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Abstract

The applications of novel deep learning (DL) techniques in atmospheric science are rising

quickly. Here we build a hybrid DL, model (hyDL-CO), based on convolutional neural

networks (CNN) and long short-term memory (LSTM) neural networks to provide a
comparative analysis between DL and Kalman Filter (KF) to predict carbon monoxide (CO)
concentrations in China in 2015-2020. We find the performance of DL model is better than KF
in the training period (2015-2018): the mean bias and correlation coefficients are 9.6 ppb and
0.98 over E. China, and are -12.5 ppb and 0.96 over grids with independent observations,(i.e.,

grids with CO observations that are not used in DL training and KF assimilation). By contrast,

the assimilated CO concentrations by KF exhibit comparable correlation coefficients but larger
negative biases. Furthermore, DL model demonstrates good temporal extensibility,in the test

el UL ATO0

period (2019-2020): the mean bias and correlation coefficients are 95.7 ppb and 0.93 over E.

China, and 81.0 ppb and 0.91 over grids with independent observations, while CO observations
are not fed into the DL model as an input variable. Despite these advantages, we find a weaker

prediction capability of DL model than KF in the test period, and a noticeable underestimation

of CO concentrations at extreme pollution events in the DL model. This work demonstrates the

advantages and disadvantages of DL models to predict atmospheric compositions in respective
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to traditional data assimilation, which is helpful for better applications of this novel technique

in future studies.

1. Introduction

Accurate simulation and prediction of air pollutants are critical for making effective
policies to improve air quality. Chemical transport models (CTMs), as powerful tools, have
been widely used to simulate atmospheric compositions (Li et al., 2019; Chen, X. et al., 2021;
Lu et al., 2021). Despite the advances of CTMs, there are still noticeable discrepancies in the
simulations due to uncertainties in the emission, physical and chemical processes (Quennehen

etal., 2016; Kong et al., 2020). Tropospheric CO is one of the most important pollutants with

( Moved (insertion) [1]

significant sources from fossil fuel combustion. Atmospheric observations are thus used to

evaluate the capacity of CTMs to capture the observed variabilities in atmospheric CO. For

example, Kong et al. (2020), exhibited good consistency between modeled and observed CO

variations in China but with significantly underpredicted CO concentrations. Tang et al. (2022),

found the observed CO concentrations are noticeably higher than model simulations over low

polluted areas in China, but with a smaller difference over high polluted areas.

Based on CTMs, data assimilation techniques integrate simulations and observations and
thus can improve the modeled atmospheric compositions. For instance, Ma et al. (2019) found

the assimilation of surface observations can effectively reduce the uncertainties in fine

particulate matter (PM2), 0zone (Os) and CO forecasts. Peng et al. (2018) assimilated surface

observations, and obtained near-perfect forecasts for PM2.s5, Os and CO on the first day, but the

effects of the data assimilation decayed quickly with longer forecasts. The propagation of
observational information in data assimilation depends on the modeled physical and chemical
processes, i.e., the adjustment over grids lacking observations relies on regional transport of

observational information from other grids. The assimilated results are thus, still affected by
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potential model errors (e.g., the uncertainty in transport), which can lead to rapid decline of
assimilation effects, if observations become unavailable.

Accompanied with recent advances in machine learning (ML) techniques, novel data-
driven architectures and approaches have been extensively applied in the field of atmospheric
science (Li, Rui et al., 2020; Zhang et al., 2020; Shi et al., 2021; Xing et al., 2021). Based on
artificial neural networks, particularly, CNNs, DL uses multiple layers of computational
kernels to extract and capture non-linear relationships between input and output variables. The
predictions, provided by DL, are driven by observational or reanalysis data sets, which provides

a new way of predicting atmospheric compositions without the jnfluence of model errors. The

non-linear relationships learned in the training data set can be extended spatially and temporally,
for example, Kleinert et al. (2021) found the DL model can forecast surface Oz within a 4-day
range. The application of LSTM networks further improves the ability of DL models in
capturing temporal dynamics, for example, Chen, Y. et al. (2021) found the LSTM-based
approach can provide a good prediction for surface PM25s on the next day; He et al. (2022)
exhibited the capability of DL model to predict surface Oz in North America.

Despite the advantages of the DL approaches, the lack of parameterization of physical
and chemical processes implies the predicted atmospheric compositions may deviate from the
realistic atmospheric state, in contrast to conventional data assimilation approaches that are

constrained by modeled processes. The, lifetime of tropospheric CO is about 1-2 months, which

makes it an ideal tracer for atmospheric transport, In this study, we present an application of a
hybrid DL model (hyDL-CO) on the prediction of surface CO_concentrations in China from
2015 to 2020, which utilizes both CNNs and LSTMs. We perform a comparative analysis
between the DL model and a KF system in this work, to investigate the performances of the

two approaches in predictions of atmospheric composition with a long lifetime and strong

regional transport. Considering the lifetimes of Os and PM2s are shorter than CO, we may
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assume comparable or better performances of DL in the predictions of Oz and PMas. The

comparison in this work is helpful for understanding the advantages and disadvantages of the

DL approach in respective to traditional data assimilation_in the predictions of atmospheric

compositions, which is critical for better applications of this novel technique in atmospheric
environmental studies in the future.

This paper is organized as follows: in Section 2, we describe the CO observations, the
KF approach and the hyDL-CO model used in this work. In Section 3, we assess the predicted
CO by the DL model, the changes in CO emissions in China, as well as the comparison between
the DL model and KF, and the evaluation with independent observations. Our conclusions

follow in Section 4.

2. Data and Methodology

2.1 MEE surface CO measurements
We use the China Ministry of Ecology and Environment (MEE) monitoring network

surface in-situ CO concentration data (https://quotsoft.net/air/) for the period of 2015-2020.
These real-time monitoring stations have the ability to report hourly concentrations of criteria
pollutants from about 1700 sites in 2020. Concentrations were reported by the MEE in units of
ug/m® under standard temperature (273 K) until 31 August 2018. This reference state was
changed on 1 September 2018 to 298 K. We converted CO concentrations to ppb and rescaled
post-August 2018 concentrations to standard temperature (273 K) to keep the consistency in
the trend analysis. The reported data with CO concentrations larger than 6000 ppb are removed
in our analysis. The station-based observations are averaged and regrided to the 0.5%0.625<
grid of the MERRA-2 reanalysis, with totally about 500 grids having observations. 10% grid-
based observations (about 50 grids) are randomly selected as independent observations, which
are only used in the evaluation of the predicted CO from the DL model and the KF system. The
training of the DL model and the assimilation using the KF are performed using the remaining

90% observations.
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2.2 KF approach

We employ the sequential KF based on the GEOS-Chem CTM to assimilate surface CO
observations. This approach has been used in previous studies to optimize tropospheric CO
concentrations (Jiang et al., 2017; Tang et al, 2022). The GEOS-Chem model
(http://www.geos-chem.org, version 12-8-1) is driven by assimilated meteorological data of
MERRA-2. Our analysis is conducted at a horizontal resolution of nested 0.5%0.625<and
employs the CO-only simulation in GEOS-Chem, which uses archived monthly OH fields from
the full chemistry simulation (Fisher et al., 2017). The CO boundary conditions are updated
every 3-hour from a global simulation with 4°=x5<resolution. Emissions in GEOS-Chem are
computed by the Harvard-NASA Emission Component (HEMCO). Global default
anthropogenic emissions are from the Community Emissions Data System (CEDS) (Hoesly et
al., 2018) and replaced by MEIC (Multiresolution Emission Inventory for China) in China and
MIX (full name) in other regions of Asia (Li et al., 2017). The total anthropogenic CO
emissions in MEIC inventory are further scaled with linear projection. We refer the reader to
Chen, X. et al. (2021) for the details of model configurations.

In the assimilation algorithm, the forward model (M) predicts CO concentration (x,;) at
time t:

Xat = MiXe—y (Eqg. 1)

The optimized CO concentrations can be expressed as:

X = Xgr + G (Ve — Kexqr) (B0 2)
where 1y, isobservation, K; represents operation operator which projects CO concentrations
from the model space to the observation space. G, is the KF Gain matrix, which can be
described as:

Gr = SaeKT (KeSaeKT +So)™1 (Eq. 3)
where S,; and S. are model and observation covariance, respectively. Because the DL

model is designed to reproduce observations without considering error covariance, here we
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assume fixed model error (50%) and small observation error (1%) to provide a fair comparison.

The covariance matrix is diagonal without the consideration of off-diagonals.

2.3 hyDL-CO v1.0 model

Our hyDL-CO model is a modified version of the U-net model used in He et al. (2022),

where the model shows a superior capability in predicting surface summertime Os in North

America. The U-net architecture is a variant of autoencoder and was originally proposed for

biomedical segmentation applications. In the first U-net paper, Ronneberger et al. (2015)

conducted three experiments and showed that the U-net model outperforms other DL models.

Since the proposal of U-net, it has become one of the most popular choices in the DL

community and is compared with other ML models in many studies. For example, Korznikov

et al. (2021)_used several ML models for tree recognition using satellite images and the U-net

model shows the highest accuracy. Ravuri et al. (2021) used U-net as a baseline model and

compared against their Generative Adversarial Network (GAN) in precipitation nowcasting.

Andersson et al. (2021), showed that their IceNet, which is an ensemble of similar U-Net

networks, has outstanding performance in seasonal forecasts of Arctic Sea ice.

As shown in Fig. 1, the first three blocks of neural layers behave as an encoder, which

has six convolutional layers and two max pooling layers, to extract the features hidden in the
input data. A dropout layer is added after each pooling layer to prevent data overfitting. The
output from the encoder is highly compressed information that is not manipulated during the
training process, which is also called the latent vector. We embed the LSTM model into the U-

net architecture after the encoder, inspired by the idea of convolutional LSTM proposed in Shi

et al. (2015), to capture short-term changes and long-term trends in the latent vectors. The
output from the LSTM is then forwarded to a decoder with three blocks of layers. Each block
in the decoder has one transposed convolutional layer followed by two convolutional layers.
The outputs from each convolutional layer in the model are passed through the Rectified Linear
Unit (ReLU) activation function to increase non-linearity. Residual learning connections_(He

et al., 2016) that forward the high-resolution features extracted by the encoder to the decoder

6
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204  mean surface CO concentrations measured by the MEE network. The weights in the CNNs and
205 transposed CNNSs are optimized using the back-propagation algorithm (Rumelhart et al., 1986;
P06  LeCun et al., 1989), which employs the partial derivatives of the cost function with respect to
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P09 where y; and y, are the "true" and "predicted" values. This performance evaluation is< [Formatted: Indent: First line: 0 cm
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213 which is a computationally efficient algorithm for gradient-based optimization of stochastic
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219  processing prevents the DL model to be overfit by the features in input variables that have
220  significantly larger scales than others. The hybrid model was built and implemented using
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extracted from the GEOS-Chem model with 0.5%0.625 “horizontal resolution. Our focus area
is 0-72°N, 0-180°E, and the output resolution is same as the 0.5°x0.625° resolution of
MERRA-2. The DL model grid thus has 288 grid boxes along the longitudinal direction and
144 for the latitude. Considering the long lifetime of CO, the concentration of surface CO is
not only related to the emission and meteorological conditions at the current moment, but also
at the previous moment. We trained the DL model using the information related to the “history”
of CO, by adding the same set of input variables for the current day and previous four days as
predictors. The information from the 5-day history has 40 predictors in total for the prediction
of daily mean surface CO in each day. We use 2015-2018 as the training data set and 2019-
2020 as the test set. The dimension of each input vector for the DL model is then (144,288,40),

and the dimension of the output from the DL model is (144,288,1).

3. Results and Discussions

3.1 CO concentrations predicted by DL model

As shown in Fig. 2A, the annual averaged MEE CO observations are broadly higher than
400 ppb in E. China in 2015-2018 and can reach 1000 ppb over highly polluted North China
Plain (NCP). The predicted CO concentrations by the DL model (Fig. 2B) match well with
observations in 2015-2018. We find small differences between predictions and observations in
Fig. 2C. The Pearson correlation coefficients are larger than 0.7 over E. China and are as high
as 0.9 over highly polluted NCP (Fig. 2D). Fig. 3A-E exhibit daily variabilities of CO
concentrations over E. China, as well as NCP, Yangtze River Delta (YRD), Pearl River Delta
(PRD) and Sichuan Basin (SCB) domains. There is large seasonality in the observed CO
concentrations: the wintertime CO concentrations can reach 1400 ppb over E. China, and 2500
ppb over highly polluted NCP; the summertime CO concentrations are about 500 ppb over E.
China and 800 ppb over NCP. The predicted CO concentrations by the DL model demonstrate

high consistency with observations. As shown in Table 2, the correlation coefficients between
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DL model and MEE CO observations are 0.98, 0.97, 0.93, 0.89 and 0.90; the biases are 9.6,
18.2,-2.6, 12.7 and 17.6 ppb for E. China, NCP, YRD, PRD and SCB, respectively.

The high consistency between observations and DL model in the training period (2015-
2018) is expected. Here we further evaluate the capability of DL model to predict CO
concentrations without the inputs of CO observations (i.e., in the test period). Fig. 2E shows
the MEE CO observations in 2019-2020. As shown in Fig. 2F, the DL model overestimated
surface CO concentrations in 2019-2020, particularly, over highly polluted NCP. The Pearson
correlation coefficients in 2019-2020 (Fig. 2H) are slightly lower than those in the training
period (Fig. 2D). As shown in Fig. 3F, the predicted CO concentrations exhibit larger
deviations from observations in 2019-2020. The correlation coefficients (See Table 2) between
observed and predicted CO in the test period are 0.93, 0.92, 0.81, 0.80 and 0.83; the biases are
95.7, 224.2, 22.0, 60.8 and 52.8 ppb for E. China, NCP, YRD, PRD and SCB, respectively.
Consequently, the lack of inputs of CO observations in the test period led to a decline of
prediction capability, but it is still high enough to provide useful information to predict CO
variabilities.

3.2 Changes of CO emissions inferred by DL model

Here we further explore the possible sources for the deviations of predicted CO

concentrations from observations in 2019-2020, The observed CO concentrations are about

640 ppb in the summer of 2015 and decreased gradually to about 620 ppb by the summer of
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2018. However, the observed CO concentrations dropped to about 550-530 ppb in the summer
of 2019 and 2020. The rapid decrease of surface CO concentrations is dominated by highly
polluted NCP (Fig. 3G), whereas the differences between predicted and observed CO
concentrations are limited over other domains. The rapid decrease of surface CO concentrations
over NCP 2019 could be associated with an unexpected drop in CO emissions, which is not

considered in the linear projection of emission inventory, and led to overestimated CO
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concentrations in the DL model._In addition, recent studies (Li, K. et al., 2020; Chen, X. et al.,

2021) indicated a dramatic increase in surface O3 concentration over NCP in 2019. The possible

changes in atmospheric oxidation capability and sink of CO may not be sufficiently captured

by the DL model, as the relevant information is not used as the input while training the model.

The unprecedented lockdowns across the world to contain the 2019 novel coronavirus
(COVID-19) spread have led to a slowdown of economic activities, with pronounced declines
in anthropogenic emissions. Shi and Brasseur (2020) found surface CO concentrations over N.
China were 1.2-1.5 and 0.7-1.0 mg/m? before and during the pandemic spread. Gaubert et al.
(2021) suggested about 15% reduction in CO emissions over N. China due to the COVID-19

controls. As shown in Fig. 3F, the MEE CO observations are about 10.2% and 25.8% lower

than predicted CO by DL model in Feb 2019,and 2020, respectively; the MEE CO observations

are about 11.1% and 14.2% lower than predicted CO by DL model in Jun-Aug 2019 and 2020,

respectively. Assuming the difference jn Jun-Aug (i.e., 11.1% and 14.2%) represents the annual

CO emission trends, our analysis thus, suggests about 12.5% decline jn CO emissions caused

by COVID-19 controls, which is consistent with Gaubert et al. (2021),
3.3 Comparison between DL model and KF assimilation
Fig. 21-P show the MEE CO observations and assimilated CO concentrations by KF in

2015-2018 and 2019-2020, In contrast to the DL approach, CO observations are assimilated in

KFE in both periods. While the spatial distributions of assimilated CO match well with

observations, the CO concentrations in the assimilations are noticeably lower. As shown in Fig.
3A-E and Table 2, the differences between assimilated and observed CO are -114.9, -139.6, -
58.0, -108.8 and -29.3 ppb for E. China, NCP, YRD, PRD and SCB, respectively, which are
larger than the differences in the DL model. Furthermore, the modeled CO concentrations in
the control runs (CR, without assimilation of CO observations) are much lower: the differences

are -409.6, -512.3, -246.0, -400.5 and -172.4 ppb for E. China, NCP, YRD, PRD and SCB,
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respectively. The dramatic underestimations of CO concentrations in model simulations have
been reported in recent studies (Feng et al., 2020; Kong et al., 2020; Peng et al., 2018), which
could be associated with significant model representation error because most MEE stations are
urban sites (Tang et al., 2022). It reveals the important discrepancy between DL and data
assimilations: the analyzed concentrations in KF are based on the a priori and observed
concentrations by considering the model and observation errors, which is not designed to
reproduce the observations. In addition, the correlation coefficients are 0.99, 0.99, 0.98, 0.94
and 0.96 for E. China, NCP, YRD, PRD and SCB in 2015-2018 in the KF, respectively, which
are comparable with the DL model.

As shown in Fig. 3F-J and Table 2, the difference between assimilated and observed CO
concentrations in 2019-2020 are -85.5, -66.3, -52.9, -89.3 and -18.7 ppb for E. China, NCP,
YRD, PRD and SCB, respectively, which are comparable with the differences in DL model
except for highly polluted NCP, even the MEE CO observations are not inputted in DL model
in the test period. The correlation coefficients are 0.99, 0.99, 0.97, 0.96 and 0.96 for E. China,
NCP, YRD, PRD and SCB in 2019-2020 in the KF, respectively, which are higher than the DL
model. In addition, Fig. 4A-B show the relationships between modeled CO and MEE CO
observations. Both DL and KF show dramatic improvements in respective to the CR
simulations in Fig. 4A-B, while the performance of the DL model is better than KF in the
training period (Fig. 4A). In addition, the comparable performances between DL and KF in
2019-2020 (Fig. 4B) demonstrate the good temporal extensibility of DL model, i.e., skills
learned in the training period can be extended to the following years with a limited decline in
the prediction effects.

3.4 Evaluation with independent MEE CO observations
Fig. 5A-B show the spatial distributions of predicted CO concentrations by DL model

and MEE CO observations; Fig. 6A-B further exhibit the locations of randomly selected

11
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independent MEE stations (about 10% of total stations). These independent stations are not

used in both DL model and KF in 2015-2020. Although we find broadly good agreements in

the spatial distributions between predicted CO concentrations by DL and KF and MEE CO

observations, there is still a noticeable discrepancy. The DL model suggests the highest CO

concentrations in the Shanxi province, by more than 1200 ppb, and background CO
concentrations by about 400 ppb over remote areas. By contrast, the CO concentrations in the
KF (Fig. 5C-D; Fig. 6C-D) are lower, and the highest CO concentrations are found in NCP
rather than Shanxi province. As shown in Fig. 7A-E, the DL model demonstrates a smaller bias
in respective to independent MEE CO observations and higher correlation coefficients than KF
in 2015-2018, suggesting better capability to predict CO concentrations. In 2019-2020 (Fig.
7F-J), the DL model exhibits a smaller bias over E. China, but larger bias than KF over highly
polluted NCP. The Pearson correlation coefficients are smaller in DL in 2019-2020 (See Table
2).

As shown in Fig. 4C-D, the assimilated CO concentrations by KF are closer to the control
simulations with larger deviations from the MEE CO observations than those in Fig. 4A-B. It
demonstrates the decline of assimilation effects when observations are unavailable. On the
other hand, the slopes in the linear fits are 0.89 and 0.92 in DL and KF in 2015-2018 (Fig. 4C),
respectively, and become 0.80 and 1.02 in 2019-2020 (Fig. 4D). The deviations in the slopes
reflect an underestimation of CO concentrations in the DL model at grids with extremely high
CO concentrations. DL model predicts CO concentrations based on the skills learned in the

training process. However, the training is dominated by the majority of CO observations with

CO concentrations > 1200 ppb, account only 3.4% of the total number of observations. It

cannot be learned sufficiently, because the DL model, as a data-driven approach, would require

more observations about the extreme pollution events to improve the predictions. By contrast,

12

[ Deleted: We

[ Deleted: model

{ Deleted: , while the extreme high CO concentrations (i.e.,

)

[ Deleted: )

]

{ Deleted: .




Fse

387
388
89
90
391
392

393

394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409

410

KF is driven by observations directly_so that both high and low CO concentrations can be

simulated. In addition, because most MEE stations are urban sites, the good agreement between
DL model and MEE CO observations may not be able to ensure the accuracy of predicted CO

concentrations over remote rural areas, as well as the high CO concentrations over mountain

areas around urban basins in the Shanxi province. Integration of modeled CO concentrations

in the DL model in future studies may improve predicted CO concentrations over remote areas

without local observations.
4. Conclusion

A hybrid DL model (hyDL-CO), based on CNN and LSTM, was built in this work to
provide a comparative analysis between DL and KF to predict CO concentrations in China in
2015-2020. We find the performance of the DL model is better than KF in the training period
(2015-2018): the bias and correlation coefficients are 9.6 ppb and 0.98 over E. China, and -
12.5 ppb and 0.96 over grids with independent observations. By contrast, the assimilated CO
concentrations by KF demonstrate comparable correlation coefficients but larger negative
biases: the bias and correlation coefficients are -114.9 ppb and 0.99 over E. China, and -252.5
ppb and 0.95 over grids with independent observations. The larger biases in the KF are caused
by the discrepancy in the algorithm, i.e., the objective of data assimilation is to improve the
simulated atmospheric compositions by considering the model and observation errors, which
is not designed to reproduce the observations. Both DL and KF show better predictions than
the control runs: the bias and correlation coefficients are -409.6 ppb and 0.94 over E. China,
and -443.3 ppb and 0.91 over grids with independent observations.

Furthermore, we find good temporal extensibility of the DL model in the test period
(2019-2020): the bias and correlation coefficients are 95.7 ppb and 0.93 over E. China, and
81.0 ppb and 0.91 over grids with independent observations. The correlation coefficients (0.91-

0.93) mean enough capability to provide useful information to predict CO variabilities without

13

[ Deleted: , and thus,

[ Deleted: .




#13

“14

“15

#16

417

418

419

420

21

22

23

424

425

426

427

428

429

430

431

432

433

434

435
436

437

438

inputs of CO observations. In addition, we find an unexpected drop jn CO emissions over
highly polluted NCP in 2019. Our analysis further exhibits a significant decline jn CO
emissions in early 2020 due to the COVID-19 controls. Despite these advantages, we find a
noticeable underestimation of CO concentrations at grids with gextremely high CO
concentrations in the DL model, because the training is dominated by the majority of CO
observations with low and medium CO concentrations, and thus, the extreme pollution events
cannot be learned sufficiently. This work demonstrates the advantages and disadvantages of
DL models to predict atmospheric compositions in respective to traditional data assimilation.

We assume comparable or better performances of DL in the predictions of O3 and PM2 s than

the CO analysis shown in this work, because of their shorter lifetimes, and advise more efforts

to explore new applications of DL models in the predictions of other atmospheric compositions.

Code and data availability: The MEE CO data can be downloaded from

https://quotsoft.net/air/. The GEOS-Chem model (version 12.8.1) can be downloaded from

http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_ 12#12.8.1. The code of the

hyDL-CO model, sample data for the hyDL-CO model run and GEOS-Chem model output can

be downloaded from https://doi.org/10.5281/zen0d0.5913013.
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Table and Figures
Table 1. Hyperparameters used in the hybrid DL model.

Table 2. Deep learning (DL), Kalman Filter (KF) and control run (CR) in respective to MEE
CO observations in 2015-2018 and 2019-2020. The locations of independent MEE stations are

shown in Fig. 6.

Figure 1. Hybrid DL model used in this paper.

Figure 2. (A) MEE CO observations_(90% stations) in 2015-2018; (B) Predicted CO
concentrations by DL model in 2015-2018; (C-D) differences and Pearson correlation
coefficients between predicted and observed CO in 2015-2018. (E-H) MEE CO observations,
(90% stations), predicted CO concentrations by DL model and their differences, and Pearson
correlation coefficients in 2019-2020. (I-P) Same as panels A-H, but for KF. The unit is ppb.

Figure 3. Daily variabilities of CO concentrations from MEE, (90% stations), DL and KF in
2015-2018 and 2019-2020.

Figure 4. (A-B) Relationships between CO concentrations provided by DL, KF, control run
(CR) and MEE CO observations in 2015-2018 and 2019-2020. The dots represent daily average
of CO concentrations over E. China. The unit is ppb. (C-D) Same as panels A-B, but with
randomly selected independent MEE stations. The locations of independent MEE stations are
shown in Fig. 6.

Figure 5. (A-B) Predicted by DL (contour) and MEE (dotted) surface CO concentrations in
2015-2018 and 2019-2020; (C-D) Same as panels A-B, but for KF.
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Figure 6. (A-B) Predicted by DL (contour) and independent MEE (dotted) surface CO
concentrations in 2015-2018 and 2019-2020; (C-D) Same as panels A-B, but for KF. The
randomly selected independent MEE stations (about 10% of total stations) are not used in both
DL and KF in 2015-2020.

Figure 7. Daily variabilities of CO concentrations from independent MEE stations, DL and KF

in 2015-2018 and 2019-2020. The locations of independent MEE stations are shown in Fig. 6.
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