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Abstract. The prediction of species geographic redistribution under climate change (i.e. range shifts) has been addressed by 

both experimental and modelling approaches and can be used to inform efficient policy measures on the functioning and 

services of future ecosystems. Dynamic Global Vegetation Models (DGVMs) are considered state-of-the art tools to 10 

understand and quantify the spatio-temporal dynamics of ecosystems at large scales and their response to changing 

environments. They can explicitly include local vegetation dynamics relevant to migration (establishment, growth, seed 

production), species-specific dispersal abilities and the competitive interactions with other species in the new environment. 

However, the inclusion of more detailed mechanistic formulations of range shift processes may also widen the overall 

uncertainty of the model. Thus, a quantification of these uncertainties is needed to evaluate and improve our confidence in the 15 

model predictions. In this study, we present an efficient assessment of parameter and model uncertainties combining low-cost 

analyses in successive steps: local sensitivity analysis, exploration of the performance landscape at extreme parameter values, 

and inclusion of relevant ecological processes in the model structure. This approach was tested on the newly-implemented 

migration module of the state-of-the-art DGVM, LPJ-GM 1.0. Estimates of post-glacial migration rates obtained from pollen 

and macrofossil records of dominant European tree taxa were used to test the model performance. The results indicate higher 20 

sensitivity of migration rates to parameters associated with the dispersal kernel (dispersal distances and kernel shape) compared 

to plant traits (germination rate and maximum fecundity) and highlight the importance of representing rare long-distance 

dispersal events via fat-tailed kernels. Overall, the successful parametrization and model selection of LPJ-GM will allow 

simulating plant migration with a more mechanistic approach at larger spatial and temporal scales, thus improving our efforts 

to understand past vegetation dynamics and predict future range shifts in a context of global change. 25 

1 Introduction 

It is widely accepted that climate change is affecting the geographic distribution of species worldwide (Pecl et al., 2017; Lenoir 

et al., 2020). Especially for taxa with slow thermal adaptation such as trees, the ability of a species to track its optimal 

environment (i.e. range shift) will likely be the primary limitation of response to rapid climate change (Berg et al. 2010; 

Thompson and Fronhofer 2019). Genetic and spatial studies of pollen and macrofossils show that tree species have successfully 30 
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responded to past climatic changes by following northward thermal shifts after the retreat of ice sheets at the end of the Last 

Glacial Maximum (Huntley and Birks, 1983). The responses of contemporary vegetation seem to follow a similar trend towards 

the poles and the summits of mountains in previously cooler latitudes and elevations, respectively (Lenoir et al., 2020). 

Importantly, differences in migration abilities will result in new assemblages of communities via species-specific range 

contractions and expansions, where range shifts will determine the threat of invasion by alien species and extinction of local 35 

species, which may in turn alter ecosystem services, such as carbon sequestration and wood production (Pecl et al., 2017). 

Thus, species-specific range dynamics need to be accounted for to aid policy measures targeting the protection of the 

functioning and services of future ecosystems. 

So far, the prediction of species range shifts in response to climate change has been addressed by both experimental and 

modelling approaches. Dynamic Global Vegetation Models (DGVMs) are considered state-of-the art tools to understand and 40 

predict the spatio-temporal dynamics of ecosystems and their response to changing environments (Snell et al., 2014; Briscoe 

et al., 2019). In particular, DGVMs have the potential to explicitly account for the processes involved in migration, including 

the demographic components (e.g. fecundity, population establishment and growth) along with species-specific dispersal 

abilities and the competitive interactions with other species in the new environment (Snell et al., 2014; Shifley et al., 2017). 

Though the inclusion of more detailed mechanistic representations of the migration process can potentially improve the 45 

predictive power of a model, the larger number of simulated equations and parameters, each with its inherent uncertainty, may 

also increase the overall uncertainty of the model predictions (Snowling and Kramer, 2001). An assessment of these errors is 

therefore needed to increase our confidence in the model predictions, and/or to identify parameters and representations of 

ecological processes that require further improvement. Such an assessment is achieved by comparing model outputs with 

independent observations, while quantifying the impact of ecological parameters and processes on the model predictions.  50 

The considerable complexity of DGVMs often leads to model performance being estimated considering various sources of 

errors, including data inaccuracy, lack of detailed information at high temporal and spatial resolution, and a limited knowledge 

of the processes underlying the modelled system. Specifically, uncertainty in DGVMs is mainly attributed to 1) the appropriate 

(mathematical) representation of the ecological processes underlying the model (model uncertainty), 2) the estimation of the 

high number of parameters, whose values are not readily measurable or are derived from data of limited sample size (parameter 55 

uncertainty), and 3) the influence of stochastic processes that may render average model predictions uninformative (inherent 

uncertainty) (Higgins et al., 2003a). Model uncertainty can be addressed by a comparison of the performance among modelling 

frameworks where different processes or process formulations are tested for their impact on the model output (e.g. Cheaib et 

al., 2012). Specifically to migration modelling, model uncertainty can be controlled by accurately translating recent ecological 

evidences on the components of migration (demographic and dispersal processes) and their key drivers (e.g. climate, landscape, 60 

species interactions) into the model (Alexander et al., 2018; Tomiolo and Ward, 2018) in order to have a more appropriate 

representation of the ecological processes underlying migration. Generally, the dispersal sub-model is likely to be inadequately 

represented both as phenomenological (describing seed dispersal patterns via seed kernels) and mechanistic (explicitly 

describing dispersal processes) models (Higgins et al., 2003a). A seed dispersal kernel (i.e. the probability density function 
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describing the distribution of seeds after dispersal) can be inaccurate because of its failure to represent rare long-distance 65 

dispersal events or multiple dispersal modes (e.g. seed transport via both wind and water) (Higgins et al., 2003b; Rogers et al., 

2019). On the other hand, mechanistic dispersal sub-models may introduce further uncertainties with the inclusion of a larger 

set of parameters to estimate (e.g. wind velocity, gut retention; increase of parameter uncertainty) and of stochastic processes 

(e.g. animal movement; increase of inherent uncertainty; Higgins et al., 2003a; Nathan et al., 2012). With respect to migration 

forecasts, parameter uncertainty is mainly linked to the uncertainty of empirical estimates of demographic parameters driven 70 

by complex climatic-vegetation dynamics (e.g. fecundity). Additionally, it can be attributed to the small sampling size of some 

dispersal parameters, i.e. the limited available data on the shape of seed dispersal at large spatial scales, and the lack of 

information on mechanistic dispersal parameters for many species (e.g. gut retention) (Higgins et al., 2003a). A sensitivity 

analysis (SA) can be employed to quantify parameter uncertainty by systematically changing input parameter values and 

measuring the corresponding response of the model output (Saltelli et al., 2000). Information on the influence of each parameter 75 

on the model predictions can then be used to identify relevant parameters to retain in the modelling framework (“model 

reduction”; e.g. Loehle, 2004). This allows exploring the relationship between each input parameter and model output, both as 

directionality and magnitude, so to highlight range values or directions where the error between model output and observations 

are progressively reduced (e.g. McKenzie et al., 2019). This can help to inform a further parametrization of relevant parameters, 

where the main task of the parametrization is to find the best set of parameter values that minimize the difference between 80 

model outputs and observational data as much as the inherent uncertainty of the model and of the observations allow (Stork et 

al., 2020). Finally, inherent uncertainty can be controlled to some extent by limiting the inclusion of stochastic processes. For 

migration forecasts, inherent uncertainty tends to increase for mechanistic representation of seed dispersal and, to a lesser 

degree, for fat-tailed dispersal kernels (Clark et al., 2003; Higgins et al., 2003a).  

A number of studies have conducted thorough assessments of parameter estimates and model uncertainties in dynamic 85 

vegetation models, though mainly focusing on metrics of vegetation composition and structure (e.g. Zaehle and Sitch, 2005; 

Wramneby et al., 2008; Pappas et al., 2013). However, there are only a few examples of how uncertainty in parameter and 

model selection may impact migration forecasts. For example, Dullinger et al. (2004) assessed the relative influence of 

temperature increase, dispersal ability and competition on the range expansion of a single species (shrubby pine) and found a 

significant effect of dispersal on its expansion rate. More recently, Petter et al. (2020) conducted ensemble simulations of four 90 

widely used forest landscape models that implement migration for multiple species [LandClim (Schumacher et al., 2004), 

LANDIS (Mladenoff, 2004), TreeMig (Lischke et al., 2006) and iLand (Seidl et al., 2012)] to quantify the uncertainties 

underlying their different model structures. Petter et al. (2020) found that different formulations of seed dispersal contributed 

little to explain the variance across all model simulations compared to, for example, the use of different climate scenarios. 

However, the formulation of seed dispersal is comparatively similar among the four models, i.e. seed dispersal is simulated 95 

with a phenomenological (non-mechanistic) probability distribution function (kernel) using either a single (LandClim) or two-

part (LANDIS-II, iLand, TreeMig) negative exponential function, thus possibly explaining the little effect of dispersal 

formulation on the overall variance. On the other hand, the use of different dispersal scenarios (roughly with and without seed 
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limitation) had a consistent impact on species composition for all models, in agreement with recent empirical evidence (Albrich 

et al., 2020; Scherrer et al., 2020). This significant effect found for a relatively short simulated time span (100 years) and at 100 

the landscape level suggests that the uncertainties linked to the migration dynamics should be carefully evaluated in modelling 

studies and possibly at larger spatial and temporal extents. 

In a previous study we coupled a dynamic migration module to a process-orientated ecosystem modelling framework (LPJ-

GUESS), resulting in the model LPJ-GM 1.0, which allows simulating the migration of tree species while simultaneously 

simulating their inter-specific interactions (Lehsten et al., 2019).  As the aim of Lehsten et al. (2019) was the technical 105 

implementation of the model, an assessment of model and parameter uncertainties has still to be conducted on the new 

migration module. Indeed, a test simulation of the migration speed in this first study showed a significant underestimation with 

respect to historical estimates for the species Fagus sylvatica (European beech), thus highlighting the need to evaluate and 

increase the performance of the model. 

In this study, we present an efficient uncertainty assessment of model selection and parameter estimates for the newly-110 

implemented migration module of LPJ-GM 1.0. As one of the main challenges for an efficient uncertainty assessment of 

complex DGVMs is the high computational cost (in terms of CPU time) associated with both DGVM simulations and the 

parametrization effort at increasing number of parameters (e.g. Pappas et al., 2013), our approach aims to improve the current 

configuration and parameter estimates of LPJ-GM 1.0 with as little computational demand as possible. To this end, we initially 

conducted a species-specific local sensitivity analysis (LSA) to assess the influence of each migration parameter with respect 115 

to the model output (i.e. migration rate), both for magnitude and linearity, while providing a measure of parameter uncertainty. 

The advantage of a LSA with respect to a global approach (GSA) is that it is relatively less costly in terms of CPU demand 

and simpler to implement and interpret, as the magnitude and direction of sensitivity indexes refer to individual variables. 

Next, we used information from the LSA on the direction and linearity of the effect of each parameter on the model output to 

formulate an extreme value analysis (EVA). This approach allows to explore the response of the model output to collective 120 

variations of all parameters at their extreme range values, and thus can help to shrink, to some extent, the performance 

landscape in order to inform a more efficient model parametrization. Additionally, an EVA requires a low computational cost 

as it is independent of the parameter size. Next, we modified the model structure of the dispersal sub-model of LPJ-GM 1.0 in 

order to include different phenomenological formulations of seed dispersal based on prior knowledge (literature and/or expert). 

In the last step, we compared different combinations of parameter estimates and dispersal formulations in terms of model 125 

performance and uncertainty, where we selected plausible combinations of parameter values based on insights from EVA on 

the model performance at the extremes of the parameter space. We then identified the set of parameter estimates that minimized 

the difference between simulated and observed migration rates for each species (parametrization) and the model structure with 

higher utility (model selection). The optimized model structure and parameter sets resulted in the model LPJ-GM 1.1. 
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2 Material and Methods 130 

2.1 Observational data: estimates of past migration rates 

Our parametrization routine requires independent estimates of migration rates to compare against simulated migration rate 

values from LPJ-GM 1.0. These estimates should be ideally derived for each species (which is implemented in the model) 

from available empirical data. For example, genetic assignment tests can be used to fit seed dispersal patterns (Manel et al., 

2005; Goto et al., 2006; Klein et al., 2006; Moran and Clark; 2011) and, combined with spatio-temporal information from seed 135 

traps and parent trees, to derive rates of population spread over time (Beckman et al., 2020). Alternatively, rates of recent  

migration (over the last several generations) can be directly estimated using Bayesian inference on genotypic data, given a 

sufficient differentiation among tree populations (Wilson and Rannala, 2003). However, the empirical estimation of migration 

rates from current tree distributions can be problematic for a number of reasons: 1) empirical procedures are costly, leading to 

a lack of estimates for some major species; 2) the presence of multiple and large source populations or of continuously 140 

distributed species can complicate the correct assignment of seeds to mother trees; 3) empirical estimates are generally 

conducted at the local level and can have an inherent uncertainty given by stochastic processes (e.g. animal movements or 

behavior in the case of seed dispersal by animals; Higgins et al., 2003a; Nathan et al., 2012; Beckman et al., 2020). 

Furthermore, it is not clear which factors determine the observed variation in contemporary migration rates and how important 

each one is for the total variability. Potential drivers may vary at the site level or over time and include: climate forcing, local 145 

topography, habitat suitability and fragmentation, inherent species-specific dispersal ability, physical factors linked to seed 

dispersal (e.g. wind speed for wind-dispersed species), and a number of biotic factors (competition with other plants, herbivory 

and human disturbance) (Alexander et al., 2018; Tomiolo and Ward, 2018). Unknown driving processes and the above-

described problems with contemporary estimates can inflate both model and inherent uncertainties, thus decreasing our 

confidence in parameter estimates. 150 

An alternative to empirical estimates from contemporary distributions is to derive independent migration rates from paleo-

records of European forest expansion after the Last Glacial Maximum (LGM) (Huntley and Birks, 1983). Estimates of post-

LGM vegetation spread have a number of advantages: 1) data may be available for different time points, thus allowing a direct 

inference of the speed; 2) estimates are available for most of the major European tree species; 3) initial sources of population 

spread are confined to specific areas, i.e. glacial refugia; 4) historical estimates are derived from long-term continental 155 

movements and are thus less biased by stochastic local processes; 5) the order of tree species expansion is roughly known and 

can help to define the role of competition in tree migration; 6) the role of climate in controlling the rates of tree expansion after 

the LGM is generally assumed to be less influential than intrinsic dispersal ability as indicated by the wide-spread phenomenon 

of migration lag (i.e. the delayed arrival of a species into a newly-suitable habitat; Feurdean et al., 2013; Huntley et al. 2013; 

Giesecke and Brewer, 2018), thus allowing to reduce the number of influential migration drivers during simulation.  160 

Nevertheless, some uncertainties may still remain in the interpretation of paleo-records. For example, the use of fossil pollen 

to provide records of post-glacial tree expansion presents temporal, spatial and taxonomic limitations as listed by MacDonald 
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(1993). 1) Radiocarbon dating of fossil pollen generally provides a coarse temporal resolution, ranging from several decades 

to more than a century. 2) Similarly, the source areas of parent trees may lay within tens to hundreds of kilometers from the 

pollen deposits due to long-distance pollen dispersal, and 3) pollen analysis conducted via light microscopy can identify tree 165 

taxa mostly at the level of genus. 4) Additionally, percentage data of pollen records cannot provide a direct representation of 

tree abundance (though pollen accumulation rates may be used as a proxy), thus complicating the estimation of population 

growth rates. This is especially relevant in defining when a taxon firstly arrives near a deposit as a sharp increase in pollen 

representation can be associated with either tree establishment, or an exponential population growth of already established 

trees (MacDonald, 1993; Giesecke and Brewer, 2018). Finally, the spatial uncertainty of glacial refugia and their relative 170 

contribution as source populations for each tree taxa may also complicate the estimation of past migration rates (Tzedakis et 

al., 2013; Nobis and Normand, 2014). Three main areas have been traditionally defined as sources of post-glacial tree 

expansion in Europe, i.e. Italy, the Iberian Peninsula and the Balkans (Huntley and Birks, 1983; Bennett et al., 1991). However, 

previous studies based on plant macrofossils and potential glacial tree distribution (e.g. Stewart and Lister, 2001) have also 

hypothesized the presence of northern refugia during the LGM (above 45º N), which would yield lower rates of northward tree 175 

migration (Feurdean et al., 2013). 

Despite the limitations associated with paleo-data, estimates of post-glacial migration rates are overall less likely to add 

uncertainties during model parametrization than contemporary estimates. Particularly, since current species distribution tend 

to be limited to one point in time, post-glacial range limits estimated over a continental scale and considering time intervals of 

hundreds of years are more suitable to describe the spatio-temporal process of migration. Furthermore, taxonomic and spatial 180 

uncertainties contained in paleo-pollen can be corrected by the use of plant macrofossils (e.g. fossilized leaves or cones) and 

phylogeographic studies, since plant macrofossil remains at a site provide unambiguous evidence of the presence of an 

established individual, which can be identified at the species level (Binney et al., 2009). 

Accordingly, we used estimates of post-glacial migration rates for the parametrization of the 17 major European tree species 

implemented in LPJ-GM (Table 1). Upper and lower boundaries for the value ranges of migration rates were derived from 185 

different empirical studies based on the method employed for their estimation. Pollen-based estimates of maximum rates of 

spread for common European tree taxa were first summarized by Huntley and Birks (1983). Giesecke et al. (2017) revisited 

these estimates by correcting for the uneven distributions of pollen diagrams using interpolated maps of pollen percentages 

and threshold values to reduce the risk of false presence. Giesecke and Brewer (2018) further complemented pollen-based 

estimates from Giesecke et al. (2017) with phylogeographic studies, where the variability and persistence of genetic markers 190 

in tree populations through time can be used to trace patterns of post-glacial migration (e.g. Petit et al. 2002). Feurdean et al, 

(2013) derived post-glacial migration rates from plant macrofossils, which can yield estimates of finer taxonomic and spatial 

resolutions than pollen-based analysis. Accordingly, we derived upper boundaries of migration rate estimates from maximum 

values of pollen-based studies, whereas estimates derived from macrofossils, or complemented by threshold values of pollen 

presence and/or phylogeographic studies were used to define the lower boundaries (see legend of Table 1). This criterion was 195 

based on the assumption that pollen analysis, as above-mentioned, may overestimate the true rates of migration (i.e. determined 
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by first arrival followed by population expansion), especially in the case of tree taxa with long-distance pollen dispersal (LDD). 

That is, the detection of pollen on the spreading front might indicate an event of first arrival with tree establishment (from 

which a true rate of migration is calculated) as well as an LDD event with no further establishment and/or population expansion 

(MacDonald, 1993; Giesecke and Brewer, 2018). In the latter scenario, pollen analysis will result in an apparent rate of 200 

migration, which will be an overestimation of the true rate. In this case, genetic studies, estimates from macrofossils and 

threshold values of pollen percentage can help clarify pollen-based studies and partially compensate for overestimations 

(Giesecke and Brewer, 2018).  Finally, we decided to exclude estimates calculated assuming the presence of northern glacial 

refugia (Feurdean et al., 2013) based on the unlikely survival of temperate tree taxa north of 45º N during the LGM (Tzedakis 

et al. 2013). 205 

 

Table 1. Estimates of maximum post-glacial migration rates in meters per year (m yr–1), and dispersal syndromes during post-

glacial expansion for 17 major European tree species. Competitors in model simulations are Betula pendula (or B. pubescens 

in the case of the simulated spread of B. pendula) and boreal/temperate grasses (see Sect. 2.3). a = Estimates of maximum 

migration rates by Giesecke and Brewer (2018) with pollen analysis corrected by phylogeographic studies. b = Estimates of 210 

maximum migration rates by Huntley and Birks (1983) with pollen analysis. c = Estimates of maximum migration rates by 

Feurdean et al. (2013) with fossil records, assuming spread from southern refugia (40–45º N latitude). d = Estimates of overall 

migration rates by Giesecke et al. (2017) derived from the increase in area of presence from interpolated pollen maps and 

threshold values for pollen presence. e = Dispersal syndromes as reported by Vittoz and Engler (2007) and TRY Database 

(Kattge et al. 2020): W = wind; Wa = water; B = bird; LA = large mammal (deer, badger, cattle); SA = small animal (e.g. 215 

hoarding by rodents). For a comprehensive summary of estimated migration rates from the literature, see Table 5 of Birks 

(2019). 

Species (Figures’ notation)  Migration rates  Dispersal syndromee 

Abies alba (Abi_alb) 250a – 300b W 

Betula pendula (Bet_pen) 540c – 800a W, Wa, B 

Betula pubescens (Bet_pub) 540c – 800a W, Wa, B 

Carpinus betulus (Car_bet) 500a – 1000b W, Wa, B, SA 

Corylus avellana (Cor_ave) 1000a – 1500b B, SA 

Fagus sylvatica (Fag_syl) 200b – 300b SA, LA 

Fraxinus excelsior (Fra_exc) 200b – 500b W, Wa, B, LA 

Picea abies (Pic_abi) 150d – 500b W, Wa, B, LA 

Picea sitchensis (Pic_sit) 150d – 500b W 

Pinus sylvestris (Pin_syl) 600a – 1500b W, Wa 

Pinus halepensis (Pin_syl) 600a – 1500b W 
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Quercus coccifera (Que_coc) 300d – 500b SA 

Quercus ilex (Que_ile) 300d – 500b SA 

Querucs pubescens (Que_pub) 300d – 500b SA 

Quercus robur (Que_rob) 300d – 500b SA 

Tilia cordata (Til_cor) 150b – 500b SA 

Ulmus glabra (Ulm_gla) 550d – 1000b W, Wa 

 

2.2 LPJ-GM 1.0: simulating migration in a dynamic vegetation model 

LPJ-GM 1.0 (Lehsten et al., 2019) couples a dynamic migration module to the widely used DGVM, LPJ-GUESS (where LPJ-220 

GM is short for LPJ-GUESS-MIGRATION). LPJ-GUESS employs a gap model approach for the simulation of 

ecophysiological processes and the structural dynamics of forests, including species composition and vertical and horizontal 

heterogeneity (Smith et al., 2001). Attributes of life-history strategy, phenology, physiology and bioclimatic limits are assigned 

to plant functional types (PFTs), which correspond to broad physiologically and/or biogeographically distinct groups of taxa 

(e.g. needle-leaved summergreen), or individual plant species. The spatial domain of simulation is divided into grid cells 225 

(usually 0.5º x 0.5º longitude-latitude), each defined by different climatic conditions and soil properties. In LPJ-GUESS, 

vegetation dynamics are represented by a certain number of replicate patches per grid cell, each sharing the same climate while 

potentially differing in successional phases due to stochastic processes (e.g. timing of disturbances and mortality). Differently 

to LPJ-GUESS, LPJ-GM reduces the number of replicate units to one while using multiple explicitly placed patches per grid 

cell (1 km2 each) in order to give a spatially explicit representation of the migration processes. This is achieved by simulating 230 

seed exchanges among grid cells at the beginning of each simulation year. Contrary to LPJ-GUESS where all species are able 

to establish without seed limitation and no seed dispersal is explicitly simulated, LPJ-GM allows species to disperse 

simultaneously while interacting with each other and defines establishment as a function of the amount of seeds available at 

the patch-level given suitable environmental conditions.  

Similarly to the TreeMig model implementation (Lischke et al., 2006), LPJ-GM simulates migration at a yearly time-step 235 

through four main processes: 1) seed production, 2) seed dispersal via a dispersal kernel, 3) seed bank dynamics, and 4) 

seedling establishment (Appendix A and Fig. A1). The migration rate depends on distance seeds travel, influenced by the 

parameters of the dispersal kernel, and on the number of seeds transported, surviving in the seed bank, germinating and finally 

growing up to a threshold biomass. Thus, we expect that the migration process as described by the LPJ-GM functions 

(Appendix A) depends positively on the migration parameters: maximum fecundity (i.e. number of seeds produced per tree 240 

per year (FECmax), seed germination rate (GERMp), and the average short- and long- dispersal distances of seeds (SDDd and 

LDDd, respectively; see Table 2 for more details on the migration parameters).  

For more details on the model description and technical implementation, see Appendix A and Lehsten et al., 2019. 
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2.3 Simulation protocol 

In order to calculate the migration rates for the 17 major tree species implemented in LPJ-GM 1.0, we simulated the spread of 245 

each species in a terrain already occupied by the early successional Betula pendula (or B. pubescens in the case of the simulated 

spread of B. pendula) and C3 grasses. This choice was based on evidences from pollen records (Birks and Birks, 2008) and 

phylogeographic studies (Palmé et al., 2003) suggesting a scenario of early colonization of treeless ground by Betula species 

within a very short time period (only hundreds of years) after the retreat of the ice sheet from northern Europe, followed by 

successive waves of colonization by later-successional tree species (Giesecke and Brewer, 2018).  Simulations were performed 250 

for a total of 500 years and a spin-up time of 50 years, covering an area of 201 x 201 cells (each covering 1 km2) with corridors 

located on the perimeter and the two major diagonals of the domain for a total of 1,197 simulated cells (see Fig. S1). After the 

spin-up phase, migrating tree species were allowed to establish freely in the upper-left corner of the simulated landscape (the 

starting point of migration). We applied a static suitable climate for all species (i.e. allowing each species to grow) and an 

entirely permeable terrain to all grid cells and across all simulation years in order to reproduce optimal environmental 255 

conditions for tree migration. This was done to ensure a comparison between simulated migration speeds and post-glacial 

observations (Table 1) since the latter are calculated as maximum rates, thus likely achieved under favorable climate and 

without geographical barriers (see Sect. 2.1). Finally, we used the Fast Fourier transform method (FFTM; see Appendix A5) 

to enhance the computational efficiency of seed dispersal and test for different species-specific seed dispersal kernels.  

Since the underlying framework, LPJ-GUESS, has been already extensively validated for different metrics of vegetation 260 

composition and structure (e.g. Morales et al. 2007; Pappas et al. 2013), we focused our parametrization effort on the newly-

added migration parameters – FECmax, GERMp, SDDd and LDDd (Table 2) – and evaluate the effect of alternative seed dispersal 

kernels (Table 3) on migration rates and the model uncertainty. 

2.4 Parameter values and model assumptions 

Species-specific estimates of the range of the four migration parameters were compiled by reviewing research articles and 265 

public databases as indicated in Table 2. We identified the species-specific minimum and maximum values in the literature for 

each parameter 𝑥𝑖 as the range extremes to obtain the parameter uncertainty (𝑥𝑖,𝑚𝑎𝑥 − 𝑥𝑖,𝑚𝑖𝑛), and calculated the mean along 

with the 25th and 75th percentiles, assuming a normal distribution (see Table B1 for species-specific values and data sources). 

Where data was lacking to identify a minimum and maximum value for a species-specific parameter, we assumed 12.5 % 

variation from the default value in order to evaluate the model sensitivity to the specific parameter as suggested by Downing 270 

et al. (1985) (see Sect. 2.5.1 and Table B1). 

For the uncertainty assessment of LPJ-GM 1.0, we assumed static parameters (e.g. species-specific germination rates do not 

change over time), a uniform seed dispersal in all directions (isotropy), and a proportion of LDD events (LDDp) of 0.01, 

following the proportional definition of LDD as the 1 % of seed dispersal exceeding a certain quantile of dispersal distance 

(Schurr et al., 2009). Since we assumed maximum values of paleo-records obtained by classic pollen estimates to be generally 275 
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over-estimations of true migration rates (see Sect. 2.1), we used the 75th percentiles of the observed range of migration values 

as the target observational value to improve and assess the performance of the model across species (see also Sect. 2.6.2). 

Species-specific default parameters correspond to the values reported by Lischke and Löffler (2006). 

 

Table 2. Description of the migration parameters and data source: a = Lischke and Löffler (2006); b = TRY database (Kattge 280 

et al., 2020); c = Royal Botanic Gardens Kew Seed Information Database (SID); d = Vittoz and Engler (2007); e = Tamme et 

al. (2014). See Table B1 for species-specific range values (default, minimum, mean, maximum and percentiles) and data 

sources, and Table S1 for species-specific parameter uncertainties (𝑥𝑖,𝑚𝑎𝑥 − 𝑥𝑖,𝑚𝑖𝑛; UI).  

Parameter Notation Unit References 

Maximum fecundity per tree and year FECmax no. seeds (in 100) a, b, c  

Seed germination rate GERMp % a, b, c  

Average short dispersal distance SDDd Meters a, b, d 

Average long dispersal distance (1 %) LDDd meters a, b, d, e 

 

2.5 Evaluation of parameter uncertainty 285 

2.5.1 Local sensitivity analysis (LSA) 

As a first step, we applied a species-specific local sensitivity analysis (LSA). The LSA method quantifies the relative 

contribution of each parameter to the model output (first-order effect) by determining the effect of its variation on the output 

variability while keeping the other parameters fixed to a nominal value (Hamby, 1995). We followed the approach by Downing 

et al. (1985) and applied a 5-points LSA, where one parameter is adjusted to its minimum, mean, maximum, 25 th and 75th 290 

percentile values, while the others are kept at their default values (Table B1). We quantified the response of the model to each 

parameter in terms of directionality, linearity and magnitude by four summary statistics: the Sensitivity Index (SI), two 

Importance Indexes (II1 and II2), and the Linearity Index (LI) (Downing et al., 1985; Hamby, 1995). 

Assuming that 𝑦 is the migration rate obtained by an LPJ-GM simulation and 𝑥 = {𝑥1, … , 𝑥𝑛} is the vector representing the 𝑛 

migration parameters of the model (with 𝑛 = 4; see Table 2), the first-order sensitivity 𝑆𝐼𝑖 of parameter 𝑥𝑖 is the ratio of the 295 

change of the simulated output ∆𝑦 to the corresponding change in the input parameter ∆𝑥𝑖: 

𝑆𝐼𝑖 =
∆y

∆xi 
 ,            (1) 

where ∆𝑦  is the average of the differences of the output values for the 5-points (Downing et al., 1985), and ∆𝑥𝑖  is the 

corresponding 25 % value change for each input parameter 𝑥𝑖. A model output that shows a large change with respect to a 

small parameter change is considered sensitive to that parameter, where the parameter is said to be influential. While the 300 
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absolute value of SI is used to rank parameters based on the sensitivity of the model, the direction of SI (positive or negative) 

can help to determine whether the output is an increasing or decreasing function with regard to the individual input parameter. 

The first Importance Index 𝐼𝐼1𝑖 is used to assess whether a large increase in the parameter uncertainty may propagate into a 

large uncertainty in the model output, which may be sensitive to the parameter. Thus, 𝐼𝐼1𝑖  of parameter 𝑥𝑖 is the product 

between its uncertainty 𝑈𝑥𝑖  and its effect on the model output 𝑆𝐼𝑖: 305 

𝐼𝐼1𝑖 = 𝑈𝑥𝑖 × 𝑆𝐼𝑖  ,           (2) 

where 𝑈𝑥𝑖  is calculated as the normalized value range 
𝑥𝑖,𝑚𝑎𝑥−𝑥𝑖,𝑚𝑖𝑛

𝑥𝑖,𝑚𝑎𝑥
, where 𝑥𝑖,𝑚𝑎𝑥  and 𝑥𝑖,𝑚𝑖𝑛  are the maximum and the 

minimum values found in the literature, respectively, for each parameter 𝑥𝑖. 

The second Importance Index 𝐼𝐼2𝑖 is calculated as the percentage difference of the output 𝑦 when varying the input parameter 

𝑥𝑖 from its minimum to its maximum: 310 

𝐼𝐼2𝑖 =
y𝑚𝑎𝑥−𝑦𝑚𝑖𝑛

y𝑚𝑎𝑥 
 ,           (3) 

This index is useful in the case of a monotonic relationship between input parameters and output, and to account for the whole 

parameter range when calculating the sensitivity.  

The Linearity Index 𝐿𝐼𝑖  indicates whether the relationship between each input parameter and the model output approach 

linearity: 315 

𝐼𝐼2𝑖 =
y𝑚𝑎𝑥−𝑦𝑚𝑖𝑛

√𝑠2
 ,           (4) 

where 𝑠2 is the sample variance of the model output over the five points (√𝑠2 corresponds to the standard deviation for each 

parameter range, ca. 
𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛

2
) and an exact linear relationship between model output and parameter corresponds to 𝐿𝐼𝑖 = 1. 

Additionally, we conducted species-specific linear regression analyses of the type 𝑦~𝑥𝑖 , such that every change of one 

parameter 𝑥𝑖  unit translates to a change of migration rate (𝑦) given by the slope coefficient of the regression (i.e. a slope value 320 

of 1 should correspond to 𝐿𝐼𝑖 ≈ 1). 

2.5.2 Extreme value analysis (EVA) 

Having evaluated the importance of the parameters, their direction and linearity with respect to the model output across species, 

we quantified the effect of species-specific parameter combinations at their extreme values on simulated migration rates. 

Namely, we fixed all influential parameters at their minimum (all_MIN) and maximum (all_MAX) values, and calculated the 325 

corresponding errors as residuals to quantify the performance of the simulations for each species. Species-specific residuals 

(𝑟𝑒𝑠) were calculated across the whole value range of observational values: 

𝑟𝑒𝑠 =
100

𝑚𝑖𝑔𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
× (𝑚𝑖𝑔𝑠𝑖𝑚 − 𝑚𝑖𝑔𝑜𝑏𝑠) ,         (5) 
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where 𝑚𝑖𝑔𝑠𝑖𝑚 is the simulated migration rate for a species, 𝑚𝑖𝑔𝑜𝑏𝑠 indicates all integer values from the lower to the upper 

boundary of migration rate estimates, and 𝑚𝑖𝑔𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅ their average (Table 1). Thus, residuals determine whether simulated values 330 

are over- or under-estimations with respect to observed values (i.e. positive or negative residuals, respectively, above or below 

10 m yr-1 from the average observed migration speed, where we assumed good estimates to fall within a threshold range of 10 

m yr-1), and whether an error is minimized or not for each species. In other words, if the simulated migration rate is an 

increasing function of all parameters, outputs generated with all parameters at their minimum (all_MIN) should never exceed 

the upper boundary of observational values, and vice-versa in the case where all influential parameters are fixed to their 335 

maximum (all_MAX). Using this insight, we tried to identify a set of parameter values to minimize residuals when possible 

for each species. Additionally, we conducted a Mann-Whitney U test on the residuals obtained with all_MIN and all_MAX in 

order to assess whether there were significant differences in model performance between the two parameter settings at the 

species level (via p-values adjusted with Bonferroni correction for multiple comparisons).  

This approach allows the exploration of the performance landscape at its extremes, thus allowing to shrink, to some extent, the 340 

parameter space, while reducing considerably the number of simulations (i.e. computational demand) as EVA is independent 

from the number of parameters to optimize. 

2.6 Evaluation of model uncertainty 

2.6.1 Implementation of fat-tailed seed dispersal kernels 

Following insights from our previous results (see Sect. 3.2) and recommendation from the literature (e.g. Clark, 1998; for more 345 

details see Sect. 4), we decided to implement five additional dispersal kernels to better represent long-distance dispersal (LDD) 

events in the migration model (Table 3). We selected dispersal kernel functions without exponentially bounded tails (i.e. fat 

tails), using the exhaustive list of probability density functions provided by Nathan et al. (2012) and Bullock et al. (2017). Fat-

tailed kernels are characterized by two parameters, i.e. the scale parameter a, which depends on the average dispersal distance, 

and the shape parameter b, which defines the weight of the tail. Our objective was to find the species-specific shape parameter 350 

value and kernel function that provided a better representation of the migration process (i.e. migration rate) with respect to the 

default negative exponential function, while keeping the remaining migration parameters within realistic values. We therefore 

implemented the five additional fat-tailed kernels into the dispersal sub-model of LPJ-GM and ran simulations with default 

parameter values for the two linearly combined pdfs as calculated from mean dispersal distances (SDDd) and maximum 

distances (LDDd) (see Appendix A2 for the kernel equation and Table B1 for species-specific dispersal parameter values). We 355 

varied the shape parameter b in a suitable range for each kernel, so that b values would define a mathematically significant and 

fat-tailed pdf (Table 3).  

We evaluated the performance of the new kernels by calculating the error between simulated and observed migration rates for 

each species (residuals; see Eq. (5)) and across species (RMSE; see Eq. (7)). Additionally, we conducted a one-way ANOVA 

with post-hoc Tukey’s HSD test among errors generated by the newly-added kernels to verify whether one or more fat-tailed 360 
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kernels improved the predictions across all species (RMSEs) or at the species level (residuals). Finally, we selected the kernels 

with significantly minimized errors for each species. 

 

Table 3. Probability density functions (pdf) for the default dispersal kernel in LPJ-GM (negative exponential) and five 

additional kernels.  d = mean distance (in meters); a = scale parameter as a function of distance; b = shape parameter range to 365 

search for better representation of LDD events. Range boundaries are defined by the values for which pdf are mathematically 

significant and the corresponding tail is fat (Nathan et al., 2012). Table adapted from Nathan et al. (2012) and Bullock et al. 

(2017). Gamma function: ℾ(𝑛) = (𝑛 − 1)!, where 𝑛 is any positive integer. 

     Kernel family Probability density function Scale parameter (a) Shape 

parameter (b) 

Weight of the tail 

Negative exponential 

(NegExp) 

1

2𝜋𝑎2
× 𝑒𝑥𝑝 (−

𝑑

𝑎
)  

𝑑

2
 

– Exponentially 

bounded 

Exponential power 

(ExpPow) 

𝑏

2𝜋𝑎2ℾ (
2
𝑏

)
𝑒𝑥𝑝 (−

𝑑𝑏

𝑎𝑏
)  ℾ (

2
𝑏

)

ℾ (
3
𝑏

)
× 𝑑 

0 – 1 Fat-tailed (for b < 

1) non-power law 

Weibull 𝑏

2𝜋𝑎2
𝑑𝑏−2𝑒𝑥𝑝 (−

𝑑𝑏

𝑎𝑏
)  

𝑏

ℾ (
1
𝑏

)
× 𝑑 

0 – 2.5 Fat-tailed   non-

power law  

Bivariate Student’s t 

(twoDt) 

𝑏 − 1

𝜋𝑎2
(1 +

𝑑2

𝑎2
)

−𝑏

 
2

𝜋
×

ℾ(𝑏 − 1)

ℾ (𝑏 −
3
2

)
× 𝑑 

1 – 5 Fat-tailed power 

law 

Logistic 𝑏

2𝜋𝑎2ℾ (
2
𝑏

) ℾ (1 −
2
𝑏

)
(1 +

𝑑𝑏

𝑎𝑏
)

−1

 
ℾ (

2
𝑏

) ℾ (1 −
2
𝑏

)

ℾ (
3
𝑏

) ℾ (1 −
3
𝑏

)

× 𝑑 

2 – 5 Fat-tailed power 

law 

Log-hyperbolic 

secant (LogSec) 

1/(𝜋2𝑏𝑑2)

(
𝑑
𝑎

)

1
𝑏

+ (
𝑑
𝑎

)
−

1
𝑏

 
~𝑑 0 – 1 Fat-tailed power 

law 

 

2.6.2 Uncertainty analysis 370 

Model uncertainty is assessed with respect to model complexity, error and sensitivity. Generally, more complex models tend 

to generate more accurate predictions (i.e. to minimize the error relative to observational data) by incorporating more 

components (e.g. parameters) into the modelling framework. However, given that each additional component may introduce 

sensitivity, more complex models are likely to be more sensitive too. Ideally, we would like to select a model structure where 
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both error and sensitivity are as low as possible, i.e. where model uncertainty is minimized (Snowling and Kramer, 2001). 375 

Thus, model uncertainty can be quantify by a summary index of error and sensitivity: 

𝑈𝑖 = √2 − √(
S

𝑆𝑚𝑎𝑥
)

2

+ (
E

𝐸𝑚𝑎𝑥
)

2

 ,          (6) 

where 𝑈𝑖 is the utility of model 𝑖 (between 0 and 1, where 1 is maximum utility), 𝑆max and 𝐸max are the maximum sensitivity 

and error across models, where the error E is the root mean square error (RMSE) between the simulated migration rates 

(𝑚𝑖𝑔𝑠𝑖𝑚) and the observed values (𝑚𝑖𝑔𝑜𝑏𝑠; species-specific 75th percentile of the value ranges in Table 1): 380 

𝑅𝑀𝑆𝐸 =
100

𝑚𝑖𝑔𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
× √

1

𝑛
∑ (𝑚𝑖𝑔𝑖,𝑠𝑖𝑚 − 𝑚𝑖𝑔𝑖,𝑜𝑏𝑠)2𝑛

𝑚=1  ,        (7) 

where 𝑛 is the number of species, and 𝑚𝑖𝑔𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅ is the average of observations across species. We used the species-specific 75th 

percentile of the observed values since upper boundaries (i.e. maximum values) are assumed to be potential over-estimations 

of post-glacial migration speeds (see Sect. 2.1).  

The sensitivity S was calculated according to Eq. (3) as the mean across species and parameters. Thus, we conducted a further 385 

sensitivity analysis of minimum and maximum values for the model structure with newly-implemented and best-fitted fat-

tailed kernels. 

Additionally, we calculated an index of model complexity based on the number of parameters and processes implemented in 

each dispersal model structure: 

𝐶𝑖 = ∑ ∑ 𝑝𝑖𝑟𝑖

𝑛𝑗

𝑙=1
𝑁
𝑗=1  ,           (8) 390 

where 𝐶𝑖 is the complexity of model 𝑖, 𝑁 is the number of state variable, 𝑛𝑗 is the number of processes implemented for each 

state variable 𝑗, 𝑝𝑙  is the number of parameters of each process 𝑙, and 𝑟𝑙 is the number of equations used to formulate each 

process (see Fig. A1 for a graphical representation of the components of the migration module). 

We defined two different model structures relative to the phenomenological formulation of seed dispersal, which is simulated 

either as 1) a two-part negative exponential for all species (“Model 1: default kernel”), 2) a two-part best-fitted fat-tailed kernel 395 

per species (“Model 2: fat-tailed kernels”). Thus, we run simulations for all species with the best set of migration parameters 

found by EVA for Model 1, or according to the performance analysis of the newly-implemented fat-tailed kernels for Model 

2. The evaluation of both indexes (𝑈𝑖 and 𝐶𝑖) should inform the choice of a model structure, which would ideally maximize its 

utility while not being overly complex. 

https://doi.org/10.5194/gmd-2021-422
Preprint. Discussion started: 12 January 2022
c© Author(s) 2022. CC BY 4.0 License.



15 

 

3 Results 400 

3.1 Sensitivity analysis 

According to the four summary statistics of the local sensitivity analysis (LSA), we identified the two most influential 

parameters as the mean (SDDd) and maximum (LDDd) dispersal distances for local and long-distance seed dispersal (LDD), 

respectively (Fig. 1 and Fig. S2). On the other hand, maximum seed fecundity (FECmax) and especially seed germination rate 

(GERMp) showed a smaller effect on the predictions of migration rate both across species (Fig. 1) and at the species level (Fig. 405 

S2 and Table S1). Overall, parameter ranking agreed among species, with SDDd and LDDd ranked first for 12 species, over 17 

total species (see Supplement). 

All parameters related to the dispersal kernel (SDDd and LDDd) showed an overall consistency across species regarding the 

positive sign of their relationship with migration rate, though of different magnitude relative to the species (Fig. 1, Fig. S2 and 

Table S1). Magnitude-wise and on average, an increase of 1 m of mean dispersal distance for SDDd or maximum dispersal 410 

distance for LDD events lead to a corresponding increase of 0.58 or 0.30 m yr–1 of migration rate, respectively. On the other 

hand, maximum fecundity and germination rate had occasionally null or negative effects on the model output (Fig. S2), though 

the relationship was positive for most species, with an overall increase of 0.20 and 0.09 m yr–1 for each unit increase of FECmax 

(100 seeds) and GERMp (1 %), respectively. These results were confirmed by the species-specific linearity index (LI) and 

slope coefficients, where values above or close to the unit indicated a strong and positive linear relationship (and thus 415 

proportional increase) of SDDd and to a lesser extent of LDDd with respect to the migration rate, whereas the sub-unit and 

mostly non-significant values of FECmax and especially GERMp suggested little linear relationship with the model output (see 

Fig. 1 and Table S1 for LI values, and Fig. S2 and S3 for species-specific slope coefficients and species-specific shapes of 

sensitivity functions, respectively). 

Uncertainty in parameter estimates from literature sources seemed to be highly species-specific (Table S1) though, overall, 420 

FECmax and GERMp showed the highest and the lowest uncertainties, respectively. The effect of parameter uncertainty on 

simulated migration rates (II1) was overall greater for SDDd due to the large sensitivity of the model output to this parameter 

(Fig. 1) though the uncertainty of SDDd is moderate with respect to others (52.70 ± 41.06; see Supplement). On the other 

hand, the relatively high effect of FECmax on migration rate (II2) was mainly due to its high uncertainty (3,470.82 ± 9,339.38; 

see Supplement), especially in the case of Betula spp. (28,275), Carpinus betulus (682) and Ulmus glabra (894) (Table S1). 425 

Similarly, the higher importance of LDDd when accounting for the whole parameter range (II2) seems likely due to the large 

uncertainty associated with estimates of maximum dispersal distances (Table S1). 

In summary, parameters linked to the seed dispersal kernel appear to be the most influential, while all parameters are overall 

positively related to migration rate over the range of each individual parameter for most species. Insights gained from the LSA 

and from the equations of the migration module (see Sect. 2.2 and 4, and Appendix A) indicate that the migration function is 430 

monotonic also over the entire parameter space, at least in the neighborhood of the default values. Thus, we expect that by 
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increasing the values of all parameters within acceptable ranges for each species, simulated migration rates will 

correspondingly increase to their potential maxima. 

We applied this insight to the Extreme Value Analysis (EVA). 

 435 

Figure 1: Mean sensitivity analysis (SA) indices (±2 standard errors) across 17 tree species for the four parameters of the newly-

implemented migration module of LPJ-GM: average short dispersal distance (SDDd, meters), 1 % average long dispersal distance (LDDd, 

meters), maximum fecundity per tree (FECmax, no. seeds in 100 per year), and seed germination rate (GERMp, %). See Sect. 2.5.1 for the 

calculation of SA indices: Sensitivity Index (SI), Importance Indexes (II1 and II2), and Linearity Index (LI). See Table S1 for species-

specific values. 440 

3.2 Extreme value analysis 

The probability density of residuals between simulated migration rates and observed values across their range, where migration 

parameters were varied simultaneously to their minimum (all_MIN) or maximum values (all_MAX) per species, is shown in 

Fig. 2. The range of the residual distribution quantifies the uncertainty of the observational data, where Abies alba and Pinus 

spp. have the smallest (50 m yr–1) and the largest (900 m yr–1) data uncertainties, respectively. Negative residuals indicate that 445 

model outputs underestimate historical observations across all species, with the exception of the over-estimations obtained 

with the all_MAX setting for Abies alba and Picea abies (above 10 m yr–1 from the average observed migration speed; Fig. 2 

and Table S2). Consequently, we looked for smaller parameter values (all_MAX_opt) to minimize the error for both species 

(RMSEall_MAX_opt = 2.66 % vs. RMSEall_MAX = 32.99 % for Abies alba, and RMSEall_MAX_opt = 9.21 % vs. RMSEall_MAX = 

47.45 % for Picea abies; see Supplement).  450 

Overall, simulated migration rates showed high errors with respect to the 75th percentile of observational data for both extreme 

value settings, though migration rates generated by all_MAX were significantly less biased than estimates generated by 
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all_MIN (Mann-Whitney U test and Bonferroni adjusted p-value < 1e-3), both across species (RMSEall_MIN = 125.2 %; 

RMSEall_MAX = 111.01 %) and at the species level, with the exception of Pinus halepensis (p-value = 1.0) and Quercus 

pubescens (p-value = 0.8281; see Supplement for all species-specific p-values).  455 

 

Figure 2: Species-level residuals of observed versus predicted migration rates for extreme parameter settings. The observed migration 

rates refer to the range value of historical estimates (Table 1), i.e. each violin represents the residual distribution, where the upper point of 

the distribution indicates the difference between the simulated migration rate and the minimum observed migration rate, whereas the lower 

point corresponds to the difference between the simulated migration rate and the maximum observed migration rate. all_MIN: all migration 460 
parameters are fixed to their minimum values; all_MAX: all migration parameters are fixed to their maximum values. See Table B1 for 

species-specific extreme parameter values, and Table S2 for species-specific residuals. 

 

3.3 Performance of fat-tailed kernels 

Newly-implemented fat-tailed kernel function with examples of shape parameter b values and scale parameters a based on the 465 

same LDD and mean dispersal distance data are shown in Fig. 3, compared to the default negative exponential. Exploring the 

species- and kernel-specific parameter space of the shape parameter while keeping the remaining migration parameters within 

realistic values (see Table 2), we found that overall simulated migration rates over-estimated observed values (with respect to 

the 75th percentile) when generated by the logistic function in the shape parameter range [3–4], and by the log-hyperbolic 

secant and twoDt functions around the 0.5 and 2 values, respectively (Fig. 4). On the other hand, the exponential power function 470 
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at lower b values [0.15–0.3] and the Weibull function across the whole parameter range selected [1.75–2.5] tended to under-

estimate observed values (Fig. 4). 

After selecting the best shape parameters per kernel (i.e., yielding the minimum residual; Table S3), we confirmed that the 

Weibull function under-estimated observed migration speed across all species, whereas the log-hyperbolic secant and logistic 

functions were overall the best at minimizing residuals at the species level (Fig. 5). Nevertheless, we found significant 475 

differences in kernel performance based on the species (Fig. 5, Fig.6, and Table S4). For example, the exponential power and 

twoDt functions generated good estimates for Fraxinus excelsior (RMSE = 25.75 % and 25.83 %, respectively), while the log-

hyperbolic secant and logistic functions tended to over-estimate migration rates by ≈30–45 % for both species. Conversely, 

good estimates of migration rates for Quercus spp. were generated by the log-hyperbolic secant and logistic functions (RMSE 

≈20 %), while the exponential power and twoDt functions produced under-estimations across the whole range of observed 480 

values by ≈25 % up to ≈95 %. 

Overall, fat-tailed kernels were able to significantly improve model outputs relative to the default negative exponential both 

across species and at the species level, with the exception of Abies alba and Picea abies (see Sect. 3.2). Concerning the worst 

performances at the species level, the simulated migration rate obtained with the default kernel had higher error relative to the 

observed 75th percentile (RMSE = 91.5 % for Pinus halepensis) compared to the significantly less biased estimate generated 485 

by the logistic function for Pinus sylvestris (34.32 %). Kernel functions can be ranked based on RMSE % calculated across 

species as follows: 1) log-hyperbolic secant (27.26 %), 2) logistic (48.07 %), 3) twoDt (63.19 %), 4) exponential power (73.67 

%), 5) negative exponential (89.94 %), and 6) Weibull (97.72 %) (see Supplement). Finally, we selected the kernel function 

that significantly minimized residuals for each species as shown in Fig. 6 (see Table B2 for species-specific values of all 

optimal parameters). 490 

https://doi.org/10.5194/gmd-2021-422
Preprint. Discussion started: 12 January 2022
c© Author(s) 2022. CC BY 4.0 License.



19 

 

 

Figure 3: Probability density functions for the newly-implemented fat-tailed seed kernels. Fat-tailed kernels with examples of shape 

parameter values are compared to the default negative exponential (NegExp). Newly-implemented kernels are: ExpPow = exponential power; 

Weibull; twoDt = Bivariate Student’s t; Logistic; LogSec = log-hyperbolic secant. See Table 3 for the kernel formulae and range values of 

the shape parameter for each kernel. The scale parameters were all calculated from the same average dispersal distance values (1–500 495 
meters). 
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Figure 4: Species-specific performance of seed kernels for different shape parameters. The heatmap shows the species-specific 

normalized residuals between simulated migration rates and observed 75th percentile historical estimates for the default negative exponential 

function (“Default_NegExp”) and the newly-implemented fat-tailed kernels across examples of shape parameter values (“{kernel name}+{b 500 
value}”; cf. Fig. 3). Red and blue indicate over- and under-estimations, respectively. See Table S3 for species- and kernel-specific residuals 

and simulation values for all tested shape parameter values. 
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Figure 5: Performance evaluation of fat-tailed kernels. Comparison of species-specific residuals of observed versus simulated migration 

rates across the range values of historical estimates (Table 1) among newly-implemented kernel functions. See Table S4 for means and 505 
standard deviations of species-specific residuals. 
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Figure 6: Best fat-tailed kernel shapes per species. See Table B2 for the corresponding parameter values: SDDd, LDDd and shape 

parameter b. 

 510 
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3.4 Uncertainty analysis 

The results of the analysis of model uncertainty for the two modelling frameworks – seed dispersal simulated either with a 

negative exponential kernel across species (Model 1: “default kernel”) or with species-specific fat-tailed kernels (Model 2: 

“fat-tailed kernels”) – are shown in Fig. 7. 

Model complexity is calculated from four processes – 1) seed production, 2) seed dispersal, 3) seed bank dynamics, and 4) 515 

seedling establishment – represented by one operation each, including 1) FECmax, 2) SDDd and LDDd, 3) GERMp and 4) 

GERMp for Model 1 ( C1 = 1 + 2 + 1 + 1 = 5), and 1) FECmax, 2) SDDd, LDDd  and b, 3) GERMp and 4) GERMp for Model 

2 (C2 = 1 + 3 + 1 + 1 = 6), respectively (see Appendix A and Fig. A1). Thus, the added unit of complexity for Model 2 results 

from the inclusion of the shape parameter b as weight for the fat-tailed kernels.  

Confirming previous error analyses at the species level (Sect. 3.3), the use of fat-tailed kernels managed to reduce model error 520 

by ≈65 % across species compared to the default setting (RMSE1 = 89.94 % vs. RMSE2 = 25.14 %). As expected from theory 

(Snowling and Kramer, 2001; see also Sect. 2.6.2), model sensitivity increased along with complexity, with Model 2 being 

nearly two times more sensitive across all its parameters than Model 1 (S1 = 0.27 vs. S2 = 0.42). This was mainly due to the 

inclusion of the shape parameter for fat-tail kernels in Model 2 (b), to which the model output is highly sensitive (Fig. 7). On 

the other hand, the ranking of parameters based on their effect on simulated migration rates is the same for both model 525 

structures, with dispersal distances for local (SDDd) and long-distance dispersal (LDDd) being the most influential parameters. 

Comparing parameter effects among the two model structures, simulated migration rates were more sensitive to germination 

rates (GERMp) in Model 2 relative to Model 1, whereas SDDd was more influential in Model 1 relative to Model 2 (Fig. 7). 

Overall, the inclusion of fat-tailed kernels improved model utility to a moderate level, U2 = 0.54 (where U = 1 is the ideal 

model utility), with respect to the default modelling framework (U1 = 0.37). 530 
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Figure 7: Comparison of parameter-specific sensitivities, model error and utility between two structures of the migration module of 

LPJ-GM. Model structures refer to seed dispersal simulated either with a linear combination of two negative exponential kernels across 

species (Model 1: “default kernel”) or of species-specific fat-tailed kernels (Model 2: “fat-tailed kernels”). Sbr: model sensitivity to the shape 

parameter b of fat-tailed kernels (see Table 2 for the description of other parameters). Note that the kernel formulation of Model 1 has no 535 
shape parameter (hence, Sb is NA). See Sect. 2.6.2 for the calculation of model utility. 

 

4 Discussion 

The sensitivity analysis (SA) classification showed that migration rates had lower sensitivity to local demographic traits 

(germination rate and maximum annual fecundity) than to parameters related to seed dispersal (average distance for local 540 

dispersal and rare LDD events) for most of the species (Fig.1 and Table S1). Similar results were found by two studies applying 

SA on mechanistic models for the simulation of seed dispersal (Soons et al., 2004; Nathan and Katul, 2005). In both cases, 

average dispersal distances or LDD were more influenced by parameters linked to the dispersal kernel (e.g. horizontal wind 

velocity) than to local demographic or environmental factors. The importance of dispersal parameters was also confirmed by 

the study of Lustenhouwer et al. (2017) on the relationship between dispersal ability, local demographic traits and migration 545 

speed across 80 plant species, including trees. Lustenhouwer et al. (2017) found that the intrinsic migration capacity of tree 

species (simulated by the Clark et al., 2001 model) was significantly and positively correlated to dispersal ability (i.e. 

decreasing rate of dispersal as a function of distance from the mother tree). On the other hand, local demographic traits such 

as fecundity had a weaker correlation to spread velocity (Lustenhouwer et al., 2017). Our metrics of the shape between 

migration rates and migration parameters (LI in Fig. 1 and slope coefficients in Fig. S2) further highlighted a linear effect of 550 
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dispersal distances (especially for local dispersal) on migration rate, whereas maximum fecundity and germination rate seemed 

to affect migration in a bounded way (see also Fig. S3). Similar shapes were found by Lustenhouwer et al. (2017) when 

analyzing the relationship of spread velocity with dispersal ability (linear) and fecundity (asymptotic). The shape of our 

relationships can be explained by the formulation of the migration process in the model LPJ-GM and the calculation of 

migration rates. Migration speed is defined by the distance of an individual from the migration source (i.e. mother tree) when 555 

surpassing a certain biomass threshold (LAI = 0.5) and accounting for the time elapsed since the start of migration (see Sect. 

2.2 and Appendix A). In turn, individual biomass at a location depends on the number of seeds produced by the individual 

each year (i.e. annual fecundity), by the distances at which seeds are dispersed (i.e. seed dispersal kernel described by SDDd 

and LDDd) and by the local biomass growth. On one hand, annual fecundity and biomass growth are determined by 

environmental conditions, and inter- and intra-specific competition for light and space. Thus, we expect that the positive effect 560 

of maximum fecundity on migration rate will form a plateau when species reach their carrying capacity at a site.  On the other 

hand, an increase of average dispersal distance would likely translate into an almost direct (i.e. linear) increase of migration 

speed, which corresponds to seed movement per time unit. 

The overall increase in migration rate values given by simultaneously setting all parameters to their maximum values 

(all_MAX) supported our assumption that the simulated migration rate is likely an increasing function of the four migration 565 

parameters. However, high and significant error values corresponding to all_MAX simulations suggested that the default 

model structure was unable to generate unbiased estimates within the acceptable range of parameter values for most species, 

with the only two exceptions being Abies alba and Picea abies (Fig. 2). This systematic underestimation might indicate that 

an ecological process significant to tree migration is missing or is incorrectly represented by the default model structure. In 

this respect, a number of studies on plant migration modelling suggests that the asymptotic behavior of the dispersal function 570 

(i.e. the extent of the tail) is crucial for the simulation of population spreading rates, where kernel tails represent long-distance 

dispersal (LDD) events (Clark, 1998; Caswell et al., 2003). Our default model implements LDD events in the weighted linear 

combination of two negative exponential functions that represent SDD and LDD events with a 0.99 and 0.01 relative 

probability, respectively. However, dispersal kernels with high leptokurtosis, long or even fat-tails (i.e. not exponentially 

bounded) are generally considered more accurate representations of LDD events than negative exponential functions (Clark et 575 

al., 1999; Bullock and Clarke, 2000; Nathan et al., 2012), especially in the case of species with a high probability of LDD due 

to the presence of active dispersal vectors, such as hoarding or migratory animals (Clark, 1998; Clark et al. 1999; Powell et 

al., 2004). This is in agreement with our species-specific best performance across seed kernels relative to the natural dispersal 

syndrome of the tree species (Table B2). Specifically, the only two species that could generate unbiased estimates of migration 

rates with the default negative exponential function (Abies alba and Picea abies) are primarily dispersed by wind, a passive 580 

dispersal vector. On the other hand, fat-tailed kernels provided a better fit for animal- or wind-dispersed species with additional 

LDD mechanisms, such as water currents and migratory animals (e.g. birds; see Schurr et al., 2009 for a classification of LDD 

mechanisms). Overall, wind-dispersed species tended to have higher maximum dispersal distances than species primarily 

dispersed by animals (Fig. S4), in agreement with observational studies on vegetation spread in temperate and tropical forests 
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(Clark et al., 1999). From an ecological point of view, this can be explained by the average traits of wind-dispersed seeds, 585 

which are smaller and winged and thus more likely to be transported farther compared to the heavier animal-dispersed seeds. 

From a modelling point of view, larger LDD values would allow to simulate high migration rates even with an exponentially-

bounded kernel function. On the other hand, animal-dispersed species might have shorter dispersal distances on average (Fig. 

S4) but can potentially reach higher migration rates via rare LDD events producing outlying individuals ahead of the migration 

front. In this case, the use of fat-tail kernels will produce a noisy and accelerating vegetation spread relative to a step-wise and 590 

slower spreading front given by exponentially-bounded kernels (Clark, 1998). This seems to suggest that occasional LDD 

events are more important for tree migration than local dispersal driven by more common vectors, at least in order to achieve 

the spreading rates of the paleo-records used in this study. Supporting this, previous studies showed that migration rates 

generated by fat-tailed kernels are more compatible with historical estimates of post-glacial forest expansion than rates 

obtained with Gaussian-like kernels or other functions that poorly represent LDD events (Cain et al., 1998; Caswell et al., 595 

2003). The importance of LDD in post-glacial tree expansion has been long recognized as the most likely explanation to the 

Reid’s paradox, i.e. the apparent discrepancy between contemporary plant dispersal potential and observed post-glacial 

migration rates (Reid, 1899; Cain et al., 1998). In the context of the Reid’s paradox, dispersal potential mostly refers to the 

common (99 % of events) SDD relying on conventional dispersal vectors, whereas high post-glacial migration rates are 

explained by rare (1 %) LDD events where trees colonized newly-emptied areas via less common vectors (e.g. water or 600 

large/migratory animal) (Higgins et al., 2003b; Vittoz and Engler, 2007; see also Sect. 4.4 of Birks, 2019 for a discussion of 

possible scenarios of post-glacial forest expansion). 

The shape of the kernel tail can affect not only the migration speed but also its sensitivity to other migration parameters. In 

agreement with Clark (1998), the implementation of fat-tailed kernels enhanced the importance of ecological traits linked to 

migration, especially germination rate, compared to negative exponential kernels (Fig. 7). Additionally, relatively small 605 

differences in the tail shape of fat-tailed kernels (i.e. shape parameter) had strong effects on the migration rates (Fig. 4 and Fig. 

7). Such a high sensitivity might add to the uncertainty of parameter estimates and thus lower the confidence of model 

predictions with fat-tailed kernels. However, it might be observed that the tail shape is inherently uncertain, regardless of the 

kernel function used. That is, we cannot reliably fit the tail to empirical data of LDD and shape parameters as these are nearly 

impossible to estimate with high accuracy, especially in the case of animal-dispersed species (Clark et al., 2003). For example, 610 

compared to the relatively easier recovery of seeds from traps for wind-dispersed species, it would be required to know in 

advance which animals would act as dispersal vectors and then visually follow or track them until seeds are deposited on the 

ground (Beckman et al., 2020). Furthermore, it has been observed that a single dispersal probability density function cannot 

be standardized for all species since kernel shapes depend on species-specific dispersal mechanisms (Bullock et al., 2017). At 

the same time, a kernel shape cannot be built based on a specific dispersal mechanism as a given species can disperse using a 615 

variety of vectors (Nathan et al., 2008; Counsens et al., 2017). Under these considerations, our approach was to implement 

species-specific dispersal kernels that summarized dispersal modes (see “total dispersal kernel”; Nathan et al., 2008) and 
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provided a good representation of LDD events that could match the historical spreading rates, rather than find the kernel 

function that best-fitted experimental data of seed shadows.  

Overall, our results seem to justify the use of simple functions to summarize multiple dispersal modes and simplify complex 620 

dispersal mechanisms, at least in a large-scale context. For example, in the case of continental-scale simulations over thousands 

of years (e.g. post-glacial forest expansion), it is suggested to avoid a more detailed representation of migration that would 

require the inclusion of e.g. wind properties, animal movement and behavior, seed retention and deposition. Such local 

stochastic processes are generally challenging to parametrize in models given the difficulty of observation and their case-

specific nature (Nathan et al., 2012). As such, the choice of species-specific phenomenological dispersal functions would allow 625 

reducing the inherent uncertainty of migration models compared to more explicitly mechanistic representations of seed 

dispersal, while still providing a representation of dispersal abilities and population dynamics (via germination rates and 

maximum fecundity) at the species level. 

5 Limitations and future challenges 

There are a number of reasons for the disagreement between model output and observations beside parameter and model 630 

uncertainties. 

 Observational range values of migration rates and/or of migration parameters obtained from the literature might be 

incorrect or too uncertain. For instance, Pinus spp. have both the highest error relative to simulated migration rates 

(RMSEallMAX = 191.5 % for P. halepensis) and the largest uncertainty of observed migration rate across all species 

(from 600 to 1500 m yr–1). 635 

 We might have assumed the wrong competitor (see Sect. 2.3), e.g. some late-successional species (e.g. Fagus 

sylvatica) might have competed with additional species beside the early-successional Betula spp. (Giesecke and 

Brewer, 2018). 

 We decided to simulate a homogeneous terrain (for permeability) and climate to ensure ideal climatic/topographic 

conditions for vegetation spread to match maximum migration speeds. This decision was based on the assumption of 640 

migration lag for the paleo-vegetation, i.e. trees were mainly limited by dispersal and not by climate during the post-

glacial forest expansion of Europe. There is still controversy regarding this point (Normand et al., 2011; Svenning 

and Sandel, 2013; Sect. 4.4 of Birks, 2019). 

 We assumed static parameters, whereas, for example, germination rate is usually dependent on temperature and light 

regimes (Baskin and Baskin, 1998). Furthermore, there are some instances of evolutionary responses concerning 645 

dispersal ability (e.g. adaptation to the new environment may reduce the need to disperse). However, trees seem to 

have a slow plastic/evolutionary response with respect to other taxa and are more likely to respond to climate change 

with range shifts (Berg et al., 2010; Lenoir et al., 2020; see also Sect 6.3 and Table 11 of Birks, 2019 for the little 

evidence of plasticity/adaptation of terrestrial plants during the Quaternary). 
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 We did not conduct a formal and thorough model calibration by using an optimization algorithm, though we have 650 

still identified valuable parameter estimates (i.e. we minimized the error by staying within probable parameter 

combinations) and helped to reduce the parameter space (following the concept of Exploratory Landscape Analysis; 

Mersmann et al., 2011; Stork et al., 2020). A thorough optimization could be the next step and might suggest whether 

there is more than one local optimum (global optimization; Stork et al., 2020). However, these approaches are very 

expensive for complex models such as LPJ-GM. Furthermore, obtaining a better fit to observations does not 655 

necessarily guarantee that a model is more realistically simulating vegetation dynamics (i.e. right predictions for the 

wrong reasons). Uncertainty assessment is still useful to identify model components to improve (e.g. parameter 

uncertainty to reduce by acquiring more empirical data). More generally, our efficient uncertainty assessment could 

be used to reduce the cost of solving optimization problems for computationally demanding models by allocating 

computational resources on relevant model components (parameters or process formulations) and gain insights into 660 

model limitations for further improvement. 

 Predicting future trees’ range shifts based on a model parametrized with mid-Holocene estimates might present some 

limitations since past and current global warming have different intensities and species are submitted to different 

conditions (e.g. more fragmented habitats and unlimited human-driven dispersal in present/future conditions with 

respect to the mid-Holocene; Corlett and Wescott, 2013; see also Sect. 7.2.2 and 7.2.3 of Birks, 2019). Nevertheless, 665 

the outcome of our study is important not in the sense that post-glacial migration estimates are to be expected in the 

future, but rather that we identified important mechanisms controlling migration rate (LDD events) and implemented 

them into the model structure (fat-tail kernels) (Nogués-Bravo et al., 2018). The high velocity of isothermal shift 

predicted for the 21st century (up to 4–6 km yr–1; Svenning and Sandel, 2013; Lenoir et al., 2020) suggests that trees 

will be limited by their dispersal ability (i.e. migration lag), and especially by LDD events in a fragmented landscape 670 

with few available establishment sites. Thus, the model representation of LDD will likely be more important for the 

realistic simulation of future range shifts. 

6 Conclusions 

Model predictions of species range shifts have many sources of uncertainties, which is important to acknowledge and evaluate 

as a first step for model improvement. This study aimed to provide an evaluation of the parameter and model uncertainties of 675 

the migration module of a dynamic vegetation model, LPJ-GM 1.0. We used low-cost methodologies for estimating the 

sensitivity of one model output, tree migration rate, to key migration parameters, and provided quantitative information about 

the importance of mechanisms underlying the migration process across different tree species and a first guess of parameter 

values used in the simulations. Overall, the model structure implementing fat-tailed dispersal kernels provided significantly 

better predictions than the default modelling framework, while not being overly more complex, and can therefore be a good 680 

candidate for an improved model structure (LPJ-GM 1.1). Though a reduced model error does not necessarily mean that 
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predictions of migration rates would be correct, identifying influential migration mechanisms (LDD events) and their efficient 

inclusion in the model structure (via fat-tail kernels) can improve our confidence in range shift predictions, especially in a 

context  of global change where LDD will likely be more relevant.  

Appendix A. Migration module of the model LPJ-GM 1.0 685 

For more details on the model description and technical implementation, see Lehsten et al., 2019. See also Fig. A1 for a 

graphical summary of the migration module. 

 

Figure A1: Migration module of the model LPJ-GM 1.0. Migration consists of four processes: 1) seed production, 2) seed dispersal via 

a probability density function (pdf, dispersal kernel), 3) seed bank dynamics, and 4) seedling establishment. Migration parameters are 690 
highlighted in red. Model 1 and Model 2 refer to the default and modified model structures employing negative exponentials or species-

specific fat-tailed kernels, respectively, for seed dispersal (see Sect. 2.6.2). 
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A1. Seed production 

The number of seeds produced S is the product of maximum fecundity (𝐹𝐸𝐶𝑚𝑎𝑥) and the proportion of current leaf area 695 

(𝐿𝐴𝐼𝑖𝑛𝑑) to the maximum (𝐿𝐴𝐼𝑚𝑎𝑥 , calculated following Eq. (3.20) and Eq. (3.21); Bugmann, 1994): 

𝑆 = FEC𝑚𝑎𝑥 ×
LAI𝑖𝑛𝑑

LAI𝑚𝑎𝑥
 ,           (A1) 

where species-specific 𝐿𝐴𝐼𝑖𝑛𝑑  is generated yearly for each simulated tree individual by the main vegetation dynamic model 

(LPJ-GUESS). 

A2. Seed distribution 700 

The seeds 𝑆(𝑥′, 𝑦′) produced at a location (𝑥′, 𝑦′) are distributed according to a probability density function (pdf), i.e. the seed 

dispersal kernel 𝑘𝑠, so that the seed input 𝑆𝑑(𝑥, 𝑦) in location 𝑥, 𝑦 is obtained by integrating over all other locations 𝑥’, 𝑦’: 

𝑆𝑑(𝑥, 𝑦) = ∫ 𝑆(𝑥′, 𝑦′)𝑘𝑠(𝑥 − 𝑥′, 𝑦 − 𝑦′)𝑑𝑥′𝑑𝑦′ ,        (A2) 

The dispersal kernel 𝑘𝑠 is a linear combination of two pdfs for short- (SDD) and long-distance dispersal (LDD): 

𝑘𝑠 = (1 − 𝐿𝐷𝐷𝑝) × 𝑝𝑑𝑓(𝑧, 𝑆𝐷𝐷𝑑) + 𝐿𝐷𝐷𝑝 × 𝑝𝑑𝑓(𝑧, 𝐿𝐷𝐷𝑑) ,      (A3) 705 

where 𝐿𝐷𝐷𝑝 is the proportion of long-distance dispersal (the actual value is species dependent; for example, 𝐿𝐷𝐷𝑝  of Fagus 

sylvatica corresponds to 0.01, i.e. 1 % of seed dispersal is attributed to long-distance transport), 𝑆𝐷𝐷𝑑  and 𝐿𝐷𝐷𝑑  are the 

average distances for SDD and LDD, respectively, and 𝑧 = √(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 is the distance between a sink cell (𝑥, 𝑦) 

and a source location (𝑥’, 𝑦’).  

In the default setting of LPJ-GM (“Model 1: default kernel” according to the model uncertainty analysis; Sect. 2.6.2), the pdfs 710 

for both SDD and LDD components are negative exponentials. In the modified model structure (“Model 2: fat-tailed kernels”; 

Sect. 2.6.2), the pdfs for both SDD and LDD components are species-specific fat-tailed kernels (see Table 3 for pdfs’ 

formulae). 

A3. Seed bank dynamics 

The seed bank dynamic is defined by the yearly change of dormant seeds in the soil 𝑆𝑠𝑏  that can germinate in the following 715 

years. 𝑆𝑠𝑏  increases by the seed input 𝑆𝑑  according to Eq. (A2) and decreases by the number of germinated seeds or by loss of 

seeds (𝜇𝑠): 

𝑆𝑠𝑏,𝑡+1 = 𝑆𝑠𝑏,𝑡+1
̃ × (1 − 𝐺𝐸𝑅𝑀𝑝) × (1 − 𝜇𝑠) ,        (A4) 

with 

𝑆𝑠𝑏,𝑡+1
̃ = 𝑆𝑠𝑏,𝑡 + 𝑆𝑑,𝑡+1 ,           (A5) 720 

https://doi.org/10.5194/gmd-2021-422
Preprint. Discussion started: 12 January 2022
c© Author(s) 2022. CC BY 4.0 License.



31 

 

where 𝐺𝐸𝑅𝑀𝑝 is the rate of germination, and the yearly loss of seeds from the seed bank 𝜇𝑠 is 0.8. 

A4. Seedling establishment and calculation of migration rate  

Finally, the probability of seedling establishment in a certain year 𝐸𝑆𝑇𝑝 depends on the number of available seeds for 

germination (𝑆𝑠𝑏) and on the germination rate: 

𝐸𝑆𝑇𝑝 = 0.01 × 𝑆𝑠𝑏 × 𝐺𝐸𝑅𝑀𝑝 ,          (A6) 725 

New individuals are then established as saplings, where sapling numbers correspond to the rounded value for 𝐸𝑆𝑇𝑝. The 

established seedlings grow, compete and die according to the LPJ-GUESS algorithm, and finally start producing seeds 

following Eq. (A1).  

At the end of the simulation, the species-specific migration rate (in m y–1) is calculated as the migration distance divided by 

migration time, i.e. the simulation time elapsed since the end of the spin-up phase when the vegetation, soil and litter pools 730 

develop from “bare ground” into a dynamic equilibrium. During this phase, all simulated species (i.e. the focal migrating 

species and its competitors; see Table 1) are allowed to establish without seed limitation, whereas migrating species are killed 

at the end of the spin-up phase throughout the simulation domain, with the exception of the starting point of migration. 

Migration distance is then obtained by the direct output of LPJ-GM, yearly and species-specific leaf area index (LAI), as the 

distance between the starting point of migration and the 95th percentile farthest point in the terrain where LAI exceeds 0.5. 735 

A5. Methods to enhance dispersal simulations  

LPJ-GM implements 1) the Fast Fourier transform method (FFTM) to enhance the computational efficiency of dispersal 

simulations, and 2) the use of corridors to reduce the spatial domain of simulations (i.e. number of grid cells where local 

dynamics are simulated). The FFTM employs the convolution theorem and the Fast Fourier transform (FFT) to evaluate the 

convolution of seed production and dispersal kernel (Eq. (A2)) at reduced computational cost, while allowing for the inclusion 740 

of different species-specific dispersal kernels and, thus potentially dispersal syndromes (e.g. via wind or animal transport).  

Appendix B. Migration parameters 

The migration parameters were compiled from various literature sources (Table B1) as described in Sect. 2.4. Optimal values 

(i.e. corresponding to minimized errors between predicted and observed migration rate estimates) are listed in Table B2. 

 745 

Table B1. Species-specific migration parameters and data sources for minimum and maximum values found in the literature. 

SDDd: average short dispersal distance (meters); LDDd: 1 % average long dispersal distance (meters); FECmax: maximum 

fecundity per tree (no. seeds in 100 per year); GERMp: seed germination rate (%). Data sources: a = Lischke and Löffler 

(2006); b = TRY database (Kattge et al., 2020); c = Royal Botanic Gardens Kew Seed Information Database (SID); d = Vittoz 
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and Engler (2007); e = Tamme et al. (2014); * = species-specific variation of the 5-points parameter values is set at 12.5 % 750 

when data is lacking (e.g. for SDD, with a parameter range of 100 m, 25–125 m, the difference between each of the adjacent 

LSA-5-points is 12.5 m; see Sect. 2.4). Note that differently from the source literature for the default setting (Lischke and 

Löffler, 2006), we assumed the proportion of LDD events to be fixed at 1 % (LDDp = 0.01). In the case of absence of LDD 

events (k = 0 according to Lischke and Löffler, 2006), we assumed equal values for average short- and long- dispersal distances 

(SDDd = LDDd). 755 

Parameter Species Default Min 25th Mean 75th Max 

FECmax Abi_alb 50a 19a 34.5 50 65.5 81a 

 Bet_pen 11775a 1725a 8793.75 15862.5 22931.25 30000a 

 Bet_pub 11775a 1725a 8793.75 15862.5 22931.25 30000a 

 Car_bet 154a 23 193.5 364 534.5 705b 

 Cor_ave 6a 6a 7.5 9 10.5 12b 

 Fag_syl 29a 2b 17 32 47 62a 

 Fra_exc 42a 42a 44 46 48 50b 

 Pic_abi 97a 47a 76 105 134 163a 

 Pic_sit 50b 25b 37.5 50 62.5 75b 

 Pin_syl 22a 6a 15.25 24.5 33.75 43a 

 Pin_hal 22a 6a 15.25 24.5 33.75 43a 

 Que_coc 5b 3b 4.75 6.5 8.25 10b 

 Que_ile 20a 10a 20 30 40 50b 

 Que_pub 18a 10a 20 30 40 50b 

 Que_rob 28a 15a 23.75 32.5 41.25 50b 

 Til_cor 720a 540* 630 720a 810  900* 

 Ulm_gla 372a 55a 278.5 502 725.5 949a 

GERMp Abi_alb 46a 30a 37.5 45 52.5 60a 

 Bet_pen 19a 10a 15 20 25 30a 

 Bet_pub 19a 10a 15 20 25 30a 

 Car_bet 67a 60a 65 70 75 80c 

 Cor_ave 30a 30a 37.5 45 52.5 60c 

 Fag_syl 71a 50a 57.5 65 72.5 80a 

 Fra_exc 60a 50a 53.75 57.5 61.25 65a 

 Pic_abi 76a 1a 24.5 48 71.5 95a 

 Pic_sit 75c 70c 72.5 75 77.5 80c 
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 Pin_syl 91a 85a 87.5 90 92.5 95a 

 Pin_hal 60a 60c 60 60 60 60c 

 Que_coc 70c 65c 67.5 70 72.5 75c 

 Que_ile 90c 85c 87.5 90 92.5 95c 

 Que_pub 70a 60a 67.5 75 82.5 90a 

 Que_rob 75a 60a 68.75 77.5 86.25 95a 

 Til_cor 45a 20a 28.75 37.5 46.25 55a 

 Ulm_gla 35a 30a 38.75 47.5 56.25 65c 

SDDd Abi_alb 100a 75* 87.5 100a 112.5 125* 

 Bet_pen 200a 150* 175 200a 225 250* 

 Bet_pub 200a 150* 175 200a 225 250* 

 Car_bet 100a 75* 87.5 100a 112.5 125* 

 Cor_ave 25a 25a 68.75 112.5 156.25 200e 

 Fag_syl 25a 4.13d 9.3475 14.565 19.7825 25a 

 Fra_exc 100a 75* 87.5 100a 112.5 125* 

 Pic_abi 100a 75* 87.5 100a 112.5 125* 

 Pic_sit 100a 75* 87.5 100a 112.5 125* 

 Pin_syl 100a 75* 87.5 100a 112.5 125* 

 Pin_hal 100a 75* 87.5 100a 112.5 125* 

 Que_coc 25a 25a 32.5 50 62.5 75* 

 Que_ile 25a 25a 32.5 50 62.5 75* 

 Que_pub 25a 25a 32.5 50 62.5 75* 

 Que_rob 25a 25a 32.5 50 62.5 75* 

 Til_cor 100a 75* 87.5 100a 112.5 125* 

 Ulm_gla 100a 75* 87.5 100a 112.5 125* 

LDDd Abi_alb 101a 101a 1825.75 3550.5 5275.25 7000d 

 Bet_pen 201a 201a 269.5 338 406.5 475e 

 Bet_pub 201a 201a 269.5 338 406.5 475e 

 Car_bet 101a 101a 182 263 344 425e 

 Cor_ave 200a 200a 525 850 1175 1500d 

 Fag_syl 200a 32d 74 116 158 200a 

 Fra_exc 101a 101a 257 413 569 725d 

 Pic_abi 101a 101a 450.75 800.5 1150.25 1500a 
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 Pic_sit 101a 101a 275.75 450.5 625.25 800e 

 Pin_syl 101a 101a 138.25 175.5 212.75 250e 

 Pin_hal 101a 101a 138.25 175.5 212.75 250e 

 Que_coc 200a 200a 225 250 275 300d 

 Que_ile 200a 200a 225 250 275 300d 

 Que_pub 200a 200a 225 250 275 300d 

 Que_rob 200a 200a 225 250 275 300d 

 Til_cor 101a 101a 169.25 237.5 305.75 374e 

 Ulm_gla 101a 101a 163.25 225.5 287.75 350e 

 

Table B2. Species-specific optimal migration parameters with related RMSE % (relative to the 75th percentile of historical 

estimates; see Table 1) and dispersal syndromes as reported by Vittoz and Engler (2007) and TRY Database (Kattge et al. 

2020): W = wind; Wa = water; B = bird; LA = large mammal (deer, badger, cattle); SA = small animal (e.g. hoarding by 

rodents). 760 

Species Kernel B FECmax GERMp SDDd LDDd RMSE % Dispersal 

syndrome 

Abi_alb NegExp NA 50 46 100 710 2.66 W 

Bet_pen LogSec 0.29 11775 19 200 475 19.71 W+Wa+B 

Bet_pub LogSec 0.29 11775 19 200 475 19.71 W+Wa+B 

Car_bet Logistic 4.75 705 80 100 425 19.63 W+Wa+B+SA 

Cor_ave LogSec 0.4 6 60 200 1500 12.21 B+SA 

Fag_syl LogSec 0.375 29 71 25 200 14.19 SA+LA 

Fra_exc ExpPow 0.5 42 60 100 725 25.75 W+Wa+B+LA 

Pic_abi NegExp NA 163 80 100 780 9.21 W+Wa+B+LA 

Pic_sit ExpPow 0.5 50 75 100 800 31.15 W 

Pin_hal Logistic 4 22 60 100 250 29.20 W+Wa 

Pin_syl Logistic 4.5 43 91 100 250 34.32 W 

Que_coc Logistic 4.15 5 70 25 200 21.11 SA 

Que_ile Logistic 4.5 50 90 25 200 15.25 SA 

Que_pub LogSec 0.525 50 90 25 200 14.69 SA 

Que_rob LogSec 0.5 50 95 25 200 19.53 SA 

Til_cor ExpPow 0.45 720 55 100 374 31.41 SA 

Ulm_gla LogSec 0.35 725 65 100 350 17.12 W+SA 
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Code and data availability 

The model LPJ-GM 2.0 (LPJ-GUESS 4.0 coupled to a dynamic migration module) was used for the simulations presented in 

the study. The model code is archived in a private repository (https://github.com/zanid90/LPJ-GMINT), along with detailed 

instructions on how to compile and run the model version presented in this paper, where the model version is identified by the 765 

permanent version number v2.0-gm in the code repository. Access to the code is available upon request under license due to 

university policy (Lund University). Documentation and code base of the main-version of LPJ-GUESS is available upon 

request under license via the LPJ-GUESS home page: https://web.nateko.lu.se/lpj-guess/ (last access: 28 October 2021). An 

open-access educational version of the base code LPJ-GUESS is also available there. Input climate and landscape data filtered 

for the simulation domain, grid list and instruction file with parameter settings for the LPJ-GM simulations are available at: 770 

https://doi.org/10.18161/20211127.  Full climate and landscape data were provided by Armstrong et al., 2019. 

Supplement 

The Supplement contains: 1) the post-processing MATLAB script for the calculation of migration speed from the LPJ-GM 

output (post_processing/Postprocessing_plotMigrationRate.m with a sample output lai.out); 2) the .csv tables with migration 

speed separated by analysis (Input_SA.csv and Input_SA_model2.csv for the Sensitivity Analysis of the default and improved 775 

model structure, Sect. 2.5.1 and 2.6.2, respectively; Input_EVA.csv for the Extreme Value Analysis, Sect. 2.5.2; Input_KA.csv 

for the Kernel Analysis, Sect. 2.6.1); 3) the Jupyter Notebook used to generate all figures and tables from the .csv data, and 

statistical analyses performed in the study, including detailed information on the setting and parameters used in the LPJ-GM 

simulations (Supplement_Information.ipynb); and 4) supplementary tables and figures (Table S1–4, and Fig. S1–4). The 

supplement related to this article is available at: https://doi.org/10.18161/20211127. 780 
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