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Abstract. Cities concentrate people, wealth, emissions, and infrastructures, thus representing a challenge and an opportunity
for climate change mitigation and adaptation. This places an urgent demand for accurate urban climate projections to help
organizations and individuals making climate smart-decisions. However, most of the large ensembles of global and regional
climate model simulations do not include sophisticated urban parameterizations (e.g. EURO-CORDEX; CMIP5/6). Here, we

use the city of Paris as a case study to show that this is the case for the fifth (and latest) generation reanalysis from the
European Centre for Medium-Range Weather Forecasts (ERAS) and for simulations employing the widely used bulk bare
rock approach to urban climate parameterization. Subsequently, we leveraged on the hourly resolution of ERA5 and the
Satellite Application Facility Land Surface Analysis (LSA-SAF) land surface temperature product to demonstrate the
significant added value of employing the SURFEX land-surface model coupled to Town Energy Balance (TEB) urban
canopy model in simulating the Parisian Surface Urban Heat Island (SUHI) during daytime and the urban heat island during
both daytime and nighttime. Our results showed the significant added value of SURFEX-TEB in reproducing the observed
daytime and nighttime Parisian urban heat island effect. An annual average bias magnitude reduction of 0.5°C was observed
for daytime and around 1.5°C for nighttime when compared to ERA5 and bare rock approach. Also, SURFEX-TEB revealed
an overall better performance in reproducing the observed daytime SUHI, whilst the added value of SURFEX-TEB was
lower during nighttime (but still slightly better than ERA5 and the bare rock approach), due to the lack of land-atmosphere
feedbacks in the proposed offline framework. Finally, the offline SURFEX-TEB framework applied here demonstrates the
added value of using more comprehensive urban parameterizations to simulate the urban climate, therefore, improving urban

climate projections.

1 Introduction

Urban areas accommodate nearly half of the global population, and this fraction is projected to increase to 68% by 2050
according to the World Health Organization (WHO, 2018). Moreover, cities concentrate wealth, infrastructures, and
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emissions - being responsible for about 75% of the global greenhouse gas emissions from energy consumption (IPCC, 2014).
Consequently, understanding and simulating the urban climate evolution is a key task for climate change assessments and for
designing climate change adaptation and mitigation strategies.

The urban areas are characterized by drastic land-use changes which are responsible for increased trapping and absorption of
solar radiation, reduced evapotranspiration, and decreased nighttime cooling in built-up areas. As a result, cities typically
have warmer air and surface temperatures compared to nearby rural environments. This is the well-known urban heat island
(UHI) effect, which has been found over multiple cities across the globe (see e.g., Deilami et al., 2018 for a recent review).
The identification and quantification of the UHI dynamics have proven to be challenging. Despite its widespread emergence
in urban environments, the UHI is sensitive to the specific land surface characteristics and meteorological conditions, hence
displaying significant variability between different locations and periods. Indeed, previous investigations reported several
different relevant UHI dependencies, including city size and population density (Oke, 1982; Clinton & Gong, 2013; Oke et
al., 2017; Manoli et al., 2019), social-economic conditions (e.g., Hong et al., 2019; Li et al., 2020; He et al., 2022), urban
vegetation coverage (Kaloustian & Diab, 2015; Peng et al., 2012; Zhou et al., 2014; Nogueira & Soares, 2019), background

climate conditions (namely precipitation and wind, Zhou et al., 2013; Lemonsu et al., 2013; Zhao et al., 2014; Manoli et al.,
2019) and urban morphology (e.g., city geometry, building height, construction materials, etc., Oke, 1973; 1982; Zhou et al.,
2017; Krayenhoff et al., 2018; Nogueira & Soares, 2019; Masson et al., 2020). Heat release resulting from human activities
has also been shown to modulate the UHI (De Munck et al., 2013; Schoetter et al., 2020). Moreover, surface and near-
surface air temperature over “natural” regions also display large sensitivity to the complex land use and land cover patterns
(e.g, Beljaars et al., 1996; Koster et al., 2004; Johannsen et al., 2019; Nogueira et al., 2020a, 2021), which represents an
additional layer of complexity to the UHI.

Investigations of the UHI based on contrasting in situ temperature and surface fluxes observations from cities and
neighboring rural locations are generally unable to capture its complex spatial heterogeneity, particularly for large cities,
resulting in large uncertainties in the UHI characterization (Stewart, 2011; Schwarz et al., 2011; Stewart and Oke, 2012).
The development of dense urban meteorological station networks allowed to partially overcome these limitations, but the
temporal and spatial coverage of such networks remains too narrow to fully characterize the urban induced climate
modulation (Muller et al., 2013; Konstantinov et al., 2018). Remote sensing techniques provide a widely used alternative for
comprehensive characterization of the UHI and its variability, providing reliable estimates for numerous land surface
properties with wide spatial coverage and adequate spatial and temporal sampling, including land surface temperature (LST),
land use and land cover (LULC) maps, soil moisture, rainfall, and snow, amongst others (see Balsamo et al., 2018 for a
recent review).

Numerous works revealed the existence of a surface urban heat island (SUHI), referring to warmer LST in urban areas
compared to its rural environment (e.g., Roth et al., 1989; Imhoff et al., 2010; Schwarz et al., 2011; Peng et al., 2012; Zhao
etal., 2014; Zhou et al., 2017). Yet, these studies identified significant differences between the UHI and SUHI, including the

maximum UHI hour and seasonality, and the relationship between thermal contrast magnitude and land use. Moreover, LST
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estimates are often restricted to clear-sky conditions since, typically, the available all-sky estimates are restricted by very
coarse spatial resolution which is inappropriate to characterize the urban environments (Masson et al., 2020). The LST
estimates are also often constrained by the time of satellite overpass, which limits the temporal resolution.

Urban climate simulations generated by physically-based numerical models can potentially circumvent some of the
limitations of in situ and remote sensing observational products. Specifically, coherent information for multiple relevant
variables with high spatial and temporal coverage and resolutions may be obtained. Additionally, due to the complexity and
diversity of cities around the world, the city scale climate properties are specific and often limited to a particular location.
Moreover, while observations cover the past, numerical simulations can be extended to the future and, therefore, consider
different scenarios of future socio-economic evolution, urban development, and adaptation strategies, as shown, for example,
in Georgescu et al. (2014) where it was demonstrated shown-how urban planning could help offset the global warming effect
in U.S. cities in the future.

Most large ensembles of global and regional climate model simulations have simplified representations of the urban
environment (Garuma, 2018; Zhao et al., 2021). Furthermore, the available large ensembles of Earth System Models (ESMs)
and Global Climate Models (GCMs) typically have coarse spatial resolutions (~100 km), which are inadequate for
representing most of the city-scale processes. Typically, state-of-the-art large multi-model ensembles of Regional Climate
Models (RCMs) have grid-resolutions on the order of tens of kilometers which is still inappropriate to simulate many aspects
of the urban climate system (e.g., Langendijk et al., 2019; Nogueira et al., 2020b; McNorton et al., 2021). The next
generation of RCM ensembles will have a resolution of a few kilometers, allowing a better simulation of the local climate
variability (Jacob et al., 2020). Indeed, several pilot studies have suggested significant added value in including urban
canopy models (UCMs) to parameterize interactions between the urban surface and the atmosphere in RCMs with
resolutions of a few kilometers (Chen et al., 2011; Kusaka et al., 2012; Hamdi et al., 2012; Lemonsu et al., 2014; Daniel et
al., 2019; Garuma, 2018; Schoetter et al., 2020). It is worth pointing out, however, that several studies presenting RCMs
combined with more complex urban schemes in short-term case studies have previously shown added value in simulating

urban climate (e.g., Salamanca et al., 2010; Salamanca et al., 2011). However, the use of UCM coupled to RCMs is not a

standard procedure for long-time/century climate simulations (and is not projected to be in the next generation of multi-
model RCM ensembles) due to its very high computational costs, resulting in a poor representation of many aspects of urban
climate in those RCM ensemble datasets (Langendijk et al., 2019; Nogueira et al., 2020b).

The use of land-surface models (LSM) coupled to a UCM, forced offline by atmospheric data, provides a computationally
efficient option for urban climate simulation. This approach overcomes the computational and resolution limitations of
ESMs, GCMs and RCMs, but comes at the cost of neglecting the urban land-atmosphere feedbacks, providing only
diagnostics for the surface and near-surface variables. One may estimate the urban impact on surface and near-surface air
temperature and humidity, near-surface wind, latent and sensible heat fluxes, but not on clouds, precipitation, or local
circulations. Despite those limitations, recent studies have demonstrated the added value of this approach in reproducing key

features of observed urban climate compared to traditional climate simulations (without representation of urban processes),
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including the UHI and the frequency, intensity and duration of urban extreme temperature events (Broadbent et al., 2018;
Conlon et al., 2016; Daniel et al., 2018; Kaloustian and Diab, 2015; Lemonsu et al., 2013, 2015; Nogueira and Soares, 2019;
Hamdi et al., 2020; Viguié et al., 2020; Nogueira et al., 2020b). Leveraging the competitive computational cost of offline
LSM-UCM simulations, these studies explored the local climate response to multiple different urbanization patterns and
emission scenarios over relatively long periods and at high spatial resolution. Additionally, Nogueira and Soares (2019)
demonstrated how this type of framework may be used to disentangle the impact of land-use change, from large-scale
warming induced by greenhouse gas emissions, and from natural climate variability. Other approaches to tackle this problem

have been suggested in the past, namely using dynamical downscaling to run climate simulations at the start and at the end of

the century (e.g., Georgescu et al., 2014; Krayenhoff et al., 2018; Broadbent et al., 2020). This represents a critical task for
anthropogenic climate change attribution and for designing effective mitigation strategies. The added value of the offline
framework has also been demonstrated in simulating the impact of changes in vegetation cover patterns over non-urban
regions (Johannsen et al., 2019; Nogueira et al., 2020a, 2021).

The present study assesses the ability of the LSM-UCM approach to downscale ERAS reanalysis, the fifth, and latest,
generation reanalysis from the European Centre for Medium-Range Weather Forecasts to resolutions of a few kilometers
over dense urban areas. Specifically, we analyze the added value of the Météo-France SURFEX (Surface Externalisée)
surface modelling platform (Le Moigne, 2018) in improving the simulation of the UHI and SUHI over Paris, a European
mega-city characterized by a well-known strong urban heat island effect (e.g., Sarkar & De Ridder, 2011; De Munck et al.,
2013; Hamdi et al., 2015; Lemonsu et al., 2015; Daniel et al., 2019). SURFEX is particularly relevant in this context since it
has shown to perform particularly well in offline urban simulations (e.g., Hamdi et al., 2015; Lemonsu et al., 2015; Nogueira
& Soares, 2019; Nogueira et al., 2020b). Previously, Nogueira et al. (2020b) used the offline LSM approach to perform
downscaling of the EURO-CORDEX simulation ensemble for the historical and future periods over an urban grid-point
inside the city of Lisbon and a neighboring rural grid-point. The results highlighted the poor representation of the UHI effect
in the EURO-CORDEX RCMs and suggested the added value of the online approach for simulating the UHI effect.
However, this study was limited to two single-column simulations and focused on the daily maximum and daily minimum 2-
meter air temperature, which are diagnostic variables in the offline LSM approach. Here, we use high-resolution LST
satellite data to investigate the spatial structure of the Parisian SUHI and its diurnal cycle in ERA5 and to assess the added
value of the offline LSM downscaling approach, contrasting against the often-used bulk bare rock urban parameterization

approach in large ensembles of GCMs/RCMs.

2. Methods
2.1 Observations and Reanalysis

Parisian daily maximum and minimum temperatures (respectively Tmax and Tmin) for the 2004-2018 period were obtained

from two weather stations (Fig. 1), retrieved from the Global Summary of the Day (GSOD), produced by the National
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Climatic Data Center (NCDC), which includes quality control checks and random error removal. The first station located in
the Montsouris public park (48.82N, 2.33E), in Paris city center, was used as reference to characterize the Parisian urban
temperature. The second station located in Melun (southeast of Paris - 48.61N, 2.67E), in a natural environment, was used as
reference to characterize the Parisian surroundings temperature. These two stations were also previously employed by Hamdi
et al. (2015) and Daniel et al. (2019) to characterize the Parisian UHI.

The LSA-SAF LST estimates are derived from the outgoing thermal infrared radiation (TIR) measured at top-of-atmosphere
by the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard the Meteosat Second Generation (MSG) series by
employing a generalized “split-window” technique (Freitas et al., 2010). The TIR spectral band (8-13 um) is particularly
appropriate as it presents relatively weak atmospheric attenuation under clear-sky conditions and includes the peak of the
Earth’s spectral radiance (Li et al., 2013; Ermida et al., 2019). The LSA-SAF LST estimates were available every 15 minutes
from 2004 to present-day over land pixels within the MSG disk, comprising satellite zenith view angles between 0° and 80°,
with a 3 km resolution at the nadir. The LSA-SAF LST estimates were aggregated as the average at 00, 15, 30, and 45
minutes for each hour. Then, the hourly mean for the period ranging from 2004 through 2018 was computed. LST obtained
through remote sensing is intrinsically directional due to the heterogeneity of the land surface. Still, given the model
resolution considered in this study, LST’s ability to evaluate model data should not be affected by its directional property_or

by the buildings’ material emissivity.

ERAGS is the latest-generation global atmospheric reanalysis produced by the ECMWEF, extending from 1979 to the present

(although a preliminary version of an extension to 1950 is already available). ERA5S is based on a recent version of the

ECMWE Integrated Forecast System (IFS cycle 41r2), including several improvements compared to the version used in

ERA-Interim (the ECMWE’s previous generation reanalysis, Dee et al., 2011). Namely, ERAS5 features increased temporal,

horizontal and vertical resolutions (respectively 1 hour, ~31 km and 137 vertical levels extending from surface to 0.01 hPa)

(see Hersbach et al., 2020 for a detailed description of ERA5), and an increased number and more recent versions of a wide

variety of observational datasets are assimilated. Additionally, ERAS5 benefits from improvements to several model

parameterizations (e.g. convection and microphysics) and to the four-dimensional variational data assimilation scheme.

Furthermore, it also presents an overall better accuracy in representing several climate variables compared to ERA-Interim,

including LST, near-surface air temperature, wind, radiation, and rainfall (e.g., Urraca, 2018; Beck et al., 2019; Johannsen et
al., 2019; Rivas and Stoffelen, 2019; Nogueira, 2020).
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Figure 11: Study domain identified by the brown square in panel a). Panel b) shows a zoom on the simulation domain with the
color shading representing topographic height. Panel c) shows a zoom on the simulation domain with the color scheme
representing the dominant urban classes for grid boxes where urban fraction exceeds 0.1 (grid boxes where urban fraction is
below 0.1 are painted white). The large black circles in b) and c) identify the inner and outer rings for computing the SUHI (see
Section 2.3). The ‘o’ markers in b) and c¢) identify the station locations for computing the UHI (see Section 2.3).
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2.2 SURFEX simulations

We performed a set of high-resolution (0.05°x0.05°) simulations of Paris and its surroundings (cf. Fig. 1) using the Météo-
France SURFEX (Surface Externalisée) version 8.1 (Le Moigne, 2018) modelling platform. SURFEX couples multiple
physical-based models over all types of natural surfaces, including the Interaction between Soil Biosphere and Atmosphere
(ISBA) land-surface scheme over natural land surfaces (Calvet et al., 1998; Gibelin et al., 2006) and the Town Energy
Balance (TEB) Urban Canopy Model (UCM) over urban surfaces. TEB uses the urban canyon approach (Oke, 1987) to
simulate key urban physical processes on the local climate, including the possibility to account for the effects of vegetation
and water bodies (see Masson et al., 2000 and Masson et al., 2013 for a detailed description of TEB). The SURFEX
simulations were performed in an offline setup forced by ERAS fields — namely surface pressure, precipitation, short- and
long-wave radiative fluxes, and air temperature, humidity, and wind speed at 40 m height above sea level (above the Parisian
urban canopy height). The simulations started in January 2003 and extended until the end of 2018, with a 15-minute time-
step.

Two different SURFEX experiments were carried here. In the first one, denoted SFX-ROCK, the city grid boxes were
described as rock covers. This bulk urban parameterization is often employed in large ensembles of regional climate
simulations (e.g., Daniel et al., 2019; Langendijk et al., 2019; Davin et al. 2019; Nogueira et al., 2020b). The second
experiment, denoted SFX-TEB, employed the TEB UCM for urban grid boxes. Both experiments considered a multilayer

soil diffusion scheme with 14 soil layers and a single-level canopy layer, which has previously been demonstrated to be
adequate over European mid-rise cities such as Paris (Trusilova et al., 2016; Schoetter et al., 2020:FrusHova-etal{(2016}). #

2.3 Assessment of the simulated UHI and SUHI

The UHI was defined here as the 2-meter air temperature (T2m) difference between the urban (Montsouris) and the rural
(Melun) station locations. For ERA5 and SURFEX simulations this was estimated using the respective nearest-neighbor grid
boxes. Although the two-point difference approach cannot account for the complex spatial heterogeneity of urban
environments and their surroundings, the limited number of observations available to this study defined this particular
choice. Nonetheless, the complex spatial heterogeneity of the Paris area was accounted by the SUHI definition considered
here. Following the methodology employed in previous works (Peng et al., 2012; and Zhou et al., 2013, 2017) the SUHI was
defined as the difference between the average temperature within the considered urban cluster and the average temperature
within an equal area belt around it. This approach combined land cover data (from ECOCLIMAP-II) with LSA-SAF LST.

The urban cluster was defined as the grid boxes with urban fraction greater than 66% within the inner circle shown in Fig. 1.
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The surrounding belt is also shown in Fig. 1. The SUHI was computed for ERA5, SFX-ROCK and SFX-TEB using the same
approach, considering the same urban fractions from the ECOCLIMAP-II land cover data for all datasets.

The daytime and nighttime UHI and SUHI were evaluated separately. The daytime maximum Ty and LST (denoted T max
and LSTmax respectively) were computed as the maximum temperature within the 11 to 18 UTC interval. The nighttime
minimum Taym and LST (denoted Tmin and LSTmin respectively) were computed as the minimum temperature over the 00 to
07 UTC interval. We computed two-three error metrics for evaluating the UHI and SUHI in the different model-based

datasets. The first was the mean bias calculated following Eq. (1):
Bias = %Ziil(mk — 0x), @

where m;, and o,, are respectively model simulated and observed values and N is the total number of days in the historical
time-series. The mean bias measures the models’ systematic errors. The second was the Perkins skill score (Perkins et al.,
2007), henceforth denoted S, which measures the models’ ability to reproduce the observed probability distribution functions
(PDFs):

S$=100X X2 [Zmi Zoil, 2)

where min[x, y] represents the minimum between two values, Z,, and Z, are the modeled and observed empirical PDFs,
respectively, and B is the total number of bins used to compute the empirical PDFs (here we used steps of 1°C). S provides a
measure of similarity between modeled and observed empirical PDFs, with S=100% if the model reproduces the empirical
PDF perfectly and decreasing towards zero as the similarity between the PDFs decreases. Both error metrics were also
applied to evaluate the daytime and nighttime LST over the study domain grid boxes and the daytime and nighttime T2, at
the two station locations.

The third metric to be computed was the root mean squared error (RMSE), which measures the mean magnitude of the

models’ systematic error:

RMSE = \/%Z?’:l(mk — 0p)2. ©)

3. Results
3.1 Intercomparison of the simulated SUHI over Paris

The observed LST averaged over the 2004-2018 period showed a clear signature of the Parisian SUHI effect during daytime
(Fig. 2a) and nighttime (Fig. 2b). The SUHI was not reproduced by ERAS5 during daytime (Fig. 2c) nor nighttime (Fig. 2d).
The results also highlighted that ERAS 0.25° resolution is too coarse to reproduce the complex urban climate patterns, even
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for a relatively large city as Paris. The simulation SFX-ROCK also failed to reproduce the Paris SUHI during daytime (Fig.
2e) and nighttime (Fig. 2f). As expected, the higher resolution did improve the simulation of topographic effects on surface
temperature south and northwestern of Paris (cf. Fig. 1b), although, the bare rock approach misrepresented the city LST
modulation. In contrast, the LST patterns resulting from the SFX-TEB simulation showed a clear signature of the Paris SUHI
during daytime (Fig. 2g), which was closer to the observed pattern. During nighttime, SFX-TEB shows some signature of the
SUHI (Fig. 2h) but underestimates its magnitude.

The improved ability of SFX-TEB in reproducing the urban LST over Paris was evidenced by the large reduction of the
median Bias over urban grid boxes (i.e., where the urban fraction was above 2/3), from -7.0°C in ERAS5 and -6.7°C in SFX-
ROCK to 1.5°C in SFX-TEB (Fig. 3a). Over natural surfaces, this reduction was lower, from -2.5°C in ERA5 to -1.5°C in
SFX-ROCK and -1.3°C in SFX-TEB. The 0.2°C difference between SFX-ROCK and SFX-TEB was due to the considered
definition of natural surfaces, encompassing all grid-boxes with urban fractions below 1/3. Indeed, in cases where the urban
fraction was zero, the SFX-ROCK and SFX-TEB simulations were identical. Notice, however, that the differences amongst
different datasets over natural surfaces were within the typical uncertainty associated with LSA-SAF LST estimates, which
is of the order of 2°C (Trigo et al., 2015). Over mixed surfaces (i.e., urban fractions between 1/3 and 2/3) the median Bias for
annual averaged LST was -3.8°C for ERA5, -3.3°C for SFX-ROCK and 0.5°C for SFX-TEB. These differences were also
within the typical observational uncertainty. Yet, the large improvements over urban surfaces and identical performances
over natural surfaces suggest that SFX-TEB represented an improvement over mixed surfaces too, particularly when the
grid-box urban fraction approaches 2/3.

The largest reductions to daytime LST over urban areas’ systematic errors occurred during MAM, where the median Bias
was -8.8°C for ERA5, -7.6°C for SFX-ROCK, and 2.1°C for SFX-TEB (Fig. 3e). A large reduction of the daytime LST
systematic error was also found during SON, where the median Bias was -6.5°C for ERA5 and SFX-ROCK, and -0.5°C for
SFX-TEB (Fig. 3i). During JJA, the median Bias was -8.2°C for ERA5, -5.2°C for SFX-ROCK, and 5.1°C for SFX-TEB
(Fig. 3g). Finally, during DJF the median Bias was -4.1°C for ERAS5, -6.3°C for SFX-ROC, and -2.8°C for SFX-TEB (Fig.
3c). Notice that, on the seasonal scale, SFX-TEB was not always the best performing model during daytime (for example,
ERAS was the best performing model during DJF over natural surfaces, and SFX-ROCK was the best performing during JJA
over mixed surfaces).

During nighttime, the differences in annual average LST systematic errors amongst different simulations (Fig. 3b) were
lower than during daytime. Specifically, over urban surfaces, the median Bias was -1.8°C in ERAS, -2.0°C in SFX-ROCK,
and -1.7°C in SFX-TEB. Over mixed surfaces, the median Bias was 0.1°C in ERA5 and -0.1°C in SFX-ROCK, and near null
in SFX-TEB. Finally, over natural surfaces, the nighttime median Bias was 1.0°C in ERAS5 and 0.7°C in SFX-ROCK and
SFX-TEB. Notice that these differences amongst simulations were within the observational uncertainty. This was also true
for all systematic differences in nighttime LST amongst different datasets on the seasonal scale (Fig. 3d, f, h, j).

Figure 4 evidences the clear reduction of the simulated LST systematic errors during daytime hours in SFX-TEB compared
to ERA5 and SFX-ROCK over urban (Fig. 4c) and mixed (Fig. 4b) grid boxes. Over natural surfaces, the daytime

9



performance was similar for SFX-ROCK and SFX-TEB, both slightly outperforming ERA5 (Fig. 4a). Finally, during the

270 night hours, Figure 4 showed a similar performance in reproducing the average LST over all surface types.
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Figure 22: Maps of LST averaged over the 2004-2018 period during daytime (left column) and nighttime (right column) over the
study domain computed from LSA-SAF (a) and b)), ERAS5 (c) and d)), SFX-ROCK (e) and f)), and SFX-TEB (g) and h))._The
275 black circles represent the inner and outer rings for the SUHI computation as previously described in Figure 1.
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Figure 33: Boxplots of LST bias computed over the 2004-2018 period for daytime (left column) and nighttime (right column) for
ERAG5 (blue), SFX-ROCK (red), and SFX-TEB (greenyellow). The boxplots represent the bias spread for grid boxes classified as
natural surfaces (grid boxes with urban fraction below 0.33), mixed surfaces (grid boxes with urban fraction between 0.33 and
0.66), and urban surfaces (grid boxes with urban fractions above 0.66). From top to bottom, the rows represent the bias computed
for the full annual cycle, DJF, MAM, JJA and SON.
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Figure 44: Average diurnal cycle of LST computed over the 2004-2018 period from LSA-SAF (black), ERA5 (blue), SFX-ROCK
(red), and SFX-TEB (greenyellow) for grid boxes classified as a) natural surfaces (grid boxes with urban fraction below 0.33), b)
mixed surfaces (grid boxes with urban fraction between 0.33 and 0.66), and c) urban surfaces (grid boxes with urban fractions
above 0.66).

The SFX-TEB ability to reproduce the observed annual daytime LST PDF was better than ERAS5 and SFX-ROCK over all
surface types (Fig. 5a). Over urban surfaces, the median S score for daily maximum was 42% in ERA5, 49% in SFX-ROCK,
and 62% in SFX-TEB. Over mixed surfaces, the median S score for daily maximum LST was 58% in ERAS, 64% in SFX-
ROCK, and 67% in SFX-TEB. Over natural surfaces, the median S score for daily maximum LST was 66% in ERA5, 69%
in SFX-ROCK, and 70% in SFX-TEB. The largest improvements in daily maximum LST S score associated with SFX-TEB
emerged during DJF (Fig. 5¢), MAM (Fig. 5e), and SON (Fig. 5i), and lowest during JJA (Fig. g, in fact, SFX-ROCK
outperformed SFX-TEB over mixed surfaces during summer). The small differences in nighttime LST amongst simulations
were also reflected in the S score, both on the annual (Fig. 5b) and seasonal scales (Figs. 5d, f, h, j).

There is an overall considerable reduction in RMSE of LSTmax for urban surfaces (Fig. 6a) when using SEX-TEB (3°C) in

comparison with SFX-ROCK (6.5°C) and ERAS5 (7°C). Although this reduction happens in every season, its magnitude is

stronger in MAM (Fig. 6e) and SON (Fig. 6j), with a 2/3 reduction of the error. Over natural and mixed surfaces, the

reduction is either small or non-existent. For LST i, the overall impact of using SEX-TEB is mostly null for all surfaces

(Fig. 6b) although there are small improvements over urban surfaces in MAM (Fig. 6f), JJA (Fig. 6i), and SON (Fig. 6k). In
DJF (Fig. 6d), however, SEX-TEB presents the worse RMSE among both experiments and ERA5.
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At a seasonal scale the observed SUHI reveals a clear seasonal cycle at daytime and a rather constant value at nighttime
(Figs. 76a, b). At daytime (nighttime), the winter and summer SUHI effect amounts to around 3 and 6°C (2 and 2.5°C),
respectively. UHI presents a less pronounced seasonal cycle at daytime and similar values at nighttime in relation to SUHI
(Figs. 9a, b). At daytime (nighttime), the winter and summer UHI effect amounts to around 0.6 and 0.25°C (2 and 2.75°C),
respectively. These results are similar to what Roy et al. (2020) found when studied the intensity and spatial extent of the
UHI and SUHI over Paris using 1-km resolution observational datasets. Both studies agree in the SUHI and UHI annual
cycle, although displaying some differences in their intensities, namely in daytime SUHI (4°C in summer, 2°C in winter) and
nighttime UHI (2°C in summer, 1°C in winter) (Fig. 9b), both more intense in our study. These differences may arise from a
number of reasons: the temporal ranges considered were different (2004-2018 in our study vs 2000-2016); Roy et al. (2020)
considered a much larger rural area and the LST satellite data was retrieved from MODIS (which has higher spatial
resolution than SEVIRI but at the cost of lower temporal resolution, with only two daily observations); finally, the T2M
observations were generated from a gridded dataset developed at Météo-France while ours were obtained directly from two
in-situ weather stations.

SFX-TEB overestimated the observed daytime SUHI effect during MAM, JJA, and SON, while underestimating this effect
during DJF (Fig. 67a). This resulted in an annual average overestimation of the SUHI intensity for this simulation. In
contrast, ERA5 and SFX-ROCK largely underestimated the daytime SUHI effect over Paris (Fig. 67a). Indeed,
misrepresentation of the urban radiative budget resulted in a nearly null SUHI effect in these simulations, as also illustrated
by Fig. 2. One important result is that the magnitude of the daytime SUHI overestimation in SFX-TEB was smaller than the
underestimation in ERA5 and SFX-ROCK, meaning that SFX-TEB improved the representation of the SUHI effect over all
seasons (Fig. 67c). The statistical distribution of the daytime SUHI effect intensity was greatly improved in SFX-TEB
compared to ERA5 and SFX-TEB throughout all seasons (Fig. 67e) - the annual average S score for the daytime SUHI PDF
was 14% in ERA5, 27% in SFX-ROCK, and 81% in SFX-TEB. SFEX-TEB has the lowest daytime RMSE overall and in all
seasons (Fig. 7g), with the strongest decrease happening in MAM. The overall RMSE was just below 3°C in SFX-TEB,
4.5°C in ERAS5, and 5°C in SFX-ROCK.

During nighttime, the generally similar performance of all simulations over all types of surfaces resulted in a similar

performance in reproducing the average nighttime UHI effect throughout all seasons (Fig. 67b). All simulations - ERAS,
SFX-ROCK, and SFX-TEB - underestimated the observed nighttime Parisian SUHI, with the differences amongst
simulations being within observational uncertainty (Fig. 67d). Nonetheless, the results revealed a better ability of the SFX-
TEB in reproducing the nighttime SUHI statistics, which showed an annual average S score of 39%, clearly above the 11%
and 18% found for ERA5 and SFX-ROCK respectively (Fig. 67f). This improved representation of the nighttime SUHI
statistics was found during all seasons, being largest during JJA and lowest during DJF (Fig. 67f). RMSE is slightly lower in
SEX-TEB in comparison with SEX-ROCK and ERAS overall and in all seasons except DJF (Fig. 7h).
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The observations show a relatively small range of the diurnal amplitude of the Parisian SUHI, which is largely overestimated

by the SFX-TEB simulation (Fig. 8a). This reflects the overestimation of daytime LST and underestimation of nighttime

LST over the urban grid boxes, as discussed above, in all seasons except winter (Fig. 8c). This issue is particularly

pronounced during summer (Fig. 8g). Nonetheless, SFX-TEB still represented an improvement compared to ERA5 and
SEX-ROCK. On the one hand, ERA5 and SFX-ROCK failed to simulate any urban to rural contrast throughout the full
annual cycle (Figs. 8a, ¢, e, g, and i). On the other hand, the annual average systematic errors in the simulated LST were
lower in SFX-TEB compared to ERA5 and SFX-ROCK (Fig. 8b), although the differences only exceeded the observational
uncertainty during daytime. The daytime reductions occurred mostly during DJF (Fig. 8d), MAM (Fig. 8f), and SON (Fig.

8j). while the daytime |Bias| values during JJA (Fig. 8h) and the nighttime |Bias| values during all seasons were within

observational uncertainty.
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Figure 55: Boxplots of S score computed over the 2004-2018 period from ERA5 (blue), SFX-ROCK (red), and SFX-TEB
(greenyellow) for natural surfaces (grid boxes with urban fraction below 0.33), mixed surfaces (grid boxes with urban fraction
between 0.33 and 0.66), and urban surfaces (grid boxes with urban fractions above 0.66). From top to bottom, the rows represent
the S score computed for the full annual cycle, DJF, MAM, JJA, and SON.
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Figure 76: Annual and seasonal average Parisian SUHI magnitude computed over the 2004-2018 period during a) daytime and b)
nighttime. The corresponding annual and seasonal average Bias for daytime is represented in c) and for nighttime in d),-and the
corresponding annual and seasonal S score is represented in e) for daytime and f) for nighttime, and the corresponding annual and
seasonal RMSE s represented in g) for daytime and h) for nighttime. The LSA-SAF is represented by black lines, ERA5 by blue

markers, SFX-ROCK by red markers, and SFX-TEB by green-yellow markers.
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365 Figure 8: Average SUHI diurnal cycle computed over the 2004-2018 period for a) full year, ¢) DJF, e) MAM, g) JJA, and i) SON.
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diurnal cycles are represented in b) full year, d) DJF, f) MAM, h) JJA, and j) SON using LSA-SAF as reference.
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3.2 Intercomparison of the simulated UHI over Paris

The Tam in ERAS did not show any evidence of the UHI over Paris during daytime (Fig. 98a) nor during nighttime (Fig.
98b). The UHI effect did not emerge in SFX-ROCK during day- nor nighttime (respectively Fig. 98c and Fig. 98d). In
contrast, the SFX-TEB Tam showed a signature of the UHI over Paris during daytime (Fig. 98e) and nighttime (Fig. 98f), in
agreement with previous studies reporting the existence of the UHI effect over Paris (Lemonsu et al., 2014; Daniel et al.,
2019). The enhanced performance in simulating the Paris UHI for SFX-TEB compared to ERA5 and SFX-ROCK was
confirmed by the comparison against the UHI estimated from station observations (Fig. 109). During daytime, ERA5 and
SFX-ROCK underestimated the observed Parisian UHI effect throughout all seasons, while SFX-TEB slightly overestimated
the UHI (Fig. 109a), resulting in an overall reduction of the Bias in all seasons while also changing its signal (Fig. 109¢). On
the annual average, the systematic error magnitude reduced from 0.7°C in ERA5 and SFX-ROCK to 0.2°C in SFX-TEB.
Moreover, SFX-TEB also improved the statistics of the daily UHI magnitude throughout all seasons (Fig. 109¢e), resulting in
an overall S score value of 87%, well above the 59% and 56% respectively, found for ERA5 and SFX-ROCK. RMSE
presents the lowest RMSE overall and in all seasons, although its magnitude is low (below 1°C) for both experiments and

ERADS (Fig. 109).
The results also showed that SFX-TEB improved the simulation of the UHI during nighttime when compared to ERA5 and

SFX-ROCK (Fig. 109b), reducing the Bias error over all seasons by more than 1°C, resulting in an overall |Bias| value of
0.6°C in SFX-TEB, 2.5°C in ERAS5, and 2.2°C in SFX-ROCK (Fig. 109d). SFX-TEB largely improved the representation of
nighttime UHI statistical distribution in ERA5 and SFX-ROCK throughout all seasons (Fig. 109f). The overall S score was
25% for ERA5, 31% for SFX-ROCK, and 79% for SFX-TEB._SFEX-TEB presents the lowest RMSE overall and in all

seasons, with a 2°C decrease in relation to SFX-ROCK in every case (Fig. 10h).

The annual average diurnal cycle of the Paris UHI clearly illustrated the contrasting results from ERA5 and SFX-ROCK to
SFX-TEB. SFX-TEB showed an annual averaged UHI intensity varying between +1.9°C during the afternoon and night, and
+0.1°C during the morning (Fig. 118a), whilst ERA5 and SFX-ROCK showed a nearly zero UHI effect throughout the entire
diurnal cycle. The afternoon and nighttime UHI effect in SFX-TEB was highest during MAM (Fig. 116c) but remained
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above +1.5°C throughout all seasons (Fig. 110b-e), while the morning UHI was strongest during DJF (Fig. 116b) and its
minimum reached close to zero values during MAM (Fig. 116c), JJA (Fig. 116d), and SON (Fig. 110e).

The relatively strong magnitude of the nighttime UHI in SFX-TEB corresponds to a significant improvement compared to
ERAS5 and SFX-ROCK. This result contrasts with the relatively small magnitude of the nighttime SUHI in SFX-TEB, which
largely underestimates observations. The better performance of SFX-TEB in simulating the UHI compared to the SUHI was
likely related to the ability of the model to represent part of the nighttime urban canopy layer heating associated with
prescribed anthropogenic heat fluxes, while the lack of land-atmosphere feedbacks inhibits this warmer canopy layer from
affecting the LST.

The annual averaged SUHI measured as a difference between the urban and rural station locations under all-sky conditions
computed from SFX-TEB peaked around 12h local time with a value of +5.0°C; and reduced throughout the afternoon
stabilizing at a value around +1.5°C during the night and morning (Fig. 116f). The inability of ERA5 and SFX-ROCK to
simulate the SUHI throughout the diurnal cycle was also clearly evidenced in Fig. 116f. The SUHI was strongest for all
hours of the day during MAM (Fig. 116h) and JJA (Fig. 116i) and weakest during DJF (Fig. 116g) and SON (Fig. 116j). We
highlight the clear contrast between the UHI and SUHI diurnal cycles in Fig. 110. While the former peaked during late
afternoon and night and decreased sharply during the morning, the latter showed opposite behavior peaking around midday
and reaching the minimum during nighttime and late afternoon. This result was related to the thermal inertia of the canopy
layer resulting in the well-known lag between surface and near-surface air warming.

However, the analysis of the annual averaged SUHI measured as a difference between the urban and rural station locations
under clear-sky conditions revealed significant differences in the average diurnal cycle simulated by SFX-TEB and
observations (Fig. 116k). Indeed, SFX-TEB clearly overestimated the SUHI diurnal amplitude: the maximum amplitude of
the SUHI average diurnal cycle was 2.9°C in observations and 6.8°C in SFX-TEB. This large overestimation resulted from
SFX-TEB underestimation of the observed nighttime SUHI and overestimation during daytime. This effect was strongest
during MAM (Fig. 116m) and JJA (Fig. 161n) and weakest during SON (Fig. 1100). During DJF (Fig. 116l), SFX-TEB
underestimated the observed clear-sky SUHI intensity throughout the entire diurnal cycle. Despite its limitations, SFX-TEB
represents an improvement compared to ERA5 and SFX-ROCK which fail to simulate the Parisian SUHI effect throughout
the entire diurnal cycle (Figs. 110 I-0).

The strong overestimation of the annual averaged daytime SUHI in SFX-TEB was associated with a sharp difference in the
surface turbulent heat fluxes between the urban and rural station locations. The urban site showed lower average latent heat
flux (LH) values than the rural site by -75 Wm™ around noon (Fig. 110p) and higher sensible heat flux (SH) values by
around +75 Wm (Fig. 110u). ERA5 and SFX-ROCK showed significantly smaller differences in LH and SH between urban
and rural locations in agreement with their inability to simulate the UHI and SUHI. The differences in SH and LH between
urban and rural locations in SFX-TEB were strongest during MAM (respectively Fig. 110r and 2011w) and JJA (respectively
Fig. 4611s and 1011x), and weaker during SON (respectively Fig. 1011t and 1611y) and DJF (respectively Fig. 4611q and

22



440

1011v). These results suggest a direct link between the daytime overestimation of daytime SUHI in SFX-TEB with the lack
of surface-atmosphere feedback in agreement with the recent findings of McNorton et al. (2021),

Finally, we noticed that the underestimation of the observed SUHI estimated as a point difference between the two station
locations during night hours and the overestimation during morning and afternoon shown in Figs. 2011k to 10110 was
coherent with the results presented in Fig. 6 for the daily minimum and daily maximum SUHI using the area-averaged SUHI
definition. Moreover, these results were also coherent with the overestimation of the daily maximum UHI and
underestimation of the daily minimum UHI presented in Fig. 9, including the daytime underestimation of both UHI and
SUHI during DJF.
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Figure 119: Annual and seasonal average Parisian UHI magnitude computed over the 2004-2018 period during a) daytime and b)
nighttime. The corresponding annual and seasonal average Bias for daytime is represented in c) and for nighttime in d), ane-the
corresponding annual and seasonal S score is represented in e) for daytime and f) for nighttime, and the corresponding annual and
seasonal RMSE is represented in g) for daytime and h) for nighttime. The observed UHI is represented by black lines, ERA5 by

blue markers, SFX-ROCK by red markers, and SFX-TEB by green-yellow markers.
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Figure 1210: Average diurnal cycle of UHI (top row), SUHI under all-sky conditions (second row), SUHI under clear-sky
conditions (third row), ALH (difference between surface latent heat flux between urban and rural areas, fourth row), ASH
(difference between surface sensible heat flux between urban and rural areas, last row). The columns from left-to-right represent
averages taken over full year, DJF, MAM, JJA, and SON. The average diurnal cycles were computed over the 2004-2018 period.
The different colors represent LSA-SAF (black), ERAS5 (blue), SFX-ROCK (red), and SFX-TEB (greeryellow).

465

4. Conclusions

470 We assessed the added value of the SURFEX offline simulations to downscale ERA5S reanalysis over urban areas, focusing
on the urban heat island effect over the city of Paris. The relevance of this study is threefold. First, ERAS is a widely used
product for climate research and applications but an evaluation of its ability to represent urban climate is lacking. Second, it
adds to recent works demonstrating the added value of the SURFEX offline downscaling framework for high-resolution
computationally efficient urban climate simulation. Specifically, we leveraged on the hourly resolution of ERA5, the
475 SURFEX simulations, and the LSA-SAF LST product to perform an unprecedented evaluation of the Parisian SUHI diurnal

cycle, its key governing processes, and the ability of the different model setups to simulate them. Finally, the
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intercomparison of long-duration high-spatial and temporal resolution datasets allow to explore the key sensitivities of the
UHI and SUHI and their implications for the development of urban climate modelling.

Our results showed that ERA5 does not reproduce the observed UHI nor SUHI effects over Paris due to lack of
representation of urban processes in the ECMWEF IFS and, also, the relatively coarse grid resolution which is inappropriate
for representing the highly heterogeneous urban environments. Increasing the grid resolution to the order of a few kilometers
or less was found to be an important but not sufficient condition for simulating the urban heat island. Indeed, the high-
resolution simulation employing the bulk bare rock approach to urban climate parameterization commonly used in large
ensembles of ESMs, GCMs and RCMs (see, e.g., Daniel et al., 2019; Langendijk et al., 2019; Zhao et al., 2021) was unable
to reproduce the observed UHI and SUHI. In contrast, the high-resolution simulation employing an UCM for urban
parameterization showed significant added value in reproducing the Parisian SUHI during daytime when compared to ERA5
and SFX-ROCK.

Specifically, SFX-TEB reduced the systematic errors of daily maximum LST over urban pixels for all seasons (yearly
average reduction of 4.2°C and 3.9°C respectively compared to ERA5 and SFX-ROCK). Moreover, SFX-TEB also improved
the simulation of the observed daytime LST PDF over urban areas during all seasons compared to ERA5 and SFX-ROCK
(with S values up to 20% higher). On the other hand, the differences in LSTmin over urban surfaces and in LSTmax and LSTmin
over natural surfaces were within observational uncertainty. In other words, SFX-TEB significantly improved the simulation
of urban daytime LST, while displaying similar skill to ERA5 and SFX-ROCK during nighttime over urban areas and, also,
over natural surfaces throughout the entire diurnal cycle.

SFX-TEB displayed the overall better performance in reproducing the observed daytime SUHI over Paris and its magnitude
variability (with the respective S score increasing by 67% compared to ERAS5). During nighttime, we found similar
performance amongst ERA5, SFX-ROCK and SFX-TEB in reproducing the nighttime SUHI effect throughout all seasons,
with a generalized underestimation of the observed SUHI magnitude. Notice, however, that SFX-TEB showed a slight
improvement in simulating the nighttime SUHI spatial pattern and temporal variability compared to ERA5 and SFX-ROCK.
ERAS5 and SFX-ROCK did not reproduce the Parisian UHI effect throughout the entire diurnal cycle. In contrast, SFX-TEB
displayed significant added value in simulating the observed UHI during daytime and nighttime, resulting in an annual
average bias magnitude reduction of 0.5°C for daytime and more than 1.5°C for nighttime compared to ERA5 and SFX-
ROCK. The distribution of daily UHI variability was also improved in SFX-TEB, with the S score increased by roughly 30%
for daytime and 50% for nighttime. The improved nighttime performance of SFX-TEB in simulating UHI relative to the
SUHI may be explained by the ability of SFX-TEB to warm the urban canopy layer by anthropogenic heat releases
combined with the lack of land-atmosphere feedbacks, which inhibits an LST response to the nighttime UHI. Finally, an
analysis of the diurnal cycle of the simulated surface turbulent heat fluxes suggests that SFX-TEB overestimates the
urban/rural contrasts in SH and LH during daytime (particularly during warmer months). However, ERA5 and SFX-ROCK

consistently underestimate the Tom, LST and turbulent flux contrast throughout the entire diurnal cycle. It is important to note
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that uncertainties in remotely sensed LST due to its directional property should be negligible in this study due to the coarse
spatial resolution of the SURFEX model.

In summary, we highlight the large potential of the offline SURFEX-TEB framework for urban climate projections given its
ability to produce computationally efficient high-resolution climate projections with increased accuracy compared to ESMs,
GCMs, and RCMs used in large ensemble datasets. Moreover, its relatively small computational cost allows to perform a
large number of climate experiments to investigate the impact of city-scale climate adaptation and mitigation strategies under
different future emission scenarios. This framework may be improved in the future by including simplified representations of
key land-atmospheric feedbacks. Specifically, the possibility to improve the ability of this framework in reproducing the
nighttime SUHI by including coherent dynamical corrections to the forcing temperature and downwelling longwave

radiation fields based on the T.m diagnostic in the previous timestep will be investigated in a subsequent work.

Code availability

The SURFEX modeling platform of Météo-France is open source and can be downloaded freely at http://www.umr-
cnrm.fr/surfex/ (CNRM, 2016). It uses the CECILL-C license, a French equivalent to the L-GPL license
(http://cecill.info/licences/Licence_CeCILL_V1.1-US.html; CEA-CNRS-Inria, 2013). It is updated at a relatively low
frequency (every 3 to 6 months). If more frequent updates are needed — or if what is required is not in Open-SURFEX
(DrHOOK, FA/LFI formats or GAUSSIAN grid) — you are invited to follow the procedure to get an SVN account and to
access real-time modifications of the code (see the instructions in the first link). In this study, SURFEX’s version 8.1 was

used.

Data availability

ERA5 data can be obtained freely from the Copernicus Climate Change Service Information website
(https://climate.copernicus.eu/, Copernicus Climate Change Service (C3S), 2019).

The LSA-SAF LST can be obtained freely from their website (https://landsaf.ipma.pt/, last access: 13 December 2021).

The NCDC CSOD weather station data can be obtained from their website
(https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00516, last access: 14 December
2021).

The considered fields (LST, T2m) from the simulations (SFX-TEB, SFX-ROCK) considered in the present study are freely
available at https://doi.org/10.5281/zenodo.5780448 (Nogueira et al., 2021).
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