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1. Abstract  

Measurements of dust in the atmosphere have long been used to calibrate dust emission models. However, 
there is growing recognition that atmospheric dust confounds the magnitude and frequency of emission 
from dust sources and hides potential weaknesses in dust emission model formulation. In the satellite era, 20 
dichotomous (presence=1 or absence=0) observations of dust emission point sources (DPS) provide a 
valuable inventory of regional dust emission. We used these DPS data to develop an open and transparent 
framework to routinely evaluate dust emission model (development) performance using coincidence of 
simulated and observed dust emission (or lack of emission). To illustrate the utility of this framework, we 
evaluated the recently developed albedo-based dust emission model (AEM) which included the traditional 25 
entrainment threshold (𝑢∗"#) at the grain scale, fixed over space and static over time, with sediment supply 
infinite everywhere. For comparison with the dichotomous DPS data, we reduced the AEM simulations 
to its frequency of occurrence in which soil surface wind friction velocity (𝑢$∗ ) exceeds the 𝑢∗"# , 
P(us* > u*ts). We used a global collation of nine DPS datasets from established studies to describe the 
spatio-temporal variation of dust emission frequency. A total of 37,352 unique DPS locations were 30 
aggregated into 1,945 1° grid boxes to harmonise data across the studies which identified a total of 59,688 
dust emissions. The DPS data alone revealed that dust emission does not usually recur at the same 
location, are rare (1.8%) even in North Africa and the Middle East, indicative of extreme, large wind 
speed events. The AEM over-estimated the occurrence of dust emission by between 1 and 2 orders of 
magnitude. More diagnostically, the AEM simulations coincided with dichotomous observations ~71% 35 
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of the time but simulated dust emission ~27% of the time when no dust emission was observed. Our 
analysis indicates that 𝑢∗"# was typically too small, needed to vary over space and time, and at the grain-
scale 𝑢∗"# is incompatible with the 𝑢#∗ scale (MODIS 500 m). During observed dust emission, 𝑢#∗ was 
too small because wind speeds were too small and / or the wind speed scale (ERA5; 11 km) is 
incompatible with the 𝑢#∗ scale. The absence of any limit to sediment supply caused the AEM to simulate 40 
dust emission whenever P (us* > u*ts), producing many false positives when and where wind speeds were 
frequently large. Dust emission model scaling needs to be reconciled and new parameterisations are 
required for 𝑢∗"# and to restrict sediment supply varying over space and time. Whilst 𝑢∗"# remains poorly 
constrained and unrealistic assumptions persist about sediment supply and availability, the DPS data 
provide a basis for the calibration of dust emission models for operational use. As dust emission models 45 
develop, these DPS data provide a consistent, reproducible, and valid framework for their routine 
evaluation and potential model optimisation. This work emphasises the growing recognition that dust 
emission models should not be evaluated against atmospheric dust. 

2. Introduction 

Atmospheric mineral dust has an important impact on many of Earth’s systems, human health, and global 50 
economies (Li et al., 2018; Pi et al., 2020; Tegen and Schepanski, 2018). The scale of this impact is, at 
least in part, prescribed by the location and environmental controls of the emission source (Ackerman, 
1997; Schepanski et al., 2012). Dust emission models have been developed over decades to resolve spatial 
patterns and trends of aeolian processes (emission, transport, and deposition) in the dust cycle (Shao et 
al., 2011). Dust emission models are also crucial for simulation of aeolian processes at unsampled / 55 
monitored locations for comparison with indicators and benchmarks to understand the impact of 
management on environmental changes (Pi et al., 2020). Dust emission models are also essential for 
making hindcasts in palaeo-environmental reconstructions (Mahowald et al., 2010) and forecasts in dust-
climate interactions in Earth System Models (ESMs). 

Global dust emission models were developed more than two decades ago (Marticorena and 60 
Bergametti, 1995) and have been rapidly adopted into ESMs, where their fidelity requires necessary 
compromise and simplification within their parameterisations (Raupach and Lu, 2004). An original 
constraint, that the Earth’s surface was devoid of vegetation and static over time has been partially 
alleviated with the use of lateral cover but which only very crudely represents the aerodynamics of drag 
partition (Raupach, 1992; Raupach et al., 1993). Two key simplifying assumptions remain: i) entrainment 65 
threshold at the grain-scale is fixed over space and static over time; ii) sediment supply for transport is 
infinite and available everywhere. Consequently, the models are well known to over-estimate dust in the 
atmosphere (Ginoux, 2017). Given the original focus on ESMs, it became common practice to reduce the 
magnitude of modelled dust emission by comparison with dust in the atmosphere using aerosol optical 
depth (AOD; AERONET and dust optical depth). Importantly, AOD is a measure of the concentration of 70 
dust in a specific column of atmosphere at a given moment (Dubovik et al., 2000), not a direct 
measurement of dust emission flux. Additionally, extended atmospheric residence of dust (days to weeks) 
can exacerbate bias away from dust emission towards atmospheric dust (Schepanski et al., 2012). 
Consequently, synoptic circulation may increase concentrations within pressure systems, maintaining 
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AOD over specific areas without any significant further emission (Schepanski et al., 2012). While the 75 
deficiencies in existing modelling methods are somewhat understood, the inconsistency of assessing dust 
emission simulations with atmospheric dust observations prevents a clear direction in how to improve 
dust emission model fidelity.  

The aim here is to demonstrate an alternative to comparing dust emission models to atmospheric dust. 
We seek to evaluate the performance of dust emission models against globally observed dust emission at 80 
appropriate scales. Our new evaluation is based on two novel approaches. The first is the collation of 
satellite observed dust emission point source (DPS) data from nine peer-reviewed studies (Baddock et al., 
2009; Bullard et al., 2008; Eckardt et al., 2020; Hennen et al., 2019; Kandakji et al., 2020; Lee et al., 
2012; Nobakht et al., 2019; Schepanski et al., 2007; von Holdt et al., 2017). DPS data describe 
dichotomous (presence=1 or absence=0) dust emission for selected regions and selected times. The 85 
second is to determine the coincidence in observed and modelled outcome at each DPS location for every 
day of the respective study duration, using a contingency table to determine model performance through 
the respective number of daily Hits (Observed and Modelled dust), Misses (Observed dust, not Modelled), 
False Positives (Modelled, not Observed dust), and Correct Negatives (no dust Observed or Modelled). 
To enable the use of these novel approaches with dust emission models we reduced the continuous dust 90 
emission models to the dichotomous occurrence when modelled soil surface wind friction velocity (us*) 
exceeds the entrainment threshold (u*ts). The results of these analyses are compared regionally, with dust 
emission model performance in different soil-climate environments, demonstrating how modelled and 
observed dust events coincide over time. These approaches enable us to identify how changes 
(incremental or steps) in model development improve model performance related to environmental 95 
controls, specifically variability in P(us* > u*ts) and dynamic erodibility of the soil. These analyses provide 
both i) a robust examination of contrasting dust emission model approaches and, ii) critical information 
on the fidelity of wind friction velocity thresholds and sediment supply across dust source regions.  

We propose this new approach to performance evaluation as the basis for routinely evaluating dust 
emission model development and particularly whilst the community is tackling those two key simplifying 100 
model assumptions. We recognise that dust emission model developments may not be sufficiently rapid 
to keep pace with applications e.g., in ESMs, whilst the dust emission models are poorly constrained. 
Consequently, we also demonstrate how the satellite observed dust emission points (DPS) data are used 
to calibrate dust emission model estimates to improve their performance. Notably, these calibrations are 
against dust emission observations, not atmospheric dust concentrations, providing a more robust 105 
description of dust emission model performance. 

3. Methods and Data 

3.1 Validation datasets  

We collated nine datasets from established studies across multiple dust emitting regions around the world 
(Fig. 1). This global satellite observed dust emission point source (DPS) dataset includes the location and 110 
moment of dust emission events from each of the major global dryland areas. For each study, satellite-
derived earth observation (EO) data were acquired at regular intervals and subjectively inspected by an 
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operator to identify the presence of dust plume(s). Identification of elevated dust over a desert surface is 
particularly challenging in visible wavelengths, due to the spectral similarities of elevated dust and bare 
soil in the visible spectrum (Hsu et al., 2004). Therefore, each of the images were converted into false 115 
colour composites, enhancing the image with spectral bands outside the visible wavelengths, specifically 
in the thermal infrared (TIR) bands. Using these dust enhancement products, the operators were able to 
visually identify the point(s) where a dust plume originated and to digitize each of these locations as a 
dust emission point source (DPS). The exception is North Africa (Schepanski et al., 2007), where the area 
of dust emission is observed sub-daily, within a 1° grid (i.e., frequency of local emission – maximum 1 120 
per day). In this case, the centroid position within the grid box is taken as the dust emission source.  

 
Figure 1: Global dust emission point sources (DPS), collated from 9 independent studies across 6 dryland environments. Each DPS 
was subjectively identified in either MODIS or SEVIRI earth observation (EO) data. Data includes a >90,000 individual DPS 
datapoints, between 2001 – 2016. Source North America: (Baddock et al., 2009; Kandakji et al., 2020; Lee et al., 2012); North Africa: 125 
(Schepanski et al., 2007); Middle East: (Hennen et al., 2019); Namibia: (von Holdt et al., 2017), South Africa: (Eckardt et al., 2020), 
Central Asia: (Nobakht et al., 2021); Australia: (Bullard et al., 2008).     

   
The methods used during DPS data collection can be classified into two groups, defined by the 

type of satellite date used. The majority (7 out of 9) of these studies used Moderate-resolution Imaging 130 
spectroradiometer (MODIS) multispectral imagery, which offers twice daily (daylight) imagery of the 
Earth’s surface from two (Aqua and Terra) NASA satellites. These passive optical sensors provide a 
maximum spatial resolution of 250 m (level 1), recording surface reflectance in 36 individual spectral 
bands ranging from 0.4 µm (near ultraviolet) to 14.4 µm (TIR) (NASA). Their sun-synchronous orbits 
permit repeat observations at the same mean solar time, with Terra and Aqua spacecraft crossing the 135 
equator at 10:30 am and 1:30 pm (local time) respectively. For dust plume identification, a dust 
enhancement product is produced using brightness temperature differences (BTD) between a combination 
of visible bands (B1 (v. red: 0.645 μm), B3 (v. blue: 0.470 μm), B4 (v. green: 0.555 μm)), near infrared 
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(NIR) (B26: 1.375 μm) and TIR bands (B31: 11.03 μm and B32: 12.02 μm) to distinguish dust plumes 
from the surface and other atmospheric conditions (e.g., clouds, biomass burning) (Nobakht et al., 2019). 140 
These BTDs distinguish the elevated plume as a thermal anomaly from the desert surface below, the 
calculated value (dimensionless) is included as the red beam of a RGB false colour composite (FCC) 
image, with blue and green beams using visible bands B3 and B4 (Fig. 2a). 

 
Figure 2: Dust enhancement products from a) MODIS, RGB bands = R: Dust enhancement (Miller 2003), G: B4 (0.555 μm) and B: 145 
B3 (0.470 μm). Source (Nobakht et al., 2019). B) SEVIRI, RGB bands = Red (∆TBR (12.0µm – 10.8µm), Green (∆TBG (10.8µm – 
8.7µm), and Blue B9 (10.8 µm). Source EUMETSAT.      

The two other datasets (North Africa and Middle East) utilise the Spinning Enhanced Visible and Infrared 
Imager (SEVIRI) aboard the Meteosat Second Generation (MSG) satellite, which operates in a 
geostationary orbit producing frequent (15 minute) repeat observation with a spatial resolution of 3 km at 150 
nadir (EUMETSAT). Like the MODIS DEP, the SEVIRI Dust RGB product identifies atmospheric dust 
as a thermal anomaly within the narrow band thermal infrared (TIR) wavelengths (8.7 µm – 12.0 µm) 
(Ackerman, 1997; Banks et al., 2019, 2018; Volz, 1973). Compared to clear sky conditions, atmospheric 
dust produces a distinctive reduction across each of the TIR channels, with maximum absorption around 
10.8 µm (Brindley et al., 2012; Sokolik, 2002). Again, the SEVIRI dust RGB product is rendered through 155 
BTDs, with red and green beams described through the delta between 10.8 µm and adjacent TIR bands 
8.7 µm and 12.0 µm, while the blue beam is limited by the BT at 10.8 µm (Lensky and Rosenfeld, 2008). 
During dusty conditions, the 10.8 µm channel is suppressed more than the 8.7 µm and 12.0 µm channels, 
decreasing BTD (10.8 µm – 8.7 µm), and increasing BTD (12.0 µm – 10.8 µm) and creating a distinctive 
pink coloration of dust plumes in the RGB images while clouds appear as red or orange and land surface 160 
as cyan (Fig. 2b).  

For each method, absorption in the TIR by water vapour presents a potential limitation, reducing 
the cooling trend normally presented by atmospheric dust (Brindley et al., 2012). The presence of 
meteorological cloud or dust emission from sources upwind may also prevent observation of the source 
of emission in a single image. The 15-minute frequency of SEVIRI data allow the observer to back-track 165 
plume evolution through sequential images to the point of first observation, reducing the impact of 

A B 
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overlapping plumes (Hennen et al., 2019). For MODIS imagery, the 250 m spatial resolution provides 
finer detail, allowing the observer to better detect individual plume shapes, partially mitigating this 
overlapping effect (Baddock et al., 2009). Varying surface TIR emissivity occurs due to spatial changes 
in surface condition (vegetation, geology), creating variations in the BTD profiles and altering the RGB 170 
renderings (Banks et al., 2019, 2018; Banks and Brindley, 2013). During each of these limitation 
scenarios, subjective interpretation improves upon non-dynamic automated retrieval algorithms, which 
are required to work in all surface and atmospheric conditions (Schepanski et al., 2012). The shape 
recognition and decision-making ability of human observation currently exceeds those of automated 
approaches, alleviating many of these limitations and preventing false positives observations. For each of 175 
these studies criteria are specified for legitimate observation, including i) observation must take place 
during an emission event, where the deflation surface is clearly identifiable at the head of emission plume; 
and ii) the distinct dust source must not be obscured by either meteorological clouds or upwind dust 
emission plumes. As such, these data represent the cutting-edge of dust emission observations, allowing 
spatial verification by genuine emission events. The DPS is identified by a presence in dust emission but 180 
the absence of dust emission is not recorded (dichotomous). There is an inherent bias in these data towards 
the occurrence of dust emission and in their quantitative analysis we must account for this bias using 
statistics designed to handle this bias in dichotomous data.   

3.2 Dust emission Model 

We calculated the albedo-based dust emission (AEM) daily following the established approach (Chappell 185 
and Webb, 2016; Hennen et al., 2021). Many dust emission models rely on estimates of saltation flux Q 
(g m-1 s-1) to simulate F. The Q for a given particle diameter (d), soil moisture (w), wind speed at height 
h (Uh), and albedo (ω) were calculated as 

𝑄(𝑑,𝑤,ω, 𝑈%) = 𝑐 &!
'
𝑢#∗( (ω, 𝑈%) ,1 +

)∗#$(+)-(.)
)$∗(/,	2%)

/ 01 − ,)∗#$(+)-(.)
)$∗(/,	2%)

/
3
2,   (Eq.1) 

where ρa is air density (1.23 kg m-3), g is gravitational acceleration (9.81 m s-2), c is a dimensionless fitting 190 
parameter (set to 1), 𝑢∗"#(𝑑) is threshold wind friction velocity (m s-1). The soil surface wind friction 
velocity us* is the momentum remaining after the removal of momentum by roughness elements at all 
larger scales (topography, vegetation). The entrainment threshold 𝑢∗"#  (Marticorena and Bergametti, 
1995) is described in standard workflows (Darmenova et al., 2009). The H(w) is a function which adjusts 
𝑢∗"# when soil moisture inhibits entrainment following Fécan et al. (1999). The above equation describes 195 
how the magnitude of sediment transport is calculated and adjusted by the frequency of occurrence (0 or 
1) i.e., 𝑢#∗ > 𝑢∗"#. We used a robust direct estimation (Chappell and Webb, 2016) for 𝑢#∗: 
)$∗
2%
= 0.0311 ,𝑒𝑥𝑝 45&$

'.')'

6.689
/ + 0.007,       (Eq. 2) 

where 𝜔:# is the normalised and rescaled albedo (𝜔) translated and scaled (𝜔:) from a MODIS range 
(𝜔:min=0, 𝜔:max=35) for a given illumination zenith angle (ϴ=0°) to that of the calibration data (a=0.0001 200 
to b=0.1) using the following rescaling equation (Chappell and Webb, 2016): 

𝜔:# =
(;4<)(5&(=)45&(=)*!+)
(5&(=)*,&45&(=)*!+)

+ 𝑏.				 	 	 	 	 	 	 	 (Eq.	3)	
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Shadow is the complement of albedo 1 − 𝜔+>?(0°,			𝜆)  and the spectral influences due to e.g., soil 
moisture, mineralogy and soil organic carbon, were removed by normalizing (Chappell et al., 2018) with 
the directional reflectance viewed and illuminated at nadir 𝜌(0°,			𝜆): 205 

𝜔: =
845-,.(6°,			A)

&(6°,			A)
= 845-,.(6°)

&(6°)
.        (Eq. 4) 

This was implemented by making use of the available MODIS black sky albedo to estimate 𝜔:, and the 
shadow is normalized by dividing it by the MODIS isotropic parameter fiso (MCD43A1 Collection 6, 
daily at 500 m) to remove the spectral influences:   

𝜔:(0°) =
845-,.(6°,A)

B,$/(A)
= 845-,.(6°)

B,$/
.        (Eq. 5) 210 

The fiso is a MODIS parameter that contains information on spectral composition as distinct from 
structural information (Chappell et al., 2018). In theory, the structural information is waveband 
independent (Chappell et al., 2018). The normalization of MODIS data using this parameter and that of 
MODIS Nadir BRDF-Adjusted Reflectance (NBAR) is similarly sufficient to remove the spectral content 
for all bands examined (Chappell et al., 2018). In practice, we calculated 𝜔: using MODIS band 1 (620-215 
670 nm). To retrieve the wind friction velocity as a function of Uh, the daily maximum wind speed at 
h=10 metres above soil surface is provided by ECMWF Climate Reanalysis, ERA5-Land hourly wind 
field data at 11 km spatial resolution (Muñoz Sabater, 2019). 

Dust emission F (kg m-2 s-1) is calculated as: 

𝐹(𝑑) = 𝐴B𝐴#𝑀𝑄(𝑑)10C8(.D	%01!249.6F.	 	 	 	 	 	 	 (Eq.	6)	220 

We allowed %clay to vary realistically spatially but with the restriction max(%clay) =20 common in 
traditional dust emission models (Woodward, 2001). The proportion of emitted dust in the atmosphere 
has a relative surface area (M) for a given size fraction (d). In each pixel, the coverage of snow (As) and 
whether the soil surface is frozen (Af) is used to reduce dust emission and is obtained from daily ERA5-
Land data. Unlike existing dust models, the use of 𝜔:# to dynamically estimate 𝑢#∗ removes the need for 225 
vegetation indices and fixed vegetation coefficients to determine effective aerodynamic roughness. 
Furthermore, because us* is spatially explicit, it is not necessary to apply preferential dust source masks 
to pre-condition F (i.e., increasing F in areas perceived to have greater erodibility). 

Here we tackle the long-standing discrepancy in dust emission model performance being 
evaluated against dust in the atmosphere (Hennen et al., 2021). Instead, we use satellite observed dust 230 
emission point source (DPS) frequency. First, we calculated the DPS probability of occurrence P(DPS>0), 
a first order approximation of the probability of sediment transport P(Q>0), which is directly proportional 
to the probability of dust emission P(F>0) at those locations. Next, we equated this to study durations 
equal to the frequency 𝑢#∗ exceeds 𝑢∗"# adjusted by 𝐻(𝑤): 

𝑃(𝐷𝑃𝑆 > 0) ≈ 𝑃(𝐹 > 0) ∝ 𝑃(𝑄 > 0) = 𝑢#∗ > 𝑢∗"#𝐻(𝑤) M
1
0.     (Eq. 7)  235 

During each simulation, the correct response (𝐹 > 0) M10 depends on the correct 𝑢∗"#𝐻(𝑤). Importantly, 
the traditional dust emission schemes, like the AEM used here, assume that the soil surface is smooth and 
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covered with an infinite supply of loose erodible material which when mobilised by sufficient 𝑢#∗ causes 
transport and dust emission. This (energy-limited) assumption is rarely justified in dust source regions, 
where the soil surface is rough due to soil aggregates, rocks, or gravels, sealed with biogeochemical crusts, 240 
or loose sediment is largely unavailable.  

3.3 Dichotomous testing  

At each of the satellite observed dust emission source points (DPS) we used the AEM to predict dust 
emission daily across the entire time period. The AEM dust emission at these locations were converted 
to dust emission occurrence (0 = no dust / 1 = dust) for comparison with the DPS using dichotomous tests. 245 
Dichotomous tests are used where the prediction and observation variable contain a maximum of two 
distinct outcomes. This categorical verification is used in weather forecasting, typically for specific 
meteorological events (e.g., tornado, rain, or snow), where the verification question is “Did/Will this event 
occur?” In each instance, observation and simulation will provide a binary response, (i.e., 1 = Yes it 
will/did occur, 0 = No it did not / will not occur), these responses can be compared in a contingency table, 250 
where the responses are categorised as either Hit (observation=1, simulation=1), Miss (observation=1, 
simulation=0), False Positive (observation=0, simulation=1) or a Correct Negative (observation=0, 
simulation=0; Table 1). We simulate the presence or absence of dust emission at each DPS location for 
every day of observation, aggregated at 1° resolution, where if any of the DPS (observed or simulated) 
locations produces dust, then that grid box is scored a 1 on that day. Dichotomous statistics compare the 255 
coincidence of these 1s. Nan boxes describe lost data due to remote sensing issues (cloud mask, bright 
pixel mask) are excluded from the analysis. For clarity the number per region are described in the results. 
  
Table 1: Contingency table describing the frequency of occurrences in the observations and simulations. The joint distribution boxes 
(Hit, False Positive, Miss, Correct Negative) compare the binary responses of the observations and simulations. The totals describe 260 
the marginal distribution for either observation or simulation and are independent of each other.    

 
 Modelled Yes Modelled No Total 
Observed Yes Hit Miss Hit + Miss 
Observed No False positive Correct negative False positive + Correct negative 
Total Hit + False positive Miss + Correct negative Grand total 

 
We use P(us*>u*ts) to describe the relative conditions of each grid box, with ‘windier’ locations providing 
a higher probability of exceeding threshold. We chose this metric over mean 𝑢#∗ as dust emission is 265 
expected to be a rare event (Table 1), obscuring the diversity in extreme wind conditions within the long 
term mean. 
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4. Results 

4.1 Satellite observed dust emission point source (DPS) frequency 

The frequency of satellite observed dust emission point source (DPS) data and albedo-based dust emission 270 
model (AEM) estimates were calculated for DPS locations identified in 6 global dryland regions (using 9 
studies). Table 2 describes the regional results as a probability compared to the number of dust emission 
opportunities (number of DPS locations multiplied by the number of days in the study minus the number 
of missing data – see Methods section). Across all 9 studies a total of 37,352 unique DPS locations were 
aggregated into 1,945 unique 1° grid boxes, from which a total of 59,688 dust emissions were identified. 275 
Missing data ranged from 18.9% (North Africa) to 54.5% (Central Asia), with an average of 34.4% across 
all nine regions. Corresponding missing data were removed from both modelled and observed data to 
maintain consistency in results. 
   
Table 2: Dust event frequency data from dust point source (DPS) locations observed in nine separate earth observation (EO) studies. 280 
Data describes the relative probability of occurrence during dust point source (DPS) observation and from albedo-based dust 
emission model (AEM) forecasts at the same location and time period.  

 Sensor Years 

Total 
days 
(A) 

Dust 
grids 
(B) 

*Missing 
data  

(C x 104) 

Dust 
events 

(D) 

DPS 
P(F>0) 

(D/(A.B) - C) 
AEM 

P(F>0) 
N. Africa 
Schepanski SEVIRI  2006-

2010 1825 927 31.9 36490 0.0266 0.18 

Middle East 
Hennen SEVIRI 2006-

2013 2921 431 37.5 16781 0.0190 0.42 

Central Asia 
Nobakht MODIS 2003-

2012 3652 398 79.2 5201 0.0079 0.22 

Namibian Coast 
vonHoldt MODIS 2005-

2015 4016 36 4.9 697 0.0073 0.76 

SW. USA 
Lee MODIS 2001-

2009 
3286 13 1.7 69 0.0028 0.50 

Australia 
Bullard MODIS 2003-

2006 1460 54 1.9 148 0.0025 0.32 

SW. USA 
Baddock MODIS 2001-

2009 3286 12 1.3 56 0.0021 0.46 

South Africa 
Eckardt MODIS 2006-

2016 4017 26 3.1 135 0.0018 0.12 

SW. USA 
Kandakji MODIS 2001-

2016 5843 48 11.5 189 0.0011 0.45 

*Missing data describes number of simulations (daily grid box) lost due to missing albedo data. 

 

Overall, DPS observations show dust events to be rare, with a regional maximum probability in North 285 
Africa of 0.027 or   ̴ 10 dust days y-1 per 1° grid box (Table 2). In other regions, the probability of dust 
emission varies, with the Middle East producing the second highest probability (0.019, ~ 7 days y-1), 
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followed by Central Asia (0.008 / ̴~ 3 days y-1), and the Namibian coast in Southern Africa (0.007, ~3 
days y-1). Each of the North American, Australian and South Africa regions produce probabilities >0.003 
(~1 day y-1), with the smallest probability of 0.001 (>1 day y-1) in the arid south-west USA (Kandakji).  290 
Simulated P(F>0) is between 1 and 2 orders of magnitude greater than observations in each region. 
Furthermore, the relative order between regions varies, with North Africa producing the second lowest 
probability of dust emission per grid box (P = 0.18 or   ̴ 65 days y-1), with only South Africa (Eckardt) 
producing a lower probability (0.12, ~ 44 days y-1). The Namibian Coast produced the highest probability 
(0.76 or ~ 256 days y-1), followed by North American regions (0.46 – 0.5, ~ 168 – 183 days y-1), the 295 
Middle East (0.42,   ̴ 153 days y-1), Australia (0.32, ~ 117 days y-1), and Central Asia (0.22, ~ 80 days y-
1). 

4.2 Categorical dust emission model performance 

The performance of the albedo-based dust emission model (AEM) is assessed through the coincidence of 
simulated and observed occurrence (or lack of) dust emission. These results are described globally in 300 
Table 3, where all results from all regions are collated into a contingency table describing the proportion 
of each of four outcomes (see Table 1 for outcome descriptions). Dust emission observations account for 
only 2% of all possibilities (grid boxes multiplied by days). In comparison, the AEM over-predicts the 
frequency of dust emission by an order of magnitude, producing dust 28% of the time. The model and 
observations agree 71.4% of the time, including 0.6% where both model and observations produce dust 305 
(‘hits’), and 70.8% of the time when neither predicts dust (‘correct negatives’). During the remaining 
28.6% of the time, the model predicts dust 27.4% of the time when no observations occurred (‘false 
positives’) and fails to predict dust 1.2% of the time when observation takes place (Table 3).    
 

Table 3: Categorical statistics for albedo-based dust emission model (AEM) simulations (F > 0) when compared to all satellite 310 
observed dust emission point sources (DPS) combined. 

 Modelled Yes Modelled No Total 
Observed Yes 0.6 1.2 1.8 
Observed No 27.4 70.8 98.2 
Total 28 72 100 

 
The variation in modelled dust emission frequency between global regions is explained by the varying 
cumulative distribution functions (empirical) of wind shear velocity (us*) conditions at the soil surface 
(Fig. 3). The probability of dust emission (Table 1) is defined by the intersection of the distribution of 315 
us* conditions and the entrainment threshold (u*ts) of 0.2 m s-1 (in this example; vertical black line), where 
all simulations greater than that threshold generate dust emission (i.e., F>0). In each simulation, us* is 
influenced by the soil surface wind friction velocity and surface wind speed (Uh). The results show a 
range of conditions between each of the regions. Along the Namibian coastline (von Holdt) us* is distinctly 
larger than all other regions (mean 0.23 m s-1). In contrast, South African (Eckardt) dust sources have 320 
predominantly small us* (mean 0.11 m s-1) (Fig. 3a). In the arid south-west of North America, average us* 
remains consistent across each of the three regions (0.19 m s-1), and marginally greater than Australia and 
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the Middle East (each ~0.17 m s-1). Despite producing the same mean, the frequency at which North 
American regions exceed threshold varies. These regional data suggest that the Chihuahuan Desert 
(Baddock), produces a higher proportion of us* conditions at extreme values (small and large values of 325 
us*), whereas the Southern High Plains (Kandakji and Lee) produce a higher frequency closer to the mean. 
Along with South Africa, us* conditions in Central Asia (mean = 0.14 m s-1) and North African (mean = 
0.13 m s-1) are the smallest, with us* values proportionally smaller than the collective global distribution 
(dashed black line).   

Figure 3b describe the distribution of us* conditions during observation periods (locations and 330 
days which observed dust only). These data determine the proportion of ‘hits’ (coinciding observed and 
simulated dust) by the probability of us* > u*ts. With a greater proportion of us* values and a u*ts threshold 
of 0.2 m s-1 (vertical black line), the north American regions generate a high probability (0.97-0.99) of 
‘hits’. In contrast, North Africa, Central Asia, South Africa, and the Namibian Coast all produce ‘hit’ 
probabilities below 0.5, due to the smaller frequency of large us* conditions. The Middle East (0.55) and 335 
Australia (0.84) have higher probabilities but continue to ‘miss’ a significant proportion of observed dust 
events. These results show that a high proportion of the observations (up to 79% in North Africa) occur 
during us* conditions below threshold, with all regions except North America (Lee and Baddock) 
producing a minimum observed us* below threshold.  

To demonstrate the impact of u*ts on the probability of dust emission, we consider the adjustment 340 
of regional u*ts to match global DPS frequency P(us*all > u*ts) = 0.02, where us*all is the empirical 
cumulative distribution functions (ECDF) of us* conditions at all locations during all days (black dashed 
line in Fig. 3a). Accordingly, adjusted u*ts = 0.36 m s-1, as the point where the ECDF intersects 98% (blue 
horizontal line) of the global total distribution (Fig. 3a). To assess the impact on model performance and 
specifically the ability to simulate dust during observed dust events, this adjusted threshold is applied 345 
(dashed vertical line) to us* conditions during observation periods (Fig. 3b). In this case, the percentage 
‘hits’ reduces in all regions, with a maximum reduction of 55% in Australia (84% with u*ts = 0.2 m s-1, to 
29% with u*ts = 0.36 m s-1), and a minimum reduction of 20% in North Africa (21% to 1%). North America 
produces the highest percentage of ‘hits’ (57 – 71%), while all observed events are missed in South Africa 
(‘hit’ = 0%).  All other regions reduce the proportion of ‘hits’ below 10%. Overall, during all observed 350 
dust events (black dashed ECDF in Fig. 3b), us* < u*ts 68% of the time, indicating wind speeds are too 
small over two thirds of the time when we know dust emission has occurred (i.e., DPS > 0). 
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Figure 3. Empirical cumulative distribution functions (ECDF) of satellite observed dust emission point sources (DPS) from 9 studies 
across 6 dryland regions compared to MODIS (500 m pixels) albedo-derived wind friction velocity (us*) estimated using ERA5-Land 355 
(11 km pixels) wind speed at 10 m height. The vertical black line represents the model entrainment threshold (u*ts) which is fixed 
over space and static over time. The distribution of us* either side of the black line (u*ts) represent the probability of modelled dust 
emission during a) all modelled days during the duration of the respective study, b) observed days, including only modelled us* 
conditions at locations and days where dust point source (DPS) emissions were observed. Red dashed line describes the theoretical 
u*ts required to omit 98% (blue horizontal line) of occurrences from the global combined distribution of us* conditions (black dashed 360 
line), matching the observed frequency of the 9 regional studies (combined) (Table 3).    

4.3 Dust emission model variability at a local (1°) scale 

The ECDF analysis in Figure 3 indicates an underestimation of us* conditions most of the time during 
observed dust events. Accordingly, 68% of known dust events are not modelled. Regionally, this value 
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varies depending on the range of us* conditions during observed events (Fig. 3b). Figure 4a describes Pobs 365 
(us* > u*ts) during observed dust events at a 1° grid box. By simulating only days which are known to 
produce dust, the results are independent of total frequency, where perfect model performance would 
produce 1 in each grid box (i.e., every grid box is dark red in Fig. 4a). The variability in grid box Pobs is 
independent of regional conditions (Fig. 3), instead elucidating spatial patterns in us* conditions during 
known dust emission events.  370 

During observed days, Pobs is consistently large (>0.8) across North America, and the southerly 
reaches of the Lake Eyre Basin, including the Simpson and Strzelecki Deserts to the south (Fig. 4a). 
Across North Africa, Pobs remains generally small, increasing in the north (0.4 – 0.6) along the 
Mediterranean coast, and decreasing to a minimum (<0.2) in the south and east. In the Middle East, Pobs 
is large (>0.6) across large areas of the Arabian Peninsula, including Mesopotamia in the north, the Red 375 
Sea Coast in the west and Oman to the south. Iran has large variability, with Pobs (<0.2) in the north-east, 
increasing Pobs (>0.6) in the Sistan Basin to the east, along the Makran Coast to the south and on the 
shores of the Caspian Sea to the north. Central Asia produces the largest variability, peaking (Pobs >0.8) 
in the Gobi Desert (China) in the east, the Kara-Kum Desert and Aral Sea area (Kazakhstan) to the west, 
while many central areas, including the Taklamakan Desert produce small Pobs. In the Namib Desert, 380 
along the Namibian Coast, Pobs peaks (>0.6) to the north, while inland Pobs reduces significantly (<0.2). 
In South Africa, Pobs is generally small (<0.4), with a peak (>0.6) in the south-eastern extent of the 
Kalahari Desert.  

For comparison, Figure 4b describes Pall (us* > u*ts) during all days at each 1° grid box. These data 
include observed events, which only comprise a small proportion (<2%) of all days (Table 3). 385 
Accordingly, these results reveal how likely the model is to create false positive dust events, where a good 
model performance would produce very small Pall values (i.e., 0 False positives / each grid box = white 
Fig. 4b). Here, large spatial variability in Pall occurs across Australia, and North America and the Middle 
East. Pall remains consistently small (<0.4) in North Africa, and parts of north-east Iran, Central Asia, and 
South Africa. Pall peaks (>0.8) in the Namib Desert (Namibia), western Arabian Plateau (Saudi Arabia), 390 
Mesopotamia (Iraq / Syria), Makran Coast (Iran), Sistan Basin (Iran/Afghanistan) and discrete parts of 
the Kara-Kum, Taklamakan (Kazakhstan), and Gobi (China) Deserts.  
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Figure 4. Maps describing the probability of dust emission (us* > u*ts) at a 1º grid resolution, during (A) observed days and locations 
where dust point source (DPS) emissions were observed, and (B) all days and locations during the length of the respective study. The 395 
difference (C) in ∆𝑷 between observed and all days describes the relative difference in us* conditions during each period. Red grid 
boxes describe positive ∆𝑷, meaning winds are larger during DPS dust events than during all modelled days. Blue grid boxes describe 
negative ∆𝑷, indicating winds are slower during DPS events than during all modelled days. Light blue, yellow, and orange grid boxes 
described neutral ∆𝑷, indicating none, or very little, discernible difference between wind conditions during DPS events and all 
modelled days.  400 

The difference between Pobs and Pall (∆𝑃 Eq. 8; Fig. 4c) describes how distinct the us* conditions 
are in each grid box during each period: 

∆𝑃 = 	𝑃G<#O𝑢#∗(G<#H?IH+)	 > 𝑢∗"#	P −	𝑃;JJO𝑢#∗(;KK)	 > 𝑢∗"#	P			 	 	 (Eq.	8)	

assuming u*ts = 0.2. Those ∆𝑃 values close to 0 indicate no, or very small, differences in us* conditions, 
indicating that the AEM does not recognise a difference in the probability of us* exceeding threshold 405 
between each period. These conditions occur across large parts of the Sahara Desert, Central Asia, where 
small us* conditions continue during all periods (Pobs and Pall <0.2). In parts of the Arabian Peninsula 
(including northern Mesopotamia), ∆𝑃 remains small as us* conditions continue to exceed threshold most 
of the time (Pobs and Pall>0.6). Positive ∆𝑃 indicates an increase in us* during observed dust emission days 
compared to all days. These conditions occur in most dust sources in Australia, North America, Western 410 
Arabian Peninsula (Jordan, north-west Saudi Arabia), where us* conditions are large during dust events 
(Pobs >0.8) and smaller during all days (Pall <0.4). ∆𝑃 remains positive in South-eastern Kalahari Desert, 
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Central Iran, and the Mediterranean Coast of North Africa where smaller us* conditions during observed 
dust events (Pobs 0.4 - 0.8), remain distinctly larger than on all days (Pall <0.2). Negative ∆𝑃 indicates 
larger us* during all days compared to observed days. These conditions occur throughout the Namib 415 
Desert, the coast of the Arabian Gulf (Saudi Arabia), the Makran Coast and Dasht-e-Lut Desert (Iran), 
where us* conditions exceed threshold most of the time (Pall >0.8) and are relatively small during observed 
dust events (Pobs <0.6). Discrete areas of the Kara-Kum, Taklamakan, and Gobi Deserts also produce 
negative ∆𝑃, as large peaks in us* conditions (Pall >0.8) during all days, exceed those on observed days 
(Pobs <0.6).  420 

5. Discussion  

The collective dust emission frequency from nine separate studies demonstrate that dust emission is a rare 
event (on average 1.8% of all space-time occurrences), even in the more readily recognised dust emission 
areas (e.g., the Sahara Desert, the Arabian Peninsula), with its infrequent occurrence appearing indicative 
of extreme conditions (e.g., high wind speeds). In comparison, AEM simulations estimate dust emission 425 
frequency 27% of the time. This over-estimation is expected, as dust emission models are known to be 
positively biased against dust occurrence (Huneeus et al., 2011). Notably, this over-estimation remains 
despite the AEM model improvements over traditional approaches using a calibrated attenuation of wind 
speed by surface roughness (Chappell et al., 2021). There are two components of this AEM dust emission 
over-estimation that need to be considered: (i) it is systematic across dryland dust sources around the 430 
world; (ii) the disparity is in total frequency and daily coincidence of observed and simulated emission. 
Without considering both components, it will be difficult for model developments to determine if the 
model simulated the correct frequency by chance (i.e., same frequency on different days), 
and under which environmental conditions the model performs.  

The AEM coincides with DPS occurrences (observed and not observed) 71.4% of the time. 435 
However, during observed dust events, the AEM only coincides with DPS, 32% of the time. Since the 
AEM provides a realistic (calibrated) representation of us*, these results suggest that the inconsistency in 
modelled and observed frequencies is due to a combination of three factors: (1) discrepancies in 
the formulation of the entrainment threshold (u*ts); (2) incompatible scales in dust emission modelling, 
and (3) the inadequate assumption of infinite supply of loose, fine erodible sediments. Each of these 440 
factors can be interpreted by comparing the conditions which exceed entrainment threshold P(us* > u*ts) 
during observed DPS days to all days (Table 4) at multiple scales including, regional (Fig. 3) and local 
(1° - Fig. 4).     

The P(us* > u*ts) during DPS events describes the model accuracy in either the us* conditions known 
to have created dust emission (i.e., DPS = 1) or the correct dust entrainment threshold (Fig. 4a; top row 445 
in Table 4). By plotting the combinations of these occurrences, we can understand which meteorological 
events are best described by dust emission models and / or where the dust entrainment threshold is poorly 
constrained.  In common with other dust emission models, the AEM has no description of the spatio-
temporal variation in soil erodibility and assumes an infinite sediment supply at all locations. 
Consequently, whenever us* > u*ts the AEM simulates dust emission. During DPS observations, by 450 
comparing P(us* > u*ts) with all modelled days (Fig. 4b), we can determine areas where sediment supply is 
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poorly described by an infinite sediment supply i.e., no difference in P(us* > u*ts) between observed days 
and all days (top left and top right in Table 4) or comparing P(us* > u*ts)  is larger during all days than 
during DPS observations (bottom left in Table 4). 

Where there is no clear separation in us* conditions during observed events and all days, we can 455 
interpret these results in two ways, depending on the P(us* > u*ts). If P is large during both periods (bottom 
right in Table 4), the model will correctly simulate dust most of the time during DPS observations (‘hits’ 
are large). In this case, dust producing us* conditions are well described, but the lack of erodibility 
parametrisation means dust emission will continue to be simulated beyond those days observed in the 
DPS data (‘false positives’ are large). If P is small during both periods (top left in Table 4), dust-460 
producing us* conditions are not well described (‘hits’ are small) and are therefore not distinguished from 
all day events during observed DPS days (‘false positives’ remain small).  
 
Table 4: Description of categorical albedo-based dust emission model (AEM) outputs due to varying probabilities of us* > u*ts during 
observed DPS dust days and all days. Colours indicate the symbology applied to 1° grid boxes in Figure 4.  465 

 P(us* > u*ts) on observed days (DPS known to occur) 

Small Large 

P (
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*  
>  
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Neutral ∆𝑷 
us* conditions on observed (DPS) and all days are 

small and not distinguishable from each other 
 

Few ‘hits’ 
• Wind field data unable to replicate dust 

producing winds at DPS locations 
 
Few ‘false positives’ 
• Alterations to u*ts will not differentiate the 

proportion of Hits and False Positives.  
 

Positive ∆𝑷 
us* conditions on observed (DPS) days are 

distinctly larger than on all days  
 
Many ‘hits’ 
• Wind field correctly simulates us* conditions 

associated with dust emission  
 
Few ‘false positives’ 
• u*ts appropriate for ambient wind conditions.  
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Negative ∆𝑷 
us* conditions on observed (DPS) days are 

distinctly smaller than on all days  
 
Few ‘hits’ 
• Wind field data unable to replicate dust 

producing winds at DPS locations 
 
Many ‘false positives’ 
• u*ts inappropriate for ambient wind conditions.  
• Frequent modelled dust beyond observed days 

as sediment supply assumed to be infinite.  
 

Neutral ∆𝑷 
us* conditions on observed (DPS) and all days are 

large and not distinguishable from each other 
 

Many ‘hits’ 
• Wind field correctly simulates us* conditions 

associated with dust emission  
 
Many ‘false positives’ 
• Alterations to u*ts will not differentiate the 

proportion of Hits and False Positives.  
• Modelled dust continues beyond observed 

days as assumption of infinite sediment 
supply.   
 

 

5.1 Discrepancies in the formulation of entrainment threshold (u*ts) 

By using dichotomous descriptions of dust emission frequency, we provide an assessment of model 
performance which emphasises the coincidence of events rather than just a comparison of total frequency. 
This assessment distinguishes observed simulations from all simulations to provide a powerful 470 
description of dust emitting conditions from those on all days. Our results show that modelled dust 
emission occurs regularly i.e., us* > u*ts where and when no dust emission is observed (27.4% of all 
simulations; Table 3). These findings suggest that dust emission model performance can be improved by 
matching u*ts to the correct global frequency of observed dust emissions (globally = 1.8%; u*ts = 0.36 m s-
1). However, reducing the number of ‘false positives’ in this way will systematically reduce the proportion 475 
of correct observations (i.e., ‘hits’) in all regions by as much as 55% (Australia), with only 1% of all 
observations in North Africa correctly simulated. An alternative perspective is to adjust u*ts to maximise 
the number of ‘hits’ P(us*observed > u*ts) = 1 and globally would require a fixed u*ts = 0.006 m s-1. However, this 
alternative perspective will increase the proportion of ‘false positives’ to 99.9%.  

Despite the rarity of dust observations (occurring only 1.8% of the time; Table 3), the ECDF data 480 
show that dust emission events rarely represent extreme us* conditions (Pobs =< Pall; Fig. 3), because in most 
cases there is no distinct difference in us* conditions between observed days and all days. These results 
demonstrate that there is no reasonable basis to calibrate model performance through an adjustment to a 
fixed global u*ts. In contrast, a variable threshold should improve model performance in areas where there 
is a clear positive change in frequency of occurrence (i.e., top right in Table 4; us*observed > us*all). Our regional 485 
results indicate that this condition occurs only in North America, and Australia, where the AEM 
clearly identifies an increased mean us* during observed DPS events (Fig. 3). In both regions, dust 
emission occurs during the passage of large frontal systems (Rivera Rivera et al., 2009; Strong et al., 
2011), in response to cyclonic activity. The ability to accurately model these synoptic 
conditions allows u*ts to be adapted (increased) to reduce the number of ‘false positive’ simulations 490 
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without negatively affecting the model’s ability to simulate ‘hits’. However, calibration of u*ts in this 
way is not recommended because it fundamentally tunes the model response to those specific conditions.   

5.2 Incompatible scales in dust emission modelling 

By describing the ECDFs of us* during observed days and locations (Fig. 3b), and assuming that the wind 
friction velocity normalised by wind speed is well constrained (Chappell and Webb, 2016), a new 495 
understanding emerges. Wind speeds used in the AEM are too small to enable us* to exceed u*ts during 
roughly 2 out of 3 observed events Pobs (us* > u*ts) = 0.6. For example, North American DPS are from 
predominantly barren conditions and show little variation in us*/Uh, either spatially or temporally (Hennen 
et al., 2021). This characteristic of DPS data extends globally, with most dust emission source points 
coinciding with barren conditions (us*/Uh > 0.28) which do not change much, most of the time (standard 500 
deviation less than 0.002) either within or between the few years of measurements. Therefore, variation 
in us* conditions of the DPS locations is created mainly by variation in Uh. Accordingly, when a dust 
event is observed but us* doesn’t exceed u*ts, we assume that the AEM has not correctly simulated the 
associated dust-producing wind conditions at that location. In the text which follows, we elaborate on 
regional conditions and AEM performance given these assumptions. 505 

Regionally, North Africa produces the smallest probability of dust-producing winds during 
observed dust events (P=0.2). However, Figure 4a demonstrates large spatial variability in P, with larger 
values along the Mediterranean Coast and western Africa (P>0.4), than inland, eastern parts of the Sahel 
which have P<0.2. Dust emission in the north occurs through cyclogenesis and associated formation of 
fronts (Schepanski et al., 2009). Specifically, Sharav cyclones (also named Mediterranean cyclone), track 510 
across the Mahgreb region towards the eastern Mediterranean Basin (Knippertz and Todd, 2012). These 
conditions are often associated with an active warm front, characterised by pronounced dust uplift 
(Schepanski et al., 2009). Saharan Depressions are also found anticyclonically over Western Africa, 
where they ultimately transit north and east into a Mediterranean cyclone (Schepanski and Knippertz, 
2011). These synoptic scale meteorological conditions are described well in AEM, with a distinct change 515 
in us* (increasing P) during observed dust events compared to all days (Fig. 4c, top right in Table 4). 

In parts of the Sahel region, dust emission is associated with mesoscale meteorological drivers, 
including the diurnal break-down of the nocturnal low-level jet (LLJ) (Schepanski et al., 2009) and sudden 
increase in wind speeds at the leading edge of cold-pool density currents, formed from deep moist 
convection (Knippertz and Todd, 2012; Lawson, 1971). Figure 4a shows that neither of these conditions 520 
are frequently identified in the AEM, with P<0.2 during observed events. These small P values very 
likely arise from the use of ERA-5 global wind field data (11 km pixels), like most global modelled wind 
field data, will struggle to describe episodic, mesoscale events such as LLJs and cold pooling (Fan et al., 
2020). Instead, these wind data describe a single spatial mean value per 11 km pixel, which is 
subsequently used to form us* and compared to u*ts (at the grain scale without adjustment). The AEM uses 525 
maximum daily wind speeds to increase the chance of simulating dust-producing winds. However, 
maximum values still describe the spatial mean across the 11 km pixel, during that period. If peak wind 
speeds occur suddenly and/or in a discrete area within each pixel, the mean pixel values will not capture 
the magnitude of those peak wind conditions at a given point dust source. Accordingly, no distinct change 
in peak us* conditions can be identified during local (discrete) or sudden dust emission events, as 530 
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demonstrated by the parity in P(us* > u*ts) during observed dust events and all days (Neutral ∆𝑃 – Fig. 
4c).  

5.3 Inadequate assumption of infinite supply of fine sediments. 

Despite the AEM failing to simulate all observed dust emission, it over-estimated dust emission frequency 
at all dust sources. The dichotomous statistics demonstrate that modelled dust emission occurs 535 
predominantly when no observation was made (27% of the time; Table 3). At these dust sources, P(us* > 
u*ts) is large all the time (bottom row in Table 4). As the AEM has no description of the availability of 
dry, loose fine material to generate sediment transport (soil erodibility), it will produce dust emission 
whenever us* conditions are large enough to exceed u*ts (many false positives). The entrainment threshold 
is exceeded more frequently in areas where the prevailing wind speeds remain frequently large. Our 540 
results show large daily P(us* > u*ts) across Mesopotamia, The Sistan Basin (Iran / Afghanistan) and the 
Namibian Desert (Fig. 4b), where dust emission is simulated >80% of the time in response to frequent 
large winds, including the north-westerly Shamal Winds of Mesopotamia (Bou Karam Francis et al., 
2017; Yu et al., 2016), the Sistan Winds in eastern Iran (Rezazadeh et al., 2013) and the Berg Winds 
across the Namibian coast (von Holdt et al., 2017). The DPS observations peak in some of these regions, 545 
yet continue to occur infrequently, with P(DPS>0) less than 0.3 (see Appendix 1). With sufficient wind 
friction velocity to initiate dust emission 80% of the time, the scarcity of observation indicates an absence 
of erodible material. Despite an infinite supply of loose material in the model, dryland environments are 
well-known to be supply-limited (Bullard et al., 2011; Klose et al., 2019; Parajuli et al., 2014; von Holdt 
and Eckardt, 2018; Zender, 2003). Ephemeral processes, and the preferential transposition of fine 550 
materials are often considered key in the episodic nature of dust emission (Rashki et al., 2017). In supply-
limited areas, once these fine materials are deposited, there exists a finite period of increased dust 
emission potential. During the intervening periods, supply is either exhausted or protected from erosive 
winds by the formation of biogeophysical crusts (Vos et al., 2020) or surface ‘armouring’. Accordingly, 
dust source areas, like the Sistan Basin, Tigris-Euphrates Basin (Syria/Iraq), and the Kuiseb River 555 
catchment (Namibia), where ephemeral or fluvial systems (with variable flow rates) occur, will tend to 
be limited by the production of fine materials (von Holdt and Eckardt, 2018). While the impact caused by 
the simplistic model assumption of infinite sediment supply, is most apparent in frequently windy areas, 
our results (27% ‘false positive’ simulations) suggest that the mismatch between the assumption and the 
DPS observations of dust emission occurs in all dryland areas (Fig. 4b).   560 

6. Conclusions 

Several new insights for model performance have arisen from this work with implications for the 
prospects of dust emission modelling. Satellite observed dust emission point source (DPS) data, 
compatible with the scale of dust emission model simulations, demonstrate that dust emission is rare, 
even in areas where there are many more dust sources in the region (e.g., North Africa, Middle East). 565 
Notwithstanding recent improvements in dust emission modelling using the albedo-based approach, the 
AEM currently over-estimates dust emission by several orders of magnitude. The over-estimation of dust 
emission is globally systematic which we interpret here to be due to the consistent difference between the 
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scale of the wind friction velocity (using MODIS albedo at 500 m) and the scale of wind field data (using 
ERA5 Land at 11 km pixels). Similarly, we know that the entrainment threshold is derived at the grain-570 
scale which is incompatible with those areal estimates of wind and wind friction velocity. Furthermore, 
the long-standing dust emission modelling assumption of an infinite supply of dry, loose and available 
sediment is evidently unreasonable and causing some of the discrepancy between dust emission modelling 
compared with satellite observations of dust emission data. Our results demonstrate that the following 
future improvements in dust emission modelling will be most effectively tackled in an integrated approach 575 
because of their interactive nature, by: 
• developing an entrainment threshold which varies over space and time, and which is spatially area-

weighted to overcome the incompatibility of the current grain (point) scale. 
• applying consistently the same spatial scale for all area-based estimates (e.g., wind speed data at 11 

km pixels) is now practical by linear scaling of the albedo data to 11 km pixels before it is calibrated 580 
to the wind friction velocity and thereby overcoming the non-linearity in sediment transport and dust 
emission modelling (Raupach and Lu, 2004). 

• formulating a parameterisation for sediment supply / availability changing over space which is 
spatially area-weighted and scales linearly for consistency with other model data.  

• establishing values for new model parameters by optimising against satellite observed dust emission 585 
(DPS) data. 

 
Model ‘tuning’ to dust in the atmosphere causes difficulty in routine evaluation of dust emission 

model performance. We support the need to ensure that the balance of dust emission modelling is towards 
the fidelity of the dust emission scheme (processes) rather than the parsimony of its implementation 590 
(parameterization) (Chappell et al., 2021). As new parameterization schemes are developed and new data 
sources become available, the research community will benefit from being open to critical re-evaluations 
to avoid model deficiencies enduring. Consequently, rather than making (ad-hoc) changes to dust models 
by assessment against dust in the atmosphere, dust emission modelling improvements should be made 
against satellite observed dust emission point source (DPS) data. True model fidelity will then be 595 
described by the coincidence in space and time with those DPS observations of dust emission, and not 
restricted to accumulation/aggregation of frequency. 
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7. Appendix 

 

Appendix 1. Probability of dust point source (DPS) observations per day, normalised to 1° grid boxes 600 
where frequency is described by a minimum of one DPS observation per day (max. = 0.43). Source 
North America: (Baddock et al., 2009; Kandakji et al., 2020; Lee et al., 2012); North Africa: 
(Schepanski et al., 2007); Middle East: (Hennen et al., 2019); Namibia: (von Holdt et al., 2017), 
South Africa: (Eckardt et al., 2020), Central Asia: (Nobakht et al., 2021); Australia: (Bullard et al., 
2008). 605 

8. Code Availability 

The Google Earth Engine Java script code and Python code used for the analysis of model output are 
available through a Zenodo repository (https://doi.org/10.5281/zenodo.5816911). 
 

https://doi.org/10.5194/gmd-2021-423
Preprint. Discussion started: 10 January 2022
c© Author(s) 2022. CC BY 4.0 License.



22 
 

9. Data Availability 610 

The data used are identified in the main text and below using the Google Earth Engine data description 
and catalogue references, link and DOI. The satellite observed dust emission point source (DPS) data are 
available from a Zenodo repository (https://doi.org/10.5281/zenodo.5816911).  
  

Dates used Google Earth Engine data Google Earth Engine Catalogue reference, link or DOI 
2009 MODIS land cover used to mask 

land / sea 
MODIS/051/MCD12Q1/2009_01_01 
https://doi.org/10.5067/MODIS/MCD12Q1.006 

Static ISRIC clay content https://github.com/ISRICWorldSoil/SoilGrids250m/ 
2001-2020 MODIS albedo 

Band1_iso 
MODIS/006/MCD43A1 
https://doi.org/10.5067/MODIS/MCD43A1.006 

2001-2020 ECMWF ERA5-Land  
u-component_of_wind_10m 
v-component_of_wind_10m 
volumetric_soil_water_layer_1 
soil_temperature_level_1 

ECMWF/ERA5_LAND/HOURLY 
doi:10.24381/cds.e2161bac 

2001-2020 MODIS Snow Cover MODIS/006/MOD10A1 
https://doi.org/10.5067/MODIS/MOD10A1.006 
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