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Abstract. Cities concentrate people, wealth, emissions, and infrastructures, thus representing a challenge and an opportunity 10 

for climate change mitigation and adaptation. This places an urgent demand for accurate urban climate projections to help 

organizations and individuals making climate smart-decisions. However, most of the large ensembles of global and regional 

climate model simulations do not include sophisticated urban parameterizations (e.g. EURO-CORDEX; CMIP5/6). Here, we 

use the city of Paris as a case study to show that this is the case for the fifth (and latest) generation reanalysis from the 

European Centre for Medium-Range Weather Forecasts (ERA5) and for simulations employing the widely used bulk bare 15 

rock approach to urban climate parameterization. Subsequently, we leveraged on the hourly resolution of ERA5 and the 

Satellite Application Facility Land Surface Analysis (LSA-SAF) land surface temperature product to demonstrate the 

significant added value of employing the SURFEX land-surface model coupled to Town Energy Balance (TEB) urban 

canopy model in simulating the Parisian Surface Urban Heat Island (SUHI) during daytime and the urban heat island during 

both daytime and nighttime. Our results showed the significant added value of SURFEX-TEB in reproducing the observed 20 

daytime and nighttime Parisian urban heat island effect. An annual average bias magnitude reduction of 0.5oC was observed 

for daytime and around 1.5oC for nighttime when compared to ERA5 and bare rock approach. Also, SURFEX-TEB revealed 

an overall better performance in reproducing the observed daytime SUHI, whilst the added value of SURFEX-TEB was 

lower during nighttime (but still slightly better than ERA5 and the bare rock approach), due to the lack of land-atmosphere 

feedbacks in the proposed offline framework. Finally, the offline SURFEX-TEB framework applied here demonstrates the 25 

added value of using more comprehensive urban parameterizations to simulate the urban climate, therefore, improving urban 

climate projections. 

1 Introduction 

Urban areas accommodate nearly half of the global population, and this fraction is projected to increase to 68% by 2050 

according to the World Health Organization (WHO, 2018). Moreover, cities concentrate wealth, infrastructures, and 30 
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emissions - being responsible for about 75% of the global greenhouse gas emissions from energy consumption (IPCC, 2014). 

Consequently, understanding and simulating the urban climate evolution is a key task for climate change assessments and for 

designing climate change adaptation and mitigation strategies.  

The urban areas are characterized by drastic land-use changes which are responsible for increased trapping and absorption of 

solar radiation, reduced evapotranspiration, and decreased nighttime cooling in built-up areas. As a result, cities typically 35 

have warmer air and surface temperatures compared to nearby rural environments. This is the well-known urban heat island 

(UHI) effect, which has been found over multiple cities across the globe (see e.g., Deilami et al., 2018 for a recent review).  

The identification and quantification of the UHI dynamics have proven to be challenging. Despite its widespread emergence 

in urban environments, the UHI is sensitive to the specific land surface characteristics and meteorological conditions, hence 

displaying significant variability between different locations and periods. Indeed, previous investigations reported several 40 

different relevant UHI dependencies, including city size and population density (Oke, 1982; Clinton & Gong, 2013; Oke et 

al., 2017; Manoli et al., 2019), social-economic conditions (e.g., Hong et al., 2019; Li et al., 2020; He et al., 2022), urban 

vegetation coverage (Kaloustian & Diab, 2015; Peng et al., 2012; Zhou et al., 2014; Nogueira & Soares, 2019), background 

climate conditions (namely precipitation and wind, Zhou et al., 2013; Lemonsu et al., 2013; Zhao et al., 2014; Manoli et al., 

2019) and urban morphology (e.g., city geometry, building height, construction materials, etc., Oke, 1973; 1982; Zhou et al., 45 

2017; Krayenhoff et al., 2018; Nogueira & Soares, 2019; Masson et al., 2020). Heat release resulting from human activities 

has also been shown to modulate the UHI (De Munck et al., 2013; Schoetter et al., 2020). Moreover, surface and near-

surface air temperature over “natural” regions also display large sensitivity to the complex land use and land cover patterns 

(e.g, Beljaars et al., 1996; Koster et al., 2004; Johannsen et al., 2019; Nogueira et al., 2020a, 2021), which represents an 

additional layer of complexity to the UHI.  50 

Investigations of the UHI based on contrasting in situ temperature and surface fluxes observations from cities and 

neighboring rural locations are generally unable to capture its complex spatial heterogeneity, particularly for large cities, 

resulting in large uncertainties in the UHI characterization (Stewart, 2011; Schwarz et al., 2011; Stewart and Oke, 2012). 

The development of dense urban meteorological station networks allowed to partially overcome these limitations, but the 

temporal and spatial coverage of such networks remains too narrow to fully characterize the urban induced climate 55 

modulation (Muller et al., 2013; Konstantinov et al., 2018). Remote sensing techniques provide a widely used alternative for 

comprehensive characterization of the UHI and its variability, providing reliable estimates for numerous land surface 

properties with wide spatial coverage and adequate spatial and temporal sampling, including land surface temperature (LST), 

land use and land cover (LULC) maps, soil moisture, rainfall, and snow, amongst others (see Balsamo et al., 2018 for a 

recent review).  60 

Numerous works revealed the existence of a surface urban heat island (SUHI), referring to warmer LST in urban areas 

compared to its rural environment (e.g., Roth et al., 1989; Imhoff et al., 2010; Schwarz et al., 2011; Peng et al., 2012; Zhao 

et al., 2014; Zhou et al., 2017). Yet, these studies identified significant differences between the UHI and SUHI, including the 

maximum UHI hour and seasonality, and the relationship between thermal contrast magnitude and land use. Moreover, LST 



3 

 

estimates are often restricted to clear-sky conditions since, typically, the available all-sky estimates are restricted by very 65 

coarse spatial resolution which is inappropriate to characterize the urban environments (Masson et al., 2020). The LST 

estimates are also often constrained by the time of satellite overpass, which limits the temporal resolution.  

Urban climate simulations generated by physically-based numerical models can potentially circumvent some of the 

limitations of in situ and remote sensing observational products. Specifically, coherent information for multiple relevant 

variables with high spatial and temporal coverage and resolutions may be obtained. Additionally, due to the complexity and 70 

diversity of cities around the world, the city scale climate properties are specific and often limited to a particular location. 

Moreover, while observations cover the past, numerical simulations can be extended to the future and, therefore, consider 

different scenarios of future socio-economic evolution, urban development, and adaptation strategies, as shown, for example, 

in Georgescu et al. (2014) where it was demonstrated how urban planning could help offset the global warming effect in 

U.S. cities in the future.  75 

Most large ensembles of global and regional climate model simulations have simplified representations of the urban 

environment (Garuma, 2018; Zhao et al., 2021). Furthermore, the available large ensembles of Earth System Models (ESMs) 

and Global Climate Models (GCMs) typically have coarse spatial resolutions (~100 km), which are inadequate for 

representing most of the city-scale processes. Typically, state-of-the-art large multi-model ensembles of Regional Climate 

Models (RCMs) have grid-resolutions on the order of tens of kilometers which is still inappropriate to simulate many aspects 80 

of the urban climate system (e.g., Langendijk et al., 2019; Nogueira et al., 2020b; McNorton et al., 2021). The next 

generation of RCM ensembles will have a resolution of a few kilometers, allowing a better simulation of the local climate 

variability (Jacob et al., 2020). Indeed, several pilot studies have suggested significant added value in including urban 

canopy models (UCMs) to parameterize interactions between the urban surface and the atmosphere in RCMs with 

resolutions of a few kilometers (Chen et al., 2011; Kusaka et al., 2012; Hamdi et al., 2012; Lemonsu et al., 2014; Daniel et 85 

al., 2019; Garuma, 2018; Schoetter et al., 2020). It is worth pointing out, however, that several studies presenting RCMs 

combined with more complex urban schemes in short-term case studies have previously shown added value in simulating 

urban climate (e.g., Salamanca et al., 2010; Salamanca et al., 2011). However, the use of UCM coupled to RCMs is not a 

standard procedure for long-time/century climate simulations (and is not projected to be in the next generation of multi-

model RCM ensembles) due to its very high computational costs, resulting in a poor representation of many aspects of urban 90 

climate in those RCM ensemble datasets (Langendijk et al., 2019; Nogueira et al., 2020b).  

The use of land-surface models (LSM) coupled to a UCM, forced offline by atmospheric data, provides a computationally 

efficient option for urban climate simulation. This approach overcomes the computational and resolution limitations of 

ESMs, GCMs and RCMs, but comes at the cost of neglecting the urban land-atmosphere feedbacks, providing only 

diagnostics for the surface and near-surface variables. One may estimate the urban impact on surface and near-surface air 95 

temperature and humidity, near-surface wind, latent and sensible heat fluxes, but not on clouds, precipitation, or local 

circulations. Despite those limitations, recent studies have demonstrated the added value of this approach in reproducing key 

features of observed urban climate compared to traditional climate simulations (without representation of urban processes), 
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including the UHI and the frequency, intensity and duration of urban extreme temperature events (Broadbent et al., 2018; 

Conlon et al., 2016; Daniel et al., 2018; Kaloustian and Diab, 2015; Lemonsu et al., 2013, 2015; Nogueira and Soares, 2019; 100 

Hamdi et al., 2020; Viguié et al., 2020; Nogueira et al., 2020b). Leveraging the competitive computational cost of offline 

LSM-UCM simulations, these studies explored the local climate response to multiple different urbanization patterns and 

emission scenarios over relatively long periods and at high spatial resolution. Additionally, Nogueira and Soares (2019) 

demonstrated how this type of framework may be used to disentangle the impact of land-use change, from large-scale 

warming induced by greenhouse gas emissions, and from natural climate variability. Other approaches to tackle this problem 105 

have been suggested in the past, namely using dynamical downscaling to run climate simulations at the start and at the end of 

the century (e.g., Georgescu et al., 2014; Krayenhoff et al., 2018; Broadbent et al., 2020). This represents a critical task for 

anthropogenic climate change attribution and for designing effective mitigation strategies. The added value of the offline 

framework has also been demonstrated in simulating the impact of changes in vegetation cover patterns over non-urban 

regions (Johannsen et al., 2019; Nogueira et al., 2020a, 2021). 110 

The present study assesses the ability of the LSM-UCM approach to downscale ERA5 reanalysis, the fifth, and latest, 

generation reanalysis from the European Centre for Medium-Range Weather Forecasts to resolutions of a few kilometers 

over dense urban areas. Specifically, we analyze the added value of the Météo-France SURFEX (Surface Externalisée) 

surface modelling platform (Le Moigne, 2018) in improving the simulation of the UHI and SUHI over Paris, a European 

mega-city characterized by a well-known strong urban heat island effect (e.g., Sarkar & De Ridder, 2011; De Munck et al., 115 

2013; Hamdi et al., 2015; Lemonsu et al., 2015; Daniel et al., 2019). SURFEX is particularly relevant in this context since it 

has shown to perform particularly well in offline urban simulations (e.g., Hamdi et al., 2015; Lemonsu et al., 2015; Nogueira 

& Soares, 2019; Nogueira et al., 2020b). Previously, Nogueira et al. (2020b) used the offline LSM approach to perform 

downscaling of the EURO-CORDEX simulation ensemble for the historical and future periods over an urban grid-point 

inside the city of Lisbon and a neighboring rural grid-point. The results highlighted the poor representation of the UHI effect 120 

in the EURO-CORDEX RCMs and suggested the added value of the online approach for simulating the UHI effect. 

However, this study was limited to two single-column simulations and focused on the daily maximum and daily minimum 2-

meter air temperature, which are diagnostic variables in the offline LSM approach. Here, we use high-resolution LST 

satellite data to investigate the spatial structure of the Parisian SUHI and its diurnal cycle in ERA5 and to assess the added 

value of the offline LSM downscaling approach, contrasting against the often-used bulk bare rock urban parameterization 125 

approach in large ensembles of GCMs/RCMs. 

2. Methods 

2.1 Observations and Reanalysis 

Parisian daily maximum and minimum temperatures (respectively Tmax and Tmin) for the 2004-2018 period were obtained 

from two weather stations (Fig. 1), retrieved from the Global Summary of the Day (GSOD), produced by the National 130 
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Climatic Data Center (NCDC), which includes quality control checks and random error removal. The first station located in 

the Montsouris public park (48.82N, 2.33E), in Paris city center, was used as reference to characterize the Parisian urban 

temperature. The second station located in Melun (southeast of Paris - 48.61N, 2.67E), in a natural environment, was used as 

reference to characterize the Parisian surroundings temperature. These two stations were also previously employed by Hamdi 

et al. (2015) and Daniel et al. (2019) to characterize the Parisian UHI. 135 

The LSA-SAF LST estimates are derived from the outgoing thermal infrared radiation (TIR) measured at top-of-atmosphere 

by the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard the Meteosat Second Generation (MSG) series by 

employing a generalized “split-window” technique (Freitas et al., 2010). The TIR spectral band (8–13 µm) is particularly 

appropriate as it presents relatively weak atmospheric attenuation under clear-sky conditions and includes the peak of the 

Earth’s spectral radiance (Li et al., 2013; Ermida et al., 2019). The LSA-SAF LST estimates were available every 15 minutes 140 

from 2004 to present-day over land pixels within the MSG disk, comprising satellite zenith view angles between 0º and 80º, 

with a 3 km resolution at the nadir. The LSA-SAF LST estimates were aggregated as the average at 00, 15, 30, and 45 

minutes for each hour. Then, the hourly mean for the period ranging from 2004 through 2018 was computed. LST obtained 

through remote sensing is intrinsically directional due to the heterogeneity of the land surface. Still, given the model 

resolution considered in this study, LST’s ability to evaluate model data should not be affected by its directional property or 145 

by the buildings’ material emissivity. 

ERA5 is the latest-generation global atmospheric reanalysis produced by the ECMWF, extending from 1979 to the present 

(although a preliminary version of an extension to 1950 is already available). ERA5 is based on a recent version of the 

ECMWF Integrated Forecast System (IFS cycle 41r2), including several improvements compared to the version used in 

ERA-Interim (the ECMWF’s previous generation reanalysis, Dee et al., 2011). Namely, ERA5 features increased temporal, 150 

horizontal and vertical resolutions (respectively 1 hour, ~31 km and 137 vertical levels extending from surface to 0.01 hPa) 

(see Hersbach et al., 2020 for a detailed description of ERA5), and an increased number and more recent versions of a wide 

variety of observational datasets are assimilated. Additionally, ERA5 benefits from improvements to several model 

parameterizations (e.g. convection and microphysics) and to the four-dimensional variational data assimilation scheme. 

Furthermore, it also presents an overall better accuracy in representing several climate variables compared to ERA-Interim, 155 

including LST, near-surface air temperature, wind, radiation, and rainfall (e.g., Urraca, 2018; Beck et al., 2019; Johannsen et 

al., 2019; Rivas and Stoffelen, 2019; Nogueira, 2020).       
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Figure 1: Study domain identified by the brown square in panel a). Panel b) shows a zoom on the simulation domain with the color 

shading representing topographic height. Panel c) shows a zoom on the simulation domain with the color scheme representing the 160 
dominant urban classes for grid boxes where urban fraction exceeds 0.1 (grid boxes where urban fraction is below 0.1 are painted 

white). The large black circles in b) and c) identify the inner and outer rings for computing the SUHI (see Section 2.3). The ‘o’ 

markers in b) and c) identify the station locations for computing the UHI (see Section 2.3). 

2.2 SURFEX simulations 

We performed a set of high-resolution (0.05º×0.05º) simulations of Paris and its surroundings (cf. Fig. 1) using the Météo-165 

France SURFEX (Surface Externalisée) version 8.1 (Le Moigne, 2018) modelling platform. SURFEX couples multiple 

physical-based models over all types of natural surfaces, including the Interaction between Soil Biosphere and Atmosphere 

(ISBA) land-surface scheme over natural land surfaces (Calvet et al., 1998; Gibelin et al., 2006) and the Town Energy 

Balance (TEB) Urban Canopy Model (UCM) over urban surfaces. TEB uses the urban canyon approach (Oke, 1987) to 

simulate key urban physical processes on the local climate, including the possibility to account for the effects of vegetation 170 

and water bodies (see Masson et al., 2000 and Masson et al., 2013 for a detailed description of TEB). The SURFEX 

simulations were performed in an offline setup forced by ERA5 fields – namely surface pressure, precipitation, short- and 

long-wave radiative fluxes, and air temperature, humidity, and wind speed at 40 m height above sea level (above the Parisian 
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urban canopy height). The simulations started in January 2003 and extended until the end of 2018, with a 15-minute time-

step.  175 

Two different SURFEX experiments were carried here. In the first one, denoted SFX-ROCK, the city grid boxes were 

described as rock covers. This bulk urban parameterization is often employed in large ensembles of regional climate 

simulations (e.g., Daniel et al., 2019; Langendijk et al., 2019; Davin et al. 2019; Nogueira et al., 2020b). The second 

experiment, denoted SFX-TEB, employed the TEB UCM for urban grid boxes. Both experiments considered a multilayer 

soil diffusion scheme with 14 soil layers and a single-level canopy layer, which has previously been demonstrated to be 180 

adequate over European mid-rise cities such as Paris (Trusilova et al., 2016; Schoetter et al., 2020     ).  

2.3 Assessment of the simulated UHI and SUHI 

The UHI was defined here as the 2-meter air temperature (T2m) difference between the urban (Montsouris) and the rural 

(Melun) station locations. For ERA5 and SURFEX simulations this was estimated using the respective nearest-neighbor grid 

boxes. Although the two-point difference approach cannot account for the complex spatial heterogeneity of urban 185 

environments and their surroundings, the limited number of observations available to this study defined this particular 

choice. Nonetheless, the complex spatial heterogeneity of the Paris area was accounted by the SUHI definition considered 

here. Following the methodology employed in previous works (Peng et al., 2012; and Zhou et al., 2013, 2017) the SUHI was 

defined as the difference between the average temperature within the considered urban cluster and the average temperature 

within an equal area belt around it. This approach combined land cover data (from ECOCLIMAP-II) with LSA-SAF LST. 190 

The urban cluster was defined as the grid boxes with urban fraction greater than 66% within the inner circle shown in Fig. 1. 

The surrounding belt is also shown in Fig. 1. The SUHI was computed for ERA5, SFX-ROCK and SFX-TEB using the same 

approach, considering the same urban fractions from the ECOCLIMAP-II land cover data for all datasets.  

The daytime and nighttime UHI and SUHI were evaluated separately. The daytime maximum T2m and LST (denoted Tmax 

and LSTmax respectively) were computed as the maximum temperature within the 11 to 18 UTC interval. The nighttime 195 

minimum T2m and LST (denoted Tmin and LSTmin respectively) were computed as the minimum temperature over the 00 to 

07 UTC interval. We computed three error metrics for evaluating the UHI and SUHI in the different model-based datasets. 

The first was the mean bias calculated following Eq. (1): 

𝐵𝑖𝑎𝑠 =
1

𝑁
∑ (𝑚𝑘 − 𝑜𝑘)
𝑁
𝑖=1 ,           (1) 

where 𝑚𝑘 and 𝑜𝑘 are respectively model simulated and observed values and N is the total number of days in the historical 200 

time-series. The mean bias measures the models’ systematic errors. The second was the Perkins skill score (Perkins et al., 

2007), henceforth denoted S, which measures the models’ ability to reproduce the observed probability distribution functions 

(PDFs): 

𝑆 = 100 × ∑ [𝑍𝑚,𝑖, 𝑍𝑜,𝑖]
𝐵
𝑖=1 ,          (2) 
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where 𝑚𝑖𝑛[𝑥, 𝑦] represents the minimum between two values, 𝑍𝑚 and 𝑍𝑜 are the modeled and observed empirical PDFs, 205 

respectively, and B is the total number of bins used to compute the empirical PDFs (here we used steps of 1ºC). S provides a 

measure of similarity between modeled and observed empirical PDFs, with S=100% if the model reproduces the empirical 

PDF perfectly and decreasing towards zero as the similarity between the PDFs decreases. Both error metrics were also 

applied to evaluate the daytime and nighttime LST over the study domain grid boxes and the daytime and nighttime T2m at 

the two station locations. 210 

The third metric to be computed was the root mean squared error (RMSE), which measures the mean magnitude of the 

models’ systematic error:  

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑚𝑘 − 𝑜𝑘)2
𝑁
𝑖=1 .          (3) 

3. Results 

3.1 Intercomparison of the simulated SUHI over Paris 215 

The observed LST averaged over the 2004-2018 period showed a clear signature of the Parisian SUHI effect during daytime 

(Fig. 2a) and nighttime (Fig. 2b). The SUHI was not reproduced by ERA5 during daytime (Fig. 2c) nor nighttime (Fig. 2d). 

The results also highlighted that ERA5 0.25º resolution is too coarse to reproduce the complex urban climate patterns, even 

for a relatively large city as Paris. The simulation SFX-ROCK also failed to reproduce the Paris SUHI during daytime (Fig. 

2e) and nighttime (Fig. 2f). As expected, the higher resolution did improve the simulation of topographic effects on surface 220 

temperature south and northwestern of Paris (cf. Fig. 1b), although, the bare rock approach misrepresented the city LST 

modulation. In contrast, the LST patterns resulting from the SFX-TEB simulation showed a clear signature of the Paris SUHI 

during daytime (Fig. 2g), which was closer to the observed pattern. During nighttime, SFX-TEB shows some signature of the 

SUHI (Fig. 2h) but underestimates its magnitude. 

The improved ability of SFX-TEB in reproducing the urban LST over Paris was evidenced by the large reduction of the 225 

median Bias over urban grid boxes (i.e., where the urban fraction was above 2/3), from -7.0ºC in ERA5 and -6.7ºC in SFX-

ROCK to 1.5ºC in SFX-TEB (Fig. 3a). Over natural surfaces, this reduction was lower, from -2.5ºC in ERA5 to -1.5ºC in 

SFX-ROCK and -1.3ºC in SFX-TEB. The 0.2ºC difference between SFX-ROCK and SFX-TEB was due to the considered 

definition of natural surfaces, encompassing all grid-boxes with urban fractions below 1/3. Indeed, in cases where the urban 

fraction was zero, the SFX-ROCK and SFX-TEB simulations were identical. Notice, however, that the differences amongst 230 

different datasets over natural surfaces were within the typical uncertainty associated with LSA-SAF LST estimates, which 

is of the order of 2ºC (Trigo et al., 2015). Over mixed surfaces (i.e., urban fractions between 1/3 and 2/3) the median Bias for 

annual averaged LST was -3.8ºC for ERA5, -3.3ºC for SFX-ROCK and 0.5ºC for SFX-TEB. These differences were also 

within the typical observational uncertainty. Yet, the large improvements over urban surfaces and identical performances 
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over natural surfaces suggest that SFX-TEB represented an improvement over mixed surfaces too, particularly when the 235 

grid-box urban fraction approaches 2/3. 

The largest reductions to daytime LST over urban areas’ systematic errors occurred during MAM, where the median Bias 

was -8.8ºC for ERA5, -7.6ºC for SFX-ROCK, and 2.1ºC for SFX-TEB (Fig. 3e). A large reduction of the daytime LST 

systematic error was also found during SON, where the median Bias was -6.5ºC for ERA5 and SFX-ROCK, and -0.5ºC for 

SFX-TEB (Fig. 3i). During JJA, the median Bias was -8.2ºC for ERA5, -5.2ºC for SFX-ROCK, and 5.1ºC for SFX-TEB 240 

(Fig. 3g). Finally, during DJF the median Bias was -4.1ºC for ERA5, -6.3ºC for SFX-ROC, and -2.8ºC for SFX-TEB (Fig. 

3c). Notice that, on the seasonal scale, SFX-TEB was not always the best performing model during daytime (for example, 

ERA5 was the best performing model during DJF over natural surfaces, and SFX-ROCK was the best performing during JJA 

over mixed surfaces).  

During nighttime, the differences in annual average LST systematic errors amongst different simulations (Fig. 3b) were 245 

lower than during daytime. Specifically, over urban surfaces, the median Bias was -1.8ºC in ERA5, -2.0ºC in SFX-ROCK, 

and -1.7ºC in SFX-TEB. Over mixed surfaces, the median Bias was 0.1ºC in ERA5 and -0.1ºC in SFX-ROCK, and near null 

in SFX-TEB. Finally, over natural surfaces, the nighttime median Bias was 1.0ºC in ERA5 and 0.7ºC in SFX-ROCK and 

SFX-TEB. Notice that these differences amongst simulations were within the observational uncertainty. This was also true 

for all systematic differences in nighttime LST amongst different datasets on the seasonal scale (Fig. 3d, f, h, j).  250 

Figure 4 evidences the clear reduction of the simulated LST systematic errors during daytime hours in SFX-TEB compared 

to ERA5 and SFX-ROCK over urban (Fig. 4c) and mixed (Fig. 4b) grid boxes. Over natural surfaces, the daytime 

performance was similar for SFX-ROCK and SFX-TEB, both slightly outperforming ERA5 (Fig. 4a). Finally, during the 

night hours, Figure 4 showed a similar performance in reproducing the average LST over all surface types. 

 255 
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Figure 2: Maps of LST averaged over the 2004-2018 period during daytime (left column) and nighttime (right column) over the 

study domain computed from LSA-SAF (a) and b)), ERA5 (c) and d)), SFX-ROCK (e) and f)), and SFX-TEB (g) and h)). The 

black circles represent the inner and outer rings for the SUHI computation as previously described in Figure 1. 
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Figure 3: Boxplots of LST bias computed over the 2004-2018 period for daytime (left column) and nighttime (right column) for 

ERA5 (blue), SFX-ROCK (red), and SFX-TEB (yellow). The boxplots represent the bias spread for grid boxes classified as natural 

surfaces (grid boxes with urban fraction below 0.33), mixed surfaces (grid boxes with urban fraction between 0.33 and 0.66), and 

urban surfaces (grid boxes with urban fractions above 0.66). From top to bottom, the rows represent the bias computed for the full 265 
annual cycle, DJF, MAM, JJA and SON. 
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Figure 4: Average diurnal cycle of LST computed over the 2004-2018 period from LSA-SAF (black), ERA5 (blue), SFX-ROCK 

(red), and SFX-TEB (yellow) for grid boxes classified as a) natural surfaces (grid boxes with urban fraction below 0.33), b) mixed 

surfaces (grid boxes with urban fraction between 0.33 and 0.66), and c) urban surfaces (grid boxes with urban fractions above 270 
0.66). 

The SFX-TEB ability to reproduce the observed annual daytime LST PDF was better than ERA5 and SFX-ROCK over all 

surface types (Fig. 5a). Over urban surfaces, the median S score for daily maximum was 42% in ERA5, 49% in SFX-ROCK, 

and 62% in SFX-TEB. Over mixed surfaces, the median S score for daily maximum LST was 58% in ERA5, 64% in SFX-

ROCK, and 67% in SFX-TEB. Over natural surfaces, the median S score for daily maximum LST was 66% in ERA5, 69% 275 

in SFX-ROCK, and 70% in SFX-TEB. The largest improvements in daily maximum LST S score associated with SFX-TEB 

emerged during DJF (Fig. 5c), MAM (Fig. 5e), and SON (Fig. 5i), and lowest during JJA (Fig. g, in fact, SFX-ROCK 

outperformed SFX-TEB over mixed surfaces during summer). The small differences in nighttime LST amongst simulations 

were also reflected in the S score, both on the annual (Fig. 5b) and seasonal scales (Figs. 5d, f, h, j). 

There is an overall considerable reduction in RMSE of LSTmax for urban surfaces (Fig. 6a) when using SFX-TEB (3ºC) in 280 

comparison with SFX-ROCK (6.5ºC) and ERA5 (7ºC). Although this reduction happens in every season, its magnitude is 

stronger in MAM (Fig. 6e) and SON (Fig. 6j), with a 2/3 reduction of the error. Over natural and mixed surfaces, the 

reduction is either small or non-existent. For LSTmin, the overall impact of using SFX-TEB is mostly null for all surfaces 

(Fig. 6b) although there are small improvements over urban surfaces in MAM (Fig. 6f), JJA (Fig. 6i), and SON (Fig. 6k). In 

DJF (Fig. 6d), however, SFX-TEB presents the worse RMSE among both experiments and ERA5. 285 

At a seasonal scale the observed SUHI reveals a clear seasonal cycle at daytime and a rather constant value at nighttime 

(Figs. 7a, b). At daytime (nighttime), the winter and summer SUHI effect amounts to around 3 and 6ºC (2 and 2.5ºC), 

respectively. UHI presents a less pronounced seasonal cycle at daytime and similar values at nighttime in relation to SUHI 

(Figs. 9a, b). At daytime (nighttime), the winter and summer UHI effect amounts to around 0.6 and 0.25ºC (2 and 2.75ºC), 

respectively. These results are similar to what Roy et al. (2020) found when studied the intensity and spatial extent of the 290 

UHI and SUHI over Paris using 1-km resolution observational datasets. Both studies agree in the SUHI and UHI annual 

cycle, although displaying some differences in their intensities, namely in daytime SUHI (4ºC in summer, 2ºC in winter) and 

nighttime UHI (2ºC in summer, 1ºC in winter) (Fig. 9b), both more intense in our study. These differences may arise from a 
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number of reasons: the temporal ranges considered were different (2004-2018 in our study vs 2000-2016); Roy et al. (2020) 

considered a much larger rural area and the LST satellite data was retrieved from MODIS (which has higher spatial 295 

resolution than SEVIRI but at the cost of lower temporal resolution, with only two daily observations); finally, the T2M 

observations were generated from a gridded dataset developed at Météo-France while ours were obtained directly from two 

in-situ weather stations.  

SFX-TEB overestimated the observed daytime SUHI effect during MAM, JJA, and SON, while underestimating this effect 

during DJF (Fig. 7a). This resulted in an annual average overestimation of the SUHI intensity for this simulation. In contrast, 300 

ERA5 and SFX-ROCK largely underestimated the daytime SUHI effect over Paris (Fig. 7a). Indeed, misrepresentation of 

the urban radiative budget resulted in a nearly null SUHI effect in these simulations, as also illustrated by Fig. 2. One 

important result is that the magnitude of the daytime SUHI overestimation in SFX-TEB was smaller than the 

underestimation in ERA5 and SFX-ROCK, meaning that SFX-TEB improved the representation of the SUHI effect over all 

seasons (Fig. 7c). The statistical distribution of the daytime SUHI effect intensity was greatly improved in SFX-TEB 305 

compared to ERA5 and SFX-TEB throughout all seasons (Fig. 7e) - the annual average S score for the daytime SUHI PDF 

was 14% in ERA5, 27% in SFX-ROCK, and 81% in SFX-TEB. SFX-TEB has the lowest daytime RMSE overall and in all 

seasons (Fig. 7g), with the strongest decrease happening in MAM. The overall RMSE was just below 3ºC in SFX-TEB, 

4.5ºC in ERA5, and 5ºC in SFX-ROCK. 

During nighttime, the generally similar performance of all simulations over all types of surfaces resulted in a similar 310 

performance in reproducing the average nighttime UHI effect throughout all seasons (Fig. 7b). All simulations - ERA5, 

SFX-ROCK, and SFX-TEB – underestimated the observed nighttime Parisian SUHI, with the differences amongst 

simulations being within observational uncertainty (Fig. 7d). Nonetheless, the results revealed a better ability of the SFX-

TEB in reproducing the nighttime SUHI statistics, which showed an annual average S score of 39%, clearly above the 11% 

and 18% found for ERA5 and SFX-ROCK respectively (Fig. 7f). This improved representation of the nighttime SUHI 315 

statistics was found during all seasons, being largest during JJA and lowest during DJF (Fig. 7f). RMSE is slightly lower in 

SFX-TEB in comparison with SFX-ROCK and ERA5 overall and in all seasons except DJF (Fig. 7h). 

The observations show a relatively small range of the diurnal amplitude of the Parisian SUHI, which is largely overestimated 

by the SFX-TEB simulation (Fig. 8a). This reflects the overestimation of daytime LST and underestimation of nighttime 

LST over the urban grid boxes, as discussed above, in all seasons except winter (Fig. 8c). This issue is particularly 320 

pronounced during summer (Fig. 8g). Nonetheless, SFX-TEB still represented an improvement compared to ERA5 and 

SFX-ROCK. On the one hand, ERA5 and SFX-ROCK failed to simulate any urban to rural contrast throughout the full 

annual cycle (Figs. 8a, c, e, g, and i). On the other hand, the annual average systematic errors in the simulated LST were 

lower in SFX-TEB compared to ERA5 and SFX-ROCK (Fig. 8b), although the differences only exceeded the observational 

uncertainty during daytime. The daytime reductions occurred mostly during DJF (Fig. 8d), MAM (Fig. 8f), and SON (Fig. 325 

8j), while the daytime |Bias| values during JJA (Fig. 8h) and the nighttime |Bias| values during all seasons were within 

observational uncertainty. 
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Figure 5: Boxplots of S score computed over the 2004-2018 period from ERA5 (blue), SFX-ROCK (red), and SFX-TEB (yellow) 

for natural surfaces (grid boxes with urban fraction below 0.33), mixed surfaces (grid boxes with urban fraction between 0.33 and 330 
0.66), and urban surfaces (grid boxes with urban fractions above 0.66). From top to bottom, the rows represent the S score 

computed for the full annual cycle, DJF, MAM, JJA, and SON. 
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Figure 6: Boxplots of RMSE computed over the 2004-2018 period from ERA5 (blue), SFX-ROCK (red), and SFX-TEB (yellow) for 335 
natural surfaces (grid boxes with urban fraction below 0.33), mixed surfaces (grid boxes with urban fraction between 0.33 and 

0.66), and urban surfaces (grid boxes with urban fractions above 0.66). From top to bottom, the rows represent the RMSE 

computed for the full annual cycle, DJF, MAM, JJA, and SON. 
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Figure 7: Annual and seasonal average Parisian SUHI magnitude computed over the 2004-2018 period during a) daytime and b) 340 
nighttime. The corresponding annual and seasonal average Bias for daytime is represented in c) and for nighttime in d), the 

corresponding annual and seasonal S score is represented in e) for daytime and f) for nighttime, and the corresponding annual and 

seasonal RMSE is represented in g) for daytime and h) for nighttime. The LSA-SAF is represented by black lines, ERA5 by blue 

markers, SFX-ROCK by red markers, and SFX-TEB by yellow markers. 
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 345 

Figure 8: Average SUHI diurnal cycle computed over the 2004-2018 period for a) full year, c) DJF, e) MAM, g) JJA, and i) SON. 

The different colors represent LSA-SAF (black), ERA5 (blue), SFX-ROCK (red), and SFX-TEB (yellow). The respective |Bias| 

diurnal cycles are represented in b) full year, d) DJF, f) MAM, h) JJA, and j) SON using LSA-SAF as reference. 
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3.2 Intercomparison of the simulated UHI over Paris 350 

The T2m in ERA5 did not show any evidence of the UHI over Paris during daytime (Fig. 9a) nor during nighttime (Fig. 9b). 

The UHI effect did not emerge in SFX-ROCK during day- nor nighttime (respectively Fig. 9c and Fig. 9d). In contrast, the 

SFX-TEB T2m showed a signature of the UHI over Paris during daytime (Fig. 9e) and nighttime (Fig. 9f), in agreement with 

previous studies reporting the existence of the UHI effect over Paris (Lemonsu et al., 2014; Daniel et al., 2019). The 

enhanced performance in simulating the Paris UHI for SFX-TEB compared to ERA5 and SFX-ROCK was confirmed by the 355 

comparison against the UHI estimated from station observations (Fig. 10). During daytime, ERA5 and SFX-ROCK 

underestimated the observed Parisian UHI effect throughout all seasons, while SFX-TEB slightly overestimated the UHI 

(Fig. 10a), resulting in an overall reduction of the Bias in all seasons while also changing its sign (Fig. 10c). On the annual 

average, the systematic error magnitude reduced from 0.7ºC in ERA5 and SFX-ROCK to 0.2ºC in SFX-TEB. Moreover, 

SFX-TEB also improved the statistics of the daily UHI magnitude throughout all seasons (Fig. 10e), resulting in an overall S 360 

score value of 87%, well above the 59% and 56% respectively, found for ERA5 and SFX-ROCK. RMSE presents the lowest 

RMSE overall and in all seasons, although its magnitude is low (below 1ºC) for both experiments and ERA5 (Fig. 10g). 

The results also showed that SFX-TEB improved the simulation of the UHI during nighttime when compared to ERA5 and 

SFX-ROCK (Fig. 10b), reducing the Bias error over all seasons by more than 1ºC, resulting in an overall |Bias| value of 

0.6ºC in SFX-TEB, 2.5ºC in ERA5, and 2.2ºC in SFX-ROCK (Fig. 10d). SFX-TEB largely improved the representation of 365 

nighttime UHI statistical distribution in ERA5 and SFX-ROCK throughout all seasons (Fig. 10f). The overall S score was 

25% for ERA5, 31% for SFX-ROCK, and 79% for SFX-TEB. SFX-TEB presents the lowest RMSE overall and in all 

seasons, with a 2ºC decrease in relation to SFX-ROCK in every case (Fig. 10h). 

The annual average diurnal cycle of the Paris UHI clearly illustrated the contrasting results from ERA5 and SFX-ROCK to 

SFX-TEB. SFX-TEB showed an annual averaged UHI intensity varying between +1.9ºC during the afternoon and night, and 370 

+0.1ºC during the morning (Fig. 11a), whilst ERA5 and SFX-ROCK showed a nearly zero UHI effect throughout the entire 

diurnal cycle. The afternoon and nighttime UHI effect in SFX-TEB was highest during MAM (Fig. 11c) but remained above 

+1.5ºC throughout all seasons (Fig. 11b-e), while the morning UHI was strongest during DJF (Fig. 11b) and its minimum 

reached close to zero values during MAM (Fig. 11c), JJA (Fig. 11d), and SON (Fig. 11e). 

The relatively strong magnitude of the nighttime UHI in SFX-TEB corresponds to a significant improvement compared to 375 

ERA5 and SFX-ROCK. This result contrasts with the relatively small magnitude of the nighttime SUHI in SFX-TEB, which 

largely underestimates observations. The better performance of SFX-TEB in simulating the UHI compared to the SUHI was 

likely related to the ability of the model to represent part of the nighttime urban canopy layer heating associated with 

prescribed anthropogenic heat fluxes, while the lack of land-atmosphere feedbacks inhibits this warmer canopy layer from 

affecting the LST. 380 

The annual averaged SUHI measured as a difference between the urban and rural station locations under all-sky conditions 

computed from SFX-TEB peaked around 12h local time with a value of +5.0ºC and reduced throughout the afternoon 



19 

 

stabilizing at a value around +1.5ºC during the night and morning (Fig. 11f). The inability of ERA5 and SFX-ROCK to 

simulate the SUHI throughout the diurnal cycle was also clearly evidenced in Fig. 11f. The SUHI was strongest for all hours 

of the day during MAM (Fig. 11h) and JJA (Fig. 11i) and weakest during DJF (Fig. 11g) and SON (Fig. 11j). We highlight 385 

the clear contrast between the UHI and SUHI diurnal cycles in Fig. 11. While the former peaked during late afternoon and 

night and decreased sharply during the morning, the latter showed opposite behavior peaking around midday and reaching 

the minimum during nighttime and late afternoon. This result was related to the thermal inertia of the canopy layer resulting 

in the well-known lag between surface and near-surface air warming. 

However, the analysis of the annual averaged SUHI measured as a difference between the urban and rural station locations 390 

under clear-sky conditions revealed significant differences in the average diurnal cycle simulated by SFX-TEB and 

observations (Fig. 11k). Indeed, SFX-TEB clearly overestimated the SUHI diurnal amplitude: the maximum amplitude of the 

SUHI average diurnal cycle was 2.9ºC in observations and 6.8ºC in SFX-TEB. This large overestimation resulted from SFX-

TEB underestimation of the observed nighttime SUHI and overestimation during daytime. This effect was strongest during 

MAM (Fig. 11m) and JJA (Fig. 11n) and weakest during SON (Fig. 11o). During DJF (Fig. 11l), SFX-TEB underestimated 395 

the observed clear-sky SUHI intensity throughout the entire diurnal cycle. Despite its limitations, SFX-TEB represents an 

improvement compared to ERA5 and SFX-ROCK which fail to simulate the Parisian SUHI effect throughout the entire 

diurnal cycle (Figs. 11 l-o).  

The strong overestimation of the annual averaged daytime SUHI in SFX-TEB was associated with a sharp difference in the 

surface turbulent heat fluxes between the urban and rural station locations. The urban site showed lower average latent heat 400 

flux (LH) values than the rural site by -75 Wm-2 around noon (Fig. 11p) and higher sensible heat flux (SH) values by around 

+75 Wm-2 (Fig. 11u). ERA5 and SFX-ROCK showed significantly smaller differences in LH and SH between urban and 

rural locations in agreement with their inability to simulate the UHI and SUHI. The differences in SH and LH between urban 

and rural locations in SFX-TEB were strongest during MAM (respectively Fig. 11r and 11w) and JJA (respectively Fig. 11s 

and 11x), and weaker during SON (respectively Fig. 11t and 11y) and DJF (respectively Fig. 11q and 11v). These results 405 

suggest a direct link between the daytime overestimation of daytime SUHI in SFX-TEB with the lack of surface-atmosphere 

feedback in agreement with the recent findings of McNorton et al. (2021), 

Finally, we noticed that the underestimation of the observed SUHI estimated as a point difference between the two station 

locations during night hours and the overestimation during morning and afternoon shown in Figs. 11k to 11o was coherent 

with the results presented in Fig. 6 for the daily minimum and daily maximum SUHI using the area-averaged SUHI 410 

definition. Moreover, these results were also coherent with the overestimation of the daily maximum UHI and 

underestimation of the daily minimum UHI presented in Fig. 9, including the daytime underestimation of both UHI and 

SUHI during DJF.  
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Figure 9: T2m averaged over the 2004-2018 period during daytime (left column) and nighttime (right column) over the study 415 
domain computed from ERA5 (a) and b)), SFX-ROCK (c) and d)), and SFX-TEB (e) and f)). The black circles represent the inner 

and outer rings for the SUHI computation as previously described in Figure 1. 
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Figure 10: Annual and seasonal average Parisian UHI magnitude computed over the 2004-2018 period during a) daytime and b) 420 
nighttime. The corresponding annual and seasonal average Bias for daytime is represented in c) and for nighttime in d), the 

corresponding annual and seasonal S score is represented in e) for daytime and f) for nighttime, and the corresponding annual and 

seasonal RMSE is represented in g) for daytime and h) for nighttime. The observed UHI is represented by black lines, ERA5 by 

blue markers, SFX-ROCK by red markers, and SFX-TEB by yellow markers. 
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Figure 11: Average diurnal cycle of UHI (top row), SUHI under all-sky conditions (second row), SUHI under clear-sky conditions 

(third row), ΔLH (difference between surface latent heat flux between urban and rural areas, fourth row), ΔSH (difference 

between surface sensible heat flux between urban and rural areas, last row). The columns from left-to-right represent averages 

taken over full year, DJF, MAM, JJA, and SON. The average diurnal cycles were computed over the 2004-2018 period. The 430 
different colors represent LSA-SAF (black), ERA5 (blue), SFX-ROCK (red), and SFX-TEB (yellow). 

4. Conclusions 

We assessed the added value of the SURFEX offline simulations to downscale ERA5 reanalysis over urban areas, focusing 

on the urban heat island effect over the city of Paris. The relevance of this study is threefold. First, ERA5 is a widely used 

product for climate research and applications but an evaluation of its ability to represent urban climate is lacking. Second, it 435 

adds to recent works demonstrating the added value of the SURFEX offline downscaling framework for high-resolution 

computationally efficient urban climate simulation. Specifically, we leveraged on the hourly resolution of ERA5, the 

SURFEX simulations, and the LSA-SAF LST product to perform an unprecedented evaluation of the Parisian SUHI diurnal 

cycle, its key governing processes, and the ability of the different model setups to simulate them. Finally, the 
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intercomparison of long-duration high-spatial and temporal resolution datasets allow to explore the key sensitivities of the 440 

UHI and SUHI and their implications for the development of urban climate modelling. 

Our results showed that ERA5 does not reproduce the observed UHI nor SUHI effects over Paris due to lack of 

representation of urban processes in the ECMWF IFS and, also, the relatively coarse grid resolution which is inappropriate 

for representing the highly heterogeneous urban environments. Increasing the grid resolution to the order of a few kilometers 

or less was found to be an important but not sufficient condition for simulating the urban heat island. Indeed, the high-445 

resolution simulation employing the bulk bare rock approach to urban climate parameterization commonly used in large 

ensembles of ESMs, GCMs and RCMs (see, e.g., Daniel et al., 2019; Langendijk et al., 2019; Zhao et al., 2021) was unable 

to reproduce the observed UHI and SUHI. In contrast, the high-resolution simulation employing an UCM for urban 

parameterization showed significant added value in reproducing the Parisian SUHI during daytime when compared to ERA5 

and SFX-ROCK.       450 

Specifically, SFX-TEB reduced the systematic errors of daily maximum LST over urban pixels for all seasons (yearly 

average reduction of 4.2ºC and 3.9ºC respectively compared to ERA5 and SFX-ROCK). Moreover, SFX-TEB also improved 

the simulation of the observed daytime LST PDF over urban areas during all seasons compared to ERA5 and SFX-ROCK 

(with S values up to 20% higher). On the other hand, the differences in LSTmin over urban surfaces and in LSTmax and LSTmin 

over natural surfaces were within observational uncertainty. In other words, SFX-TEB significantly improved the simulation 455 

of urban daytime LST, while displaying similar skill to ERA5 and SFX-ROCK during nighttime over urban areas and, also, 

over natural surfaces throughout the entire diurnal cycle.  

SFX-TEB displayed the overall better performance in reproducing the observed daytime SUHI over Paris and its magnitude 

variability (with the respective S score increasing by 67% compared to ERA5). During nighttime, we found similar 

performance amongst ERA5, SFX-ROCK and SFX-TEB in reproducing the nighttime SUHI effect throughout all seasons, 460 

with a generalized underestimation of the observed SUHI magnitude. Notice, however, that SFX-TEB showed a slight 

improvement in simulating the nighttime SUHI spatial pattern and temporal variability compared to ERA5 and SFX-ROCK. 

ERA5 and SFX-ROCK did not reproduce the Parisian UHI effect throughout the entire diurnal cycle. In contrast, SFX-TEB 

displayed significant added value in simulating the observed UHI during daytime and nighttime, resulting in an annual 

average bias magnitude reduction of 0.5ºC for daytime and more than 1.5ºC for nighttime compared to ERA5 and SFX-465 

ROCK. The distribution of daily UHI variability was also improved in SFX-TEB, with the S score increased by roughly 30% 

for daytime and 50% for nighttime. The improved nighttime performance of SFX-TEB in simulating UHI relative to the 

SUHI may be explained by the ability of SFX-TEB to warm the urban canopy layer by anthropogenic heat releases 

combined with the lack of land-atmosphere feedbacks, which inhibits an LST response to the nighttime UHI. Finally, an 

analysis of the diurnal cycle of the simulated surface turbulent heat fluxes suggests that SFX-TEB overestimates the 470 

urban/rural contrasts in SH and LH during daytime (particularly during warmer months). However, ERA5 and SFX-ROCK 

consistently underestimate the T2m, LST and turbulent flux contrast throughout the entire diurnal cycle. It is important to note 
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that uncertainties in remotely sensed LST due to its directional property should be negligible in this study due to the coarse 

spatial resolution of the SURFEX model. 

In summary, we highlight the large potential of the offline SURFEX-TEB framework for urban climate projections given its 475 

ability to produce computationally efficient high-resolution climate projections with increased accuracy compared to ESMs, 

GCMs, and RCMs used in large ensemble datasets. Moreover, its relatively small computational cost allows to perform a 

large number of climate experiments to investigate the impact of city-scale climate adaptation and mitigation strategies under 

different future emission scenarios. This framework may be improved in the future by including simplified representations of 

key land-atmospheric feedbacks. Specifically, the possibility to improve the ability of this framework in reproducing the 480 

nighttime SUHI by including coherent dynamical corrections to the forcing temperature and downwelling longwave 

radiation fields based on the T2m diagnostic in the previous timestep will be investigated in a subsequent work. 

Code availability 

The SURFEX modeling platform of Météo-France is open source and can be downloaded freely at http://www.umr-

cnrm.fr/surfex/ (CNRM, 2016). It uses the CECILL-C license, a French equivalent to the L-GPL license 485 

(http://cecill.info/licences/Licence_CeCILL_V1.1-US.html; CEA-CNRS-Inria, 2013). It is updated at a relatively low 

frequency (every 3 to 6 months). If more frequent updates are needed – or if what is required is not in Open-SURFEX 

(DrHOOK, FA/LFI formats or GAUSSIAN grid) – you are invited to follow the procedure to get an SVN account and to 

access real-time modifications of the code (see the instructions in the first link). In this study, SURFEX’s version 8.1 was 

used. 490 

Data availability 

ERA5 data can be obtained freely from the Copernicus Climate Change Service Information website 

(https://climate.copernicus.eu/, Copernicus Climate Change Service (C3S), 2019). 

The LSA-SAF LST can be obtained freely from their website (https://landsaf.ipma.pt/, last access: 13 December 2021). 

The NCDC CSOD weather station data can be obtained from their website 495 

(https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00516, last access: 14 December 

2021). 

The considered fields (LST, T2m) from the simulations (SFX-TEB, SFX-ROCK) considered in the present study are freely 

available at https://doi.org/10.5281/zenodo.5780448 (Nogueira et al., 2021). 

https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00516
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