
 
General statement 
 
We would like to thank the editor for coordinating the review of our work. We would also like 
to thank the two reviewers for their helpful and valuable comments on our study. In the 
following, we point to point  addressed the referees’ comments and revised the manuscript 
accordingly. For clarity, our responses are highlighted in red. 
 
### Referee comment #1 
 
The present paper presents the use of a stochastic adversarial video prediction model to 
forecasting the two-meter temperature. While the paper is interesting to read and the 
conclusions seem valid, I do have several points that I think would have to be addressed 
before the paper could be considered for publication in GMD. In particular: 
 
1) The present paper is a contribution to an increasing line of research on the application of 
a deep-learning based methodology to weather prediction, in particular the use of an existing 
video prediction model applied to weather prediction. This line of work has been of great 
interest when first showcased through the contributions of Weyn et al. and Dueben et al., 
just to name a few, but it does not feel that the present paper adds anything substantially 
new besides using a different architecture for the same problem. One main issue is that 
meteorological data is fundamentally different from generic video data in that it follows a 
well-defined system of partial differential equations. In this purely data-driven approach it 
seems that one has to be willing to throw away more than a hundred years of research on 
the understanding of these governing equations of hydro-thermodynamics just to be able to 
use an off-the-shelf video prediction architecture, which does not seem to come close to 
where traditional numerical methods can go today in terms of relevant forecast metrics. The 
question to ask is hence whether it is indeed the right approach going forward, or whether 
one should strive to combine data-driven approaches with the inductive bias as provided by 
the fundamental laws of physics. There is a growing interest in physics-informed machine 
learning, which allows combining differential equations with data-driven machine learning 
which in a way seems more appropriate for the present problem at hand. If that was possible 
for the present model then I think the paper would become much stronger and more suitable 
for what would actually be required for weather prediction. 
 
Many thanks for sharing your thoughts on the overall method of data-driven weather 
forecasts with the help of video prediction methods from computer vision. 
We agree that physical informed neural networks (PINNs) constitute an appealing approach, 
especially for any physical process such as the evolution of the atmospheric state. While 
appealing due to the explicit awareness of physical laws, PINNs also have their drawbacks, 
especially for systems with a high-frequency and multi-scale nature (see, e.g., Wang et al., 
2020, Fuks and Tchelepi, 2020, or Jin et al., 2021). The evolution of the atmosphere can be 
described by a set of partial differential equations (PDE) that constitute the Navier Stokes 
equation, the 1st law of thermodynamics and the continuity equation of a multi-phase fluid. 
This PDE is inherently multi-scale and involves various high-frequency processes (e.g. 
gravity waves) which make the application of PINNs extremely challenging. As a 
consequence, mainly strongly simplified versions of this set of PDEs have been tackled with 
PINNs (see, e.g. Raissi et al., 2019 and Rao et al., 2020).  



For our particular case of the 2m temperature, the formulation of simplified PDEs or 
alternatively of physical constraints is far from straightforward, since the 2m temperature is 
subject to various physical processes down to millimetre scale, e.g. surface heat fluxes and 
turbulence in the (near-) surface layer. Note that the 2m temperature is usually also not a 
prognostic variable in atmospheric models. It rather constitutes an empirical fit between the 
temperature in the first model layer (located about 10m above ground) and the skin 
temperature, see e.g. the Forecast User Guide by ECMWF.  
Due to these arguments, we argue that data-driven methods are still a valid approach for the 
application of neural networks and as detailed below, we also believe that our study provides 
additional value with respect to previous studies such as Dueben et al., 2018, Rasp et al., 
2020, and Weyn et al., 2020. Nevertheless, we emphasize the above statement in our 
revised manuscript 
 
 
2) The selection of features (cloud cover, 850 hPa temperature and two-meter temperature) 
seems slightly arbitrary. While the authors do provide some justification for the selection of 
these parameters, there are many more parameters that influence the evolution of the two-
meter temperature. The authors then state "A more systematic variable selection process as 
is typical for data science studies is beyond the scope of this paper.", but I do not believe 
this is a justifiable statement here, because the authors do carry out a data science study in 
this paper. Again, if this was the first paper to be written on using a video prediction model 
for weather prediction this point could be easily forgiven, but as there are many other papers 
out there that provide proof of concept that such models can predict the future weather to 
some degree I think some more work needs to be done here to justify this feature selection, 
and to show which features have to be selected to get the best possible model results. In the 
machine learning literature it is customary to carry out ablation studies that showcase the 
importance of various aspects of the data/model components being used, and I think such a 
study would be beneficial here as well. 
 
We acknowledge the lack of justification for our feature selection. For the revised 
manuscript, we have provided more reasoning including some proper references (See line 2-
202-210 in revised manuscript ).  
 
Additionally, we would like to highlight the added value, that is the inclusion of additional 
predictors based on expert knowledge. Previous studies mainly only used the 2m 
temperature itself as a predictor for their task (e.g. Bihlo, 2020, Rasp et al., 2020). Due to 
this, the neural network is enforced to encode the relevant atmospheric state from one state 
variable at a single height above the surface. By including the temperature at 850 hPa 
(T850) and the total cloud cover (TCC), we inform the network on the temperature of the air 
mass (850 hPa temperature is not directly affected by the interaction with the surface) and 
include a key driver of the surface heat fluxes (modulation of incoming short-wave and 
outgoing long-wave radiation).  
 
In addition, we would like to mention that our study did several ablation studies to investigate 
the relevance of different data/model components. For instance, we control the scaling factor 
of reconstruction loss to increaseing/decrease the weights on GAN components, and we 
evaluate the model performance on various evaluation metrics accordingly. The results were 



demonstrated in the Section 4.2.  We also carried out several sensitivity analyses in Section 
4.3 to data components.  
 
 
One of our sensitivity studies reveals that including T850 is beneficial, while TCC only yields 
minor improvements. Replacing TCC for the sake of a more informative predictor is of 
course an option, but it would be computationally expensive due to re-running the training 
step.  
 
While we agree that more informative predictors can be beneficial to forecasting and a 
systematic search could be warranted. Nevertheless, the setting of our current experiment 
has arrived at the computation limitations (12 hours of inputs and 12 hours of output).  For 
the sake of releasing the memory constrains, we investigated whether reducing the input 
hours could preserve the model accuracy in our revised manuscript (see Line 443 - 450).  
The results demonstrate it is necessary to give the half-diurnal cycle of 2m temperature as 
inputs.  
 
To make more variables as inputs feasible, we are now investigating the use of different 
network architectures which are more memory-efficient – such as Tansformer-based 
networks. These would allow a light-weight encoding of sequence data compared to the 
usage of recurrent layers (Vaswani A, etc 2017). However, this clearly has to be seen as a 
new study and goes beyond the scope of the present paper. 
 
 
3) The baseline comparison model used is a standard convolutional LSTM model. This is the 
simplest possible model for video frame prediction and it is well-known to perform rather 
poorly as it exhibits an excessive amount of diffusion. Thus, beating this baseline is rather 
straightforward so I wonder if the comparison of the authors' model to this simple model 
really yields a lot of information about the absolute strength of this model. It would be great 
to add a somewhat more state-of-the-art comparison model as well to be truly able to assess 
how good the stochastic adversarial video prediction model is for the present problem. 
Related to this, it would also be useful to add the performance metrics of traditional weather 
forecasting models as point of comparsion. Right now this information is just provided in the 
Discussions section but it would be nice to show these metrics in the plots as well. 
 
Thank you for this suggestion.  In our updated vision, we added the ERA5 short range 
forecast as a reference model for comparing to our models and we have a further discussion 
on the results (see Figure 5 in the revised manuscript).  
 
 
4) Owing to the interest in data-driven weather forecasting, a standard benchmark 
"WeatherBench" has been proposed to facilitate comparison with other deep learning-based 
models. The present paper does not use this benchmark but rather investigates the model 
performance over Europe instead. This makes positioning this work within the wider 
literature rather challenging so I wonder if it would not be better to provide these results 
instead (or in addition) for the WeatherBench dataset as well. Again, this would facilitate 
comparison with other approaches that have been proposed for data-driven weather 
forecasting. 



 
Regarding the WeatherBench, we would like to emphasize that WeatherBench mainly 
focuses on medium-range forecasting with a long time step of 6 hours in the iterative 
forecasts approach (see Fig. 1 in Rasp et al., 2020). Our study focuses on short-range 
forecasts with a small-time step of one hour which matches the output time step of NWP 
models. This makes the task more challenging for autoregressive models since errors 
accumulate (see Table 2 in Rasp et al., 2020 which reveals much higher RMSE for the 
iterative forecasts models).  
 
Due to the different issues we are tackling, we refrain from integrating and testing our ML 
models on WeatherBench dataset in our updated manuscript. Alternatively, we tested the 
CNN model architecture described as a baseline model in (Rasp et al. 2020) (see Line 260-
265 line in revised manuscript) and compare the results against our tested model 
architectures, the simple ConvLSTM and the SAVP model. 
 
Concretely, we applied the best-performing CNN on the WeatherBench dataset in an 
iterative forecasting mode.The mean square error as loss function to is applied to optimize 
three input variables of one preceding hour (2m temperature, total cloud cover, and 
temperature at 850 hPa), The CNN model is compared to the persistence forecasts as 
demonstrated in the Figure (A1). The iterative CNN forecasts can beat persistence forecasts 
up to 4 leading hours. However, after 4 hours, the model errors accumulate fast and diverge 
quickly. It completely deteriorates and the errors explodes after lead time of 10 hours. 
 
This clearly reveals that the CNN model fails to beat our baseline model-convLSTM, which 
indicates 2D convolutional neural networks fail to capture the temporal dependency and to 
obtain skillful forecast for longer lead times.  We updated this results and discussion 
accordingly in our revised manuscript (Line 365 - 372) 
 
In summary, while the present paper is interesting to read I do believe there isn't a sufficient 
amount of novelty yet that warrants publication in GMD in its present form. The main 
contribution of picking a video prediction model and applying it to weather forecasting has 
been done several times in the recent literature so this does not feel novel enough anymore 
unless other open aspects of data-driven weather prediction are investigated in addition. 
These could be, as indicated above, a combination with differential-equations based models, 
a more thorough investigation of which parameters are responsible for the success of the 
proposed model, beating other existing approaches for the exact same problem domain, just 
to name a few.   
 
We hope that our arguments listed above together with the revised revision of our 
manuscript provide the necessary degree of novelty and improvement on our study.  
 
 
### Referee comment #2 
 
- This is a review of the paper "Temperature forecasting by deep learning methods" by Bing 
Gong, Michael Langguth, et al. 
 
- This paper describes the use of an existing generative adversarial neural network 
architecture and approach for video prediction, SAVP, to the problem of predicting the 



evolution of the temperature field over central Europe. While the results are not yet 
competitive with operational weather forecasts, the input data is relatively coarse and very 
few predictors are used, so this is not surprising. The authors perform several ablation 
studies to identify the main contributions to the model's strength, although I have some 
minor criticisms about the details of some of these. Nevertheless, I believe the paper 
represents an interesting extension to the existing literature, within the area of purely data-
driven approaches to weather forecasting. 
 
Firstly, thank you so much for your time for reviewing our manuscript and for the comments 
to help us improve our work.  
 
I have three main comments about the authors' approach: 
 
1) The authors use a generative model, with an explicit sampling step, which allows them to 
generate multiple forecasts for a single input. However, the authors do not seem to explore 
this aspect at all, apart from a brief mention of probabilistic prediction in the conclusion 
section. There are a large number of ensemble verification metrics avilable to assess the 
calibration of the generated ensemble, i.e., to see to what extent the ground truth is 
interchangeable with a generated ensemble member. Some simpler ones include spread-
skill plots and ensemble rank histograms. This be a route that the authors do not wish to 
pursue yet and leave for future work, but it might be interesting to at least have some idea of 
how different the generated sequences can be for the same given input data, even for one or 
two case studies. 
 
Thank you so much for your suggestion. We fully agree that the SAVP model can be used 
for stochastic forecasting. The SAVP model can also be used for probabilistic forecasting 
through both noise samples as input and latent space of VAE component. Particularly, the 
encoder maps the input dimension to latent representations that follow normal distributions 
instead of single point. The decoder unfolds the latent code that samples from normal 
distributions, in which way to incorporate the stochasticity into the model. We would like 
leave this in the future study and limit our research to deterministic forecasting. In our 
updated manuscript, we further elaborate the probabilistic functions of SAVP model and how 
it can be used for future probabilistic forecasting (see line 515- 520) . 
 
2) Regarding predictors, am I right in thinking that the network is given no direct information 
indicating where in the diurnal cycle it is starting to forecast from? E.g. time of day and day 
of year, or total incoming solar radiation, etc.? I.e. it has to infer this from the patterns seen 
in the first 12 hours' data? If so, this seems like a strange choice, and one might imagine the 
model occasionally becoming confused by unusual temperature variations in the first 12 
hours. Are there any signs that something like this happens? More generally, if you look at 
some of the worst predictions (e.g. by average MSE over the 12 hours), is there anything 
interesting about the failure modes, which may hint at extra predictors to use? I imagine the 
authors may wish to use a much larger set of meteorological variables in future work! 
 
 
Yes, we do not explicitly embed the daytime and the day of the year to the model. This 
means that the model has to infer the diurnal cycle in a purely data-driven way from the input 
sequence. This is also the reason why the input sequence comprises 12 hours so that at 



least one half of the diurnal cycle is inputted to the model. The task is then to construct the 
second half based on the first half. A high-level example would be an input sequence from 4 
to 15 UTC where the model would have to encode the daily warming until the afternoon 
which will be followed by cooling over the evening and in the night. Figure 6 provides an 
example from our test data. Yet, we have not seen special failure modes for the worst 
predictions.  
 
However, in our revised manuscript, we conducted some experiments to further access this 
assumption by varying the input sequences (hours).   We notice that given the half diurnal 
cycle of data (12 preceding hours), the model obtains the best forecasting accuracy in terms 
of MSE (see Figure 11). The performance slightly deteriorates with a lead time of 12 hours 
by reducing input hours from 12 to 5. The performance significantly drops from 5 to 2 hours. 
Similar results also hold for other evaluation metrics ACC and SSIM except for gradient ratio.  
 
We also consider to include the daytime, season as adding inputs to be embedded into our 
models. However, adding this conditioning information to the input is conceptually not 
straightforward for a vanilla video prediction model such as SAVP. Since our intention was to 
check the performance of these models into another application, in our case weather 
forecasting, we refrained from revising the architecture on the input side and rather focussed 
on testing data-driven approaches. In addition, we note that a light-weight integration of this 
information would be required in our case since the current implementation of the SAVP 
model with three feature channels and a total sequence length of 24 hours occupies nearly 
all GPU memory.   
 
The memory issue also motivates us to use a more memory-efficient model concept in the 
furture, namely a Transformer-based network which would allow us to embed or use more 
predictors in our follow-up studies (Vaswani A, etc 2017). 
 
 
3) Regarding the experiment that varied the domain size, I understand the authors believe 
that the varying domain (which the metrics are computed over) contributes majorly to the 
difference in scores -- the larger domains have larger proportions of water, which leads to 
lower MSE, etc. As a result, I don't feel this part of the paper contributes much insight in its 
current form. Can I suggest that the evaluation is performed on the same physical domain 
each time, e.g. the 72 x 44 central region? I.e., when the larger domains are being used, 
they are cropped to the central 72 x 44 region before various metrics are calculated. In this 
way, the comparison is fairer, and the effect of 'larger context' can be isolated from the 
varying evaluation domain. 
 
Again thank you so much for your suggestion. For fair comparison, we re-evaluated our 
results on the same regions for test data in our revised manuscript accordingly.  
 
For similar reasons, I am somewhat skeptical of the 'sensitivity to a number of years of 
training data' result, since (if I understand correctly) the evaluation is performed on three 
different years. These themselves may be more or less difficult to predict. If it is feasible to 
re-run this part of the work to avoid evaluating on different years, this would seem like a 
good idea.  If not, I suggest they at least add a corresponding caveat to the results 
discussion! 



 
Thank you for pointing this out. Indeed, for the sensitivity to the number of years of training 
data, we fixed the validation to 2016 and test the dataset to the year 2019 when evaluating 
the models with variations in the number of training samples. We had made this clear in the 
revised manuscript. (see line 445) 
 
 
 
Minor comments: 
 
1) What is the ConvLSTM model trained on? I couldn't spot this easily in the text. Is it just 
trained to minimize MSE (i.e., L^2 error)? 
 
2) I believe the original ConvLSTM paper is normally cited as Shi et al. (2015), not Xingjian 
et al. (2015)? 
 
3) In Figure 5 (and similar figures), I assume the three lines for each model correspond to 
the three different datasets (evaluation/training years) used?  This could be made a bit 
clearer, e.g. in the caption. 
 
Finally, here are a few small typos/grammatical mistakes, etc., that I spotted: 
 
Line 17: as additional predictor -> as an additional predictor 
 
Line 206: of a 24 time steps -> of 24 time steps 
 
Line 207: This results into about -> This results in about 
 
Line 235: which encodes -> which encode 
 
Line 238: no comma needed after 'both' 
 
Line 257: condinoned -> conditioned 
 
Line 258: missing Z after 'latent space' 
 
Line 467: for a 12-hour forecasts, is attained -> for a 12-hour forecast is attained 
 
Line 468: higher spatial solutions -> higher spatial resolution 
 
Line 480: repeated word 'motivate' 
 
 
Line 485: deep neural can -> deep neural networks can 
 
Line 496: into -> in 
 
Line 518: as list in -> as listed in 



 
Line 521: ration -> ratio 
 
Line 525: I + J -> I x J 
 
Line 533: and each of the day -> and each hour of the day 
 
Line 560: I think 'disposal' should be something else, but I am not sure what? 
 
Thank you so much for providing this detailed list of typos and improper wording. We have 
revised our re-submitted manuscript accordingly.  
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