

1 **A comparative analysis for a deep learning model (hyDL-CO v1.0) and**
2 **Kalman Filter to predict CO concentrations in China**

3
4 Weichao Han^{1†}, Tai-Long He^{2†}, Zhaojun Tang¹, Min Wang¹, Dylan Jones², Zhe Jiang^{1*}

5
6 ¹School of Earth and Space Sciences, University of Science and Technology of China, Hefei,
7 Anhui, 230026, China.

8 ²Department of Physics, University of Toronto, Toronto, ON, M5S 1A7, Canada.

9 †These authors contributed equally to this work.

10 *Correspondence to: Zhe Jiang (zhejiang@ustc.edu.cn)

11
12
13
14 **Abstract**

15 The applications of novel deep learning (DL) techniques in atmospheric science are rising
16 quickly. Here we build a hybrid DL model (hyDL-CO), based on convolutional neural
17 networks (CNN) and long short-term memory (LSTM) neural networks to provide a

Deleted: deep learning ()

18 comparative analysis between DL and Kalman Filter (KF) to predict carbon monoxide (CO)
19 concentrations in China in 2015-2020. We find the performance of DL model is better than KF
20 in the training period (2015-2018): the mean bias and correlation coefficients are 9.6 ppb and

21 0.98 over E. China, and are -12.5 ppb and 0.96 over grids with independent observations (i.e.,

Deleted: .

22 grids with CO observations that are not used in DL training and KF assimilation). By contrast,
23 the assimilated CO concentrations by KF exhibit comparable correlation coefficients but larger

24 negative biases. Furthermore, DL model demonstrates good temporal extensibility in the test

Deleted: :

25 period (2019-2020): the mean bias and correlation coefficients are 95.7 ppb and 0.93 over E.

26 China, and 81.0 ppb and 0.91 over grids with independent observations while CO observations

Deleted: in 2019-2020

27 are not fed into the DL model as an input variable. Despite these advantages, we find a weaker

Deleted: our analysis indicates

28 prediction capability of DL model than KF in the test period, and a noticeable underestimation

29 of CO concentrations at extreme pollution events in the DL model. This work demonstrates the

30 advantages and disadvantages of DL models to predict atmospheric compositions in respective

37 to traditional data assimilation, which is helpful for better applications of this novel technique
38 in future studies.

39

40 **1. Introduction**

41 Accurate simulation and prediction of air pollutants are critical for making effective
42 policies to improve air quality. Chemical transport models (CTMs), as powerful tools, have
43 been widely used to simulate atmospheric compositions (Li et al., 2019; Chen, X. et al., 2021;
44 Lu et al., 2021). Despite the advances of CTMs, there are still noticeable discrepancies in the
45 simulations due to uncertainties in the emission, physical and chemical processes (Quennehen
46 et al., 2016; Kong et al., 2020). Tropospheric CO is one of the most important pollutants with
47 significant sources from fossil fuel combustion. Atmospheric observations are thus used to
48 evaluate the capacity of CTMs to capture the observed variabilities in atmospheric CO. For
49 example, Kong et al. (2020) exhibited good consistency between modeled and observed CO
50 variations in China but with significantly underpredicted CO concentrations. Tang et al. (2022),
51 found the observed CO concentrations are noticeably higher than model simulations over low
52 polluted areas in China, but with a smaller difference over high polluted areas.

53 Based on CTMs, data assimilation techniques integrate simulations and observations and
54 thus can improve the modeled atmospheric compositions. For instance, Ma et al. (2019) found
55 the assimilation of surface observations can effectively reduce the uncertainties in fine
56 particulate matter (PM_{2.5}), ozone (O₃) and CO forecasts. Peng et al. (2018) assimilated surface
57 observations, and obtained near-perfect forecasts for PM_{2.5}, O₃ and CO on the first day, but the
58 effects of the data assimilation decayed quickly with longer forecasts. The propagation of
59 observational information in data assimilation depends on the modeled physical and chemical
60 processes, i.e., the adjustment over grids lacking observations relies on regional transport of
61 observational information from other grids. The assimilated results are thus, still affected by

Moved (insertion) [1]

Deleted: composition

Deleted: found the modeled spatial variability of nitrogen dioxides (NO₂) matches well with surface observations but with a large bias in their concentrations.

Deleted: a difference

Deleted: surface fine particulate matter (PM_{2.5}) and ozone (O₃): the modeled PM_{2.5} and O₃

Deleted: observations by about 40% and 15% in China in 2013-2017, respectively

Deleted: PM_{2.5}

Deleted: PM_{2.5}

Deleted: including PM_{2.5}, NO₂, O₃, CO,

74 potential model errors (e.g., the uncertainty in transport), which can lead to rapid decline of
75 assimilation effects, if observations become unavailable.

76 Accompanied with recent advances in machine learning (ML) techniques, novel data-
77 driven architectures and approaches have been extensively applied in the field of atmospheric
78 science (Li, Rui et al., 2020; Zhang et al., 2020; Shi et al., 2021; Xing et al., 2021). Based on
79 artificial neural networks, particularly, CNNs, DL uses multiple layers of computational
80 kernels to extract and capture non-linear relationships between input and output variables. The
81 predictions, provided by DL, are driven by observational or reanalysis data sets, which provides
82 a new way of predicting atmospheric compositions without the influence of model errors. The
83 non-linear relationships learned in the training data set can be extended spatially and temporally,
84 for example, Kleinert et al. (2021) found the DL model can forecast surface O₃ within a 4-day
85 range. The application of LSTM networks further improves the ability of DL models in
86 capturing temporal dynamics, for example, Chen, Y. et al. (2021) found the LSTM-based
87 approach can provide a good prediction for surface PM_{2.5} on the next day; He et al. (2022)
88 exhibited the capability of DL model to predict surface O₃ in North America.

89 Despite the advantages of the DL approaches, the lack of parameterization of physical
90 and chemical processes implies the predicted atmospheric compositions may deviate from the
91 realistic atmospheric state, in contrast to conventional data assimilation approaches that are
92 constrained by modeled processes. The lifetime of tropospheric CO is about 1-2 months, which
93 makes it an ideal tracer for atmospheric transport. In this study, we present an application of a
94 hybrid DL model (hyDL-CO) on the prediction of surface CO concentrations in China from
95 2015 to 2020, which utilizes both CNNs and LSTMs. We perform a comparative analysis
96 between the DL model and a KF system in this work, to investigate the performances of the
97 two approaches in predictions of atmospheric composition with a long lifetime and strong
98 regional transport. Considering the lifetimes of O₃ and PM_{2.5} are shorter than CO, we may

Deleted: advance of

Deleted: to

Deleted: influences from

Deleted: the

Moved up [1]: Tropospheric CO is one of the most important pollutants with significant sources from fossil fuel combustion. Because of the

Deleted: Because of the

Deleted: (about 1-2 months),

Deleted: and has been sufficiently investigated with data assimilations .

Deleted: predicting CO. This comparison

111 assume comparable or better performances of DL in the predictions of O₃ and PM_{2.5}. The
112 comparison in this work is helpful for understanding the advantages and disadvantages of the
113 DL approach in respective to traditional data assimilation in the predictions of atmospheric
114 compositions, which is critical for better applications of this novel technique in atmospheric
115 environmental studies in the future.

116 This paper is organized as follows: in Section 2, we describe the CO observations, the
117 KF approach and the hyDL-CO model used in this work. In Section 3, we assess the predicted
118 CO by the DL model, the changes in CO emissions in China, as well as the comparison between
119 the DL model and KF, and the evaluation with independent observations. Our conclusions
120 follow in Section 4.

121

122 **2. Data and Methodology**

123 **2.1 MEE surface CO measurements**

124 We use the China Ministry of Ecology and Environment (MEE) monitoring network
125 surface in-situ CO concentration data (<https://quotsoft.net/air/>) for the period of 2015–2020.
126 These real-time monitoring stations have the ability to report hourly concentrations of criteria
127 pollutants from about 1700 sites in 2020. Concentrations were reported by the MEE in units of
128 ug/m³ under standard temperature (273 K) until 31 August 2018. This reference state was
129 changed on 1 September 2018 to 298 K. We converted CO concentrations to ppb and rescaled
130 post-August 2018 concentrations to standard temperature (273 K) to keep the consistency in
131 the trend analysis. The reported data with CO concentrations larger than 6000 ppb are removed
132 in our analysis. The station-based observations are averaged and regridded to the 0.5°x0.625°
133 grid of the MERRA-2 reanalysis, with totally about 500 grids having observations. 10% grid-
134 based observations (about 50 grids) are randomly selected as independent observations, which
135 are only used in the evaluation of the predicted CO from the DL model and the KF system. The
136 training of the DL model and the assimilation using the KF are performed using the remaining
137 90% observations.

Deleted: using the nearest neighborhood interpolation
algorithm...

140

141 **2.2 KF approach**

142 We employ the sequential KF based on the GEOS-Chem CTM to assimilate surface CO
143 observations. This approach has been used in previous studies to optimize tropospheric CO
144 concentrations (Jiang et al., 2017; Tang et al., 2022). The GEOS-Chem model
145 (<http://www.geos-chem.org>, version 12-8-1) is driven by assimilated meteorological data of
146 MERRA-2. Our analysis is conducted at a horizontal resolution of nested $0.5^\circ \times 0.625^\circ$ and
147 employs the CO-only simulation in GEOS-Chem, which uses archived monthly OH fields from
148 the full chemistry simulation (Fisher et al., 2017). The CO boundary conditions are updated
149 every 3-hour from a global simulation with $4^\circ \times 5^\circ$ resolution. Emissions in GEOS-Chem are
150 computed by the Harvard-NASA Emission Component (HEMCO). Global default
151 anthropogenic emissions are from the Community Emissions Data System (CEDS) (Hoesly et
152 al., 2018) and replaced by MEIC (Multiresolution Emission Inventory for China) in China and
153 MIX (full name) in other regions of Asia (Li et al., 2017). The total anthropogenic CO
154 emissions in MEIC inventory are further scaled with linear projection. We refer the reader to
155 Chen, X. et al. (2021) for the details of model configurations.

156 In the assimilation algorithm, the forward model (M) predicts CO concentration (x_{at}) at
157 time t :

$$x_{at} = M_t x_{t-1} \quad (\text{Eq. 1})$$

159 The optimized CO concentrations can be expressed as:

$$x_t = x_{at} + G_t (y_t - K_t x_{at}) \quad (\text{Eq. 2})$$

160 where y_t is observation, K_t represents operation operator which projects CO concentrations
161 from the model space to the observation space. G_t is the KF Gain matrix, which can be
162 described as:

$$G_t = S_{at} K_t^T (K_t S_{at} K_t^T + S_\epsilon)^{-1} \quad (\text{Eq. 3})$$

164 where S_{at} and S_ϵ are model and observation covariance, respectively. Because the DL
165 model is designed to reproduce observations without considering error covariance, here we

167 assume fixed model error (50%) and small observation error (1%) to provide a fair comparison.
168 The covariance matrix is diagonal without the consideration of off-diagonals.

169
170 **2.3 hyDL-CO v1.0 model**

171 Our hyDL-CO model is a modified version of the U-net model used in He et al. (2022),
172 where the model shows a superior capability in predicting surface summertime O₃ in North
173 America. The U-net architecture is a variant of autoencoder and was originally proposed for
174 biomedical segmentation applications. In the first U-net paper, Ronneberger et al. (2015)
175 conducted three experiments and showed that the U-net model outperforms other DL models.
176 Since the proposal of U-net, it has become one of the most popular choices in the DL
177 community and is compared with other ML models in many studies. For example, Korznikov
178 et al. (2021) used several ML models for tree recognition using satellite images and the U-net
179 model shows the highest accuracy. Ravuri et al. (2021) used U-net as a baseline model and
180 compared against their Generative Adversarial Network (GAN) in precipitation nowcasting.
181 Andersson et al. (2021), showed that their IceNet, which is an ensemble of similar U-Net
182 networks, has outstanding performance in seasonal forecasts of Arctic Sea ice.

183 As shown in Fig. 1, the first three blocks of neural layers behave as an encoder, which
184 has six convolutional layers and two max pooling layers, to extract the features hidden in the
185 input data. A dropout layer is added after each pooling layer to prevent data overfitting. The
186 output from the encoder is highly compressed information that is not manipulated during the
187 training process, which is also called the latent vector. We embed the LSTM model into the U-
188 net architecture after the encoder, inspired by the idea of convolutional LSTM proposed in Shi
189 et al. (2015), to capture short-term changes and long-term trends in the latent vectors. The
190 output from the LSTM is then forwarded to a decoder with three blocks of layers. Each block
191 in the decoder has one transposed convolutional layer followed by two convolutional layers.
192 The outputs from each convolutional layer in the model are passed through the Rectified Linear
193 Unit (ReLU) activation function to increase non-linearity. Residual learning connections (He
194 et al., 2016) that forward the high-resolution features extracted by the encoder to the decoder

Deleted: We combine CNN and LSTM to obtain a hybrid model for the prediction of surface CO in China, following . As shown in Fig. 1, the hyDL-CO model is an autoencoder with the latent space represented by a LSTM cell. The

Deleted: DL

200 are also added, which are shown to improve the performance of U-net (Ghorbanzadeh et al.,
201 2021; Qi et al., 2020; Liu et al., 2020). These connections contain trainable weights that
202 represent a more direct relationship between input and output variables.

Deleted: the DL model

203 The optimization of the model is supervised by the "ground truth", which is the daily
204 mean surface CO concentrations measured by the MEE network. The weights in the CNNs and
205 transposed CNNs are optimized using the back-propagation algorithm (Rumelhart et al., 1986;
206 LeCun et al., 1989), which employs the partial derivatives of the cost function with respect to
207 the truth. Here cost function is defined as:

$$L = \frac{1}{N} \sum_{i=1}^N (y_i - \hat{y}_i)^2$$

208 where y_i and \hat{y}_i are the "true" and "predicted" values. This performance evaluation is
209 calculated only in the grid with "true" values, so that the optimization of the model avoids the
210 influence of regions without CO observations. The loss function to be optimized is the mean
211 square error (MSE) between the "predicted" and "true" values. We use the Adam optimizer,
212 which is a computationally efficient algorithm for gradient-based optimization of stochastic
213 objective functions. For a faster convergence speed and the stability of the model performance,
214 we rescale all the features to the nearly same scale. The processing method is multiplying the
215 original variable by a constant 10^n and adapting n for each variable according to the specified
216 scale. For example, most of the values of sea level pressure (SLP) are distributed around 10^5 ,
217 so we multiply SLP by 10^{-4} to make the value of the feature SLP distributed around 10^1 . This
218 processing prevents the DL model to be overfit by the features in input variables that have
219 significantly larger scales than others. The hybrid model was built and implemented using
220 Keras and Tensorflow, which are Python packages that are extensively used in DL studies.
221 Table 1 shows some of the configuration hyperparameters of the training of our model.

Formatted: Indent: First line: 0 cm

222 The input variables include six meteorological variables: SLP, surface incoming
223 shortwave flux (SWGDN), 2-meter air temperature (T2M), 10-meter eastward wind (U10M),
224 10-meter northward wind (V10M) and total precipitation (TP); and total anthropogenic CO and
225 volatile organic compounds (VOC) emissions. The meteorology and emission data are

Deleted: a

Formatted: Font: (Default) +Body (等线)

Formatted

Deleted: sea level pressure (

Deleted:),

232 extracted from the GEOS-Chem model with $0.5^{\circ} \times 0.625^{\circ}$ horizontal resolution. Our focus area
233 is $0-72^{\circ}\text{N}$, $0-180^{\circ}\text{E}$, and the output resolution is same as the $0.5^{\circ} \times 0.625^{\circ}$ resolution of
234 MERRA-2. The DL model grid thus has 288 grid boxes along the longitudinal direction and
235 144 for the latitude. Considering the long lifetime of CO, the concentration of surface CO is
236 not only related to the emission and meteorological conditions at the current moment, but also
237 at the previous moment. We trained the DL model using the information related to the “history”
238 of CO, by adding the same set of input variables for the current day and previous four days as
239 predictors. The information from the 5-day history has 40 predictors in total for the prediction
240 of daily mean surface CO in each day. We use 2015-2018 as the training data set and 2019-
241 2020 as the test set. The dimension of each input vector for the DL model is then (144,288,40),
242 and the dimension of the output from the DL model is (144,288,1).

243

244 **3. Results and Discussions**

245 **3.1 CO concentrations predicted by DL model**

246 As shown in Fig. 2A, the annual averaged MEE CO observations are broadly higher than
247 400 ppb in E. China in 2015-2018 and can reach 1000 ppb over highly polluted North China
248 Plain (NCP). The predicted CO concentrations by the DL model (Fig. 2B) match well with
249 observations in 2015-2018. We find small differences between predictions and observations in
250 Fig. 2C. The Pearson correlation coefficients are larger than 0.7 over E. China and are as high
251 as 0.9 over highly polluted NCP (Fig. 2D). Fig. 3A-E exhibit daily variabilities of CO
252 concentrations over E. China, as well as NCP, Yangtze River Delta (YRD), Pearl River Delta
253 (PRD) and Sichuan Basin (SCB) domains. There is large seasonality in the observed CO
254 concentrations: the wintertime CO concentrations can reach 1400 ppb over E. China, and 2500
255 ppb over highly polluted NCP; the summertime CO concentrations are about 500 ppb over E.
256 China and 800 ppb over NCP. The predicted CO concentrations by the DL model demonstrate
257 high consistency with observations. As shown in Table 2, the correlation coefficients between

258 DL model and MEE CO observations are 0.98, 0.97, 0.93, 0.89 and 0.90; the biases are 9.6,
259 18.2, -2.6, 12.7 and 17.6 ppb for E. China, NCP, YRD, PRD and SCB, respectively.

260 The high consistency between observations and DL model in the training period (2015-
261 2018) is expected. Here we further evaluate the capability of DL model to predict CO
262 concentrations without the inputs of CO observations (i.e., in the test period). Fig. 2E shows
263 the MEE CO observations in 2019-2020. As shown in Fig. 2F, the DL model overestimated
264 surface CO concentrations in 2019-2020, particularly, over highly polluted NCP. The Pearson
265 correlation coefficients in 2019-2020 (Fig. 2H) are slightly lower than those in the training
266 period (Fig. 2D). As shown in Fig. 3F, the predicted CO concentrations exhibit larger
267 deviations from observations in 2019-2020. The correlation coefficients (See Table 2) between
268 observed and predicted CO in the test period are 0.93, 0.92, 0.81, 0.80 and 0.83; the biases are
269 95.7, 224.2, 22.0, 60.8 and 52.8 ppb for E. China, NCP, YRD, PRD and SCB, respectively.
270 Consequently, the lack of inputs of CO observations in the test period led to a decline of
271 prediction capability, but it is still high enough to provide useful information to predict CO
272 variabilities.

273 3.2 Changes of CO emissions inferred by DL model

274 Here we further explore the possible sources for the deviations of predicted CO
275 concentrations from observations in 2019-2020. The observed CO concentrations are about
276 640 ppb in the summer of 2015 and decreased gradually to about 620 ppb by the summer of
277 2018. However, the observed CO concentrations dropped to about 550-530 ppb in the summer
278 of 2019 and 2020. The rapid decrease of surface CO concentrations is dominated by highly
279 polluted NCP (Fig. 3G), whereas the differences between predicted and observed CO
280 concentrations are limited over other domains. The rapid decrease of surface CO concentrations
281 over NCP 2019 could be associated with an unexpected drop in CO emissions, which is not
282 considered in the linear projection of emission inventory, and led to overestimated CO

Deleted: -J

Deleted: As shown in Fig. 3F,

Deleted: by DL model show large difference with

Deleted: , by contrast, there is good agreement in 2015-2018 (Fig. 3A).

Deleted: 650

Deleted: 600

Deleted: It seems that the

Deleted: is

292 concentrations in the DL model. In addition, recent studies (Li, K. et al., 2020; Chen, X. et al.,
293 2021) indicated a dramatic increase in surface O₃ concentration over NCP in 2019. The possible
294 changes in atmospheric oxidation capability and sink of CO may not be sufficiently captured
295 by the DL model, as the relevant information is not used as the input while training the model.

296 The unprecedented lockdowns across the world to contain the 2019 novel coronavirus
297 (COVID-19) spread have led to a slowdown of economic activities, with pronounced declines
298 in anthropogenic emissions. Shi and Brasseur (2020) found surface CO concentrations over N.
299 China were 1.2-1.5 and 0.7-1.0 mg/m³ before and during the pandemic spread. Gaubert et al.
300 (2021) suggested about 15% reduction in CO emissions over N. China due to the COVID-19
301 controls. As shown in Fig. 3F, the MEE CO observations are about 10.2% and 25.8% lower
302 than predicted CO by DL model in Feb 2019 and 2020, respectively; the MEE CO observations
303 are about 11.1% and 14.2% lower than predicted CO by DL model in Jun-Aug 2019 and 2020,
304 respectively. Assuming the difference in Jun-Aug (i.e., 11.1% and 14.2%) represents the annual
305 CO emission trends, our analysis thus, suggests about 12.5% decline in CO emissions caused
306 by COVID-19 controls, which is consistent with Gaubert et al. (2021).

307 3.3 Comparison between DL model and KF assimilation

308 Fig. 2I-P show the MEE CO observations and assimilated CO concentrations by KF in
309 2015-2018 and 2019-2020. In contrast to the DL approach, CO observations are assimilated in
310 KF in both periods. While the spatial distributions of assimilated CO match well with
311 observations, the CO concentrations in the assimilations are noticeably lower. As shown in Fig.
312 3A-E and Table 2, the differences between assimilated and observed CO are -114.9, -139.6, -
313 58.0, -108.8 and -29.3 ppb for E. China, NCP, YRD, PRD and SCB, respectively, which are
314 larger than the differences in the DL model. Furthermore, the modeled CO concentrations in
315 the control runs (CR, without assimilation of CO observations) are much lower: the differences
316 are -409.6, -512.3, -246.0, -400.5 and -172.4 ppb for E. China, NCP, YRD, PRD and SCB,

Deleted: match well with

Deleted: early

Deleted: , however, are much lower than

Deleted: predicted

Deleted: early 2020. By contrast,

Deleted: between observed and predicted CO concentrations are comparable

Deleted: summer of 2019 and 2020. The large discrepancy between observations and predictions in early 2020

Deleted: reflects the

Deleted: of

Deleted: not considered in the linear projection of emission inventory.

Deleted: , respectively.

331 respectively. The dramatic underestimations of CO concentrations in model simulations have
332 been reported in recent studies (Feng et al., 2020; Kong et al., 2020; Peng et al., 2018), which
333 could be associated with significant model representation error because most MEE stations are
334 urban sites (Tang et al., 2022). It reveals the important discrepancy between DL and data
335 assimilations: the analyzed concentrations in KF are based on the a priori and observed
336 concentrations by considering the model and observation errors, which is not designed to
337 reproduce the observations. In addition, the correlation coefficients are 0.99, 0.99, 0.98, 0.94
338 and 0.96 for E. China, NCP, YRD, PRD and SCB in 2015-2018 in the KF, respectively, which
339 are comparable with the DL model.

340 As shown in Fig. 3F-J and Table 2, the difference between assimilated and observed CO
341 concentrations in 2019-2020 are -85.5, -66.3, -52.9, -89.3 and -18.7 ppb for E. China, NCP,
342 YRD, PRD and SCB, respectively, which are comparable with the differences in DL model
343 except for highly polluted NCP, even the MEE CO observations are not inputted in DL model
344 in the test period. The correlation coefficients are 0.99, 0.99, 0.97, 0.96 and 0.96 for E. China,
345 NCP, YRD, PRD and SCB in 2019-2020 in the KF, respectively, which are higher than the DL
346 model. In addition, Fig. 4A-B show the relationships between modeled CO and MEE CO
347 observations. Both DL and KF show dramatic improvements in respective to the CR
348 simulations in Fig. 4A-B, while the performance of the DL model is better than KF in the
349 training period (Fig. 4A). In addition, the comparable performances between DL and KF in
350 2019-2020 (Fig. 4B) demonstrate the good temporal extensibility of DL model, i.e., skills
351 learned in the training period can be extended to the following years with a limited decline in
352 the prediction effects.

353 **3.4 Evaluation with independent MEE CO observations**

354 Fig. 5A-B show the spatial distributions of predicted CO concentrations by DL model
355 and MEE CO observations; Fig. 6A-B further exhibit the locations of randomly selected

356 independent MEE stations (about 10% of total stations). These independent stations are not
357 used in both DL model and KF in 2015-2020. Although we find broadly good agreements in
358 the spatial distributions between predicted CO concentrations by DL and KF and MEE CO
359 observations, there is still a noticeable discrepancy. The DL model suggests the highest CO
360 concentrations in the Shanxi province, by more than 1200 ppb, and background CO
361 concentrations by about 400 ppb over remote areas. By contrast, the CO concentrations in the
362 KF (Fig. 5C-D; Fig. 6C-D) are lower, and the highest CO concentrations are found in NCP
363 rather than Shanxi province. As shown in Fig. 7A-E, the DL model demonstrates a smaller bias
364 in respective to independent MEE CO observations and higher correlation coefficients than KF
365 in 2015-2018, suggesting better capability to predict CO concentrations. In 2019-2020 (Fig.
366 7F-J), the DL model exhibits a smaller bias over E. China, but larger bias than KF over highly
367 polluted NCP. The Pearson correlation coefficients are smaller in DL in 2019-2020 (See Table
368 2).

369 As shown in Fig. 4C-D, the assimilated CO concentrations by KF are closer to the control
370 simulations with larger deviations from the MEE CO observations than those in Fig. 4A-B. It
371 demonstrates the decline of assimilation effects when observations are unavailable. On the
372 other hand, the slopes in the linear fits are 0.89 and 0.92 in DL and KF in 2015-2018 (Fig. 4C),
373 respectively, and become 0.80 and 1.02 in 2019-2020 (Fig. 4D). The deviations in the slopes
374 reflect an underestimation of CO concentrations in the DL model at grids with extremely high
375 CO concentrations. DL model predicts CO concentrations based on the skills learned in the
376 training process. However, the training is dominated by the majority of CO observations with
377 low and medium CO concentrations. As shown in Fig.4A-B, extreme pollution events, with
378 CO concentrations > 1200 ppb, account only 3.4% of the total number of observations. It
379 cannot be learned sufficiently, because the DL model, as a data-driven approach, would require
380 more observations about the extreme pollution events to improve the predictions. By contrast,

Deleted: We

Deleted: model

Deleted: , while the extreme high CO concentrations (i.e.,
Deleted:)

Deleted: .

386 KF is driven by observations directly, so that both high and low CO concentrations can be
387 simulated. In addition, because most MEE stations are urban sites, the good agreement between
388 DL model and MEE CO observations may not be able to ensure the accuracy of predicted CO
389 concentrations over remote rural areas, as well as the high CO concentrations over mountain
390 areas around urban basins in the Shanxi province. Integration of modeled CO concentrations
391 in the DL model in future studies may improve predicted CO concentrations over remote areas
392 without local observations.

Deleted: , and thus,

Deleted: .

393 **4. Conclusion**

394 A hybrid DL model (hyDL-CO), based on CNN and LSTM, was built in this work to
395 provide a comparative analysis between DL and KF to predict CO concentrations in China in
396 2015-2020. We find the performance of the DL model is better than KF in the training period
397 (2015-2018): the bias and correlation coefficients are 9.6 ppb and 0.98 over E. China, and -
398 12.5 ppb and 0.96 over grids with independent observations. By contrast, the assimilated CO
399 concentrations by KF demonstrate comparable correlation coefficients but larger negative
400 biases: the bias and correlation coefficients are -114.9 ppb and 0.99 over E. China, and -252.5
401 ppb and 0.95 over grids with independent observations. The larger biases in the KF are caused
402 by the discrepancy in the algorithm, i.e., the objective of data assimilation is to improve the
403 simulated atmospheric compositions by considering the model and observation errors, which
404 is not designed to reproduce the observations. Both DL and KF show better predictions than
405 the control runs: the bias and correlation coefficients are -409.6 ppb and 0.94 over E. China,
406 and -443.3 ppb and 0.91 over grids with independent observations.

407 Furthermore, we find good temporal extensibility of the DL model in the test period
408 (2019-2020): the bias and correlation coefficients are 95.7 ppb and 0.93 over E. China, and
409 81.0 ppb and 0.91 over grids with independent observations. The correlation coefficients (0.91-
410 0.93) mean enough capability to provide useful information to predict CO variabilities without

413 inputs of CO observations. In addition, we find an unexpected drop in CO emissions over
414 highly polluted NCP in 2019. Our analysis further exhibits a significant decline in CO
415 emissions in early 2020 due to the COVID-19 controls. Despite these advantages, we find a
416 noticeable underestimation of CO concentrations at grids with extremely high CO
417 concentrations in the DL model, because the training is dominated by the majority of CO
418 observations with low and medium CO concentrations, and thus, the extreme pollution events
419 cannot be learned sufficiently. This work demonstrates the advantages and disadvantages of
420 DL models to predict atmospheric compositions in respective to traditional data assimilation.

421 We assume comparable or better performances of DL in the predictions of O₃ and PM_{2.5} than
422 the CO analysis shown in this work, because of their shorter lifetimes, and advise more efforts
423 to explore new applications of DL models in the predictions of other atmospheric compositions.

424
425 **Code and data availability:** The MEE CO data can be downloaded from
426 <https://quotsoft.net/air/>. The GEOS-Chem model (version 12.8.1) can be downloaded from
427 http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_12#12.8.1. The code of the
428 hyDL-CO model, sample data for the hyDL-CO model run and GEOS-Chem model output can
429 be downloaded from <https://doi.org/10.5281/zenodo.5913013>.

430
431 **Author Contributions:** Z.J. designed the research. W.H. and T.-L.H. developed the model
432 code and performed the research. Z.J. wrote the manuscript. All authors contributed to
433 discussions and editing the manuscript.

434
435 **Competing interests:** The authors declare that they have no conflict of interest.

436
437 **Acknowledgments:** We thank the China Ministry of Ecology and Environment (MEE) for
438 providing the surface CO measurements. The numerical calculations in this paper have been

Deleted: of

Deleted: of

Deleted: extreme

Deleted: We

Deleted: environmental studies

444 done on the supercomputing system in the Supercomputing Center of University of Science
445 and Technology of China. This work was supported by the Hundred Talents Program of
446 Chinese Academy of Science and National Natural Science Foundation of China (41721002).

447 **Table and Figures**

448 **Table 1.** Hyperparameters used in the hybrid DL model.

449

450 **Table 2.** Deep learning (DL), Kalman Filter (KF) and control run (CR) in respective to MEE
451 CO observations in 2015-2018 and 2019-2020. The locations of independent MEE stations are
452 shown in Fig. 6.

453

454 **Figure 1.** Hybrid DL model used in this paper.

455

456 **Figure 2.** (A) MEE CO observations (90% stations) in 2015-2018; (B) Predicted CO
457 concentrations by DL model in 2015-2018; (C-D) differences and Pearson correlation
458 coefficients between predicted and observed CO in 2015-2018. (E-H) MEE CO observations
459 (90% stations), predicted CO concentrations by DL model and their differences, and Pearson
460 correlation coefficients in 2019-2020. (I-P) Same as panels A-H, but for KF. The unit is ppb.

461

462 **Figure 3.** Daily variabilities of CO concentrations from MEE (90% stations), DL and KF in
463 2015-2018 and 2019-2020.

464

465 **Figure 4.** (A-B) Relationships between CO concentrations provided by DL, KF, control run
466 (CR) and MEE CO observations in 2015-2018 and 2019-2020. The dots represent daily average
467 of CO concentrations over E. China. The unit is ppb. (C-D) Same as panels A-B, but with
468 randomly selected independent MEE stations. The locations of independent MEE stations are
469 shown in Fig. 6.

470

471 **Figure 5.** (A-B) Predicted by DL (contour) and MEE (dotted) surface CO concentrations in
472 2015-2018 and 2019-2020; (C-D) Same as panels A-B, but for KF.

473

Deleted: ,

Deleted: ,

476 **Figure 6.** (A-B) Predicted by DL (contour) and independent MEE (dotted) surface CO
477 concentrations in 2015-2018 and 2019-2020; (C-D) Same as panels A-B, but for KF. The
478 randomly selected independent MEE stations (about 10% of total stations) are not used in both
479 DL and KF in 2015-2020.

480

481 **Figure 7.** Daily variabilities of CO concentrations from independent MEE stations, DL and KF
482 in 2015-2018 and 2019-2020. The locations of independent MEE stations are shown in Fig. 6.
483

484 **References**

485 Andersson, T. R., Hosking, J. S., Perez-Ortiz, M., Paige, B., Elliott, A., Russell, C., Law, S.,
486 Jones, D. C., Wilkinson, J., Phillips, T., Byrne, J., Tietsche, S., Sarojini, B. B., Blanchard-
487 Wrigglesworth, E., Aksenov, Y., Downie, R., and Shuckburgh, E.: Seasonal Arctic sea ice
488 forecasting with probabilistic deep learning, *Nat Commun*, 12, 5124, 10.1038/s41467-021-
489 25257-4, 2021.

490 Chen, X., Jiang, Z., Shen, Y., Li, R., Fu, Y., Liu, J., Han, H., Liao, H., Cheng, X., Jones, D. B.
491 A., Worden, H., and Abad, G. G.: Chinese regulations are working - why is surface ozone over
492 industrialized areas still high? Applying lessons from Northeast US air quality evolution,
493 *Geophys Res Lett*, e2021GL092816, <https://doi.org/10.1029/2021GL092816>, 2021.

494 Chen, Y., Cui, S., Chen, P., Yuan, Q., Kang, P., and Zhu, L.: An LSTM-based neural network
495 method of particulate pollution forecast in China, *Environ Res Let*, 16, 10.1088/1748-
496 9326/abe1f5, 2021.

497 Feng, S., Jiang, F., Wu, Z., Wang, H., Ju, W., and Wang, H.: CO Emissions Inferred From
498 Surface CO Observations Over China in December 2013 and 2017, *J Geophys Res-Atmos*,
499 125, 10.1029/2019jd031808, 2020.

500 Fisher, J. A., Murray, L. T., Jones, D. B. A., and Deutscher, N. M.: Improved method for linear
501 carbon monoxide simulation and source attribution in atmospheric chemistry models
502 illustrated using GEOS-Chem v9, *Geosci Model Dev*, 10, 4129-4144, 10.5194/gmd-10-4129-
503 2017, 2017.

504 Gaubert, B., Bouarar, I., Doumbia, T., Liu, Y., Stavrakou, T., Deroubaix, A., Darras, S.,
505 Elguindi, N., Granier, C., Lacey, F., Müller, J. F., Shi, X., Tilmes, S., Wang, T., and Brasseur,
506 G. P.: Global Changes in Secondary Atmospheric Pollutants During the 2020 COVID - 19
507 Pandemic, *J Geophys Res-Atmos*, 126, 10.1029/2020jd034213, 2021.

508 Ghorbanzadeh, O., Crivellari, A., Ghamisi, P., Shahabi, H., and Blaschke, T.: A comprehensive
509 transferability evaluation of U-Net and ResU-Net for landslide detection from Sentinel-2 data
510 (case study areas from Taiwan, China, and Japan), *Sci Rep*, 11, 14629, 10.1038/s41598-021-
511 94190-9, 2021.

512 He, K., Zhang, X., Ren, S., and Sun, J.: Deep Residual Learning for Image Recognition, 2016
513 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

514 He, T. L., Jones, D. B. A., Miyazaki, K., Huang, B., Liu, Y., Jiang, Z., White, E. C., Worden,
515 H. M., and Worden, J. R.: Deep learning to evaluate US NO_x emissions using surface ozone
516 predictions, *J Geophys Res-Atmos*, e2021JD035597, 10.1029/2021jd035597, 2022.

517 Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T.,
518 Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N.,
519 Kurokawa, J.-i., Li, M., Liu, L., Lu, Z., Moura, M. C. P., O'Rourke, P. R., and Zhang, Q.:
520 Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the
521 Community Emissions Data System (CEDS), *Geosci Model Dev*, 11, 369–408, 10.5194/gmd-
522 11-369-2018, 2018.

523 Jiang, Z., Worden, J. R., Worden, H., Deeter, M., Jones, D. B. A., Arellano, A. F., and Henze,
524 D. K.: A 15-year record of CO emissions constrained by MOPITT CO observations, *Atmos*
525 *Chem Phys*, 17, 4565–4583, 10.5194/acp-17-4565-2017, 2017.

526 Kleinert, F., Leufen, L. H., and Schultz, M. G.: IntelliO3-ts v1.0: a neural network approach to
527 predict near-surface ozone concentrations in Germany, *Geosci Model Dev*, 14, 1–25,
528 10.5194/gmd-14-1-2021, 2021.

529 Kong, L., Tang, X., Zhu, J., Wang, Z., Fu, J. S., Wang, X., Itahashi, S., Yamaji, K., Nagashima,
530 T., Lee, H.-J., Kim, C.-H., Lin, C.-Y., Chen, L., Zhang, M., Tao, Z., Li, J., Kajino, M., Liao,
531 H., Wang, Z., Sudo, K., Wang, Y., Pan, Y., Tang, G., Li, M., Wu, Q., Ge, B., and Carmichael,
532 G. R.: Evaluation and uncertainty investigation of the NO₂, CO and NH₃ modeling over China
533 under the framework of MICS-Asia III, *Atmos Chem Phys*, 20, 181–202, 10.5194/acp-20-181-
534 2020, 2020.

535 Korznikov, K. A., Kislov, D. E., Altman, J., Doležal, J., Vozmishcheva, A. S., and Krestov, P.
536 V.: Using U-Net-Like Deep Convolutional Neural Networks for Precise Tree Recognition in
537 Very High Resolution RGB (Red, Green, Blue) Satellite Images, *Forests*, 12,
538 10.3390/f12010066, 2021.

539 LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel,
540 L. D.: Backpropagation applied to hand written zip code recognition, *Neural Computation*,
541 1(4), 541–551, 10.1162/neco.1989.1.4.541, 1989.

542 Li, K., Jacob, D. J., Liao, H., Shen, L., Zhang, Q., and Bates, K. H.: Anthropogenic drivers of
543 2013–2017 trends in summer surface ozone in China, *Proc Natl Acad Sci USA*, 116, 422–427,
544 10.1073/pnas.1812168116, 2019.

545 Li, K., Jacob, D. J., Shen, L., Lu, X., De Smedt, I., and Liao, H.: Increases in surface ozone
546 pollution in China from 2013 to 2019: anthropogenic and meteorological influences, *Atmos*
547 *Chem Phys*, 20, 11423–11433, 10.5194/acp-20-11423-2020, 2020.

548 Li, M., Zhang, Q., Kurokawa, J.-i., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D.
549 G., Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., and
550 Zheng, B.: MIX: a mosaic Asian anthropogenic emission inventory under the international
551 collaboration framework of the MICS-Asia and HTAP, *Atmos Chem Phys*, 17, 935–963,
552 10.5194/acp-17-935-2017, 2017.

553 Li, R., Zhao, Y., Zhou, W., Meng, Y., Zhang, Z., and Fu, H.: Developing a novel hybrid model
554 for the estimation of surface 8 h ozone (O₃) across the remote Tibetan Plateau during 2005–
555 2018, *Atmos Chem Phys*, 20, 6159–6175, 10.5194/acp-20-6159-2020, 2020.

556 Liu, P., Wei, Y., Wang, Q., Chen, Y., and Xie, J.: Research on Post-Earthquake Landslide
557 Extraction Algorithm Based on Improved U-Net Model, *Remote Sens.*, 12,
558 10.3390/rs12050894, 2020.

559 Lu, X., Ye, X., Zhou, M., Zhao, Y., Weng, H., Kong, H., Li, K., Gao, M., Zheng, B., Lin, J.,
560 Zhou, F., Zhang, Q., Wu, D., Zhang, L., and Zhang, Y.: The underappreciated role of
561 agricultural soil nitrogen oxide emissions in ozone pollution regulation in North China, *Nat
562 Commun.*, 12, 5021, 10.1038/s41467-021-25147-9, 2021.

563 Ma, C., Wang, T., Mizzi, A. P., Anderson, J. L., Zhuang, B., Xie, M., and Wu, R.:
564 Multiconstituent Data Assimilation With WRF - Chem/DART: Potential for Adjusting
565 Anthropogenic Emissions and Improving Air Quality Forecasts Over Eastern China, *J Geophys
566 Res-Atmos.*, 10.1029/2019jd030421, 2019.

567 Peng, Z., Lei, L., Liu, Z., Sun, J., Ding, A., Ban, J., Chen, D., Kou, X., and Chu, K.: The impact
568 of multi-species surface chemical observation assimilation on air quality forecasts in China,
569 *Atmos Chem Phys*, 18, 17387-17404, 10.5194/acp-18-17387-2018, 2018.

570 Qi, W., Wei, M., Yang, W., Xu, C., and Ma, C.: Automatic Mapping of Landslides by the
571 ResU-Net, *Remote Sens.*, 12, 10.3390/rs12152487, 2020.

572 Quennehen, B., Raut, J. C., Law, K. S., Daskalakis, N., Ancellet, G., Clerbaux, C., Kim, S. W.,
573 Lund, M. T., Myhre, G., Olivié, D. J. L., Safieddine, S., Skeie, R. B., Thomas, J. L., Tsyro, S.,
574 Bazureau, A., Bellouin, N., Hu, M., Kanakidou, M., Klimont, Z., Kupiainen, K.,
575 Myriokefalitakis, S., Quaas, J., Rumbold, S. T., Schulz, M., Cherian, R., Shimizu, A., Wang,
576 J., Yoon, S. C., and Zhu, T.: Multi-model evaluation of short-lived pollutant distributions over
577 east Asia during summer 2008, *Atmos Chem Phys*, 16, 10765-10792, 10.5194/acp-16-10765-
578 2016, 2016.

579 Ravuri, S., Lenc, K., Willson, M., Kangin, D., Lam, R., Mirowski, P., Fitzsimons, M.,
580 Athanassiadou, M., Kashem, S., Madge, S., Prudden, R., Mandhane, A., Clark, A., Brock, A.,
581 Simonyan, K., Hadsell, R., Robinson, N., Clancy, E., Arribas, A., and Mohamed, S.: Skilful
582 precipitation nowcasting using deep generative models of radar, *Nature*, 597, 672-677,
583 10.1038/s41586-021-03854-z, 2021.

584 Ronneberger, O., Fischer, P., and Brox, T.: U-Net: Convolutional Networks for Biomedical
585 Image Segmentation, *arXiv e-prints*, 10.48550/ARXIV.1505.04597, 2015.

586 Rumelhart, D. E., Hinton, G. E., and Williams, R. J.: Learning representations by back-
587 propagating errors, *Nature*, 323(6088), 533-536, <https://doi.org/10.1038/323533a0doi:10.1038/323533a0>, 1986.

588 Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K., and Woo, W.-C.: Convolutional
589 LSTM Network: A Machine Learning Approach for Precipitation Nowcasting,
590 10.48550/ARXIV.1506.04214, 2015.

591 Shi, X., and Brasseur, G. P.: The Response in Air Quality to the Reduction of Chinese
592 Economic Activities during the COVID-19 Outbreak, *Geophys Res Lett*, e2020GL088070,
593 10.1029/2020GL088070, 2020.

594 Shi, Z., Song, C., Liu, B., Lu, G., Xu, J., Van Vu, T., Elliott, R. J. R., Li, W., Bloss, W. J., and
595 Harrison, R. M.: Abrupt but smaller than expected changes in surface air quality attributable to
596 COVID-19 lockdowns, *Sci Adv*, 7, 10.1126/sciadv.abd6696, 2021.

598 Tang, Z., Chen, J., and Jiang, Z.: Effects of satellite and surface measurements on atmospheric
599 CO assimilations over East Asia in 2015-2020, *Atmos Chem Phys Dissc*, 10.5194/acp-2021-
600 1035, 2022.

601 Xing, X., Xiong, Y., Yang, R., Wang, R., Wang, W., Kan, H., Lu, T., Li, D., Cao, J., Penuelas,
602 J., Ciais, P., Bauer, N., Boucher, O., Balkanski, Y., Hauglustaine, D., Brasseur, G., Morawska,
603 L., Janssens, I. A., Wang, X., Sardans, J., Wang, Y., Deng, Y., Wang, L., Chen, J., Tang, X.,
604 and Zhang, R.: Predicting the effect of confinement on the COVID-19 spread using machine
605 learning enriched with satellite air pollution observations, *Proc Natl Acad Sci USA*, 118,
606 10.1073/pnas.2109098118, 2021.

607 Zhang, Y., Vu, T. V., Sun, J., He, J., Shen, X., Lin, W., Zhang, X., Zhong, J., Gao, W., Wang,
608 Y., Fu, T. M., Ma, Y., Li, W., and Shi, Z.: Significant Changes in Chemistry of Fine Particles
609 in Wintertime Beijing from 2007 to 2017: Impact of Clean Air Actions, *Environ Sci Technol*,
610 54, 1344-1352, 10.1021/acs.est.9b04678, 2020.

611