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Abstract. Pesticide transfers in agricultural catchments are responsible for diffuse but major risks to water quality. Spatialized

pesticide transfer models are useful tools to assess the impact of the structure of the landscape on water quality. Before con-

sidering using these tools in operational contexts, quantifying their uncertainties is a preliminary necessary step. In this study,

we explored how global sensitivity analysis could be applied to the recent PESHMELBA pesticide transfer model to quantify

uncertainties on transfer simulations. We set up a virtual catchment based on a real one and we compared different approaches5

for sensitivity analysis that could handle the specificities of the model: high number of input parameters, limited size of sample

due to computational cost and spatialized output. After a preliminary screening step, we calculated Sobol’ indices obtained

from Polynomial Chaos Expansion, HSIC dependence measures and feature importance measures obtained from Random For-

est surrogate model. Results from the different methods were compared regarding both the information they provide and their

computational cost. Sensitivity indices were first computed for each landscape element (site sensitivity indices). Second, we10

proposed to aggregate them at the hillslope and the catchment scale in order to get a summary of the model sensitivity and a

valuable insight into the model hydrodynamic behaviour. Conclusions about the advantages and disadvantages of each method

may help modellers to conduct global sensitivity analysis on other such modular and distributed hydrological models as there

has been a growing interest in these approaches in recent years.

1 Introduction15

Pesticide transfers from fields to water bodies is a major but also complex environmental concern. Significant efforts are re-

quired to assess risks for aquatic ecosystems and human lives. To do so, numerical models that simulate pesticide transfers

and fate are necessary tools to support risk management. Among others things, such models make it possible to explore and

compare scenarios of exposure and to assess mitigation measures. For this purpose and to support decision-making, physically

based models such as in Reichenberger et al. (2007) or Dosskey et al. (2011) are particularly valuable. When they are dis-20

tributed at the scale of the catchment, these models also make it possible to take into account the landscape configuration. This

is of particular interest as the landscape configuration is of big influence on transfers and regulation and corrective actions can
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thus be relevantly set up at this scale. PESHMELBA (Rouzies et al., 2019) is such a modular, process-based and distributed

model that simulates pesticide transfers and fate at the scale of small agricultural catchments and that takes into account the

impact of the landscape composition. However, PESHMELBA is characterized by a complex structure, numerous couplings25

and interactions that raise additional challenges about diagnosing model behaviour and uncertainty quantification (Gupta et al.,

2008; van Griensven et al., 2006). To address the issue of uncertainty quantification, sensitivity analysis is a powerful tool that

is being increasingly used in environmental models (Hamby, 1994; Tang et al., 2007; Nossent et al., 2011; Garcia et al., 2019;

Alipour et al., 2022). Among its objectives, sensitivity analysis contributes to get greater insight about the model behavior. It

also contributes to identify which input factors should be best characterized so as to significantly reduce the total uncertainty.30

In the field of pesticide transfer modelling, Dubus et al. (2003) and Holvoet et al. (2005) first performed one-at-a-time (OAT)

sensitivity analysis, meaning that each parameter influence was scrutinized individually while other parameters were set to their

nominal values. Although simple and computationally cheap to set, results from OAT analysis may be inaccurate in case of

non linear input/output relationship (Saltelli et al., 2004; Nossent and Bauwens, 2012). As a result, global sensitivity analysis35

(GSA) that varies all input factors simultaneously, on their entire ranges of definition, is favoured to address the sensitivity of

environmental models. A large range of GSA methods exist which are not theoretically nor practically equivalent to set and the

method should be carefully chosen depending on the application characteristics (Song et al., 2015; Pianosi et al., 2016; Sarrazin

et al., 2016). In the field of pesticide transfer modelling, studies mainly use variance decomposition methods. This approach

is particularly appreciated as it allows to characterize not only the contribution of each input factor individually but also the40

contributions of interactive effects between input factors. In addition, sensitivity indices calculated from variance-based method

are easy to interpret because they represent the portion of output variance that can be apportioned to an input factor (Saltelli,

2002). The Sobol’ method (Sobol, 1993) is the most popular variance-based method and it has been widely used in pesticide

studies (e.g. Hong and Purucker, 2018; Gatel et al., 2019; D’Andrea et al., 2020; Faúndez Urbina et al., 2020). In some other

studies (Fox et al., 2010; Lauvernet and Muñoz-Carpena, 2018) variance decomposition is also performed based on Fourier45

Transform methods (FAST and eFAST methods). However, such variance decomposition methods are characterized by a high

computational cost (meaning that they require a lot of model evaluations to compute sensitivity indices) that cannot be always

afforded. As the computational cost quickly increases with the number of input factors, a classical approach consists in first

applying a screening step to identify (if there are) parameters that have a negligible influence on the output variability. Non-

influential parameters are then removed or set to constant values. Once the input space dimension has been reduced, variance50

decomposition can be applied on the reduced set of input factors to classify remaining input factors according to their relative

contribution to output variability (ranking step).

Table 1 summarizes the characteristics of the GSA application for the previously cited pesticide studies (such table is meant

to provide some typical examples rather than an exhaustive list of studies on the field of pesticide modelling). It shows that

in these studies, the input space scrutinized for ranking contains at most 24 parameters (in some cases after a screening step)55

and that the ranking step always uses more than 10,000 simulations. However, in the case of the PESHMELBA model (and

probably of other distributed, physically based, hydrological and pesticide models) a classical application involves around 150
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Table 1. Examples of global sensitivity analysis performed on pesticide transfer models.

Reference Model name Nb. of input

factors for

ranking

Method Nb. of model

evaluations

Fox et al. (2010) VFSMOD 18 eFAST 14,977

Lauvernet and Muñoz-Carpena

(2018)

VFSMOD 24 eFAST 75,544

Hong and Purucker (2018) PRZM 11 Sobol 195,000

Gatel et al. (2019) CATHY 15 Sobol/Sobol with ROA-LHS

sampling (Tissot and Prieur,

2015)

1,922/17,000

D’Andrea et al. (2020) PWC 24 Sobol 11,776

Faúndez Urbina et al. (2020) SWAP-PEARL <14 Sobol >18,000

parameters. In addition, 10,000 simulations may be very hard to reach in realistic applications due to computation time. Such

characteristics make classical approaches for variance-based GSA quite hard to apply on PESHMELBA. Then, there is a need

for exploring other, low computational cost GSA methods to perform a ranking task in the PESHMELBA model. Recently,60

new GSA approaches that require much less model evaluations have emerged. For instance, computing a metamodel based on

polynomial chaos expansion on the model (Ghanem and Spanos, 1991) allows to compute Sobol’ sensitivity indices directly,

for a very limited computational cost (Sudret, 2008; Fajraoui et al., 2011; Wang et al., 2015). From a totally different point of

view, the Hilbert-Schmidt Independence Criterion (HSIC) proposed by Gretton et al. (2005b) is used as a sensitivity measure in

Da Veiga (2015). It describes the global dependence between the output and each input factor from a probabilistic point of view65

also from a very limited computational budget. Finally, the growing interest for machine learning techniques is paving the way

for new approaches of GSA, such as the Random Forest method (RF). Its structure provides valuable information on feature

importance that can be processed as sensitivity indices like in Harper et al. (2011) and Aulia et al. (2019) (see Antoniadis et al.

2021 for a review on the use of random forests for sensitivity analysis). However, such innovative methods have never been

applied to complex, distributed pesticide transfer model before.70

Then, the objective of this paper is to evaluate and to compare three new, low computational cost GSA methods on an

application of the PESHMELBA model. The methods will be especially compared in terms of interpretability of the sensitivity

indices they provide and reliability (based on the study of their convergence rate). We also investigate whether such approaches

suit to the spatialized aspect of PESHMELBA. To do so, we investigate the relevancy of computing both local and aggregated75

indices following the recommandations from Saint-Geours (2012). The analysis is performed on a virtual scenario based on a

real catchment in the Beaujolais region (France).
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The paper is organized as follows: we describe the PESHMELBA model in Section 2.1 and the model setup in Section 2.2.

The input sampling is described in Section 2.3, then we introduce the different GSA approaches and the methodology used for

landscape analysis from Section 2.4 to Section 2.6. Results are presented in Section 3. They focus successively on screening80

(Section 3.1), comparison of GSA methods (Section 3.2) and spatial analysis (Section 3.3). Finally, Section 4 gathers some

points of discussion.

2 Material and methods

2.1 The PESHMELBA model

The PESHMELBA model represents a catchment as a set of interconnected components that stand for landscape elements85

such as plots, Vegetative Filter Strips (VFSs), ditches, hedges or rivers (Rouzies et al., 2019). In order to respect the spatial

organization and the heterogeneity of the landscape, it deals with mesh elements that can be surfaces or lines. Surface mesh

elements are called Homogeneous Units (HUs). A HU is a portion of landscape that is homogeneous in terms of hydrodynamic

processes and agricultural practices. Linear mesh elements are called reaches. A reach is characterized by its nature (so far

ditch, river or hedge) and by its neighbouring components: it is at most in contact with one elementary mesh element on each90

bank. In addition to its geometric or hydrodynamic properties, each mesh element is characterized by its one-way connections

with the neighbouring components that stand at a lower altitude. One or several processes are represented on each element

depending on its nature. Lateral transfers at surface and in subsurface between elements are also integrated. Independent codes

called units are used to simulate the different processes, depending on the knowledge the user has on the targeted catchment

functioning. Then, the OpenPALM coupler (Fouilloux and Piacentini, 1999; Buis et al., 2006) is used to couple the units and to95

build the complete application. OpenPALM has adapted features to easily deal with spatial and temporal aspects of the model.

For example, synchronization tools make it possible to couple processes with different time steps. The final structure is highly

modular and process representations can easily be added, upgraded or removed depending on the landscape description. These

features make PESHMELBA particularly suitable for scenario exploration.

PESHMELBA focuses on surface and subsurface transfers of water and pesticides. An extensive description of elements and100

processes already included can be found in Rouzies et al. (2019). The PESHMELBA version used in this study integrates a

representation of water and pesticide transfers on plots, VFSs and rivers. Each plot or VFS is represented by a unique column of

soil divided into vertical cells. In such a column, vertical infiltration is simulated using a solution of the 1D Richards equation

proposed by Ross (Ross, 2003). An adapted set of parameters makes it possible to represent high infiltration rate, surface

runoff reduction and enhanced adsorption and degradation on VFSs. Root-water uptake is integrated based on Varado et al.105

(2006). Surface runoff routing is represented based on the kinematic wave (Lighthill and Whitham, 1955) and the Darcy law

(Darcy, 1857) is used for lateral subsurface transfers. In addition to shallow groundwater tables, PESHMELBA also represents

shallowly perched water tables and associated lateral transfers. Finally, reactive transfer of solutes is represented: advection,

degradation based on a first order law and adsorption, based on linear or Freundlich isotherms are integrated. Each river or

ditch reach is represented by a unique tank. The River1D module (Branger et al., 2010) solves the kinematic wave equation for110

4



water routing and pesticide advection in the network. Groundwater-river exchanges are represented by the Miles formulation

adapted by Dehotin et al. (2008).

2.2 Model setup

A virtual scenario of limited size is set from a portion of la Morcille catchment (France) in order to explore the different GSA

methods and to ease interpretation of spatialized results. The chosen portion is selected so as to remain representative of the115

global composition of La Morcille catchment in terms of soil, slope, type and size of elements as well as interface length

between them. The chosen scenario is composed of 10 vineyard plots, 4 vegetative filter strips and 5 river reaches that delimit

a left and a right slope (see Figure 1).

Figure 1. Left: portion of La Morcille catchment selected to perform sensitivity analysis. Yellow units stand for vineyard plots while green

units stand for vegetative filter strips. Brown stars denote locations of pesticide application. Right: slopes and connections between elements.

Soils types on the catchment are mainly sandy (Peyrard et al., 2016). We use the classification from Frésard (2010) that

groups soil types into three main Soil Units (SUs). Each SU is defined by the vertical succession of 3 or 4 soil layers, also120

called soil horizons: one surface horizon, 1 or 2 intermediary horizons and one deep horizon as depicted in Figure 2. Note that

interface depths can vary from one SU to another. The reader may refer to Rouzies et al. (2019) for further details on how soil

types and soil horizons are represented in PESHMELBA. At the catchment scale, the classification results in the following SU

(see Figure 2): sandy soil (SU1), sandy soil on clay on the right bank plateau (SU2) and heterogeneous sandy soils on lower

slopes and thalwegs (SU3). Spatial arrangement is set in order to be as realistic as possible in terms of possible interfaces125

between SUs. Each SU is set at least on one vineyard plot and one VFS on the virtual scenario.
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Figure 2. Soil type locations for the case study. Green contours show the vegetative filter strips.

Considering the different soil horizons whose hydrodynamic behavior and texture must be parametrized, the two types

of vegetation (grassland and vineyard), and the different landscape element types (plots, VFSs and river reaches) that are

simulated, the scenario results in 145 input parameters to be considered for sensitivity analysis. They are described in Table 2

so as the spatial level on which they are set and their values for the nominal simulation.130

For the nominal scenario, values for bulk density bd and organic carbon content moc are available from Van den Bogaert

(2011) and Randriambololohasinirina (2012). They are, as well as hydrodynamic parameters for each soil type, described in

Table 3. Retention values measured by Van den Bogaert (2011) are used to fit retention curve using SWRCfit tool (Seki, 2007).

A Schaap-Van Genuchten conductivity curve is used (Schaap and van Genuchten, 2006; Ross, 2006) whose matching point at

saturation Ko and empirical pore-connectivity L are derived from conductivity data and retention parameters from retention135

curve fitting. Surface organic carbon content are set equal to that of the first soil horizon on plots and VFSs. For each SU, only

the first soil horizon on VFSs differs from vineyard plots so as to highlight enhanced infiltration capacities. Surface horizon

on VFSs are characterized by a 2.8%-organic carbon content (Randriambololohasinirina, 2012) and a saturated hydraulic

conductivity of 150 mm.h-1 (or 4.31·10-5 m.s-1) following Catalogne et al. (2018). In the absence of data to characterize

potential anisotropy of vertical and horizontal saturated conductivities Ksv and Ksh, isotropy is considered, thus the ratio140

Ksh/Ksv is set to 1 on the catchment.

The pesticide chosen in this study is the tebuconazole as it is a fungicide widely used on la Morcille catchment. It is a

slightly mobile molecule and we use a Freundlich isotherm to describe its adsorption equilibrium. Adsorption parameters are

obtained from Lewis et al. (2016) (Koc = 769 mL.g-1, Freundlich isotherm exponent = 0.84). Surface degradation coefficient

is also taken from Lewis et al. (2016) (DT50 = 47.1 days) and a decreasing degradation rate in function of depth is set as in145

FOCUS (2001). A 500g-application is considered at the beginning of the simulation on plots 2 and 7 (see Figure 1). Most of

the transformation and adsorption of tebuconazole is supposed to happen on plots and VFSs at this modelling scale. Therefore,

no adsorption or degradation is simulated in the river.
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Table 2. Input factor description, corresponding spatial level definition and value for the nominal scenario. Nominal values are explicitly

distinguished between vineyard plots and VFSs with the character ’-’ when needed.

Input factor [units] Description Spatial level definition Nominal value

Soil parameters

thetas [m3m-3] Saturated water content Soil horizon see Table 3

thetar [m3m-3] Residual water content Soil horizon see Table 3

Ks [ms-1] Saturated hydraulic conductivity Soil horizon

hg [m] Air-entry pressure in Van Genuchten retention characteristic curve Soil horizon see Table 3

mn Deduced parameter from Van Genuchten retention characteristic

curve n: mn = n-1

Soil horizon see Table 3

Ko [ms-1] Matching point at saturation in modified Mualem Van Genuchten

conductivity curve (Schaap and van Genuchten, 2006)

Soil horizon see Table 3

L Empirical pore-connectivity parameter Soil horizon see Table 3

bd [gcm-3] Bulk density Soil horizon see Table 3

moc [gg-1] Organic carbon content Soil horizon see Table 3

Pesticide parameters

Koc [mLg-1] Freundlich sorption coefficient Pesticide type 769

DT50 [d] Half life Pesticide type 47.1

Vegetation parameters

manning [sm-1/3] Manning’s roughness Vineyard plot-VFS 0.033-0.2

Zr [m] Rooting depth Vineyard plot-VFS 2.62-0.9

F10 Fraction of the root length density in the top 10% of the root zone Vineyard plot-VFS 0.370-0.335

LAImin Min LAI value Vineyard (plot) 0.01

LAImax Max LAI value Vineyard (plot) 2.5

LAIharv LAI value at harvest time Vineyard (plot) 0.01

LAI Constant LAI value Grassland (VFS) 5

River parameters

hpond [m] Ponding height in the river bed River reach 0.01

di [m] Distance between the river bed and the limit of impervious saturated

zone

River reach 1.5

Ks [ms-1] Saturated conductivity of the river bed River reach 2.38·10-5

manning [sm-1/3] River bed Manning’s roughness River reach 0.079

Plot and VFS parameters

hpond [m] Ponding height Plot-VFS 0.01-0.05

adsorpthick [m] Mixing layer thickness All landscape elements

(except river)

0.01
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Table 3. Soil parameters for SU1, 2 and 3. Hydrodynamic parameters are based on Van Genuchten retention curve and on Schaap-Van

Genuchten conductivity curve fitting. Parameters are described in Table 2. Values for the surface horizon are explicitly distinguished between

plot and VFS when they are different. Horizons 11, 12, 13 are surface horizons for plots whereas horizons 14, 15, 16 are surface horizons for

VFSs.

Horizon depth thetas thetar hg n Ks Ko L bd moc

[m] [m3m-3] [m3m-3] [m] [-] [ms-1] [ms-1] [-] [gcm-3] [%]

SU
1

11-14 0.05 0.34 0.04 -9.69·10-2 1.27 3.93·10-5-4.31·10-5 2.86·10-7 -8.43 1.34 0.91-2.80

2 0.5 0.34 0.05 -3.29·10-2 1.20 8.64·10-5 2.28·10-7 -6.52 1.47 0.39

3 0.65 0.32 0.08 -2.09·10-2 1.20 5.39·10-5 7.47·10-7 -4.24 1.57 0.10

4 4 0.28 0.07 -5.99·10-2 1.23 3.11·10-5 1.47·10-6 -0.14 1.53 0.07

SU
2

12-15 0.035 0.34 0.04 -9.69·10-2 1.27 3.93·10-5-4.31·10-5 2.86·10-7 -8.43 1.34 1.15-2.80

6 0.4 0.35 0 -6.60·10-2 1.13 2.16·10-5 3.19·10-7 9.66 1.59 0.68

7 0.55 0.32 0 -7.18·10-2 1.08 9.60·10-6 1.67·10-7 -10 1.66 0.35

8 4 0.42 0 -3.02·10-1 1.08 3.98·10-6 9.72·10-8 10 1.54 0.28

SU
3 13-16 0.06 0.34 0.04 -9.69·10-2 1.27 3.93·10-5-4.31·10-5 2.86·10-7 -8.43 1.34 0.75-2.80

9 0.45 0.33 0.08 -6.72·10-2 1.26 3.05·10-5 3.36·10-7 0.42 1.46 0.37

10 4 0.32 0.06 -3.56·10-2 1.18 2.38·10-5 3·10-7 1.05 1.62 0.40

A no-flux boundary condition is applied on all sides except on surface where rain and potential evapotranspiration are con-

sidered. Rain data are extracted from BDOH database (Gouy et al., 2015). A 3-month simulation is performed on a time period150

characterized by long and intense rain events (670 mm cumulated) allowing for significant water and pesticide transfers both

by surface runoff and subsurface saturated transfers. Potential evapotranspiration (PET) data are obtained from MeteoFrance

for the neighbouring site of Liergues (MeteoFrance, 2008). Data are averaged over 10-day periods and corrected by a factor

-11 % to match La Morcille site as recommended in Durand (2014) and Caisson (2019). Rain and PET data for the simulation

are summarized in Figure 3.155
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Figure 3. Climatic forcing (rain and potential evapotranspiration) for the simulation. The dotted red line stands for the one-shot pesticide

application.

Although virtual, we aim at setting initial conditions as plausible as possible for this scenario. As running the model on a

warm-up period is not possible due to data availability and computational cost limitation, initial water table levels are deduced

from piezometric data on a neighbouring hillslope and all soil columns are supposed to be in hydrostatic equilibrium at the

beginning of the simulation. Data from several piezometers are available on a transect, perpendicular to the river. Data are

extrapolated over the virtual hillslope width on both sides of the river. An upstream 0.177 m3s-1-flow is considered in the river160

based on local measurements (Gouy et al., 2015).

Two types of vegetation are represented in this scenario. Vineyard cover is considered on plots while permanent grassland is

simulated on VFSs. Considering the period of simulation (3 months), a fixed root depth (Zr=2.62 m) and a fixed root density

in the first 10 % of the root depth (F10=37 %) are considered for vineyards following values reported in Smart et al. (2006)

and confirmed by expert knowledge in the area. The root depth (Zr) is set to 0.9 m and the root density in the first 10 % of the165

root depth (F10) is set to 33.5 % for grassland (Brown et al., 2007). For vineyards, the Leaf Area Index (LAI) is assumed to

increase from a minimul value LAImin from leaves formation until a maximum value LAImax before declining until harvest

LAIharv. Dates and associated values for this development cycle are taken from Brown et al. (2007) and they are detailed

in Appendix A1. On grassland, the LAI is assumed to remain constant and a nominal value of 5 is chosen based on Brown

et al. (2007). In Table 2, the reader should note that the LAI parameter relates to the constant LAI value for grassland while170

LAImin, LAImax and LAIharv relate to vineyard. The remaining parameters for root extraction model are also fixed to

nominal values proposed by Varado et al. (2006); Li et al. (2001). Manning coefficients are set from data reported in Arcement

and Schneider (1989). A mature row crop value (0.033 s.m-1/3) is chosen for vineyard while a high grass pasture value (0.2

s.m-1/3) is set for VFS cover.
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Finally, ponding height is set to 0.01 m on vineyard plots while an increased value is set on VFSs (0.05 m). According to175

Gao et al. (2004) and Walter et al. (2007), the surface mixing layer thickness is set to 0.01 m on both plot and VFS domains. In

the river, the distance between the river bed and the limit of impervious saturated zone (di) is set to 1.5 m (ERT field measure,

personal communication) and the saturated hydraulic conductivity (Ks) is set to 2.38·10-5 ms-1 accordingly to local saturated

conductivities in the neighbouring soil. The ponding height is set to 0.01m while the Manning coefficient is chosen equal to

0.079 s.m-1/3 as suggested in Arcement and Schneider (1989) for channels with limited obstruction.180

2.3 Input sampling

The input factor distributions are set to be as representative as possible of the available data on the catchment and the associated

uncertainties. Mean values are taken from the nominal scenario described in Section 2.2. Distributions and standard deviations

are assigned based on experimental measurements from the catchment of application, available scientific literature or expert

knowledge. All assigned distributions and corresponding statistics are summarized in Appendix B.185

As commonly found in the literature (Coutadeur et al., 2002; Fox et al., 2010; Schwen et al., 2011; Dairon, 2015; Dubus

et al., 2003; Dubus and Brown, 2002), a lognormal distribution is assigned to the saturated hydraulic conductivity Ks. A 20 %

coefficient of variation (CV) is used so as to remain representative of each soil horizon hydrodynamic behavior. Distributions

for Schaap-Van Genuchten parameters could not be found in the literature, thus empirical pore-connectivity parameter L is

assigned a uniform distribution +/- 20% around the mean value (Zajac, 2010). As the matching point at saturation in modified190

Mualem Van Genuchten conductivity curve Ko has the same physical meaning than Ks, a log-normal distribution is also

assigned to this parameter and a 20 % CV is set. Saturated water content thetas, residual water content thetar, Van Genuchten

parameter mn and air-entry pressure hg are assigned normal distributions (Schwen et al., 2011; Alletto et al., 2015; Dairon,

2015; Gatel et al., 2019). A 10% CV is set to thetas (Gatel et al., 2019; Lauvernet and Muñoz-Carpena, 2018) and thetar

is assigned a 25% CV (Gatel et al., 2019). A 10 % CV is set for mn and hg (Schwen et al., 2011; Alletto et al., 2015; Gatel195

et al., 2019). A uniform distribution is assigned to organic carbon content moc (Lauvernet and Muñoz-Carpena, 2018). A

triangular distribution is assigned to the Freundlich sorption coefficient Koc (Lauvernet and Muñoz-Carpena, 2018) and a

normal distribution is assigned to the half life DT50. 60% CV are assigned to Koc and DT50 distributions as such parameters

are considered relatively uncertain (Dubus et al., 2003). Triangular distributions are assigned to Manning’s roughness manning

on plots and for the river bed (Lauvernet and Muñoz-Carpena, 2018; Gatel et al., 2019). A uniform distribution with a +/- 20 %200

range around the mean value is assigned to remaining input factors as little information could be found in the literature (Zajac,

2010).

Using a fully distributed model such as PESHMELBA raises the issue of sampling strategy. Indeed, in this case study, even if

the site is only composed of 14 surface units, the large number of soil horizons on the catchment, considering the hydrodynamic

distinction between plots and VFSs, also dramatically increases the number of parameters. Sampling all parameters on each205

spatial unit leads to a huge number of simulations that could not be computationally afforded. Moreover, such independent

sampling on a very large number of parameters may lead to misinterpretation of the sensitivity analysis results as the influence

of physical processes could not be distinguished from spatial arrangement. For each sample, one set of soil parameters is
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therefore sampled for each soil horizon and those parameters are applied to all spatial units that contain this horizon which

mantains the number of parameters to be considered in the GSA to 145.210

2.4 Methodology for global sensitivity analysis in the PESHMELBA model

Although the PESHMELBA model is dynamic, model outputs considered in this paper are scalar quantities rather than tem-

poral series to keep the problem simple. In order to investigate PESHMELBA abilities to properly represent transfers in a

heterogeneous landscape, sensitivity analysis is performed on four hydrological and quality variables: 1/ cumulated water vol-

ume transferred in the subsurface (saturated lateral transfers), 2/ pesticide mass transferred in the subsurface (saturated lateral215

transfers) 3/ cumulated water volume transferred on surface (surface runoff), 4/ cumulated pesticide mass transferred on sur-

face (surface runoff). However, these quantities are spatialized leading to multidimensional outputs. To deal with the spatialized

aspect, GSA is first performed on scalar quantities, on each landscape element (see Sections 2.4.1 to 2.4.3), then sensitivity

indices are aggregated in a second time providing catchment-scale sensitivity indices (see Section 2.6).

Figure 4. Full workflow used to perform GSA on the PESHMELBA model in 3 steps: 1/ Screening, 2.a/ Ranking at a local scale, 2.b/

Ranking at the catchment scale.

The full workflow used to perform GSA in the PESHMELBA model is summarized in Figure 4. Considering the high num-220

ber of input parameters, a screening step is first performed to decrease the dimension of the problem. Screening is performed

with a statistical independence test based on the HSIC measure (see Section 2.4.2) on an initial 4,000-point Latin Hypercube

Sample (LHS, McKay et al. 1979). Second, a new 2,000-point LHS obtained from the reduced set of input parameters is com-

puted to perform ranking. Sensitivity indices are computed from the 2,000-point sample based on 1/ variance decomposition

(Section 2.4.1), 2/ HSIC dependence measure (Section 2.4.2) and 3/ feature importance measure obtained from Random Forest225
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(Section 2.4.3). These methods are all global, model-free and all suit to non-linear, non-monotonic models. In addition, they

all belong to the category of ’given-data’ methods which means that the input sample they consider does not require a specific

structure. This is of particular interest for models that are computationally costly as it allows to take advantage of preexisting

simulations. That is why such methods have known a growing interest in the recent years (Saltelli et al., 2021; Sheikholeslami

et al., 2021). However, such methods may not be equally costly to set and they define the notion of sensitivity in contrasted230

ways. We compare them regarding the information they provide, their accuracy and robustness.

In what follows, we denote Y ∈ R a given scalar output from PESHMELBA. Y is function of a multivariate input random

vector Y=M(X) where X= (X1, ...,XM) ∈ RM contains the 145 input parameters considered in this case study and where

M is the PESHMELBA model.235

2.4.1 Variance decomposition

Variance-based methods aim at determining how input factors contribute to the output variance (Faivre et al., 2013). One of the

most popular variance-based method is the Sobol’ method (Sobol, 1993). The Sobol’ indices capture the direct impact of any

input and also describe the impact of input parameters in interaction with others. It is based on the decomposition of the total

variance of the output:240

Var[Y] =

M∑
s=1

M∑
i1<...<is

Vi1,...,is , (1)

where Vi1,...is indicates the portion of variance that can be attributed to interactions between input parameters Xi, i ∈ i1, ...is.

From the above, one can define Sobol’ indices as:

Si1,...,is =
Vi1,...is

Var[Y ]
. (2)

By definition, 0≤ Si1,...,is ≤ 1. In particular, first order sensitivity indices Si =
Vi

Var[Y] only account for main effects of pa-245

rameter Xi. They can be interpreted as the decrease in the total output variance that could be obtained when removing the

uncertainty about Xi when setting Xi to a fixed value (Tarantola et al., 2002). These indices are usually calculated as a first

step as they often account for a large portion of the variance (Faivre et al., 2013). Total sensitivity indices STi evaluate the total

effect of an input factor Xi on the output by taking into account its main effect Si and all interaction terms that involve it:

STi =
∑
Ii

Si1,...,is , Ii = {(i1, ..., is) | ∃k,1≤ k ≤ s, ik = i}. (3)250

The total sensitivity index STi
stands for the portion of total output variance that remains as long as Xi stays unknown

(Tarantola et al., 2002).

Sobol’ indices direct computation requires a large sample size that can not be afforded in this case study. As a result, we

compute Sobol’ indices from a limited sample size, based on Polynomial Chaos Expansion (PCE, Sudret 2008) in order to

circumvent such difficulty. This approach consists in building a surrogate model which analytical polynomial expression is255
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directly related to Sobol’ indices. Building a PCE and deducing the associated Sobol’ indices thus only requires a training

sample of limited size and knowledge about each input parameter marginal distribution. More precisely, PCE provides a

functional approximation of the computational model based on the projection of the model output on a suitable basis of

stochastic polynomial functions in the random inputs (Ghanem and Spanos, 1991). For any square integrable scalar output

random variable Y, its polynomial chaos expansion is expressed as follows:260

Y=
∑

α∈NM

γαΨα(X), (4)

where the Ψα’s are multivariate orthonormal polynomials built according to the marginal probability density functions of each

input factor and γα are the associated coordinates. Expansion from Eq. (4) is usually truncated to a finite sum for practical

computation, using for example a truncation scheme based on least angle regression (Blatman and Sudret, 2011). The Sobol’

indices can then be obtained analytically from the coefficients γα (see Sudret 2008 for a demonstration of the relation between265

PCE and Sobol’ indices). In our study, the UQLab Matlab software (Marelli and Sudret, 2014) is used to compute Sobol’

indices from the 2,000-point LHS (step 2.a, Figure 4). We use a q-norm- and degree-adaptive sparse PCE based on Least

Angle Regression Scheme (LARS, Blatman and Sudret 2011) with q-norm ∈ [0.1,0.2, ...,1.0] and a maximum degree of 3.

2.4.2 HSIC dependence measure

Sensitivity measures based on Hilbert-Schmidt Independence Criterion (HSIC, Da Veiga 2015) belong to the category of270

dependence measures that quantify, from a probabilistic point of view, the dependence between each input and the output. The

greater the dependency between the input factor and the output, the greater the associated sensitivity measure. The Hilbert-

Schmidt Independence Criterion used for GSA is based on the cross-correlation between any non-linear transformations of

some input factor Xi and the output Y (De Lozzo and Marrel, 2016). Such dependence measure simultaneously captures a

very broad spectrum of forms of dependency between the variables (Meynaoui et al., 2018). These indices can be estimated275

from small samples (a few hundreds of points) and do not depend on the number of inputs, which is a huge advantage.

The HSIC theory relies on Reproducing Kernel Hilbert Space (RKHS) and kernel functions. Let Fi denote the RKHS com-

posed of all continuous bounded functions of input Xi with values in R and G the RKHS composed of real-valued continuous

bounded functions of output Y with values in R. ⟨·, ·⟩Fi
(resp. ⟨·, ·⟩G) is the inner product on Fi (resp. G) and kXi

(resp.

kY ) is the corresponding kernel function that defines such scalar product. The HSIC measure corresponds to the square of the280

Hilbert-Schmidt norm of the cross-covariance operator C[GFi] : G →Fi, which is:

HSIC(Xi,Y)Fi,G = ||C[GFi]||2HS =
∑
j,k

⟨ui
j ,C[GFi](vk)⟩Fi

=
∑
j,k

cov(ui
j(Xi),vk(Y)), (5)

where (ui
j)j≥0 and (vk)k≥0 are orthogonal bases of Fi and G respectively.

The resulting sensitivity indexes proposed by Da Veiga (2015) are defined for each input factor Xi, i ∈ {1, ...,M} as:

S2
Xi

=
HSIC(Xi,Y)Fi,G√

HSIC(Xi,Xi)Fi,FiHSIC(Y,Y)G,G
. (6)285
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Based on Gretton et al. (2005a), an estimator of HSIC can be computed from an N -sample (xj
i ,y

j), j ∈ {1, ..,N} of (Xi, Y):

ĤSIC(Xi,Y)Fi,G =
1

(N − 1)2
Tr(KHLH), (7)

where H ∈ RN×N is the centering matrix Hij = δij − 1
N and K ∈ RN×N and L ∈ RN×N are the Gram matrices defined as

Kij = kXi
(xi,xj) and Lij = kY (y

i,yj) where kXi
and kY are the kernel functions associated to each RKHS. In this study,

and following De Lozzo and Marrel (2014, 2016) and Da Veiga (2015), we choose a Gaussian kernel as it is a universal kernel290

that can fully characterize the independence of variables and that can be used for scalar or vectorial variables. For a vectorial

variable x ∈ Rq , it is expressed as follows:

k(x,x′) = exp(−λ||x−x′||22), (8)

with ||.||2 is the Euclidian norm in Rq and where the hyperparameter λ is called the bandwidth parameter of the kernel. In this

study, the bandwith λ is estimated from the inverse of the empirical standard deviation of the sample.295

When using a universal kernel, the HSIC indices can also be statistically used for screening purpose (De Lozzo and Marrel,

2014). A statistical test can be set with the null hypothesis “Xi and Y are independent” . Considering an experimental design

of N points (x1
i , ...x

N
i ) and the associated output points (y1, ...,yN ), an estimator ̂HSIC(Xi,Y) of the dependence measure

HSIC(Xi,Y) is firstly computed. Then B bootstrap versions Y[1],...,Y[B] are resampled from the original output sample300

(y1, ...,yN ) with replacement so as to contain the same number of points N . For each Y[B] the input points associated to Xi

are not resampled. Indeed, under the independence hypothesis, any values of Y can be associated to Xi. For each bootstrap

version b, an estimator ĤSIC
[b]
(Xi,Y) is computed. Then, the associated bootstrapped p-value is given by :

p-valB =
1

B

B∑
b=1

1
ĤSIC

[b]
(Xi,Y)>ĤSIC(Xi,Y)

(9)

Finally, denoting α the significance level, if p-valB<α, the independence hypothesis is rejected, otherwise it is accepted. In305

this study, such statistical test is used to perform screening based on 100 bootstrap replicates and a 1% significance level. The

R code provided in De Lozzo and Marrel (2016) (see supplementary material) to compute HSIC measure has been adapted in

Python to perform both screening and ranking.

2.4.3 Random Forest

Random Forests (Breiman, 2001) belong to ensemble machine learning techniques. It consists in creating a surrogate by310

averaging results from an ensemble of K decision trees created independently. A decision tree is composed of an ensemble of

discriminatory binary conditions contained in nodes. Such conditions are hierarchically applied from a root node to a terminal

node (tree leaf) (Rodriguez-Galiano et al., 2014). The input space is therefore successively partitioned into smaller groups

that correspond to the nodes according to a response variable. Such splitting goes on until reaching a minimum threshold of

members per node. In this study, we consider regression trees that focus on continuous response variables.315
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As each individual decision tree is very sensitive to the input dataset, bagging is used to avoid correlations between them

and to ensure model stability. It consists in training each decision tree from a different training dataset smaller than the original

one. Such subsets are built from the original one by resampling with replacement making some members be used more than

once while others may not be used. Such a technique makes the random forests more robust when facing slight variations in

the input space and increases accuracy of the prediction (Breiman, 1996, 2001). The samples that are not used to grow a tree320

are called “out-of-bag” (OOB) data and will be used for the test step. The RF workflow is summarized in Figure 5.

Figure 5. RF workflow (adapted from Rodriguez-Galiano et al. 2014). K bootstrapped sets are extracted from the original training set. Part

of each set "InBag" is used to grow an independant decision tree and the final regression value is the average of all trees. The remaining

portion of each tree "out-of-bag" (OOB) is used as a test set.

RF structure can be used to provide knowledge about how influential each input factor is. This measure is referred to as

feature importance in the RF formalism. The random forest is first trained on the targeted output variable Y using a N -

points sample (Xj ,Yj) for j ∈ {1, ...,N}. Once the forest has been trained, each input factor Xi is permuted individually so

as to break the link between Xi and Y. The effect of such permutation on the model accuracy is then investigated. A large325

decrease in accuracy indicates that the input factor is highly influential whereas a small decrease in accuracy indicates that it

has little influence. Different algorithms exist to compute such Mean Decrease in Accuracy (MDA) (see Bénard et al. (2021)

for an extensive review of the different formulations in the existing R and Python packages) and we focus here on the original

formulation from Breiman paper (Breiman, 2001). The decrease in accuracy is originally computed from the mean square error

between predictions from OOB data with and without permutation for each tree. Results are then averaged over all trees to get330

the MDA. The algorithm for feature importance calculation is extensively described in various papers (e.g. Soleimani, 2021;

Bénard et al., 2021) and it is reminded in what follows:
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1. For each tree k:

– Estimate ϵ̂OOBk
the error from the OOB sample Lk:

ϵ̂OOBk
=

1

|Lk|
∑

j \(xj ,yj)∈Lk

(yj −M̂RF (x
j))2. (10)335

Where M̂RF is the estimated RF metamodel.

– For each input factor Xi:

– Randomly permute xi in {xj ∈ Lk} to generate a new input set {xj∗ ∈ Lk}.

– Estimate ϵ̂∗OOBk
(i) using the permuted input set:

ϵ̂∗OOBk
(i) =

1

|Lk|
∑

j \(xj ,yj)∈Lk

(yj −M̂RF (x
j∗))2. (11)340

2. For each input factor Xi

– Compute the mean decrease in accuracy MDAi:

MDAi =
1

K

K∑
k=1

ϵ̂OOBk
− ϵ̂∗OOBk

(i). (12)

Where K is the total number of trees

Despite the "black-box" aspect of RF building, recent works theoretically establish a link between Mean Decrease in Accuracy345

and Sobol Total Indices when input parameters are assumed independent. Indeed, Gregorutti et al. (2017) establish that for all

input parameter Xi:

STi =
MDAi

2Var[Y]
. (13)

In this study, the randomForestSRC R package (Ishwaran and Kogalur, 2020) is used to obtain feature importance measures

and the number of trees used to train the RF is set to 500.350

2.5 Robustness and reliability assessment of the sensitivity indices

In order to assess the robustness of the calculated sensitivity indices, an additional 200-point test set is first used to assess

PCE and RF metamodel performances. In a second time, 95% confidence intervals on sensitivity indices are computed for

all methods, but by different means : the bootstrap resampling procedure provided in UQLab is used to calculate confidence

intervals on PCE-based Sobol indices (see Marelli and Sudret 2018 for justification). In the case of random forest, building355

extra bootstraps could affect the consistency of the OOB sample as the RF structure already includes a bootstrap step to build

each tree. Then, we use a subsampling approach without replacement with subsample size set to 80% of the initial sample size

to get error bounds on feature importance measures. The same procedure is applied to estimate error bounds on HSIC indices.
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As typically found in similar studies (Archer et al., 1997; Yang, 2011), 1,000 bootstrap resamples are used for all methods.

In addition, reliability of each ranking method is assessed by monitoring its convergence properties. To do so, sensitivity indices360

and associated confidence intervals are calculated on samples of growing sizes. A new sample is generated for each size in

[50,100,250,750,1000,2000] where the maximum size (2,000) points corresponds to the maximum computational budget

available for ranking we guess for a catchment-scale application. To be noted that we create a new sample for each sample

size to keep all samples as independent as possible but such approach may be too costly in a catchment scale application. In

such case, another strategy could be to generate the sample for ranking from the initial LHS used for screening dropping the365

dimensions corresponding the non-influential inputs.

2.6 Aggregated sensitivity indices

After computing local sensitivity indices for each landscape unit on a scalar quantity, aggregated indices are computed at the

catchment scale (step 2.b, Figure 4). Catchment-scale sensitivity indices are computed considering a multidimensional output

Y ∈ Rd that gathers scalar outputs for each landscape unit. Sobol’ indices are aggregated at the catchment scale following the370

formulation by Gamboa et al. (2013) for generalized Sobol’ indices :

Su =

∑d
j=1Var[Yj ]Su,j∑d

j=1Var[Yj ]
, (14)

where u is a subset of {1, ...,M}, Var[Yj ] is the variance of the scalar jth component of Y and Su,j is the Sobol’ indice

of subset u on Yj . Eq. (14) then formulates catchment-scale indices as an average of Sobol’ indices on each landscape unit

weighted by local output variances. First and total Sobol’ indices can be notably computed this way. Their computation can be375

made in a second step after performing local Sobol’ analysis on each landscape unit but a direct estimator is also proposed in

Gamboa et al. (2013) avoiding numerous local analysis in case of high dimensional model output.

For HSIC and RF sensitivity indices, the definitions for scalar output remain valid for vectorial output. Catchment-scale indices

can thus be directly computed on Y when moving to multidimensional case.

3 Results380

3.1 Screening

Screening is performed on the 4,000-point LHS. Simulations are run on the HIICS cluster (26 nodes, 692 cores, 64 to 256 GO

of RAM per server) available at INRAE, France, for a simulation time of 12,000 CPU-hours. Screening is performed at a site

scale, on each HU individually, to remain as conservative as possible. Influential parameters at the catchment scale are then

deduced from the union of influential parameters for each site. After screening and union, 42 influential parameters are selected385

for water subsurface flow, 54 parameters are selected for pesticide subsurface flow, 43 parameters are selected for water surface

runoff while 45 parameters are retained for pesticide surface runoff. The remaining parameters are given in Appendix C1.
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3.2 Ranking on a single HU

For the ranking task, the three methods (Sobol’ indices from PCE, HSIC and RF) are applied on each HU based on a 2,000-

point LHS generated for each scrutinized variable from the set of screened input parameters. Again, simulations are performed390

on the HIICS cluster, for a simulation time of 6,000 CPU-hours per variable.

Columns 1 and 2 in Figure 6 show Sobol total and first-order indices while columns 3 and 4 show HSIC and RF sensitivity

indices for the most influential parameters according to Sobol’ total order indices for the four variables on HU14.

3.2.1 Physical interpretation

Considering Sobol’ indices, influential parameters that are identified highly differ from one output variable to the other. They395

are linked to distinct physical processes that may interact with the other ones. This way, sensitivity analysis brings knowledge

about the way PESHMELBA represents the hydrological functioning of the virtual catchment. Water subsurface flow (top line)

is driven by deep soil hydrodynamic parameters both related to vertical infiltration and subsurface saturated transfers. Water

surface runoff (line 2) is also mainly influenced by deep soil parameters. Overland flow is therefore identified as being mostly

due to saturation rather than to rainfall excess. Subsurface exchanges with the river is also identified as an influential process400

as the river bed saturated conductivity (Ks_river) is part of the most influential parameters. Such finding is consistent with

the position of HU14, which is directly connected to the river but also to many plots (see Figure 1).

Pesticide variables (line 3 and 4) are influenced by a higher diversity of parameters that characterize contrasted and interactive

physical processes. Indeed, both pesticide subsurface flow and surface runoff are mostly influenced by deep soil parameters

such as the saturated water content (thetas). Parameters linked to pesticide adsorption such as the pesticide adsorption co-405

efficient and the organic carbon content (moc) of surface and intermediary soil horizons also rank among the top influential

parameters. Additionally, the roughness coefficient (manning_plot) and the ponding height (hpond_plot) that are related to

surface runoff calculation are also ranked as highly influential on pesticide surface runoff.

3.2.2 Comparison of methods

The rankings that are provided by the three methods are broadly consistent giving confidence in their robustness. Looking in410

more detail, HSIC and RF indices are more similar to Sobol total-order indices than to Sobol first-order indices contrarily to

the conclusions of De Lozzo and Marrel (2016) on comparison of Sobol and HSIC indices. The most influential parameters

that are identified by Sobol’ total-order indices are also captured by the other methods. Indeed, the different rankings show that

the top-ten rankings based on Sobol’ total-order indices at least contain the five most influential parameters based on HSIC and

RF rankings. Then, Figure 6 does not miss any preponderant parameters for HSIC and RF. In addition, while rankings from415

the three methods only exhibit slight differences for water variables, differences between rankings are more pronounced for

pesticide variables. In that case, most parameters have zero or very low first order Sobol’ indices characterizing nearly purely

interacting effects. However, not all differences between rankings come from interactive effects. As an example, manning_plot

and hpond_plot that appear in pesticide surface runoff top-ten ranking according to Sobol’ indices are both characterized by
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Figure 6. Sobol’ total and first order indices computed using PCE, HSIC and RF site sensitivity indices for all output variables on HU14

with associated 95% confidence intervals. RF feature importance measures are normalized by 2Var[Y] following Eq. (13). HU14 is displayed

with a red contour on top left figure. For all methods, displayed parameters are the most influential parameters regarding Sobol’ total indices.

The bar colours are related to physical processes: brown is related to soil parameters and the darker the brown, the deeper the parameter, blue

is related to river parameters whereas green is related to vegetation parameters. Filling in brown bars refers to the soil type of the parameter:

soil 1 is not filled, soil 2 is cross hatched whereas soil 3 is filled with circles. For each method, numbers next to bars stand for ranking position

of parameters.
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nearly fully interactive effects. However, hpond_plot also ranks influential according to HSIC and RF while manning_plot is420

missed by both of them.

Regarding error bounds, they are very small for HSIC and RF contrarily to Sobol’ indices estimates. HSIC is expected to

be very accurate from very small sample sizes (Da Veiga et al., 2021) which may explain such differences of magnitude for

error of Sobol and HSIC indices. Regarding RF error bounds, we incriminate the resampling strategy that differ from Sobol

method. Indeed, while the bootstrap technique has been proven to assess the quality of the PCE (Marelli and Sudret, 2018),425

the subsampling technique set on RF only targets the precision of feature importance measures. A more adapted subsampling

approach, for example based on Ishwaran and Lu (2019) should probably be further investigated on bigger samples to better

compute RF sensitivity indices and to accurately assess their quality. In addition to Figure 6, Table 4 gathers the quality scores

Q2 for PCE and RF metamodels on the test set. Results show that the RF metamodel performs much more poorly than the PCE

for all variables. Such poor performances may explain the discrepancies between RF feature importance measures and Sobol’430

total indices. Indeed, RF feature importance indices have been proven to relate to Sobol total indices (Gregorutti et al., 2017)

but this relation (see Eq. 13) is not respected in this study. These results thus underline how crucial it is to analyse both the

quality of the metamodel and the quality of the indices it calculates and not just one of the two.

Table 4. Q2 score for all variables on HU14 calculated from the 200-point test set. The Q2 score is calculated as Q2 = 1−
∑N

i=1(M(Xi)−Y i)2∑N
i=1(Y

i−Y )2
,

where Y = 1
N

∑
i=1Y

i is the empirical mean of the sample.

PCE RF

WaterLateralFlow 0.98 0.85

WaterSurfaceRunoff 0.80 0.44

PesticideLateralFlow 0.75 0.55

PesticideSurfaceRunoff 0.75 0.51

3.2.3 Convergence rate

In order to assess each method convergence rate, sensitivity indices are calculated for growing sample sizes, from 50 to 2000435

points. Results for water surface runoff and pesticide surface runoff are presented respectively on Figure 7 and Figure 8.

Results for water (resp. pesticide) subsurface flow are not presented as they come to the same conclusions than for water (resp.

pesticide) surface runoff.

Figure 7 shows that Sobol indices are close from stability for sample sizes from 1,000 points as ranking and Sobol total and

first-order indices are rather stable. 95% confidence intervals associated to Sobol indices (first and total-order) also seem to440

be rather stable for sample sizes from 1,000 points. Considering HSIC and RF indices, ranking differences for the five most

sensitive input factors are less than one position for sample sizes from 1,000 points, which roughly suits to the convergence

criteria for parameter ranking defined in Sarrazin et al. (2016). Identically, for both methods sensitivity indices values and 95%
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Figure 7. Convergence plot for solute water runoff variable: the figure shows the ranking for the 5 most influential parameters identified with

a sample of 2,000 points so as the corresponding sensitivity indices values with associated 95% confidence intervals for growing sample

sizes (even if they are hardly visible for HSIC and RF, confidence intervals are displayed on all plots from line 2). In the legend, the number

in brackets is the ranking position of the parameter in the case of a sample of 2,000 points.
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Figure 8. Convergence plot for solute surface runoff variable: the figure shows the ranking for the 5 most influential parameters identified

with a sample of 2,000 points so as the corresponding sensitivity indices values with associated 95% confidence intervals for growing sample

sizes (even if they are hardly visible for HSIC and RF, confidence intervals are displayed on all plots from line 2). In the legend, the number

in brackets is the ranking position of the parameter in the case of a sample of 2,000 points.
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confidence intervals show few variability. As already noticed on Figure 6, the 95% confidence intervals for HSIC and RF are

much smaller than for PCE. Again, such results should be interpreted with caution as confidence intervals are not calculated in445

the same way for the different methods. On the whole, the HSIC method reaches convergence first as ranking and sensitivity

indice values stabilize for sample sizes from 750 while 1,000 points are necessary for Sobol and RF methods.

Results about pesticide surface runoff (Figure 8) are more contrasted. Ranking and sensitivity indice values from PCE show

more variability than for water variable. This is especially the case for first order Sobol’ indices which shows that 2,000 may

not be a sufficient sample size to get robust results. Ranking and total order indices are more stable except for the parameter450

Koc_pest. This parameter is characterized by fully interactive effects which may explain why calculating robust Sobol’ indices

is a more complex task. Ranking and sensitivity measures from HSIC stabilize from 750 points while the error bounds remain
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very limited for all sample sizes. Finally, RF ranking and indices are almost stable from 1,000 points except for Koc_pest

whose RF value still shows variability for the biggest sample sizes.

3.3 Landscape analysis455

In this section, we focus on Sobol’ indices (first and total order) despite larger error bounds as it is the only method used in this

study that allows to get separate information on interactive effects.

Site rankings such as presented in Figure 6 are gathered for all HUs in the form of sensitivity maps in Figure 9 for water

surface runoff, and in Figure 10 for pesticide surface runoff. Broadly speaking, both maps show strong spatial heterogeneities

regarding influential parameters and a contrasted behaviour between right and left banks can be identified. For both output460

variables, hydrodynamic parameters (thetas, thetar and mn) of deep horizon from soil 1 (resp. 2 and 3) are mainly influential

only on HUs characterized by soil 1 (resp. 2 and 3) (see Figure 2 for a reminder on soil types). The, local hydrodynamic

parameters are found to be dominating to explain the output variable variance. A particular case is HU4 (indicated by an array

on both Figure 9 and 10) which is characterized by soil 3 while parameters from soil 1 explained most of the variance of both

water and pesticide surface runoff variables. The location of HU4, near the outlet, downstream several soil-1 HUs, may explain465

such spatial interactions. In addition to specific soil parameters, other parameters such as the manning roughness on vineyard

plots (manning_plot) or the coefficient of adsorption (Koc_pest) have a greater influence on HUs from the right bank (bottom

part of the catchment in the Figure). In addition, comparison of first-order and total-order maps shows quite similar results for

water surface runoff on the one hand. It indicates that direct effects are significant for all influential parameters. On the other

hand, direct effects are far from dominant on pesticide surface runoff. Once again, most parameters are influential nearly only470

in interaction with other parameters since the fist order indices are very low compared to the total order indices.

Figure 9. Maps of Sobol site sensitivity indices for water surface runoff for the most significantly influential parameters.
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Figure 10. Maps of Sobol site sensitivity indices for pesticide surface runoff for the most significantly influential parameters.

Finally, Figure 11 shows aggregated sensitivity indices for water and pesticide surface runoff variables following Gamboa

et al. (2013). Since the two banks have contrasted behaviors, aggregated indices are first calculated at the intermediary scale

of the bank, then at the catchment scale. For both output variables, rankings strongly differ on each slope. As proposed at

a local scale in Section 3.2, aggregated indices at this scale may constitute a summarized information about the physical475

processes dominating in PESHMELBA to explain the output variable. For water surface runoff, hydrodynamic soil parameters

related to vertical infiltration (thetas, thetar and mn) dominate. The influence of ks_river is only significant in the right

bank. The difference of altitude between right and left bank may explain this contrast in the activation of saturated exchanges

between water tables and the river. For pesticide surface runoff, deep horizon parameters from soil 1 and pesticide adsorption

coefficient (Koc) explain a major portion of the output variance on the left bank while pesticide half-life time (DT50) and480

surface runoff parameter (hpond_plot) have lower or no impact. On the contrary, surface parameters (manning_plot and

hpond_plot) have a higher impact on the right slope. In that bank, soil horizons are characterized by lower permeabilities that

may result in stronger surface runoff generation than on left bank. In addition pesticide parameters (Koc and DT50) are also

more influential. More broadly, these results show that pesticide surface runoff may result from the activation and interactions

of more physical processes on the right bank than on the left bank.485
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Figure 11. Sobol’ first-order and total-order aggregated sensitivity indices for water surface runoff (left) and pesticide surface runoff (right)

calculated at the scale of the catchment (top), left bank (middle) and right bank (bottom). Displayed parameters are the 11 most influential

parameters regarding Sobol indices at the catchment scale for each output variable. The bar colours are related to physical processes: brown

is related to soil parameters and the darker the brown, the deeper the parameter is, blue is related to river parameters and green is related to

vegetation parameters. Filling in brown bars refers to the soil type of the parameter: soil 1 is not filled, soil 2 is cross hatched while soil 3 is

filled with circles.

4 Discussion

4.1 On screening

For all variables considered, the number of input parameters retained after screening remained quite high proving that perform-

ing screening on PESHMELBA variables is a challenging task. We can first incriminate the many physical processes interacting

in PESHMELBA in a spatially-distributed way, each of them with its own set of characteristic parameters. However, it can also490

be explained by the methodology that may not be discriminating enough. Many previous studies developed efficient screening

techniques for complex environmental models (e.g. Tang et al., 2007; Nossent et al., 2011; Touzani and Busby, 2014; Becker

et al., 2018; Garcia et al., 2019; Sheikholeslami et al., 2019). Exploring other screening approaches is beyond the scope of this

study but future work may focus on applying and critically comparing those techniques, especially with very limited sample

size (inferior to 2,000 points for example).495
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4.2 On the choice of a ranking method

By exploring several methods for ranking, the aim was to analyze their specificities and the interest of each one for the

sensitivity analysis of a complex environmental model, characterized by many parameters and a high computational cost such

as PESHMELBA. Considering the results of this study, we believe that the choice of the method depends on the properties of

the model, the objective of the sensitivity analysis and the sample size available:500

1. Sobol method remains attractive when sensitivity analysis is used to gain knowledge about the model by finely analyzing

its behavior. Indeed, Sobol’ indices provide a clear interpretation of the calculated indices (percentages of variance

explained) and explicit information about the interactions between parameters. These elements are particularly valuable

when one wishes to use sensitivity analysis to understand the functioning of the model and this is why this approach

is still widely used in the hydrological community. In the case of variables that are reasonably complex and that are505

not characterized by too much interactions of physical processes (such as water variables in our case), using chaos

polynomials to estimate Sobol’ indices is particularly interesting and efficient since it allows the use of a pre-existing

sample, of very limited size. Conclusions are much contrasted for complex variables such as pesticide variables as

convergence results showed that 2,000 points may not be enough to get fully robust Sobol’ indices. This is particularly

the case for parameters that are mainly characterized by interactive effects.510

2. If the sensitivity analysis aims at simplifying the model or focusing the calibration efforts, if the physical interpretation

of the results is not a priority and if one has a preexisting sample of very limited size (inferior to 750 points in our case),

the use of HSIC indices is a good option as it provides robust sensitivity indices. However, it is important to note that

using HSIC dependence measures for sensitivity analysis is a recent idea and that there is still little knowledge available

about identifying and differentiating the types of dependency that are captured. In addition, the choice of the kernel may515

affect the ranking results because each specific kernel is likely to give more or less importance to the infinite number of

dependency forms that are captured by HSIC. The question of the choice of the kernel is delicate and it is still not very

much addressed in the literature. While a few papers propose to choose the type and parameterization of the kernels in a

way that maximizes the possible dependence between Xi and Y (Fukumizu et al., 2009; Balasubramanian et al., 2013),

the interpretation of the results seems to be less clear. On the other hand, there are still relatively few works that apply520

this method for GSA and the limitations are not necessarily all identified yet. Using HSIC for a classification exercise

will therefore remain delicate as long as there is no consensus on the choice of the kernel and the interpretation of the

results. However, these problems do not arise when using HSIC for screening and such method is therefore perhaps to

be preferred for this type of exercise.

3. The RF indices is also of interest in sensitivity analysis task as it is supposed to provide an estimator of total Sobol525

indices. Those indices can thus be easily interpreted and as for the other methods, they can be estimated from a pre-

existing sample. However, PCE is still to be preferred since it provides more complete information including not only

the total Sobol indices but also the indices at all orders. In addition, our results showed that the metamodel constructed by
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RF is of lower quality than the one constructed by PCE at equivalent sample size giving less confidence in the resulting

sensitivity indices.530

Beyond the comparison of the different methods, we also tried to evaluate if it was possible and useful to combine several of

these methods. However, considering the results obtained, we believe that combining the tested methods is still of little interest

for hydrologists to better understand the model functioning. Indeed, the differences we found in rankings remain difficult to

interpret. This is particularly the case when combining Sobol and HSIC indices, due to the fact that the results from HSIC

dependence measures remain fuzzy to interpret.535

4.3 On choosing local or aggregated sensitivity analysis

Results about landscape analysis showed that, on the one hand, sensitivity maps provide local, detailed information about

influential parameters on each location of the catchment. However they are computationally costly as one GSA per HU must

be performed. This approach may be hard or even impossible to transpose to real catchment scale composed of several hundreds

elements. On the other hand, catchment scale aggregated indices provide a synthetic information at a lower computational cost540

but the spatialized aspect of the GSA is lost. As pointed out in Marrel et al. (2015), both approaches are complementary and

provide precious knowledge about the model functioning but they cannot always be performed together. As a compromise, we

propose to use the scale of the bank, or more generally of the hillslope, as it may constitute an adapted intermediary scale to

meet both requirements of detailed results for physical interpretation and computational efficiency. Indeed, in this study Sobol’

aggregated indices were directly computed from site sensitivity indices as they were available but a pick-freeze estimator545

(Gamboa et al., 2013; De Lozzo and Marrel, 2016) can be used for a direct computation of Sobol’ generalized indices. In our

case, such overview of sensitivity analysis allows us to focus calibration efforts on deep soil hydrodynamic parameters and

pesticide adsorption coefficient to improve the quality of the simulation of both water and pesticide surface flows.

5 Conclusion

In this paper, we have described the first global sensitivity analysis of the modular and coupled PESHMELBA model. For this550

experiment, a simplified catchment was set in order to explore different approaches for GSA and to propose a methodology

for future real applications. First, we performed screening using an independence test based on the HSIC dependence measure,

dividing by three the dimension of the problem. Second, we compared several innovative methods to compute sensitivity

measures on each landscape element individually. Sobol’ indices were found to be particularly attracted as they provide easy-

to-interpret sensitivity measures. However, in the case of complex variables with dominant interactive effects, results showed555

that they may not be computed from very small samples. Third, we gathered such local sensitivity indices into sensitivity

maps that highlighted local contributions of parameters. Finally, we computed aggregated indices at larger scales, on the whole

catchment and on each bank hillslope since this scale still reflects spatial heterogeneities of hydrodynamic processes.

This study constitutes the first attempt of global sensitivity analysis of the PESHMELBA model. Future research should go a

step further by considering the other sources of uncertainties that can affect the model and interact with parameter uncertainties.560
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The impact of forcings, soil types, quantities and dates of application of pesticides should be addressed as already done in

Holvoet et al. (2005) for instance. Additionally, parameters were assumed to be independent in this study but this assumption

may be arguable, especially for hydrodynamic parameters. For the three methods, sensitivity indices that are produced are

meaningless in the case of dependent inputs. Dealing with dependent parameters has already been explored in the case of Sobol’

indices and HSIC measures, for example based on Shapley effects (Da Veiga et al., 2021) but again, these formulations should565

be extensively tested with complex variables and very small sample sizes. Finally, it would also be necessary to investigate

sensitivity of some time series to get a more comprehensive vision of the model functioning. To do so, the temporal series

can be analyzed as a multivariate output for example with clustering-based GSA (Roux et al., 2021) or using the principal

components of the model’s functional outputs. The definition and the use of adequate hydrological signatures such as proposed

in Branger and McMillan (2020) and Horner (2020) may also be of interest to understand space-time variability and to capture570

a broader range of physical processes.

Global sensitivity analysis is a necessary but not yet systematic step to model evaluation, especially in the case of spatialized,

risk assessment models that can be complex to deal with. This study brings additional knowledge on GSA strategies for

modellers who deal with such complex models and thus paves the way for systematic analysis of environmental exposure

models.575
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Appendix

A Parameters for LAI evolution law

Parameter Value Date

Vineyard (plot)

LAImin [-] 0.01 February, 1st

LAImax [-] 2.5 May, 1st

LAIharv [-] 0.01 November, 10th

Grassland (VFS)

LAI [-] 5 -

Table A1. Top: parameters and associated dates used to describe LAI evolution for vineyard cover. Bottom: constant LAI value set on

grassland cover.
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B Input parameter distributions

Soil parameters

soilhorizon_thetas_2 [m3m-3] N(0.3362, 0.00336)

soilhorizon_thetar_2 [m3m-3] TN(0.0510, 0.0128, 0, 1)

soilhorizon_Ks_2 [ms-1] LN(9.5e-06, 1.97e-05)

soilhorizon_hg_2 [m] N(-0.0329,0.00329)

soilhorizon_mn_2 [-] N(0.1988, 0.0199)

soilhorizon_Ko_2 [ms-1] LN(-7e-06,5.5e-07)

soilhorizon_L_2 [-] U(-7.8216, -5.2144)

soilhorizon_bd_2 [gcm-3] U(1.1768, 1.7652)

soilhorizon_moc_2 [gg-1] U(0.0024, 0.0054)

soilhorizon_thetas_3 [m3m-3] N(0.3202, 0.0320)

soilhorizon_thetar_3 [m3m-3] TN(0.0812, 0.0203, 0, 1)

soilhorizon_Ks_3 [ms-1] LN(8.18e-06, 5.5e-07)

soilhorizon_hg_3 [m] N(-0.0209, 0.00209)

soilhorizon_mn_3 [-] N(0.2046, 0.0205)

soilhorizon_Ko_3 [ms-1] LN(-3.7e-06, 5.5e-07)

soilhorizon_L_3 [-] U(-5.0844, -3.3896)

soilhorizon_bd_3 [gcm-3] U(1.2536, 1.8804)

soilhorizon_moc_3 [gg-1] U(0.0006, 0.0014)

soilhorizon_thetas_4 [m3m-3] N(0.2844, 0.0284)

soilhorizon_thetar_4 [m3m-3] TN( 0.0661, 0.0165, 0, 1)

soilhorizon_Ks_4 [ms-1] LN(6.65e-06, 5.5e-07)

soilhorizon_hg_4 [m] N(-0.0599,0.00599)

soilhorizon_mn_4 [-] N(0.2274, 0.0227)

soilhorizon_Ko_4 [ms-1] LN(-1.82e-06, 5.5e-07)

soilhorizon_L_4 [-] U(-0.1716, -0.1144)

soilhorizon_bd_4 [gcm-3] U(1.2240, 1.8360)

soilhorizon_moc_4 [gg-1] U(4.3840 10-4,9.6160 10-3)

soilhorizon_thetas_6 [m3m-3] N(0.3537, 0.0354)

soilhorizon_thetar_6 [m3m-3] TN(0, 0.0093, 0, 1)

soilhorizon_Ks_6 [ms-1] LN(5.64e-06,5.5e-07)

soilhorizon_hg_6 [m] N-0.066,0.0066
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soilhorizon_mn_6 [-] N(0.1289, 0.0129))

soilhorizon_Ko_6 [ms-1] LN(-6.06e-06, 5.5e-07)

soilhorizon_L_6 [-] U(7.7240, 19.3100)

soilhorizon_bd_6 [gcm-3] U(1.2704, 1.9056)

soilhorizon_moc_6 [gg-1] U(0.0042, 0.0094)

soilhorizon_thetas_7 [m3m-3] N(0.3247, 0.0325)

soilhorizon_thetar_7 [m3m-3] TN(0, 0.0093, 0, 1)

soilhorizon_Ks_7 [ms-1] LN( 3.39e-06, 5.5e-07)

soilhorizon_hg_7 [m] N(-0.0718,0.00718)

soilhorizon_mn_7 [-] N(0.0751, 0.0075)

soilhorizon_Ko_7 [ms-1] LN(-7.87e-06, 5.5e-07)

soilhorizon_L_7 [-] U(-12, -8)

soilhorizon_bd_7 [gcm-3] U(1.3256, 1.9884)

soilhorizon_moc_7 [gg-1] U(0.0019, 0.0051)

soilhorizon_thetas_8 [m3m-3] N(0.4162, 0.0416)

soilhorizon_thetar_8 [m3m-3] TN(0, 0.0093, 0, 1)

soilhorizon_Ks_8 [ms-1] LN(9.42e-07, 5.5e-07)

soilhorizon_hg_8 [m] N(-0.3018, 0.03018)

soilhorizon_mn_8 [-] N(0.10000, 0.0100)

soilhorizon_Ko_8 [ms-1] LN(-9.37e-06, 5.5e-07)

soilhorizon_L_8 [-] U(8, 20)

soilhorizon_bd_8 [gcm-3] U(1.2304, 1.8456)

soilhorizon_moc_8 [gg-1] U(0.0018, 0.0037)

soilhorizon_thetas_9 [m3m-3] N(0.3322, 0.0332)

soilhorizon_thetar_9 [m3m-3] TN(0.0770, 0.0192, 0, 1)

soilhorizon_Ks_9 [ms-1] LN(6.6e-06, 5.5e-07)

soilhorizon_hg_9 [m] N(-0.0671,0.00671)

soilhorizon_mn_9 [-] N(0.2582, 0.0258)

soilhorizon_Ko_9 [ms-1] LN(-5.92e-06, 5.5e-07)

soilhorizon_L_9 [-] U(0.3376, 0.8440)

soilhorizon_bd_9 [gcm-3] U(1.1664, 1.7496)

soilhorizon_moc_9 [gg-1] U(0.0023, 0.0051)

soilhorizon_thetas_10 [m3m-3] N(0.3160, 0.0316)

soilhorizon_thetar_10 [m3m-3] TN(0.0612, 0.0153, 0, 1)

soilhorizon_Ks_10 [ms-1] LN(5.91e-06, 5.5e-07)
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soilhorizon_hg_10 [m] N(-0.0356, 0.00356)

soilhorizon_mn_10 [-] N(0.1791, 0.0179)

soilhorizon_Ko_10 [ms-1] LN(-6.24e-06, 5.5e-07)

soilhorizon_L_10 [-] U(0.8376, 2.0940)

soilhorizon_bd_10 [gcm-3] U(1.2984, 1.9476)

soilhorizon_moc_10 [gg-1] U(0.0025, 0.0055))

soilhorizon_thetas_11 [m3m-3] N(0.3375, 0.0338)

soilhorizon_thetar_11 [m3m-3] TN(0.0372, 0.0093, 0, 1)

soilhorizon_Ks_11 [ms-1] LN(7.3e-06, 5.5e-07)

soilhorizon_hg_11 [m] N(-0.0969,0.00969)

soilhorizon_mn_11 [-] N(0.2685, 0.0268)

soilhorizon_Ko_11 [ms-1] LN(-6.37e-06, 5.5e-07)

soilhorizon_L_11 [-] U(-10.1124, -6.7416)

soilhorizon_bd_11 [gcm-3] U(1.0752, 1.6128)

soilhorizon_moc_11 [gg-1] U(0.0049, 0.0050)

soilhorizon_thetas_14 [m3m-3] N(0.3375, 0.0338)

soilhorizon_thetar_14 [m3m-3] TN(0.0372, 0.0093, 0, 1)

soilhorizon_Ks_14 [ms-1] LN(7.47e-06, 5.5e-07)

soilhorizon_hg_14 [m] N(-0.0969,0.00969)

soilhorizon_mn_14 [-] N(0.2685, 0.0268)

soilhorizon_Ko_14 [ms-1] LN(-6.37e-06, 5.5e-07)

soilhorizon_L_14 [-] U(-10.1124, -6.7416)

soilhorizon_bd_14 [gcm-3] U(1.0752, 1.6128)

soilhorizon_moc_14 [gg-1] U(0.0175, 0.0385)

soilhorizon_thetas_12 [m3m-3] N(0.3375, 0.0338)

soilhorizon_thetar_12 [m3m-3] TN(0.0372, 0.0093, 0, 1)

soilhorizon_Ks_12 [ms-1] LN(7.3e-06, 5.5e-07)

soilhorizon_hg_12 [m] N(-0.0969,0.00969)

soilhorizon_mn_12 [-] N(0.2685, 0.0268)

soilhorizon_Ko_12 [ms-1] LN(-6.37e-06, 5.5e-07)

soilhorizon_L_12 [-] U(-10.1124, -6.7416)

soilhorizon_bd_12 [gcm-3] U(1.0752, 1.6128)

soilhorizon_moc_12 [gg-1] U(0.0072, 0.0158)

soilhorizon_thetas_15 [m3m-3] N(0.3375, 0.0338)

soilhorizon_thetar_15 [m3m-3] TN(0.0372, 0.0093)
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soilhorizon_Ks_15 [ms-1] LN(7.47e-06, 5.5e-07)

soilhorizon_hg_15 [m] N(-0.0969,0.00969)

soilhorizon_mn_15 [-] N(0.2685, 0.0268)

soilhorizon_Ko_15 [ms-1] LN(-6.37e-06, 5.5e-07)

soilhorizon_L_15 [-] U(-10.1124, -6.7416)

soilhorizon_bd_15 [gcm-3] U(1.0752, 1.6128)

soilhorizon_moc_15 [gg-1] U(0.0175, 0.0385)

soilhorizon_thetas_13 [m3m-3] N(0.3375, 0.0338)

soilhorizon_thetar_13 [m3m-3] TN(0.0372, 0.0093, 0, 1)

soilhorizon_Ks_13 [ms-1] LN(7.3e-06, 5.5e-07)

soilhorizon_hg_13 [m] N(-0.0969,0.00969)

soilhorizon_mn_13 [-] N(0.2685, 0.0268)

soilhorizon_Ko_13 [ms-1] LN(-6.37e-06, 5.5e-07)

soilhorizon_L_13 [-] U(-10.1124, -6.7416)

soilhorizon_bd_13 [gcm-3] U(1.0752, 1.6128)

soilhorizon_moc_13 [gg-1] U(0.0067, 0.0080)

soilhorizon_thetas_16 [m3m-3] N(0.3375, 0.0338)

soilhorizon_thetar_16 [m3m-3] TN(0.0372, 0.0093, 0, 1)

soilhorizon_Ks_16 [ms-1] LN(7.47e-06, 5.5e-07)

soilhorizon_hg_16 [m] N(-0.0969,0.00969)

soilhorizon_mn_16 [-] N(0.2685, 0.0268)

soilhorizon_Ko_16 [ms-1] LN(-6.37e-06, 5.5e-07)

soilhorizon_L_16 [-] U(-10.1124, -6.7416)

soilhorizon_bd_16 [gcm-3] U(1.0752, 1.6128)

soilhorizon_moc_16 [gg-1] U(0.0175, 0.0385)

Pesticide parameters

pest_Koc [mLg-1] T(461.4000, 538.3000, 769.0000)

pest_DT50 [d] N(47.1, 28.26)

Vegetation parameters

veget_manning_1 [sm-1/3] T(0.0250, 0.0330, 0.041)

veget_Zr_1 [m] U(2.096,3.144)

veget_F10_1 [-] U(0.2960, 0.4440)

veget_LAImin_1 [-] U(0.0080, 0.0120)

veget_LAImax_1 [-] U(2, 3)
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veget_LAIharv_1 [-] U(0.0080, 0.0120)

veget_manning_2 [sm-1/3] T(0.1000, 0.2000, 0.3000)

veget_Zr_2 [m] U(7.2,1.08)

veget_F10_2 [-] U(0.2680, 0.4020)

veget_LAI_2 [-] U(4, 6)

River parameters

river_hpond [m] U(0.008,0.012)

river_di [m] U(1.2, 1.8)

river_Ks [ms-1] U( 76.5648, 7.1280)

river_manning [sm-1/3] T(0.0610, 0.0360, 0.0790)

Plot and VFS parameters

plot_hpond [m] U(0.008, 0.012)

vfz_hpond [m] U(0.04, 0.06)

hu_adsorpthick [m] U(0.005, 0.015)

Table B1: Distribution and statistics of the assigned pdfs for the 145 input parameters, uniform:U(min,max), triangular: T(min,mean,max),

normal:N(mean,standard deviation), log-normal: LN(mean,standard deviation), truncated normal: TN(mean, standard deviation, min,max).

34



C Screening results

Water subsurface flow Pesticide subsurface flow Water surface runoff Pesticide surface runoff

soilhorizon_thetas_2 soilhorizon_thetas_12 soilhorizon_thetas_11 soilhorizon_thetas_11

soilhorizon_thetas_4 soilhorizon_thetas_15 soilhorizon_thetas_15 soilhorizon_thetas_12

soilhorizon_thetas_6 soilhorizon_thetas_2 soilhorizon_thetas_2 soilhorizon_thetas_13

soilhorizon_thetas_7 soilhorizon_thetas_4 soilhorizon_thetas_4 soilhorizon_thetas_15

soilhorizon_thetas_8 soilhorizon_thetas_6 soilhorizon_thetas_6 soilhorizon_thetas_2

soilhorizon_thetas_10 soilhorizon_thetas_7 soilhorizon_thetas_7 soilhorizon_thetas_4

soilhorizon_thetar_3 soilhorizon_thetas_8 soilhorizon_thetas_8 soilhorizon_thetas_6

soilhorizon_thetar_4 soilhorizon_thetas_10 soilhorizon_thetas_10 soilhorizon_thetas_7

soilhorizon_thetar_8 soilhorizon_thetar_2 soilhorizon_thetar_15 soilhorizon_thetas_8

soilhorizon_thetar_10 soilhorizon_thetar_4 soilhorizon_thetar_2 soilhorizon_thetas_10

soilhorizon_moc_13 soilhorizon_thetar_8 soilhorizon_thetar_4 soilhorizon_thetar_15

soilhorizon_mn_3 soilhorizon_thetar_10 soilhorizon_thetar_8 soilhorizon_thetar_2

soilhorizon_mn_4 soilhorizon_pore_6 soilhorizon_thetar_10 soilhorizon_thetar_4

soilhorizon_mn_6 soilhorizon_moc_12 soilhorizon_pore_9 soilhorizon_thetar_8

soilhorizon_mn_8 soilhorizon_moc_15 soilhorizon_mn_11 soilhorizon_thetar_10

soilhorizon_mn_10 soilhorizon_moc_2 soilhorizon_mn_2 soilhorizon_moc_6

soilhorizon_Kx_3 soilhorizon_moc_6 soilhorizon_mn_4 soilhorizon_moc_12

soilhorizon_Kx_4 soilhorizon_moc_9 soilhorizon_mn_6 soilhorizon_mn_11

soilhorizon_Kx_8 soilhorizon_mn_11 soilhorizon_mn_7 soilhorizon_mn_16

soilhorizon_Kx_10 soilhorizon_mn_16 soilhorizon_mn_8 soilhorizon_mn_2

soilhorizon_Ks_11 soilhorizon_mn_4 soilhorizon_mn_10 soilhorizon_mn_4

soilhorizon_Ks_13 soilhorizon_mn_6 soilhorizon_Kx_8 soilhorizon_mn_6

soilhorizon_Ks_14 soilhorizon_mn_8 soilhorizon_Kx_10 soilhorizon_mn_7

soilhorizon_Ks_15 soilhorizon_mn_10 soilhorizon_Ks_12 soilhorizon_mn_8

soilhorizon_Ks_16 soilhorizon_Kx_12 soilhorizon_Ks_13 soilhorizon_mn_10

soilhorizon_Ks_3 soilhorizon_Kx_9 soilhorizon_Ks_15 soilhorizon_Ks_15

soilhorizon_Ks_4 soilhorizon_Kx_10 soilhorizon_Ks_16 soilhorizon_Ks_2

soilhorizon_Ks_6 soilhorizon_Ks_12 soilhorizon_Ks_4 soilhorizon_Ks_4

soilhorizon_Ks_7 soilhorizon_Ks_14 soilhorizon_Ks_6 soilhorizon_Ks_8

soilhorizon_Ks_8 soilhorizon_Ks_15 soilhorizon_Ks_8 soilhorizon_Ks_9

soilhorizon_Ks_9 soilhorizon_Ks_16 soilhorizon_Ks_9 soilhorizon_hg_3
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soilhorizon_Ks_10 soilhorizon_Ks_2 soilhorizon_Ks_10 soilhorizon_hg_4

soilhorizon_hg_16 soilhorizon_Ks_4 soilhorizon_hg_4 soilhorizon_hg_8

soilhorizon_hg_2 soilhorizon_Ks_6 soilhorizon_hg_6 soilhorizon_bd_6

soilhorizon_hg_4 soilhorizon_Ks_8 soilhorizon_hg_8 soilhorizon_bd_13

soilhorizon_hg_8 soilhorizon_Ks_9 soilhorizon_hg_10 soilhorizon_bd_12

soilhorizon_hg_9 soilhorizon_Ks_10 soilhorizon_bd_3 river_ks

soilhorizon_bd_2 soilhorizon_hg_4 river_ks river_di

river_ks soilhorizon_hg_6 river_di plot_hpond

river_di soilhorizon_hg_8 plot_hpond pest_Koc_1

plot_hpond soilhorizon_hg_10 vfz_hpond pest_DT50_1

V FS_hpond soilhorizon_bd_11 veget_LAIharv_1 HU_adsorpthick

soilhorizon_bd_12 veget_F10_1 veget_Zr_1

soilhorizon_bd_13 veget_manning_1

soilhorizon_bd_15 veget_F10_1

soilhorizon_bd_2

soilhorizon_bd_6

soilhorizon_bd_9

river_ks

river_di

plot_hpond

veget_Zr_1

pest_Koc_1

pest_DT50_1

Table C1: Remaining parameters after screening step for each output variable. In the XXX_XXX_XXX syntaxe of parameter names, the first

block is the type of element the parameter refers to (soil horizon, river, vegetation, pesticide, HU or VFS), the second part is the parameter

name while the last part is the element index the parameter refers to (soil horizon or vegetation type).
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