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Abstract. The applications of novel deep learning (DL) tech-
niques in atmospheric science are rising quickly. Here we
build a hybrid DL model (hyDL-CO), based on convolu-
tional neural networks (CNNs) and long short-term memory
(LSTM) neural networks, to provide a comparative analy-5

sis between DL and Kalman filter (KF) to predict carbon
monoxide (CO) concentrations in China in 2015–2020. We
find the performance of DL model is better than KF in the
training period (2015–2018): the mean bias and correlation
coefficients are 9.6 ppb and 0.98 over eastern China and are10

−12.5 ppb and 0.96 over grids with independent observa-
tions (i.e., grids with CO observations that are not used in
DL training and KF assimilation). By contrast, the assim-
ilated CO concentrations by KF exhibit comparable corre-
lation coefficients but larger negative biases. Furthermore,15

the DL model demonstrates good temporal extensibility in
the test period (2019–2020): the mean bias and correlation
coefficients are 95.7 ppb and 0.93 over eastern China and
81.0 ppb and 0.91 over grids with independent observations,
while CO observations are not fed into the DL model as an20

input variable. Despite these advantages, we find a weaker
prediction capability of the DL model than KF in the test
period, and a noticeable underestimation of CO concentra-
tions at extreme pollution events in the DL model. This work
demonstrates the advantages and disadvantages of DL mod-25

els to predict atmospheric compositions with respect to tra-
ditional data assimilation, which is helpful for better applica-
tions of this novel technique in future studies.

1 Introduction

Accurate simulation and prediction of air pollutants are crit- 30

ical for making effective policies to improve air quality.
Chemical transport models (CTMs), as powerful tools, have
been widely used to simulate atmospheric compositions (Li
et al., 2019; X. Chen et al., 2021; Lu et al., 2021). Despite the
advances of CTMs, there are still noticeable discrepancies in 35

the simulations due to uncertainties in the emission, physical
and chemical processes (Quennehen et al., 2016; Kong et al.,
2020). Tropospheric CO is one of the most important pol-
lutants with significant sources from fossil fuel combustion.
Atmospheric observations are thus used to evaluate the ca- 40

pacity of CTMs to capture the observed variabilities in atmo-
spheric CO. For example, Kong et al. (2020) exhibited good
consistency between modeled and observed CO variations in
China but with significantly underpredicted CO concentra-
tions. Tang et al. (2022) found the observed CO concentra- 45

tions are noticeably higher than model simulations over low-
pollution areas in China, but with a smaller difference over
high-pollution areas.

Based on CTMs, data assimilation techniques integrate
simulations and observations and thus can improve the 50

modeled atmospheric compositions. For instance, Ma et al.
(2019) found the assimilation of surface observations can ef-
fectively reduce the uncertainties in fine particulate matter
(PM2.5), ozone (O3) and CO forecasts. Peng et al. (2018)
assimilated surface observations and obtained near-perfect 55

forecasts for PM2.5, O3 and CO on the first day, but the ef-
fects of the data assimilation decayed quickly with longer
forecasts. The propagation of observational information in

1
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data assimilation depends on the modeled physical and
chemical processes; i.e., the adjustment over grids lacking
observations relies on regional transport of observational in-
formation from other grids. The assimilated results are thus
still affected by potential model errors (e.g., the uncertainty5

in transport), which can lead to rapid decline of assimilation
effects, if observations become unavailable.

Accompanied with recent advances in machine learning
(ML) techniques, novel data-driven architectures and ap-
proaches have been extensively applied in the field of atmo-10

spheric science (R. Li et al., 2020; Zhang et al., 2020; Shi
et al., 2021; Xing et al., 2021). Based on artificial neural net-
works, particularly convolutional neural networks (CNNs),
deep learning (DL) uses multiple layers of computational
kernels to extract and capture non-linear relationships be-15

tween input and output variables. The predictions, provided
by DL, are driven by observational or reanalysis data sets,
which provides a new way of predicting atmospheric compo-
sitions without the influence of model errors. The non-linear
relationships learned in the training data set can be extended20

spatially and temporally; for example, Kleinert et al. (2021)
found the DL model can forecast surface O3 within a 4 d
range. The application of long short-term memory (LSTM)
networks further improves the ability of DL models in cap-
turing temporal dynamics. For example, Y. Chen et al. (2021)25

found the LSTM-based approach can provide a good predic-
tion for surface PM2.5 on the next day; He et al. (2022) ex-
hibited the capability of a DL model to predict surface O3 in
North America.

Despite the advantages of the DL approaches, the lack30

of parameterization of physical and chemical processes im-
plies the predicted atmospheric compositions may deviate
from the realistic atmospheric state, in contrast to conven-
tional data assimilation approaches that are constrained by
modeled processes. The lifetime of tropospheric CO is about35

1–2 months, which makes it an ideal tracer for atmospheric
transport. In this study, we present an application of a hybrid
DL model (hyDL-CO) to the prediction of surface CO con-
centrations in China from 2015 to 2020, which utilizes both
CNNs and LSTMs. We perform a comparative analysis be-40

tween the DL model and a Kalman filter (KF) system in this
work, to investigate the performances of the two approaches
in predictions of atmospheric composition with a long life-
time and strong regional transport. Considering the lifetimes
of O3 and PM2.5 are shorter than CO, we may assume com-45

parable or better performances of DL in the predictions of
O3 and PM2.5. The comparison in this work is helpful for
understanding the advantages and disadvantages of the DL
approach with respect to traditional data assimilation in the
predictions of atmospheric compositions, which is critical for50

better applications of this novel technique in atmospheric en-
vironmental studies in the future.

This paper is organized as follows: in Sect. 2, we describe
the CO observations, the KF approach and the hyDL-CO
model used in this work. In Sect. 3, we assess the predicted55

CO by the DL model, the changes in CO emissions in China,
the comparison between the DL model and KF, and the evalu-
ation with independent observations. Our conclusions follow
in Sect. 4.

2 Data and methodology 60

2.1 MEE surface CO measurements

We use the China Ministry of Ecology and Environment
(MEE) monitoring network surface in situ CO concentra-
tion data (https://quotsoft.net/air/, last access: 26 May 2022)
for the period of 2015–2020. These real-time monitoring 65

stations have the ability to report hourly concentrations of
pollutants that fulfill the criteria from about 1700 sites in
2020. Concentrations were reported by the MEE in units
of mgm−3 under standard temperature (273 K) until 31 Au-
gust 2018. This reference state was changed on 1 September 70

2018 to 298 K. We converted CO concentrations to ppb and
rescaled post-August 2018 concentrations to standard tem-
perature (273 K) to keep the consistency in the trend anal-
ysis. The reported data with CO concentrations larger than
6000 ppb are removed in our analysis. The station-based ob- 75

servations are averaged and regridded to the 0.5◦× 0.625◦

grid of the MERRA-2 reanalysis, with about 500 grids in
total having observations. About 50 grids, or 10 % of grid-
based observations, are randomly selected as independent
observations, which are only used in the evaluation of the 80

predicted CO from the DL model and the KF system. The
training of the DL model and the assimilation using the KF
are performed using the remaining 90 % observations.

2.2 KF approach

We employ the sequential KF based on the GEOS-Chem 85

CTM to assimilate surface CO observations. This approach
has been used in previous studies to optimize tropospheric
CO concentrations (Jiang et al., 2017; Tang et al., 2022). The
GEOS-Chem model (http://www.geos-chem.org, last access:
26 May 2022, version 12-8-1) is driven by assimilated me- 90

teorological data of MERRA-2. Our analysis is conducted
at a horizontal resolution of nested 0.5◦× 0.625◦ and em-
ploys the CO-only simulation in GEOS-Chem, which uses
archived monthly OH fields from the full chemistry sim-
ulation (Fisher et al., 2017). The CO boundary conditions 95

are updated every 3 h from a global simulation with 4◦× 5◦

resolution. Emissions in GEOS-Chem are computed by the
Harvard-NASA Emission Component (HEMCO). Global
default anthropogenic emissions are from the Community
Emissions Data System (CEDS) (Hoesly et al., 2018) and 100

replaced by MEIC (Multiresolution Emission Inventory for
China) in China and MIX (full name) in other regions of Asia
(Li et al., 2017). The total anthropogenic CO emissions in the
MEIC inventory are further scaled with linear projection. We

https://quotsoft.net/air/
http://www.geos-chem.org


W. Han et al.: Deep learning and Kalman filter for CO concentration prediction 3

refer the reader to X. Chen et al. (2021) for the details of
model configurations.

In the assimilation algorithm, the forward model (M) pre-
dicts CO concentration (xat) at time t :

xat =Mtxt−1. (1)5

The optimized CO concentrations can be expressed as fol-
lows:

xt = xat+Gt (yt −Ktxat), (2)

where yt is observation, and Kt represents the operation
operator which projects CO concentrations from the model10

space to the observation space. Gt is the KF Gain matrix,
which can be described as follows:

Gt = SatKT
t

(
KtSatKT

t +Sε
)−1

, (3)

where Sat and Sε are model and observation covariance, re-
spectively. Because the DL model is designed to reproduce15

observations without considering error covariance, here we
assume fixed model error (50 %) and small observation error
(1 %) to provide a fair comparison. The covariance matrix is
diagonal without the consideration of off-diagonals.

2.3 hyDL-CO v1.0 model20

Our hyDL-CO model is a modified version of the U-net
model used in He et al. (2022), where the model shows a
superior capability in predicting surface summertime O3 in
North America. The U-net architecture is a variant of au-
toencoder and was originally proposed for biomedical seg-25

mentation applications. In the first U-net paper, Ronneberger
et al. (2015) conducted three experiments and showed that
the U-net model outperforms other DL models. Since the
proposal of U-net, it has become one of the most popular
choices in the DL community and is compared with other30

ML models in many studies. For example, Korznikov et al.
(2021) used several ML models for tree recognition using
satellite images, and the U-net model shows the highest accu-
racy. Ravuri et al. (2021) used U-net as a baseline model and
compared it with their generative adversarial network (GAN)35

in precipitation nowcasting. Andersson et al. (2021) showed
that their IceNet, which is an ensemble of similar U-Net net-
works, has outstanding performance in seasonal forecasts of
Arctic Sea ice.

As shown in Fig. 1, the first three blocks of neural layers40

behave as an encoder, which has six convolutional layers and
two max pooling layers, to extract the features hidden in the
input data. A dropout layer is added after each pooling layer
to prevent data overfitting. The output from the encoder is
highly compressed information that is not manipulated dur-45

ing the training process, which is also called the latent vector.
We embed the LSTM model into the U-net architecture after
the encoder, inspired by the idea of convolutional LSTM pro-
posed in Shi et al. (2015), to capture short-term changes and

long-term trends in the latent vectors. CE1The output from 50

the LSTM is then forwarded to a decoder with three blocks of
layers. Each block in the decoder has one transposed convo-
lutional layer followed by two convolutional layers. The out-
puts from each convolutional layer in the model are passed
through the rectified linear unit (ReLU) activation function 55

to increase non-linearity. Residual learning connections (He
et al., 2016) that forward the high-resolution features ex-
tracted by the encoder to the decoder are also added, which
are shown to improve the performance of U-net (Ghorban-
zadeh et al., 2021; Qi et al., 2020; Liu et al., 2020). These 60

connections contain trainable weights that represent a more
direct relationship between input and output variables.

The optimization of the model is supervised by the
“ground truth”, which is the daily mean surface CO concen-
trations measured by the MEE network. The weights in the 65

CNNs and transposed CNNs are optimized using the back-
propagation algorithm (Rumelhart et al., 1986; LeCun et al.,
1989), which employs the partial derivatives of the cost func-
tion with respect to the truth. Here cost function is defined as
follows: 70

L=
1
N

N∑
i=1

(
yi − ŷi

)2
, (4)

where yi and ŷi are the “true” and “predicted” values. This
performance evaluation is calculated only in the grid with
“true” values, so that the optimization of the model avoids
the influence of regions without CO observations. The loss 75

function to be optimized is the mean square error (MSE) be-
tween the “predicted” and “true” values. We use the Adam
optimizer, which is a computationally efficient algorithm
for gradient-based optimization of stochastic objective func-
tions. For a faster convergence speed and the stability of 80

the model performance, we rescale all the features to the
nearly same scale. The processing method is multiplying
the original variable by a constant 10n and adapting n for
each variable according to the specified scale. For example,
most of the values of sea level pressure (SLP) are distributed 85

around 105, so we multiply SLP by 10−4 to make the value
of the feature SLP distributed around 101. This processing
prevents the DL model from being overfit by the features
in input variables that have significantly larger scales than
others. The hybrid model was built and implemented using 90

Keras and Tensorflow, which are Python packages that are
extensively used in DL studies. Table 1 shows some of the
configuration hyperparameters of the training of our model.

The input variables include six meteorological variables:
SLP, surface incoming shortwave flux (SWGDN), 2 m air 95

temperature (T2M), 10 m eastward wind (U10M), 10 m
northward wind (V10M), total precipitation (TP), and total
anthropogenic CO and volatile organic compounds (VOC)
emissions. The meteorology and emission data are extracted
from the GEOS-Chem model with 0.5◦× 0.625◦ horizon- 100

tal resolution. Our focus area is 0–72◦ N, 0–180◦ E, and the
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Figure 1. Hybrid DL model used in this paper.

Table 1. Hyperparameters used in the hybrid DL model.

Optimizers Learning rate Early stopping patience Batch size Epochs Validation split Shuffle

Adam 0.001 20 64 500 0.125 TRUE

output resolution is same as the 0.5◦× 0.625◦ resolution of
MERRA-2. The DL model grid thus has 288 grid boxes
along the longitudinal direction and 144 for the latitude. Con-
sidering the long lifetime of CO, the concentration of surface
CO is not only related to the emission and meteorological5

conditions at the current moment, but also at the previous
moment. We trained the DL model using the information re-
lated to the “history” of CO, by adding the same set of input
variables for the current day and previous 4 d as predictors.
The information from the 5 d history has 40 predictors in to-10

tal for the prediction of daily mean surface CO in each day.
We use 2015–2018 as the training data set and 2019–2020 as
the test set. The dimension of each input vector for the DL
model is then (144, 288, 40), and the dimension of the output
from the DL model is (144, 288, 1).15

3 Results and discussions

3.1 CO concentrations predicted by DL model

As shown in Fig. 2a, the annual averaged MEE CO obser-
vations are broadly higher than 400 ppb in eastern China in
2015–2018 and can reach 1000 ppb over the highly polluted20

North China Plain (NCP). The predicted CO concentrations
by the DL model (Fig. 2b) match well with observations in
2015–2018. We find small differences between predictions
and observations in Fig. 2c. The Pearson correlation coeffi-
cients are larger than 0.7 over eastern China and are as high 25

as 0.9 over the highly polluted NCP (Fig. 2d). Figure 3a–e
exhibit daily variabilities of CO concentrations over eastern
China, as well as NCP, Yangtze River Delta (YRD), Pearl
River Delta (PRD) and Sichuan Basin (SCB) domains. There
is large seasonality in the observed CO concentrations: the 30

wintertime CO concentrations can reach 1400 ppb over east-
ern China and 2500 ppb over the highly polluted NCP; the
summertime CO concentrations are about 500 ppb over east-
ern China and 800 ppb over NCP. The predicted CO con-
centrations by the DL model demonstrate high consistency 35

with observations. As shown in Table 2, the correlation co-
efficients between the DL model and MEE CO observations
are 0.98, 0.97, 0.93, 0.89 and 0.90; the biases are 9.6, 18.2,
−2.6, 12.7 and 17.6 ppb for eastern China, NCP, YRD, PRD
and SCB, respectively. 40

The high consistency between observations and the DL
model in the training period (2015–2018) is expected. Here
we further evaluate the capability of the DL model to pre-
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Figure 2. (a) MEE CO observations (90 % stations) in 2015–2018. (b) Predicted CO concentrations by the DL model in 2015–2018.
(c, d) Differences and Pearson correlation coefficients between predicted and observed CO in 2015–2018. (e–h) MEE CO observations (90 %
stations), predicted CO concentrations by DL model and their differences, and Pearson correlation coefficients in 2019–2020. (i–p) Same as
panels (a–h), but for KF. The unit is ppb.
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Figure 3. Daily variabilities of CO concentrations from MEE (90 % stations), DL and KF in 2015–2018 and 2019–2020.

Table 2. Deep learning (DL), Kalman filter (KF) and control run (CR) with respect to MEE CO observations in 2015–2018 and 2019–2020.
The locations of independent MEE stations are shown in Fig. 6.

90 % MEE stations Independent MEE stations

Eastern China NCP YRD PRD SCB Eastern China NCP YRD PRD SCB

20
15

–2
01

8
(t

ra
in

in
g

pe
ri

od
)

Bias (ppb) DL 9.6 18.2 −2.6 12.7 17.6 −12.5 92.3 −29.9 −19.8 −280.4
KF −114.9 −139.6 −58.0 −108.8 −29.3 −252.5 −122.2 −165.6 −208.0 −141.7
CR −409.6 −512.3 −246.0 −400.5 −172.4 −443.3 −403.9 −319.2 −402.3 −371.6

RMSE DL 38.6 102.2 74.0 70.9 95.7 50.8 154.5 96.8 104.0 428.4
KF 116.8 149.0 69.7 120.5 74.1 258.1 207.2 198.2 241.4 394.2
CR 415.2 552.7 274.4 414.7 284.7 448.7 461.1 342.9 419.6 625.1

Correlation DL 0.98 0.97 0.93 0.89 0.90 0.96 0.94 0.86 0.73 0.78
KF 0.99 0.99 0.98 0.94 0.96 0.95 0.91 0.84 0.66 0.76
CR 0.94 0.87 0.83 0.68 0.78 0.91 0.79 0.74 0.58 0.64

Slope DL 0.95 0.91 0.80 0.73 0.78 0.89 0.89 0.70 0.46 0.49
KF 1.02 0.98 1.04 0.99 1.07 0.92 1.06 0.93 0.68 0.84
CR 0.71 0.63 0.92 0.58 1.26 0.72 0.78 0.72 0.44 0.83

Eastern China NCP YRD PRD SCB Eastern China NCP YRD PRD SCB

20
19

–2
02

0
(t

es
tp

er
io

d)

Bias (ppb) DL 95.7 224.2 22.0 60.8 52.8 81.0 237.1 1.9 60.4 −57.6
KF −85.5 −66.3 −52.9 −89.3 −18.7 −167.1 −46.9 −144.0 −127.2 75.6
CR −279.7 −202.1 −194.0 −328.7 −69.3 −297.8 −168.1 −262.7 −299.8 −49.9

RMSE DL 109.9 250.8 92.3 105.8 108.6 101.3 269.5 99.2 117.9 250.6
KF 87.7 77.0 64.6 99.5 64.5 172.9 152.9 170.2 158.7 348.5
CR 284.4 244.9 233.2 342.3 278.8 304.1 263.7 286.7 315.3 560.9

Correlation DL 0.93 0.92 0.81 0.80 0.83 0.91 0.84 0.77 0.74 0.70
KF 0.99 0.99 0.97 0.96 0.96 0.96 0.89 0.85 0.79 0.75
CR 0.94 0.89 0.77 0.76 0.79 0.91 0.78 0.76 0.74 0.67

Slope DL 0.90 0.95 0.70 0.65 0.80 0.79 0.86 0.57 0.42 0.54
KF 1.05 1.02 1.05 1.02 1.14 1.02 1.21 0.96 0.82 1.13
CR 0.96 0.97 1.04 0.71 1.81 0.93 1.14 0.84 0.60 1.45
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dict CO concentrations without the inputs of CO observa-
tions (i.e., in the test period). Figure 2e shows the MEE
CO observations in 2019–2020. As shown in Fig. 2f, the
DL model overestimated surface CO concentrations in 2019–
2020, particularly, over the highly polluted NCP. The Pearson5

correlation coefficients in 2019–2020 (Fig. 2h) are slightly
lower than those in the training period (Fig. 2d). As shown in
Fig. 3f, the predicted CO concentrations exhibit larger devia-
tions from observations in 2019–2020. The correlation coef-
ficients (see Table 2) between observed and predicted CO in10

the test period are 0.93, 0.92, 0.81, 0.80 and 0.83; the biases
are 95.7, 224.2, 22.0, 60.8 and 52.8 ppb for eastern China,
NCP, YRD, PRD and SCB, respectively. Consequently, the
lack of inputs of CO observations in the test period led to a
decline of prediction capability, but it is still high enough to15

provide useful information to predict CO variabilities.

3.2 Changes of CO emissions inferred by DL model

Here we further explore the possible sources for the de-
viations of predicted CO concentrations from observations
in 2019–2020. The observed CO concentrations are about20

640 ppb in the summer of 2015 and decreased gradually to
about 620 ppb by the summer of 2018. However, the ob-
served CO concentrations dropped to about 550–530 ppb in
the summer of 2019 and 2020. The rapid decrease in surface
CO concentrations is dominated by the highly polluted NCP25

(Fig. 3g), whereas the differences between predicted and ob-
served CO concentrations are limited over other domains.
The rapid decrease in surface CO concentrations over NCP
in 2019 could be associated with an unexpected drop in CO
emissions, which is not considered in the linear projection of30

emission inventory, and led to overestimated CO concentra-
tions in the DL model. In addition, recent studies (K. Li et al.,
2020; X. Chen et al., 2021) indicated a dramatic increase in
surface O3 concentration over NCP in 2019. The possible
changes in atmospheric oxidation capability and sink of CO35

may not be sufficiently captured by the DL model, as the rel-
evant information is not used as the input while training the
model.

The unprecedented lockdowns across the world to contain
the 2019 novel coronavirus (COVID-19) spread have led to a40

slowdown of economic activities, with pronounced declines
in anthropogenic emissions. Shi and Brasseur (2020) found
surface CO concentrations over northern China were 1.2–1.5
and 0.7–1.0 mgm−3 before and during the pandemic spread.
Gaubert et al. (2021) suggested a reduction of about 15 %45

in CO emissions over northern China due to the COVID-19
controls. As shown in Fig. 3f, the MEE CO observations are
about 10.2 % and 25.8 % lower than predicted CO by the DL
model in Feb 2019 and 2020, respectively; the MEE CO ob-
servations are about 11.1 % and 14.2 % lower than predicted50

CO by the DL model in June–August 2019 and 2020, respec-
tively. Assuming the difference in June–August (i.e., 11.1 %
and 14.2 %) represents the annual CO emission trends, our

analysis thus suggests a decline of about 12.5 % in CO emis-
sions caused by COVID-19 controls, which is consistent with 55

Gaubert et al. (2021).

3.3 Comparison between the DL model and KF
assimilation

Figure 2i–p show the MEE CO observations and assimi-
lated CO concentrations by KF in 2015–2018 and 2019– 60

2020. In contrast to the DL approach, CO observations are
assimilated in KF in both periods. While the spatial distri-
butions of assimilated CO match well with observations, the
CO concentrations in the assimilations are noticeably lower.
As shown in Fig. 3a–e and Table 2, the differences between 65

assimilated and observed CO are −114.9, −139.6, −58.0,
−108.8 and −29.3 ppb for eastern China, NCP, YRD, PRD
and SCB, respectively, which are larger than the differences
in the DL model. Furthermore, the modeled CO concentra-
tions in the control runs (CR, without assimilation of CO 70

observations) are much lower: the differences are −409.6,
−512.3, −246.0, −400.5 and −172.4 ppb for eastern China,
NCP, YRD, PRD and SCB, respectively. The dramatic under-
estimations of CO concentrations in model simulations have
been reported in recent studies (Feng et al., 2020; Kong et al., 75

2020; Peng et al., 2018), which could be associated with sig-
nificant model representation error because most MEE sta-
tions are urban sites (Tang et al., 2022). It reveals the im-
portant discrepancy between DL and data assimilations: the
analyzed concentrations in KF are based on the a priori and 80

observed concentrations by considering the model and ob-
servation errors, which are not designed to reproduce the ob-
servations. In addition, the correlation coefficients are 0.99,
0.99, 0.98, 0.94 and 0.96 for eastern China, NCP, YRD, PRD
and SCB in 2015–2018 in the KF, respectively, which are 85

comparable with the DL model.
As shown in Fig. 3f–j and Table 2, the differences between

assimilated and observed CO concentrations in 2019–2020
are −85.5, −66.3, −52.9, −89.3 and −18.7 ppb for eastern
China, NCP, YRD, PRD and SCB, respectively, which are 90

comparable with the differences in the DL model except for
the highly polluted NCP; even the MEE CO observations are
not inputted in the DL model in the test period. The cor-
relation coefficients are 0.99, 0.99, 0.97, 0.96 and 0.96 for
eastern China, NCP, YRD, PRD and SCB in 2019–2020 in 95

the KF, respectively, which are higher than the DL model. In
addition, Fig. 4a and b show the relationships between mod-
eled CO and MEE CO observations. Both DL and KF show
dramatic improvements with respect to the CR simulations
in Fig. 4a and b, while the performance of the DL model is 100

better than KF in the training period (Fig. 4a). In addition,
the comparable performances between DL and KF in 2019–
2020 (Fig. 4b) demonstrate the good temporal extensibility
of DL model; i.e., skills learned in the training period can be
extended to the following years with a limited decline in the 105

prediction effects.
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Figure 4. (a, b) Relationships between CO concentrations provided by DL, KF, control run (CR) and MEE CO observations in 2015–2018
and 2019–2020. The dots represent daily average of CO concentrations over eastern China. The unit is ppb. (c, d) Same as panels (a, b), but
with randomly selected independent MEE stations. The locations of independent MEE stations are shown in Fig. 6.

3.4 Evaluation with independent MEE CO
observations

Figure 5a and b show the spatial distributions of predicted
CO concentrations by the DL model and MEE CO observa-
tions; Fig. 6a and b further exhibit the locations of randomly5

selected independent MEE stations (about 10 % of total sta-
tions). These independent stations are not used in either the
DL model or KF in 2015–2020. Although we find broadly
good agreements in the spatial distributions between pre-
dicted CO concentrations by DL and KF and MEE CO obser-10

vations, there is still a noticeable discrepancy. The DL model
suggests the highest CO concentrations are in the Shanxi
province, by more than 1200 ppb, and background CO con-
centrations by about 400 ppb over remote areas. By contrast,
the CO concentrations in the KF (Figs. 5c, d and 6c, d) are15

lower, and the highest CO concentrations are found in NCP
rather than the Shanxi province. As shown in Fig. 7a–e, the
DL model demonstrates a smaller bias with respect to inde-

pendent MEE CO observations and higher correlation coef-
ficients than KF in 2015–2018, suggesting better capability 20

to predict CO concentrations. In 2019–2020 (Fig. 7f–j), the
DL model exhibits a smaller bias over eastern China, but a
larger bias than KF over the highly polluted NCP. The Pear-
son correlation coefficients are smaller in DL in 2019–2020
(see Table 2). 25

As shown in Fig. 4c and d, the assimilated CO concen-
trations by KF are closer to the control simulations with
larger deviations from the MEE CO observations than those
in Fig. 4a and b. It demonstrates the decline of assimilation
effects when observations are unavailable. On the other hand, 30

the slopes in the linear fits are 0.89 and 0.92 in DL and KF in
2015–2018 (Fig. 4c), respectively, and become 0.80 and 1.02
in 2019–2020 (Fig. 4d). The deviations in the slopes reflect
an underestimation of CO concentrations in the DL model
at grids with extremely high CO concentrations. The DL 35

model predicts CO concentrations based on the skills learned
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Figure 5. (a, b) Predicted by DL (contour) and MEE (dotted) surface CO concentrations in 2015–2018 and 2019–2020. (c, d) Same as
panels (a, b), but for KF.

in the training process. However, the training is dominated
by the majority of CO observations with low and medium
CO concentrations. As shown in Fig. 4a and b, extreme pol-
lution events, with CO concentrations > 1200 ppb, account
for only 3.4 % of the total number of observations. It can-5

not be learned sufficiently, because the DL model, as a data-
driven approach, would require more observations about the
extreme pollution events to improve the predictions. By con-
trast, KF is driven by observations directly so that both high
and low CO concentrations can be simulated. In addition, be-10

cause most MEE stations are urban sites, the good agreement

between the DL model and MEE CO observations may not
be able to ensure the accuracy of predicted CO concentra-
tions over remote rural areas, as well as the high CO con-
centrations over mountain areas around urban basins in the 15

Shanxi province. Integration of modeled CO concentrations
in the DL model in future studies may improve predicted CO
concentrations over remote areas without local observations.



10 W. Han et al.: Deep learning and Kalman filter for CO concentration prediction

Figure 6. (a, b) Predicted by DL (contour) and independent MEE (dotted) surface CO concentrations in 2015–2018 and 2019–2020.
(c, d) Same as panels (a, b), but for KF. The randomly selected independent MEE stations (about 10 % of total stations) are not used in
both DL and KF in 2015–2020.

4 Conclusion

A hybrid DL model (hyDL-CO), based on CNN and LSTM,
was built in this work to provide a comparative analysis be-
tween DL and KF to predict CO concentrations in China in
2015–2020. We find the performance of the DL model is5

better than KF in the training period (2015–2018): the bias
and correlation coefficients are 9.6 ppb and 0.98 over east-
ern China and −12.5 ppb and 0.96 over grids with indepen-
dent observations. By contrast, the assimilated CO concen-
trations by KF demonstrate comparable correlation coeffi-10

cients but larger negative biases: the bias and correlation co-
efficients are −114.9 ppb and 0.99 over eastern China and
−252.5 ppb and 0.95 over grids with independent observa-
tions. The larger biases in the KF are caused by the discrep-
ancy in the algorithm; i.e., the objective of data assimila- 15

tion is to improve the simulated atmospheric compositions
by considering the model and observation errors, which are
not designed to reproduce the observations. Both DL and KF
show better predictions than the control runs: the bias and
correlation coefficients are−409.6 ppb and 0.94 over eastern 20
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Figure 7. Daily variabilities of CO concentrations from independent MEE stations, DL and KF in 2015–2018 and 2019–2020. The locations
of independent MEE stations are shown in Fig. 6.

China and −443.3 ppb and 0.91 over grids with independent
observations.

Furthermore, we find good temporal extensibility of the
DL model in the test period (2019–2020): the bias and corre-
lation coefficients are 95.7 ppb and 0.93 over eastern China5

and 81.0 ppb and 0.91 over grids with independent observa-
tions. The correlation coefficients (0.91–0.93) show there is
enough capability to provide useful information to predict
CO variabilities without inputs of CO observations. In addi-
tion, we find an unexpected drop in CO emissions over the10

highly polluted NCP in 2019. Our analysis further exhibits a
significant decline in CO emissions in early 2020 due to the
COVID-19 controls. Despite these advantages, we find a no-
ticeable underestimation of CO concentrations at grids with
extremely high CO concentrations in the DL model, because15

the training is dominated by the majority of CO observations
with low and medium CO concentrations, and thus the ex-
treme pollution events cannot be learned sufficiently. This
work demonstrates the advantages and disadvantages of DL
models to predict atmospheric compositions with respect to20

traditional data assimilation. We assume comparable or bet-
ter performances of DL in the predictions of O3 and PM2.5
than the CO analysis shown in this work, because of their
shorter lifetimes, and advise more efforts to explore new ap-
plications of DL models in the predictions of other atmo-25

spheric compositions.

Code and data availability. The MEE CO data can be down-
loaded from https://quotsoft.net/air/ (last access: 26 May 2022).
The GEOS-Chem model (version 12.8.1) can be downloaded
from http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS- 30

Chem_12#12.8.1 (last access: 26 May 2022). The code of
the hyDL-CO model, sample data for the hyDL-CO model
run and GEOS-Chem model output can be downloaded from
https://doi.org/10.5281/zenodo.5913013 (Jiang, 2022).
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