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Abstract 14 

The applications of novel deep learning (DL) techniques in atmospheric science are rising 15 

quickly. Here we build a hybrid DL model (hyDL-CO), based on convolutional neural 16 

networks (CNN) and long short-term memory (LSTM) neural networks to provide a 17 

comparative analysis between DL and Kalman Filter (KF) to predict carbon monoxide (CO) 18 

concentrations in China in 2015-2020. We find the performance of DL model is better than KF 19 

in the training period (2015-2018): the mean bias and correlation coefficients are 9.6 ppb and 20 

0.98 over E. China, and are -12.5 ppb and 0.96 over grids with independent observations (i.e., 21 

grids with CO observations that are not used in DL training and KF assimilation). By contrast, 22 

the assimilated CO concentrations by KF exhibit comparable correlation coefficients but larger 23 

negative biases. Furthermore, DL model demonstrates good temporal extensibility in the test 24 

period (2019-2020): the mean bias and correlation coefficients are 95.7 ppb and 0.93 over E. 25 

China, and 81.0 ppb and 0.91 over grids with independent observations, while CO observations 26 

are not fed into the DL model as an input variable. Despite these advantages, we find a weaker 27 

prediction capability of DL model than KF in the test period, and a noticeable underestimation 28 

of CO concentrations at extreme pollution events in the DL model. This work demonstrates the 29 

advantages and disadvantages of DL models to predict atmospheric compositions in respective 30 
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to traditional data assimilation, which is helpful for better applications of this novel technique 31 

in future studies. 32 

 33 

1. Introduction 34 

Accurate simulation and prediction of air pollutants are critical for making effective 35 

policies to improve air quality. Chemical transport models (CTMs), as powerful tools, have 36 

been widely used to simulate atmospheric compositions (Li et al., 2019; Chen, X. et al., 2021; 37 

Lu et al., 2021). Despite the advances of CTMs, there are still noticeable discrepancies in the 38 

simulations due to uncertainties in the emission, physical and chemical processes (Quennehen 39 

et al., 2016; Kong et al., 2020). Tropospheric CO is one of the most important pollutants with 40 

significant sources from fossil fuel combustion. Atmospheric observations are thus used to 41 

evaluate the capacity of CTMs to capture the observed variabilities in atmospheric CO. For 42 

example, Kong et al. (2020) exhibited good consistency between modeled and observed CO 43 

variations in China but with significantly underpredicted CO concentrations. Tang et al. (2022) 44 

found the observed CO concentrations are noticeably higher than model simulations over low 45 

polluted areas in China, but with a smaller difference over high polluted areas. 46 

Based on CTMs, data assimilation techniques integrate simulations and observations and 47 

thus can improve the modeled atmospheric compositions. For instance, Ma et al. (2019) found 48 

the assimilation of surface observations can effectively reduce the uncertainties in fine 49 

particulate matter (PM2.5), ozone (O3) and CO forecasts. Peng et al. (2018) assimilated surface 50 

observations, and obtained near-perfect forecasts for PM2.5, O3 and CO on the first day, but the 51 

effects of the data assimilation decayed quickly with longer forecasts. The propagation of 52 

observational information in data assimilation depends on the modeled physical and chemical 53 

processes, i.e., the adjustment over grids lacking observations relies on regional transport of 54 

observational information from other grids. The assimilated results are thus, still affected by 55 
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potential model errors (e.g., the uncertainty in transport), which can lead to rapid decline of 56 

assimilation effects, if observations become unavailable. 57 

Accompanied with recent advances in machine learning (ML) techniques, novel data-58 

driven architectures and approaches have been extensively applied in the field of atmospheric 59 

science (Li, Rui et al., 2020; Zhang et al., 2020; Shi et al., 2021; Xing et al., 2021). Based on 60 

artificial neural networks, particularly, CNNs, DL uses multiple layers of computational 61 

kernels to extract and capture non-linear relationships between input and output variables. The 62 

predictions, provided by DL, are driven by observational or reanalysis data sets, which provides 63 

a new way of predicting atmospheric compositions without the influence of model errors. The 64 

non-linear relationships learned in the training data set can be extended spatially and temporally, 65 

for example, Kleinert et al. (2021) found the DL model can forecast surface O3 within a 4-day 66 

range. The application of LSTM networks further improves the ability of DL models in 67 

capturing temporal dynamics, for example, Chen, Y. et al. (2021) found the LSTM-based 68 

approach can provide a good prediction for surface PM2.5 on the next day; He et al. (2022) 69 

exhibited the capability of DL model to predict surface O3 in North America.  70 

Despite the advantages of the DL approaches, the lack of parameterization of physical 71 

and chemical processes implies the predicted atmospheric compositions may deviate from the 72 

realistic atmospheric state, in contrast to conventional data assimilation approaches that are 73 

constrained by modeled processes. The lifetime of tropospheric CO is about 1-2 months, which 74 

makes it an ideal tracer for atmospheric transport. In this study, we present an application of a 75 

hybrid DL model (hyDL-CO) on the prediction of surface CO concentrations in China from 76 

2015 to 2020, which utilizes both CNNs and LSTMs. We perform a comparative analysis 77 

between the DL model and a KF system in this work, to investigate the performances of the 78 

two approaches in predictions of atmospheric composition with a long lifetime and strong 79 

regional transport. Considering the lifetimes of O3 and PM2.5 are shorter than CO, we may 80 
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assume comparable or better performances of DL in the predictions of O3 and PM2.5. The 81 

comparison in this work is helpful for understanding the advantages and disadvantages of the 82 

DL approach in respective to traditional data assimilation in the predictions of atmospheric 83 

compositions, which is critical for better applications of this novel technique in atmospheric 84 

environmental studies in the future. 85 

This paper is organized as follows: in Section 2, we describe the CO observations, the 86 

KF approach and the hyDL-CO model used in this work. In Section 3, we assess the predicted 87 

CO by the DL model, the changes in CO emissions in China, as well as the comparison between 88 

the DL model and KF, and the evaluation with independent observations. Our conclusions 89 

follow in Section 4. 90 

 91 

2. Data and Methodology 92 

2.1 MEE surface CO measurements 93 

We use the China Ministry of Ecology and Environment (MEE) monitoring network 94 

surface in-situ CO concentration data (https://quotsoft.net/air/) for the period of 2015–2020. 95 

These real-time monitoring stations have the ability to report hourly concentrations of criteria 96 

pollutants from about 1700 sites in 2020. Concentrations were reported by the MEE in units of 97 

ug/m3 under standard temperature (273 K) until 31 August 2018. This reference state was 98 

changed on 1 September 2018 to 298 K. We converted CO concentrations to ppb and rescaled 99 

post-August 2018 concentrations to standard temperature (273 K) to keep the consistency in 100 

the trend analysis. The reported data with CO concentrations larger than 6000 ppb are removed 101 

in our analysis. The station-based observations are averaged and regrided to the 0.5°x0.625° 102 

grid of the MERRA-2 reanalysis, with totally about 500 grids having observations. 10% grid-103 

based observations (about 50 grids) are randomly selected as independent observations, which 104 

are only used in the evaluation of the predicted CO from the DL model and the KF system. The 105 

training of the DL model and the assimilation using the KF are performed using the remaining 106 

90% observations. 107 
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 108 

2.2 KF approach 109 

We employ the sequential KF based on the GEOS-Chem CTM to assimilate surface CO 110 

observations. This approach has been used in previous studies to optimize tropospheric CO 111 

concentrations (Jiang et al., 2017; Tang et al., 2022). The GEOS-Chem model 112 

(http://www.geos-chem.org, version 12-8-1) is driven by assimilated meteorological data of 113 

MERRA-2. Our analysis is conducted at a horizontal resolution of nested 0.5°x0.625° and 114 

employs the CO-only simulation in GEOS-Chem, which uses archived monthly OH fields from 115 

the full chemistry simulation (Fisher et al., 2017). The CO boundary conditions are updated 116 

every 3-hour from a global simulation with 4° × 5° resolution. Emissions in GEOS-Chem are 117 

computed by the Harvard-NASA Emission Component (HEMCO). Global default 118 

anthropogenic emissions are from the Community Emissions Data System (CEDS) (Hoesly et 119 

al., 2018) and replaced by MEIC (Multiresolution Emission Inventory for China) in China and 120 

MIX (full name) in other regions of Asia (Li et al., 2017). The total anthropogenic CO 121 

emissions in MEIC inventory are further scaled with linear projection. We refer the reader to 122 

Chen, X. et al. (2021) for the details of model configurations. 123 

In the assimilation algorithm, the forward model (M) predicts CO concentration (𝑥𝑎𝑡) at 124 

time t:  125 

𝑥𝑎𝑡 = 𝑀𝑡𝑥𝑡−1    (Eq. 1) 126 

The optimized CO concentrations can be expressed as: 127 

𝑥𝑡 = 𝑥𝑎𝑡 + 𝐺𝑡(𝑦𝑡 − 𝐾𝑡𝑥𝑎𝑡)   (Eq. 2) 128 

where 𝑦𝑡 is observation, 𝐾𝑡 represents operation operator which projects CO concentrations 129 

from the model space to the observation space. 𝐺𝑡  is the KF Gain matrix, which can be 130 

described as: 131 

𝐺𝑡 = 𝑆𝑎𝑡𝐾𝑡
𝑇(𝐾𝑡𝑆𝑎𝑡𝐾𝑡

𝑇 + 𝑆𝜖)−1  (Eq. 3) 132 

where 𝑆𝑎𝑡  and 𝑆𝜖  are model and observation covariance, respectively. Because the DL 133 

model is designed to reproduce observations without considering error covariance, here we 134 
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assume fixed model error (50%) and small observation error (1%) to provide a fair comparison. 135 

The covariance matrix is diagonal without the consideration of off-diagonals. 136 

 137 

2.3 hyDL-CO v1.0 model 138 

Our hyDL-CO model is a modified version of the U-net model used in He et al. (2022), 139 

where the model shows a superior capability in predicting surface summertime O3 in North 140 

America. The U-net architecture is a variant of autoencoder and was originally proposed for 141 

biomedical segmentation applications. In the first U-net paper, Ronneberger et al. (2015) 142 

conducted three experiments and showed that the U-net model outperforms other DL models. 143 

Since the proposal of U-net, it has become one of the most popular choices in the DL 144 

community and is compared with other ML models in many studies. For example, Korznikov 145 

et al. (2021) used several ML models for tree recognition using satellite images and the U-net 146 

model shows the highest accuracy. Ravuri et al. (2021) used U-net as a baseline model and 147 

compared against their Generative Adversarial Network (GAN) in precipitation nowcasting. 148 

Andersson et al. (2021) showed that their IceNet, which is an ensemble of similar U-Net 149 

networks, has outstanding performance in seasonal forecasts of Arctic Sea ice. 150 

As shown in Fig. 1, the first three blocks of neural layers behave as an encoder, which 151 

has six convolutional layers and two max pooling layers, to extract the features hidden in the 152 

input data. A dropout layer is added after each pooling layer to prevent data overfitting. The 153 

output from the encoder is highly compressed information that is not manipulated during the 154 

training process, which is also called the latent vector. We embed the LSTM model into the U-155 

net architecture after the encoder, inspired by the idea of convolutional LSTM proposed in Shi 156 

et al. (2015), to capture short-term changes and long-term trends in the latent vectors. The 157 

output from the LSTM is then forwarded to a decoder with three blocks of layers. Each block 158 

in the decoder has one transposed convolutional layer followed by two convolutional layers. 159 

The outputs from each convolutional layer in the model are passed through the Rectified Linear 160 

Unit (ReLU) activation function to increase non-linearity. Residual learning connections (He 161 

et al., 2016) that forward the high-resolution features extracted by the encoder to the decoder 162 
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are also added, which are shown to improve the performance of U-net (Ghorbanzadeh et al., 163 

2021; Qi et al., 2020; Liu et al., 2020). These connections contain trainable weights that 164 

represent a more direct relationship between input and output variables. 165 

The optimization of the model is supervised by the "ground truth", which is the daily 166 

mean surface CO concentrations measured by the MEE network. The weights in the CNNs and 167 

transposed CNNs are optimized using the back-propagation algorithm (Rumelhart et al., 1986; 168 

LeCun et al., 1989), which employs the partial derivatives of the cost function with respect to 169 

the truth. Here cost function is defined as: 170 

𝐿 =  
1

𝑁
 ∑( 𝑦𝑖  −  𝑦𝑖̂ )

2

𝑁

𝑖=1

 171 

where 𝑦𝑖  and 𝑦𝑖̂  are the "true" and "predicted" values. This performance evaluation is 172 

calculated only in the grid with "true" values, so that the optimization of the model avoids the 173 

influence of regions without CO observations. The loss function to be optimized is the mean 174 

square error (MSE) between the "predicted" and "true" values. We use the Adam optimizer, 175 

which is a computationally efficient algorithm for gradient-based optimization of stochastic 176 

objective functions. For a faster convergence speed and the stability of the model performance, 177 

we rescale all the features to the nearly same scale. The processing method is multiplying the 178 

original variable by a constant 10n and adapting n for each variable according to the specified 179 

scale. For example, most of the values of sea level pressure (SLP) are distributed around 105, 180 

so we multiply SLP by 10-4 to make the value of the feature SLP distributed around 101. This 181 

processing prevents the DL model to be overfit by the features in input variables that have 182 

significantly larger scales than others. The hybrid model was built and implemented using 183 

Keras and Tensorflow, which are Python packages that are extensively used in DL studies. 184 

Table 1 shows some of the configuration hyperparameters of the training of our model. 185 

The input variables include six meteorological variables: SLP, surface incoming 186 

shortwave flux (SWGDN), 2-meter air temperature (T2M), 10-meter eastward wind (U10M), 187 

10-meter northward wind (V10M) and total precipitation (TP); and total anthropogenic CO and 188 

volatile organic compounds (VOC) emissions. The meteorology and emission data are 189 
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extracted from the GEOS-Chem model with 0.5°x0.625° horizontal resolution. Our focus area 190 

is 0-72°N, 0-180°E, and the output resolution is same as the 0.5°x0.625° resolution of 191 

MERRA-2. The DL model grid thus has 288 grid boxes along the longitudinal direction and 192 

144 for the latitude. Considering the long lifetime of CO, the concentration of surface CO is 193 

not only related to the emission and meteorological conditions at the current moment, but also 194 

at the previous moment. We trained the DL model using the information related to the “history” 195 

of CO, by adding the same set of input variables for the current day and previous four days as 196 

predictors. The information from the 5-day history has 40 predictors in total for the prediction 197 

of daily mean surface CO in each day. We use 2015-2018 as the training data set and 2019-198 

2020 as the test set. The dimension of each input vector for the DL model is then (144,288,40), 199 

and the dimension of the output from the DL model is (144,288,1). 200 

 201 

3. Results and Discussions 202 

3.1 CO concentrations predicted by DL model  203 

As shown in Fig. 2A, the annual averaged MEE CO observations are broadly higher than 204 

400 ppb in E. China in 2015-2018 and can reach 1000 ppb over highly polluted North China 205 

Plain (NCP). The predicted CO concentrations by the DL model (Fig. 2B) match well with 206 

observations in 2015-2018. We find small differences between predictions and observations in 207 

Fig. 2C. The Pearson correlation coefficients are larger than 0.7 over E. China and are as high 208 

as 0.9 over highly polluted NCP (Fig. 2D). Fig. 3A-E exhibit daily variabilities of CO 209 

concentrations over E. China, as well as NCP, Yangtze River Delta (YRD), Pearl River Delta 210 

(PRD) and Sichuan Basin (SCB) domains. There is large seasonality in the observed CO 211 

concentrations: the wintertime CO concentrations can reach 1400 ppb over E. China, and 2500 212 

ppb over highly polluted NCP; the summertime CO concentrations are about 500 ppb over E. 213 

China and 800 ppb over NCP. The predicted CO concentrations by the DL model demonstrate 214 

high consistency with observations. As shown in Table 2, the correlation coefficients between 215 
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DL model and MEE CO observations are 0.98, 0.97, 0.93, 0.89 and 0.90; the biases are 9.6, 216 

18.2, -2.6, 12.7 and 17.6 ppb for E. China, NCP, YRD, PRD and SCB, respectively. 217 

The high consistency between observations and DL model in the training period (2015-218 

2018) is expected. Here we further evaluate the capability of DL model to predict CO 219 

concentrations without the inputs of CO observations (i.e., in the test period). Fig. 2E shows 220 

the MEE CO observations in 2019-2020. As shown in Fig. 2F, the DL model overestimated 221 

surface CO concentrations in 2019-2020, particularly, over highly polluted NCP. The Pearson 222 

correlation coefficients in 2019-2020 (Fig. 2H) are slightly lower than those in the training 223 

period (Fig. 2D). As shown in Fig. 3F, the predicted CO concentrations exhibit larger 224 

deviations from observations in 2019-2020. The correlation coefficients (See Table 2) between 225 

observed and predicted CO in the test period are 0.93, 0.92, 0.81, 0.80 and 0.83; the biases are 226 

95.7, 224.2, 22.0, 60.8 and 52.8 ppb for E. China, NCP, YRD, PRD and SCB, respectively. 227 

Consequently, the lack of inputs of CO observations in the test period led to a decline of 228 

prediction capability, but it is still high enough to provide useful information to predict CO 229 

variabilities. 230 

3.2 Changes of CO emissions inferred by DL model 231 

Here we further explore the possible sources for the deviations of predicted CO 232 

concentrations from observations in 2019-2020. The observed CO concentrations are about 233 

640 ppb in the summer of 2015 and decreased gradually to about 620 ppb by the summer of 234 

2018. However, the observed CO concentrations dropped to about 550-530 ppb in the summer 235 

of 2019 and 2020. The rapid decrease of surface CO concentrations is dominated by highly 236 

polluted NCP (Fig. 3G), whereas the differences between predicted and observed CO 237 

concentrations are limited over other domains. The rapid decrease of surface CO concentrations 238 

over NCP 2019 could be associated with an unexpected drop in CO emissions, which is not 239 

considered in the linear projection of emission inventory, and led to overestimated CO 240 
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concentrations in the DL model. In addition, recent studies (Li, K. et al., 2020; Chen, X. et al., 241 

2021) indicated a dramatic increase in surface O3 concentration over NCP in 2019. The possible 242 

changes in atmospheric oxidation capability and sink of CO may not be sufficiently captured 243 

by the DL model, as the relevant information is not used as the input while training the model. 244 

The unprecedented lockdowns across the world to contain the 2019 novel coronavirus 245 

(COVID-19) spread have led to a slowdown of economic activities, with pronounced declines 246 

in anthropogenic emissions. Shi and Brasseur (2020) found surface CO concentrations over N. 247 

China were 1.2-1.5 and 0.7-1.0 mg/m3 before and during the pandemic spread. Gaubert et al. 248 

(2021) suggested about 15% reduction in CO emissions over N. China due to the COVID-19 249 

controls. As shown in Fig. 3F, the MEE CO observations are about 10.2% and 25.8% lower 250 

than predicted CO by DL model in Feb 2019 and 2020, respectively; the MEE CO observations 251 

are about 11.1% and 14.2% lower than predicted CO by DL model in Jun-Aug 2019 and 2020, 252 

respectively. Assuming the difference in Jun-Aug (i.e., 11.1% and 14.2%) represents the annual 253 

CO emission trends, our analysis thus, suggests about 12.5% decline in CO emissions caused 254 

by COVID-19 controls, which is consistent with Gaubert et al. (2021). 255 

3.3 Comparison between DL model and KF assimilation 256 

Fig. 2I-P show the MEE CO observations and assimilated CO concentrations by KF in 257 

2015-2018 and 2019-2020. In contrast to the DL approach, CO observations are assimilated in 258 

KF in both periods. While the spatial distributions of assimilated CO match well with 259 

observations, the CO concentrations in the assimilations are noticeably lower. As shown in Fig. 260 

3A-E and Table 2, the differences between assimilated and observed CO are -114.9, -139.6, -261 

58.0, -108.8 and -29.3 ppb for E. China, NCP, YRD, PRD and SCB, respectively, which are 262 

larger than the differences in the DL model. Furthermore, the modeled CO concentrations in 263 

the control runs (CR, without assimilation of CO observations) are much lower: the differences 264 

are -409.6, -512.3, -246.0, -400.5 and -172.4 ppb for E. China, NCP, YRD, PRD and SCB, 265 
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respectively. The dramatic underestimations of CO concentrations in model simulations have 266 

been reported in recent studies (Feng et al., 2020; Kong et al., 2020; Peng et al., 2018), which 267 

could be associated with significant model representation error because most MEE stations are 268 

urban sites (Tang et al., 2022). It reveals the important discrepancy between DL and data 269 

assimilations: the analyzed concentrations in KF are based on the a priori and observed 270 

concentrations by considering the model and observation errors, which is not designed to 271 

reproduce the observations. In addition, the correlation coefficients are 0.99, 0.99, 0.98, 0.94 272 

and 0.96 for E. China, NCP, YRD, PRD and SCB in 2015-2018 in the KF, respectively, which 273 

are comparable with the DL model.  274 

As shown in Fig. 3F-J and Table 2, the difference between assimilated and observed CO 275 

concentrations in 2019-2020 are -85.5, -66.3, -52.9, -89.3 and -18.7 ppb for E. China, NCP, 276 

YRD, PRD and SCB, respectively, which are comparable with the differences in DL model 277 

except for highly polluted NCP, even the MEE CO observations are not inputted in DL model 278 

in the test period. The correlation coefficients are 0.99, 0.99, 0.97, 0.96 and 0.96 for E. China, 279 

NCP, YRD, PRD and SCB in 2019-2020 in the KF, respectively, which are higher than the DL 280 

model. In addition, Fig. 4A-B show the relationships between modeled CO and MEE CO 281 

observations. Both DL and KF show dramatic improvements in respective to the CR 282 

simulations in Fig. 4A-B, while the performance of the DL model is better than KF in the 283 

training period (Fig. 4A). In addition, the comparable performances between DL and KF in 284 

2019-2020 (Fig. 4B) demonstrate the good temporal extensibility of DL model, i.e., skills 285 

learned in the training period can be extended to the following years with a limited decline in 286 

the prediction effects. 287 

3.4 Evaluation with independent MEE CO observations 288 

Fig. 5A-B show the spatial distributions of predicted CO concentrations by DL model 289 

and MEE CO observations; Fig. 6A-B further exhibit the locations of randomly selected 290 
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independent MEE stations (about 10% of total stations). These independent stations are not 291 

used in both DL model and KF in 2015-2020. Although we find broadly good agreements in 292 

the spatial distributions between predicted CO concentrations by DL and KF and MEE CO 293 

observations, there is still a noticeable discrepancy. The DL model suggests the highest CO 294 

concentrations in the Shanxi province, by more than 1200 ppb, and background CO 295 

concentrations by about 400 ppb over remote areas. By contrast, the CO concentrations in the 296 

KF (Fig. 5C-D; Fig. 6C-D) are lower, and the highest CO concentrations are found in NCP 297 

rather than Shanxi province. As shown in Fig. 7A-E, the DL model demonstrates a smaller bias 298 

in respective to independent MEE CO observations and higher correlation coefficients than KF 299 

in 2015-2018, suggesting better capability to predict CO concentrations. In 2019-2020 (Fig. 300 

7F-J), the DL model exhibits a smaller bias over E. China, but larger bias than KF over highly 301 

polluted NCP. The Pearson correlation coefficients are smaller in DL in 2019-2020 (See Table 302 

2).  303 

As shown in Fig. 4C-D, the assimilated CO concentrations by KF are closer to the control 304 

simulations with larger deviations from the MEE CO observations than those in Fig. 4A-B. It 305 

demonstrates the decline of assimilation effects when observations are unavailable. On the 306 

other hand, the slopes in the linear fits are 0.89 and 0.92 in DL and KF in 2015-2018 (Fig. 4C), 307 

respectively, and become 0.80 and 1.02 in 2019-2020 (Fig. 4D). The deviations in the slopes 308 

reflect an underestimation of CO concentrations in the DL model at grids with extremely high 309 

CO concentrations. DL model predicts CO concentrations based on the skills learned in the 310 

training process. However, the training is dominated by the majority of CO observations with 311 

low and medium CO concentrations. As shown in Fig.4A-B, extreme pollution events, with 312 

CO concentrations > 1200 ppb, account only 3.4% of the total number of observations. It 313 

cannot be learned sufficiently, because the DL model, as a data-driven approach, would require 314 

more observations about the extreme pollution events to improve the predictions. By contrast, 315 



13 

 

KF is driven by observations directly so that both high and low CO concentrations can be 316 

simulated. In addition, because most MEE stations are urban sites, the good agreement between 317 

DL model and MEE CO observations may not be able to ensure the accuracy of predicted CO 318 

concentrations over remote rural areas, as well as the high CO concentrations over mountain 319 

areas around urban basins in the Shanxi province. Integration of modeled CO concentrations 320 

in the DL model in future studies may improve predicted CO concentrations over remote areas 321 

without local observations. 322 

4. Conclusion 323 

A hybrid DL model (hyDL-CO), based on CNN and LSTM, was built in this work to 324 

provide a comparative analysis between DL and KF to predict CO concentrations in China in 325 

2015-2020. We find the performance of the DL model is better than KF in the training period 326 

(2015-2018): the bias and correlation coefficients are 9.6 ppb and 0.98 over E. China, and -327 

12.5 ppb and 0.96 over grids with independent observations. By contrast, the assimilated CO 328 

concentrations by KF demonstrate comparable correlation coefficients but larger negative 329 

biases: the bias and correlation coefficients are -114.9 ppb and 0.99 over E. China, and -252.5 330 

ppb and 0.95 over grids with independent observations. The larger biases in the KF are caused 331 

by the discrepancy in the algorithm, i.e., the objective of data assimilation is to improve the 332 

simulated atmospheric compositions by considering the model and observation errors, which 333 

is not designed to reproduce the observations. Both DL and KF show better predictions than 334 

the control runs: the bias and correlation coefficients are -409.6 ppb and 0.94 over E. China, 335 

and -443.3 ppb and 0.91 over grids with independent observations. 336 

Furthermore, we find good temporal extensibility of the DL model in the test period 337 

(2019-2020): the bias and correlation coefficients are 95.7 ppb and 0.93 over E. China, and 338 

81.0 ppb and 0.91 over grids with independent observations. The correlation coefficients (0.91-339 

0.93) mean enough capability to provide useful information to predict CO variabilities without 340 
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inputs of CO observations. In addition, we find an unexpected drop in CO emissions over 341 

highly polluted NCP in 2019. Our analysis further exhibits a significant decline in CO 342 

emissions in early 2020 due to the COVID-19 controls. Despite these advantages, we find a 343 

noticeable underestimation of CO concentrations at grids with extremely high CO 344 

concentrations in the DL model, because the training is dominated by the majority of CO 345 

observations with low and medium CO concentrations, and thus, the extreme pollution events 346 

cannot be learned sufficiently. This work demonstrates the advantages and disadvantages of 347 

DL models to predict atmospheric compositions in respective to traditional data assimilation. 348 

We assume comparable or better performances of DL in the predictions of O3 and PM2.5 than 349 

the CO analysis shown in this work, because of their shorter lifetimes, and advise more efforts 350 

to explore new applications of DL models in the predictions of other atmospheric compositions. 351 

 352 

Code and data availability: The MEE CO data can be downloaded from 353 

https://quotsoft.net/air/. The GEOS-Chem model (version 12.8.1) can be downloaded from 354 

http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_12#12.8.1. The code of the 355 

hyDL-CO model, sample data for the hyDL-CO model run and GEOS-Chem model output can 356 

be downloaded from https://doi.org/10.5281/zenodo.5913013. 357 
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Table and Figures 370 

Table 1. Hyperparameters used in the hybrid DL model. 371 

 372 

Table 2. Deep learning (DL), Kalman Filter (KF) and control run (CR) in respective to MEE 373 

CO observations in 2015-2018 and 2019-2020. The locations of independent MEE stations are 374 

shown in Fig. 6. 375 

 376 

Figure 1. Hybrid DL model used in this paper. 377 

 378 

Figure 2. (A) MEE CO observations (90% stations) in 2015-2018; (B) Predicted CO 379 

concentrations by DL model in 2015-2018; (C-D) differences and Pearson correlation 380 

coefficients between predicted and observed CO in 2015-2018. (E-H) MEE CO observations 381 

(90% stations), predicted CO concentrations by DL model and their differences, and Pearson 382 

correlation coefficients in 2019-2020. (I-P) Same as panels A-H, but for KF. The unit is ppb. 383 

 384 

Figure 3. Daily variabilities of CO concentrations from MEE (90% stations), DL and KF in 385 

2015-2018 and 2019-2020. 386 

 387 

Figure 4. (A-B) Relationships between CO concentrations provided by DL, KF, control run 388 

(CR) and MEE CO observations in 2015-2018 and 2019-2020. The dots represent daily average 389 

of CO concentrations over E. China. The unit is ppb. (C-D) Same as panels A-B, but with 390 

randomly selected independent MEE stations. The locations of independent MEE stations are 391 

shown in Fig. 6. 392 

 393 

Figure 5. (A-B) Predicted by DL (contour) and MEE (dotted) surface CO concentrations in 394 

2015-2018 and 2019-2020; (C-D) Same as panels A-B, but for KF. 395 

 396 
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Figure 6. (A-B) Predicted by DL (contour) and independent MEE (dotted) surface CO 397 

concentrations in 2015-2018 and 2019-2020; (C-D) Same as panels A-B, but for KF. The 398 

randomly selected independent MEE stations (about 10% of total stations) are not used in both 399 

DL and KF in 2015-2020. 400 

 401 

Figure 7. Daily variabilities of CO concentrations from independent MEE stations, DL and KF 402 

in 2015-2018 and 2019-2020. The locations of independent MEE stations are shown in Fig. 6. 403 

 404 
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Optimizers 
Learning 

rate 

EarlyStopping 

patience 

Batch 

size 
Epochs 

Validation 

split 
shuffle 

Adam 0.001 20 64 500 0.125 True 

 

Table. 1. Hyperparameters used in the hybrid DL model. 

 

 

 

 

Table. 2. Deep learning (DL), Kalman Filter (KF) and control run (CR) in respective to MEE 

CO observations in 2015-2018 and 2019-2020. The locations of independent MEE stations are 

shown in Fig. 6. 

 



 

Fig. 1. Hybrid DL model used in this paper.  

 



 

Fig. 2. (A) MEE CO observations (90% stations) in 2015-2018; (B) Predicted CO 

concentrations by DL model in 2015-2018; (C-D) differences and Pearson correlation 

coefficients between predicted and observed CO in 2015-2018. (E-H) MEE CO observations 

(90% stations), predicted CO concentrations by DL model and their differences, and Pearson 

correlation coefficients in 2019-2020. (I-P) Same as panels A-H, but for KF. The unit is ppb. 

 



 

Fig. 3. Daily variabilities of CO concentrations from MEE (90% stations), DL and KF in 2015-

2018 and 2019-2020. 

 

 



 

Fig. 4. (A-B) Relationships between CO concentrations provided by DL, KF, control run (CR) 

and MEE CO observations in 2015-2018 and 2019-2020. The dots represent daily average of 

CO concentrations over E. China. The unit is ppb. (C-D) Same as panels A-B, but with 

randomly selected independent MEE stations. The locations of independent MEE stations are 

shown in Fig. 6.  

 

 

 

 

 

 

 

 

 

 



Fig. 5. (A-B) Predicted by DL (contour) and MEE (dotted) surface CO concentrations in 2015-

2018 and 2019-2020; (C-D) Same as panels A-B, but for KF. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. 6. (A-B) Predicted by DL (contour) and independent MEE (dotted) surface CO 

concentrations in 2015-2018 and 2019-2020; (C-D) Same as panels A-B, but for KF. The 

randomly selected independent MEE stations (about 10% of total stations) are not used in both 

DL and KF in 2015-2020. 

 



 

Fig. 7. Daily variabilities of CO concentrations from independent MEE stations, DL and KF in 

2015-2018 and 2019-2020. The locations of independent MEE stations are shown in Fig. 6. 
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