients of this regression are denoted β(x) and α(x),160

where we stress that these coefficients depend on the state of the system. Note that this regression is able to emulate the model

dynamics including non-linearities as it is a linear approximation applied locally in state space and corresponds to a first-order

expansion of the dynamical model (see Platzer et al., 2021).

The combination of analog forecasting, based on local linear regressions, and the EnKF leads to the AnEnKF algorithm

where Eq. (6) is replaced by165
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xf
(j),k = α(j)(x

a
(j),k−1)x

a
(j),k−1 +β(j)(x

a
(j),k−1)︸ ︷︷ ︸

M̂(j)(x
a
(j),k−1

)

+η(j),k, (15)

where the model error η(j),k is drawn from a mutlivatiate Gaussian distribution N (0,Σ̃(j)(x
a
(j),k−1)) where Σ̃(j)(x

a
(j),k−1)

denotes the sample covariance of the residuals of the multiple linear regression between the analogs and the successors (see

Lguensat et al., 2017, their Section 3a for further details). Once the forecast is performed using the analog technique, the

analysis update can be done as in the EnKF using Eq. (9). Multiplicative inflation (Eq. 12) could also be applied and estimated170

online using Eq. (13). AnEnKF has been tested on toy dynamical models in Lguensat et al. (2017). Numerical results show that

the performance of the classic EnKF (i.e., using the true modelM) and AnEnKF (i.e., using analog forecasts M̂), is almost

the same when the size of the catalog is large enough.

However applying efficiently analog forecasting for chaotic dynamics with strong nonlinearities and high dimensional spaces

is not always straightforward. As mentioned in Zhen et al. (2020), the analog space must be large enough to capture the dy-175

namics of the system, but small enough to avoid the curse of dimensionality. This can be achieved using time-delay embedding

and projection in appropriate subspace. In this work, this issue is avoided by running AnDA locally on a reduced set of the

state-space variables (see Section 3.2).

2.2.2 Contextual model evidence and the analog ensemble Kalman filter

It is straightforward to combine the CME and AnEnKF procedures in the same DA scheme. The procedure is summarized in180

Fig. 1 and detailed in Alg. 1.

Algorithm 1 Contextual model evidence using ensemble Kalman Filter and local linear regression forecasting

– Initialization: sample the first ensemble,
{
xa
(j),0

}
j=1:N

∼ p(x0).

– For k = 1 :K,

+ Forecast step:

- for each member j = 1, . . . ,N propagate the previous analysis member using the analog forecasting operator Eq. (15).

- compute the empirical mean forecast xf
k (7) and covariance forecast Σf

k (8) from the ensemble members.

- apply the multiplicative inflation factor Eq. (12)

- compute the contextual model evidence Eq. (11).

+ Analysis step:

- update the state distribution Eq. (9-10).

- update the inflation factor Eq. (13).

In the next section, several models
{
M(i)

}
i=1:L

are in competition and CME is used to identify those which best describe

the dynamics of the observations. Note that the time series CMEk(M(i)) are computed independently for each model. The
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combination of CME and AnEnKF has several advantages in this context. Firstly, it is a fast procedure, because it avoids to

run the different models at each time step and for each ensemble member. Secondly, uncertainty in the local linear regression185

is considered as a robust estimation of model errors and contributes to increase the forecast ensemble spread (Lguensat et al.,

2017; Platzer et al., 2021). Thirdly, it allows to compute the CME in specific regions of the state space (e.g., in specific areas or

integrated variables), only where observations are available. This last point will be discussed in Section 3.2 using the SPEEDY

model.

3 Results190

This section presents numerical results which show that the proposed methodology is able to identify the model which is

the most compatible with a given set of observations. A first set of experiment is performed using a modified version of the

Lorenz-63 model. Then we focus on the more challenging intermediate-complexity atmospheric general circulation model

SPEEDY.

3.1 Modified Lorenz-63 system195

In this section, the method is tested on a modified Lorenz-63 modelM(λ) originally introduced in Palmer (1999). It is defined

by the following system of differential equations

dx1

dt = 10(x2−x1)+λcos
(
7
9π
)
,

dx2

dt = x1 (28−x3)−x2 +λsin
(
7
9π
)
,

dx3

dt = x1x2− 8
3x3,

(16)

where λ controls the magnitude of the external forcing term which is added on the first two components. The particular case

λ= 0 corresponds to the classical Lorenz-63 model (Lorenz, 1963). Figure 2 shows two trajectories simulated from Eq. (16)200

with λ= 0 and λ= 8. When λ > 0, the additional forcing term "pushes" the trajectories towards the right wing and the left

wing is less often visited than the right one, the opposite holding true when λ < 0. This behaviour can be clearly seen on the

right plots in Fig. 2 which show the number of times the system visits different regions of the state space.

A set of observations is generated using the classical Lorenz-63 model M(0), referred to as the correct model hereafter.

We conduct several experiments to check if the proposed methodology is able to identify that the observations were actually205

generated using the correct modelM(0) and not from another model in the list of competing models which corresponds to the

modified Lorenz modelsM(λ) with λ=−8, . . . ,8. In practice, the Lorenz model is integrated using a Runge-Kutta 4 scheme

with a time step dt= 0.1, and the three components are observed observed and assimilated at every model time step. The

observation operator is H= I3 (the 3× 3 identity matrix) and an additive Gaussian error with covariance R= 2I3 is used.

Hereafter each experiment is based on K = 104 DA cycles. Unless stated otherwise, the AnEnKF is run using catalogs of size210

T = 104 and the evidencing window size is h= 1. For the EnKF, experiments with Q= 0 are used independently of the value

of λ, while in the AnEnKF the approach described in the previous section is used, which in practice corresponds to a robust

estimate of the model noise.
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Figure 3 shows the mean CME for different values of λ, for different configurations and, for the EnKF and the AnEnKF.

Comparing the left panels of Figure 3 shows that the EnKF is very sensitive to the ensemble member size N , especially when215

the strength of the forcing in the modified Lorenz-63 model (i.e. the value |λ| ) increases. Applying a multiplicative inflation

factor (see last row of Figure 3) permits to solve this issue. Hereafter we discuss the results obtained when both EnKF and

AnEnKF algorithms are run with N = 20 ensemble members and a multiplicative inflation factor is applied. This allows to

obtain robust results for the EnKF at a reasonable computational cost. Remark that the AnEnKF is less sensitive to the ensemble

size and that adding inflation do not seem necessary here (see right panel of Figure 3). This may be explained by the adaptive220

data-driven procedure which is used to estimate the forecast error in the AnEnKF procedure. As expected, the CME has a larger

mean value when the correct modelM(0) is used in the DA procedures and decreases when the value of |λ| increases. Both

EnKF and AnEnKF give comparable results when multiplicative inflation (Eq. 13) is applied (see bottom panels of Figure 3).

As an example, Fig. 4 (top panel) shows the analysis for the second component x2 obtained when running the AnEnKF with

a catalog of the correct modelM(0). It suggests that the AnEnKF is generally able to reconstruct the true state of the system.225

This can be assessed more precisely by computing the RMSE between the true state x and the analysed state xa (0.50) and the

mean coverage probability of the 95% prediction interval (84.26%). Then the AnEnKF was run with a catalog of the incorrect

modelM(8). As expected, the RMSE is larger (0.72) and the mean coverage probability is also degraded (63.86%), and thus

less accurate estimates of the mean and the variance of the true state are obtained. Remark that these two quantities cannot be

computed in practical applications since the true state is not known. The bottom panel of Figure 4 shows that the CME obtained230

with the AnEnKF run with a catalog of the incorrect model are generally smaller than the ones obtained with a catalog of the

correct model. It illustrates again that the CME computed with AnEnKF can be used to identify the correct model using only

a sequence of noisy observations and catalogs of competing models.

This is confirmed by the results given in Table 1. The CME associated to the correct model is larger than the one associated

to the incorrect model for 68% of the assimilation cycles. Remark that this percentage of correct identification increases with235

the catalog size T and seems to converge to the percentage of correct identification obtained with the EnKF (68%) when T

becomes large. This is not surprising since using larger catalog provides a better approximation of the dynamical model and

thus similar results when using EnKF and AnEnKF (see the discussion in Lguensat et al., 2017). Table 1 also shows that CME

is more precise in identifying the correct model compared to the root mean squared error of the forecast in the observation

space defined as RMSEf
k = ∥yk −H(xf

k)∥. Remark that, according to Eq. (13), CME depends not only on the forecast error240

but also on the variance of the forecast error and this may help to identify the correct model. Also, to highlight the advantage of

using DA to identify the correct model we perform an experiment using only the pure analog forecasting (AnF), without DA.

For each time k, we select analogs based only on the available noisy observations and we propagate the state using the local

linear regression approach. The RMSE of each forecast at time k+1, denoted RMSEAnF
k , is reported in Table 1. The maximum

selection probability obtained with the AnF is 57%, which is smaller compared to the experiments using AnDA (64% using245

RMSE of the forecast error and 68% using CME). This stresses the importance of having an accurate initial conditions in order

to be able to compare the forecasts obtained with two competing models.
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Approaches T = 102 T = 103 T = 104

EnKF
Mean (%) 68.64 (64.37)

CIs (%) [67.59,69.70] ([63.59,65.25])

AnEnKF
Mean (%) 59.85 (58.99) 67.02 (63.33) 68.44 (64.37)

CIs (%) [58.74,60.96] ([58.00,59.99]) [65.43,68.60] ([61.92,64.73]) [67.09,69.79] ([63.59,65.25])

AnF
Mean (%) − (53.38) − (57.46) − (57.71)

CIs (%) [−,−] ([52.11,54.60]) [−,−] ([56.61,58.30]) [−,−] ([56.79,58.63])

Table 1. Sensitivity of the percentage of correct model identification based on the CME and on the RMSE (values within parentheses) with

respect to the length of the catalog (T ) used in the AnEnKF and in the AnF. The mean and 95% confidence interval of the percentage of

correct model identification are computed for each of the algorithms using 10 repetitions of the assimilation experiment.

3.2 SPEEDY model

In this section, we discuss the implementation of CME with AnDA for the Simplified Parameterizations, primitivE-Equation

DYnamics (SPEEDY; Molteni, 2003) which is an intermediate complexity, atmospheric general circulation model. The grid250

in SPEEDY consists of 48 points in the South-North direction and 96 points in the West-East direction and of 7 vertical σ-

levels. SPEEDY has a set of simplified parameterizations to represent unresolved scale processes including radiation, large

scale condensation, soil-sea-ice-atmosphere energy fluxes, boundary layer, and moist convection. A brief description of these

schemes can be found in the Appendix of Molteni (2003).

3.2.1 Data driven model selection with SPEEDY255

In this work, we conduct observation simulation experiments using this model. A 30-year run is performed using the default

configuration of the model which has been shown to produce a good representation of the main features of the current climate

(Molteni, 2003). The model is integrated with a time step of 40 minutes and model states are archived at 6-hours intervals. This

simulation is hereafter referred to as the TRUE simulation.

To simulate imperfections in the model formulation, we modify the value of the RHcnv parameter which is related to the260

deep convection parameterization in SPEEDY (Molteni, 2003). This parameter controls the activation of the convective pa-

rameterization and the intensity of the convective overturning. Lower values of the parameter lead to more frequent convection

activation and stronger vertical mass fluxes. The TRUE simulation uses RHcnv = 0.9. Two additional simulations are per-

formed using RHcnv = 0.8 and RHcnv = 0.7 which are referred to as RH08 and RH07 respectively. Figure 5 shows that

reducing RHcnv leads to an increase in mid-level mean temperature within in mid-latitudes and in the tropics (with some265

exceptions on the Western Pacific and Northern Africa). This increase is related to stronger latent heat release within the inter-

tropical convergence zone (ITCZ, Figures 5 e and f ) and to enhanced subsidence in the polar side of the Hadley circulation.

Precipitation produced by the convective scheme is enhanced over tropical regions which can also contribute to the mid-level
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warming in this region. RH07 and RH08 produce 12% and 6% more convective precipitation than the TRUE experiment

respectively. However, the sensitivity in total precipitation is much smaller due to a decrease in the large scale precipitation270

as the convective precipitation increases. The impact of this parameter upon the mean distribution of temperature is somehow

linear, since both RH08 and RH07 produce anomalies with a similar spatial pattern but larger amplitude for the latter.

Temperature observations are generated from the TRUE run at each model grid point adding uncorrelated Gaussian random

errors with a standard deviation of 0.7 K. The assumed error standard deviation is similar to the assumed error of several

real temperature observations provided by radiosondes and satellite retrievals. Temperature is selected since its horizontal275

distribution and its vertical gradient are directly affected by convective processes, particularly in the tropics, as has been shown

in Figure 5.

The AnDA approach in SPEEDY is implemented over local domains centered at a given model grid point. In this work and

for each grid point in the horizontal domain, analogs are defined based on the value of the temperature on a 3-dimensional

box of 3 by 3 horizontal grid points and 3 vertical σ-levels (σ=0.77, 0.6, and 0.42). It is important to note here that AnDA280

is implemented at each local domain (3x3x3 grid points boxes) independently from other local domains, meaning that in fact

AnDA can be applied at only one local domain or over all local domains over a particular region without the need to compute

it over the entire global domain. Also, at each local domain, only the observations within the local domain are assimilated

(i.e. in this case, 27 temperature observations per analysis cycle). By implementing AnDA locally we significantly increase the

probability of finding relevant analogs reducing the size of the catalog required for an accurate approximation of the dynamical285

model. The local implementation allow us to avoid the global integration of the model resulting in a substantial reduction of

the computational cost and providing unprecedented flexibility to the computation of DA-based metrics.

This local implementation significantly differs from the localized CME implementation presented in Metref et al. (2019).

In that paper the authors introduce a local computation of CME based on the localization of a global DA system. However, in

their approach the DA is performed globally and using observations of several physical variables such as temperature, wind,290

etc, while in the present work AnDA is implemented locally using only temperature observations within the local domain.

As in the Lorenz-63 experiments, the adaptive multiplicative inflation method indicated in Alg. 1 is used to find the optimal

inflation value corresponding to each experiment. Figure 6 shows that CME is quite sensitive to the multiplicative inflation

used in AnDA. As expected, the optimal inflation value (the one which produce the maximum CME) is larger for the catalogs

corresponding to the imperfect models. Moreover, if a large inflation is assumed (e.g., larger than 1.5), CME associated with295

RH08 becomes larger than the one obtained with perfect model catalog. Also, the adaptive inflation produces results which

are close to the ones obtained with the optimal fixed multiplicative inflation value thus avoiding the need to manually tune

the inflation parameter. This is important, considering the results of Miyoshi (2011) which show that for atmospheric general

circulation models, the optimal inflation parameter depends on time and location.

In ensemble-based DA methods, usually the estimation of the forecast error covariance from a limited-size ensemble leads300

to sampling noise. This is usually ameliorated by the use of localization schemes that reduces the amplitude of the covariance

between distant variables. In this paper AnDA is implemented without localization given the relatively small size of the local

domain in which DA is performed.
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AnDA experiments are conducted assimilating the observations generated from the last three years of the TRUE simulation.

The catalogs for the analog forecasting are constructed from the first 25 years of the RH08, RH07, and TRUE model runs305

and 250 analogs are used for the forecast. In the SPEEDY experiments, the catalog contains over 36.000 samples (which is

almost 4 times the size of the largest catalog which we tried with the Lorenz model). Although the local state space dimension

that we used in SPEEDY is much larger (27 grid points), we argue that since there are substantial correlations among the state

variables, the effective dimension can be significantly smaller.

The number of ensemble members is 30. To increase the evidence associated with the local dynamics of the models the310

assimilation frequency is set to 24 hours. To take advantage of 6-hourly data, at each local domain, we perform four DA

experiments which are run independently from each other starting at 00, 06, 12 and 18 UTC on the first day. These four

DA cycles are performed over the same 3-years period. These configuration settings have been chosen based on preliminary

experiments performed over a limited number of local domains in which the sensitivity of the results to these parameters has

been explored. The analysis obtained from these experiments are merged to obtain a total of 4,380 analysis cycles over the315

three-years assimilation period (4 DA experiments x 1095 cycles each).

It is important to note that the generation of the catalog brings a significant computational cost in this approach since it re-

quires running the global numerical model once over a long period of time. However, we argue that for the implementation of

this technique in real data applications, available long model simulations like those produced by the Coupled Model Intercom-

parison Project (Eyring et al., 2016) can be used. Moreover, the length of these catalogs are of the same order of magnitudes320

as the ones used in the idealized experiments with the SPEEDY model.

Preliminary experiments performed to optimize the configuration, show that results are particularly sensitive to the assimila-

tion frequency and to the size of the local domain used to identify analogs. In particular using 3 different vertical levels and less

frequent assimilation, results in a much stronger sensitivity to RHcnv (i.e. larger difference in CME associated with different

catalogs). The number of analogs affects the performance of AnDA but has a lower impact on the relative performance of the325

different models.

First, it was checked that the proposed methodology is able to identify that the temperature observations were generated

using the TRUE simulation and not the RH08 or RH07 runs. To evaluate the statistical robustness of the results, all the

experiments were repeated 10 times using different realizations for the observation noise. The standard deviation of the values

obtained from different experiments is used to estimate the 95% confidence interval for the different metrics discussed in this330

section.

As described by Metref et al. (2019), model comparison in the context of DA can be conducted using different metrics. We

compare the performance of the different models using RMSE of the forecast error in the observation space (RMSEf ) and

CME. Figures 7 (a) and (b) show the percentage difference in RMSEf and CME for the experiments with RH08 and RH07

with respect to the one using the TRUE catalog. The percentage difference is computed as:335
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%DiffRMSE = (RMSEf −RMSEf
TRUE)/RMSEf

TRUE , (17)

%DiffCME = (CME−CMETRUE)/CMETRUE , (18)

where RMSEf is the RMSE obtained with either the RH07 or RH08 catalogs and RMSEf
TRUE is the RMSE obtained with

the TRUE catalog and the same naming convention is applied to the CME.

The performances of the experiments using catalogs RH08 and RH07 are consistently worse than the one of the experiments340

using the TRUE catalog (positive RMSEf percentage differences). Larger differences are found in the tropics where convection

is more frequent and stronger. This suggests that AnDA provides a valuable hint about the source of model imperfection.

Figures 7 (c) and (d) show the percentage difference for CME. In the case of CME, negative percentage differences indicate

a worse performance with respect to the experiment that uses the TRUE catalog. The CME has a similar spatial pattern as

the difference in RMSE. However, for the CME, the area where results are statistically significant is larger (see for example345

Asia, Europe and Hawaii for the experiment RH07). Figure 8 shows that the spatial pattern of the percentage of correct

identification computed from RMSE or CME is similar. However, the CME generally identifies the right model more frequently

and the number of grid points at which the percentage of correct identifications is significantly over 50% is larger. This is

mainly because CME incorporates the uncertainty in the quantification of the fit of the forecast to the observations. In these

experiments, an accurate estimation of this uncertainty is achieved combining the ensemble of analog forecasts and the adaptive350

multiplicative inflation. A mismatch between the forecast and the observations will contribute less to the CME when the

forecast uncertainty is correctly specified. We achieved this by the implementation of AnDA with adaptive multiplicative

inflation. This takes into account the effect of stochastic errors in the initial conditions and its amplification due to the chaotic

nature of the system which is not explicitly considered in the RMSE metric. Although CME usually performs better than the

RMSE at identifying the correct model, this is not always the case (see for example in Figure 8 how the probability of correct355

identification is larger for the RMSE than for CME near the Equator). This result may be due to an overestimation of the

forecast error covariance Σf , computed within the analog procedure. Indeed, as explained in Eq. (11), an augmentation of this

error matrix implies a diminution of the CME, and thus a decrease of performance of this metric.

To quantify the advantage of using DA in identifying the catalog that best fits the observations, we compare AnDA results

with an experiment using the AnF approach (i.e., in which the analog forecast is initialized directly from the noisy observations360

and evaluated using the RMSEAnF ). During the same period corresponding to the DA experiment, 24-hour analog forecast are

initialized every 6 hours using the same three catalogs as in the AnDA experiments. The RMSEAnF is used to compare the

performance of the different catalogs. Figure 7 (e) and (f) show that differences in performance are mixed when no DA is used.

Larger RMSEs are associated with the catalogs generated with imperfect models at mid-latitudes. However, over the tropic the

opposite is observed with the imperfect catalogs producing better forecasts. Moreover the area in which differences between365

the imperfect model catalogs and the TRUE is larger in the experiments that use AnDA. These results highlight again the

importance of using DA to quantify the performance of a dynamical model based on noisy observations. When DA is not used,

13



the forecast associated to a model may be corrupted by a large initialization error and the resulting RMSEAnF be sensitive not

only to the model error but also to its sensitivity to initial conditions.

3.2.2 Standardized catalog experiments370

To evaluate if the CME framework can detect differences in the system’ dynamics that go beyond the change in the probability

distribution of the state variables (i.e. their climatological mean and standard deviation) we evaluate the skill of AnDA to

detect differences in the model performance when the differences in the mean and in the standard deviation among the catalogs

is removed. To achieve this we perform a standardization of the state variables and the true state prior to the generation of

the observations. The seasonal cycle is taken into account in the standardization using a 60-day centered moving window to375

compute the climatological mean and standard deviation corresponding to different days of the year. In the AnDA experiments

performed using standardized catalogs and observations, the observation error has been scaled accordingly. Results of the

percentage of correct identification for both RMSEf and CME are shown in Figure 9. Differences in RMSEf and CME among

different catalogs are lower than in previous experiments. This indicates that the difference in the mean and standard deviation

among the catalogs contributes to CME. However, when only standardized data is used, AnDA is still able to identify the380

correct model with the higher probabilities obtained by using the CME. RMSEf shows correct model selection probabilities

over the tropical regions where the signal is stronger, however, there are some areas over mid-latitudes where the percentage

of correct identification is consistently below 50% resulting in mixed results for this metric. For some of the areas where the

RMSE provides the wrong answer, the CME is still able to provide percentages over 50% (see for example the Northern and

Southern Pacific).385

Figure 10 (a) and (b) shows the percentage of correct identification based on CME using an evidencing window of h=7 days.

This is higher than the one obtained using a single-day (h=1) window (as in Figure 8 (c) and (d)). For the 7-days window,

the percentage of correct identification is well above 70% over a large part of the world suggesting that the impact of model

imperfection on climatological events occurring at time-scales in the order of weeks can be correctly detected most of the

time. Also, the signal obtained when the standardized anomalies are assimilated is more clear when a 7-days window is used390

(Compare Figures 10 (c) and (d) with Figures Figure 9 (c) and (d)).

3.2.3 Seasonal dependent model errors

To evaluate if the CME computed using AnDA can capture the temporal variability of model errors the percentage of correct

identification is computed over two sub-periods, one corresponding to the Northern Hemisphere summer (June, July, and

August) and the other one corresponding to the Northern Hemisphere winter (December, January, and February). Figure 11395

shows that the sensitivity in the mid-level mean temperature and mean precipitation in these two periods is quite different,

with some areas showing the opposite sensitivity (e.g. central South America, Southern North America, Southern Africa and

Australia).

Figure 12 shows that the CME for both seasons is quite different and that the evidence is generally stronger in the summer

hemisphere when convection is more frequent. Note in particular that over the North Atlantic and Europe and Asia, the CME is400
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stronger during the summer. According to the SPEEDY model climatology convective rain is larger during this time of the year

(not shown) and so is the sensitivity of this precipitation to the RHconv parameter (see Figure 11 (c) and (d)). The seasonal

cycle is acting as a state-dependent source of model error and the CME successfully recovered this characteristic providing

useful information about the source of the difference among the models used to generate the different catalogs.

4 Discussion and conclusions405

Model selection using data assimilation has been introduced in Carrassi et al. (2017), applied in the context of climate change

detection and attribution in Hannart et al. (2016), and to complex or large state model evaluation in Metref et al. (2019). It

consists in putting in competition two or more dynamical models and use observations to compute a likelihood, also called

CME, for each model, attributing the highest probability to the model which provides forecasts that better match the observa-

tions over a period of time. The CME compares the observations with the mean of the forecast distribution computed in the410

assimilation cycles, but also takes into account the uncertainties described by the variance of the forecast distribution.

The main issue related to model selection using data assimilation is the computational cost to perform several model

runs/evaluations. Recently, a data-driven data assimilation method based on analog forecasting has been proposed in Tandeo

et al. (2015) and Lguensat et al. (2017). It consists in replacing the physical model equations by a catalog of past observations

or numerical simulations to statistically emulate the dynamics of the system. This current paper explores the use of such a415

model-free strategy in data assimilation to compute the CME of several dynamical models, represented by a set of numerical

simulations.

The proposed methodology was assessed using numerical experiments. A first set of experiment was performed using a

modified three-variable Lorenz-63 model. It was found in particular that using analog data assimilation gives similar results

than with classical data assimilation, where the dynamical model is run at each time step. It indicates that the method is able to420

provide an accurate approximation of the CME metric of a dynamical model given a catalog and set of noisy observations. A

second set of experiment was done using the intermediate complexity atmospheric general circulation model SPEEDY. They

indicate that the proposed methodology is efficient in identifying the correct model using only observations of a small part of

the state. The numerical results also highlight the importance of using data assimilation compared to more direct approaches

which rely only on the forecast sensitivity without proper state initialization. As a summary, numerical results indicate that this425

technique is efficient in selecting the best model to describe a sequence of noisy observations, and it has various advantages:

(i) it is a low computational cost method, (ii) it can be applied locally on a sub-part of the system or using complex observation

operators such as integrated parameters, (iii) it uses already existing model outputs.

This work is a first step of a more challenging project. It shows that selecting and weighting dynamical models can be

performed inside a data assimilation framework, using analog forecasts, and thus avoiding the need to run numerical models to430

get predictions. This result opens new perspectives for the use, for instance, of model simulations such as the Coupled Model

Intercomparison Project (CMIP), see Eyring et al. (2016) for more details. The goal will be to propose weighted projections of

climate indices, where the weights will be based on the skill of different climate models on representing the local dynamics and

15



the current observations. The resulting weighted projections will improve the estimation of the mean and standard deviation

of climate indices. Those results will be compared to model democracy strategy, for instance, which gives equal weights to all435

climate models, but is also somehow controversial (Knutti et al., 2019).

Implementing the combination of CME and AnDA in real-data cases brings additional challenges. For instance, in this work

the application of the analog regression technique to a high-dimensional problem is achieved by using local domains. However,

this approach does not take advantage of the covariance structure of the model output. This structure could be retrieved through

a principal component analysis which may allow the implementation of the analog regression in a low dimensional space while440

keeping the main aspects of large scale circulation patterns.

Another possible application of the AnDA-CME framework is in the context weighted supermodels (Schevenhoven et al.,

2019; Schevenhoven and Carrassi, 2022) which provides a way to combine the time derivatives of different models resulting

in improved short range and long range predictions.

Code and data availability. Codes can be obtained from the GitHub open repository: https://github.com/gustfrontar/AnDA_SPEEDY.git,445

https://doi.org/10.5281/zenodo.5803356 (Ruiz and Tandeo, 2021). They include the codes for aproximating the SPEEDY model using the

analog forecasting technique, some simulated data and the specific version of AnDA used for the SPEEDY experiments. AnDA is an open-

code system and can be obtained from the GitHub open repository: https://github.com/ptandeo/AnDA, https://doi.org/10.5281/zenodo.5795943

(Tandeo and Navaro, 2021).
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Figure 1. Schematic representation of the proposed methodology. The procedure is iterative, from an initial to a final time index. At time index

k−1, the procedure starts with the results of different DA systems in (a), corresponding to different dynamical models. In (b), each analysis

state is used to find the nearest analogs. Those analogs and corresponding successors, coming from catalogs of numerical simulations, are

used to build analog regressions. The resulting probabilistic forecasts given in (c) are compared to the available observations at time index k.

Then, the likelihoods (CMEs) are used to compute a weight for each dynamical model.

20



Figure 2. Simulated trajectories (left) and bivariate distributions (right) from the modified Lorenz-63 model Eq. (16) with λ= 0 and λ= 8.

The observations (dots) are generated with the correct model with λ= 0 and an additive Gaussian noise with mean 0 and variance 2I3.

Figure obtained using a time step dt= 0.01.
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Figure 3. Time averaged CME as a function of the parameter λ used to generate the incorrect model for the EnKF (left) and AnEnKF (right)

approaches using different number of members N (rows). Adaptive inflation is used only for the results in the bottom row. The red line

indicates the time averaged CME for the correct model (λ= 0).
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Figure 4. Top panel : time series of the second component of the Lorenz-63 system with mean analysis and 95% prediction interval obtained

using AnEnKF with the correct M(0) model (red) or using AnEnKF with the incorrect M(8) model (blue). Bottom panel : CME time series

for the correct M(0) model and the incorrect M(8) model. N = 20 members are used and inflation factor is applied in AnEnKF.
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Figure 5. 30-year mean for the TRUE model simulation (left column) and differences between the TRUE model simulation and the RH08

and RH07 mode simulation (center and right column, respectively), for temperature at the vertical level σ = 0.5 (top row, K) and total

precipitation (lower row, mmday−1).
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Figure 6. Mean log likelihood for a grid points located over Northern South America as a function of the inflation coefficient. The shade

shows the range between the maximum and minimum values over 10 repetitions of the experiment. The vertical error bars represents the

range between the maximum and minimum values of the mean log likelihood for the experiments with adaptive multiplicative inflation over

10 repetitions of the experiment. The horizontal error bars indicates the range between the maximum and minimum values of the

estimated inflation over 10 repetitions of the experiment. Results are shown for the TRUE (blue line), RH08 (green line), and RH07 (red

line) model experiments.

25



Figure 7. Percentage difference in RMSEf (first row) and CME (second row) for the AnDA experiments performed using the RH07 and

RH08 catalogs (left and right column, respectively) versus the experiment performed with the TRUE catalog. The third row correspond to

the difference in RMSEAnF from the experiment based only on analog forecasting (AnF). In all panels, the gray shade indicate values which

are below the 95% statistical significance level.
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Figure 8. Percentage of correct identification between the RH07 and TRUE catalog (left column) and between the RH08 and TRUE

catalogs (right column) using AnDA. The percentage of correct identification is computed using either RMSEf or CME (upper and lower

row, respectively). The gray shade indicate values which are below the 95% statistical significance level. The blue line corresponds to a 50%

of correct identifications.
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Figure 9. As in Figure 8 but for the experiments in which the catalogs and observations have been standardized with respect of their respective

climatological variability (see the text for details).
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Figure 10. Percentage of correct identification based on the CME for a 7-days evidence window between the RH07 and TRUE catalog

(left column) and between the RH08 and TRUE catalogs (right column) using AnDA. The percentage of correct identification is computed

assimilating temperature observations or their standardized values (upper and lower row, respectively). The gray shade indicate values which

are below the 95% statistical significance level. The blue line corresponds to a 50% of correct identifications.
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Figure 11. 30-year mean difference between the TRUE model simulation and the RH07 for the Northern Hemisphere Summer (June, July,

and August, left column) and the Northern Hemisphere Winter (December, January, and February, right column) for temperature at σ = 0.5

(top row, K) and for convective precipitation (bottom row, mmday−1).
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Figure 12. Percentage of correct identification between RH07 and TRUE catalog (left column) and between the RH08 and TRUE catalogs

(right column) based on CME for the Northern Hemisphere winter (December, January, and February, first row), the Northern Hemisphere

summer (June, July, and August, second row). The third row shows the difference between Northern Hemisphere winter minus summer in

the percentage of correct identification. The gray shade indicate values which are below the 95% statistical significance level. The blue line

corresponds to a 50% of correct identifications.
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