
 
General statement 
 
We would like to thank the editor for coordinating the review of our work. We would also like 
to thank the two reviewers for their helpful and valuable comments on our study. In the 
following, we will address the referees’ comments and we will provide our plans and ideas 
for revising our manuscript. For clarity, our responses are highlighted in red. 
 
### Referee comment #1 
 
The present paper presents the use of a stochastic adversarial video prediction model to 
forecasting the two-meter temperature. While the paper is interesting to read and the 
conclusions seem valid, I do have several points that I think would have to be addressed 
before the paper could be considered for publication in GMD. In particular: 
 
1) The present paper is a contribution to an increasing line of research on the application of 
a deep-learning based methodology to weather prediction, in particular the use of an existing 
video prediction model applied to weather prediction. This line of work has been of great 
interest when first showcased through the contributions of Weyn et al. and Dueben et al., 
just to name a few, but it does not feel that the present paper adds anything substantially 
new besides using a different architecture for the same problem. One main issue is that 
meteorological data is fundamentally different from generic video data in that it follows a 
well-defined system of partial differential equations. In this purely data-driven approach it 
seems that one has to be willing to throw away more than a hundred years of research on 
the understanding of these governing equations of hydro-thermodynamics just to be able to 
use an off-the-shelf video prediction architecture, which does not seem to come close to 
where traditional numerical methods can go today in terms of relevant forecast metrics. The 
question to ask is hence whether it is indeed the right approach going forward, or whether 
one should strive to combine data-driven approaches with the inductive bias as provided by 
the fundamental laws of physics. There is a growing interest in physics-informed machine 
learning, which allows combining differential equations with data-driven machine learning 
which in a way seems more appropriate for the present problem at hand. If that was possible 
for the present model then I think the paper would become much stronger and more suitable 
for what would actually be required for weather prediction. 
 
Many thanks for sharing your thoughts on the overall method of data-driven weather 
forecasts with the help of video prediction methods from computer vision. 
We agree that physical informed neural networks (PINNs) constitute an appealing approach, 
especially for any physical process such as the evolution of the atmospheric state. While 
appealing due to the explicit awareness of physical laws, PINNs also have their drawbacks, 
especially for systems with a high-frequency and multi-scale nature (see, e.g., Wang et al., 
2020, Fuks and Tchelepi, 2020, or Jin et al., 2021). The evolution of the atmosphere can be 
described by a set of partial differential equations (PDE) that constitute the Navier Stokes 
equation, the 1st law of thermodynamics and the continuity equation of a multi-phase fluid. 
This PDE is inherently multi-scale and involves various high-frequency processes (e.g. 
gravity waves) which make the application of PINNs extremely challenging. Yet, mainly 
strongly simplified versions of this set of PDEs have been tackled with PINNs (see, e.g. 
Raissi et al., 2019 and Rao et al., 2020).  



For our particular case of the 2m temperature, the formulation of simplified PDEs or 
alternatively of physical constraints is far from straightforward, since the 2m temperature is 
subject to various physical processes down to millimetre scale, e.g. surface heat fluxes and 
turbulence in the (near-) surface layer. Note that the 2m temperature is usually also not a 
prognostic variable in atmospheric models. It rather constitutes an empirical fit between the 
temperature in the first model layer (located about 10m above ground) and the skin 
temperature, see e.g. the Forecast User Guide by ECMWF.  
Due to these arguments, we argue that data-driven methods are still a valid approach for the 
application of neural networks and as detailed below, we also believe that our study provides 
additional value with respect to previous studies such as Dueben et al., 2018, Rasp et al., 
2020, and Weyn et al., 2020. 
 
2) The selection of features (cloud cover, 850 hPa temperature and two-meter temperature) 
seems slightly arbitrary. While the authors do provide some justification for the selection of 
these parameters, there are many more parameters that influence the evolution of the two-
meter temperature. The authors then state "A more systematic variable selection process as 
is typical for data science studies is beyond the scope of this paper.", but I do not believe 
this is a justifiable statement here, because the authors do carry out a data science study in 
this paper. Again, if this was the first paper to be written on using a video prediction model 
for weather prediction this point could be easily forgiven, but as there are many other papers 
out there that provide proof of concept that such models can predict the future weather to 
some degree I think some more work needs to be done here to justify this feature selection, 
and to show which features have to be selected to get the best possible model results. In the 
machine learning literature it is customary to carry out ablation studies that showcase the 
importance of various aspects of the data/model components being used, and I think such a 
study would be beneficial here as well. 
 
We acknowledge the lack of justification for our feature selection. For the revised 
manuscript, we plan to provide more reasoning including some proper references.  
Additionally, we would like to highlight the added value, that is the inclusion of additional 
predictors based on expert knowledge. Previous studies mainly only used the 2m 
temperature itself as a predictor for their task (e.g. Bihlo, 2020, Rasp et al., 2020). Due to 
this, the neural network is enforced to encode the relevant atmospheric state from one state 
variable at a single height above the surface. By including the temperature at 850 hPa 
(T850) and the total cloud cover (TCC), we inform the network on the temperature of the air 
mass (850 hPa temperature is not directly affected by the interaction with the surface) and 
include a key driver of the surface heat fluxes (modulation of incoming short-wave and 
outgoing long-wave radiation).  
Our sensitivity study reveals that including T850 is beneficial, while TCC only yields minor 
improvements. Replacing TCC for the sake of a more informative predictor is of course an 
option, but it would be computationally expensive due to re-running the training step.  
However, we believe that more informative predictors can be beneficial to forecasting. 
Nevertheless, the setting of our current experiment has arrived at the computation limitations 
(12 hours of inputs and 12 hours of output). To make more variables as inputs feasible, we 
will first reduce the input sequences and test the performance of the same lead time in the 
revised paper (see also reply to 2) of referee comment #2).. 
 



3) The baseline comparison model used is a standard convolutional LSTM model. This is the 
simplest possible model for video frame prediction and it is well-known to perform rather 
poorly as it exhibits an excessive amount of diffusion. Thus, beating this baseline is rather 
straightforward so I wonder if the comparison of the authors' model to this simple model 
really yields a lot of information about the absolute strength of this model. It would be great 
to add a somewhat more state-of-the-art comparison model as well to be truly able to assess 
how good the stochastic adversarial video prediction model is for the present problem. 
Related to this, it would also be useful to add the performance metrics of traditional weather 
forecasting models as point of comparsion. Right now this information is just provided in the 
Discussions section but it would be nice to show these metrics in the plots as well. 
 
4) Owing to the interest in data-driven weather forecasting, a standard benchmark 
"WeatherBench" has been proposed to facilitate comparison with other deep learning-based 
models. The present paper does not use this benchmark but rather investigates the model 
performance over Europe instead. This makes positioning this work within the wider 
literature rather challenging so I wonder if it would not be better to provide these results 
instead (or in addition) for the WeatherBench dataset as well. Again, this would facilitate 
comparison with other approaches that have been proposed for data-driven weather 
forecasting. 
 
We will certainly include the WeatherBench models as other baseline models. Additionally, 
we will compute the performance of the IFS forecasts as a reference in the evaluation 
section of our revised paper.  However, we would like to emphasize that WeatherBench 
mainly focuses on medium-range forecasting with a long time step of 6 hours in the iterative 
approach (see Fig. 1 in Rasp et al., 2020). Our study focuses on short-range forecasts with a 
small time step of one hour which matches the output time step of NWP models. This makes 
the task more challenging for the models since errors accumulate (see Table 2 in Rasp et 
al., 2020 which reveals much higher RMSE for the ‘iterative’ models). Besides, our video 
prediction models have to learn explicitly the diurnal cycle of 2m temperature which 
constitutes the main temporal variability in our test study. This is for instance different from 
the study of Weyn et al., 2020, which also includes more predictors, but also uses a long 
time step of 6 hours. 
Reducing the total lead time also allows us to reduce the size of the domain of interest since 
the variability is due to processes on local scale (correlation between time and spatial scale, 
see Orlanski, 1975). This in turn allows us to keep a much higher spatial resolution of 0.3° 
(compared to 5.625° in WeatherBench or 0.5° in Bihlo, 2021). 
 
In summary, while the present paper is interesting to read I do believe there isn't a sufficient 
amount of novelty yet that warrants publication in GMD in its present form. The main 
contribution of picking a video prediction model and applying it to weather forecasting has 
been done several times in the recent literature so this does not feel novel enough anymore 
unless other open aspects of data-driven weather prediction are investigated in addition. 
These could be, as indicated above, a combination with differential-equations based models, 
a more thorough investigation of which parameters are responsible for the success of the 
proposed model, beating other existing approaches for the exact same problem domain, just 
to name a few.   
 



We hope that our arguments listed above together with the planned revision of our 
manuscript provide the necessary degree of novelty and improvement on our study.  
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