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Abstract. Reduced complexity models, also called simple climate models or compact models, provide an alternative to 

Earth system models (ESMs) with lower computational costs, although at the expense of spatial and temporal information. It 

remains important to evaluate and validate these reduced complexity models. Here, we evaluate the newesta recent version 

(v3.1) of the OSCAR model using observations and results from ESMs from the current Coupled Model Intercomparison 

Project 6 (CMIP6). The results follow the same post-processing used for the contribution of OSCAR to the Reduced 15 

Complexity Model Intercomparison Project Phase 2, with regarding the identification of stable configurations and the use of 

observational constraints. Overall, OSCAR v3.1 shows good agreement with observations, ESMs and emerging 

properties.These constraints succeed in decreasing the increaseoverestimation ofin global surface air temperature over 2000-

2019 with reference to 1961-1900 from 0.60 ± 0.11 K to 0.55 ± 0.04 K (, the targetconstraint being 0.54 ± 0.05 K). The 

Equilibrium Climate Sensitivity (ECS) of the unconstrained OSCAR is 3.17 ± 0.63 K, while CMIP5 & CMIP6 models have 20 

respectively ECSs of 3.2 ± 0.7 K and 3.7 ± 1.1 K, respectively. Applying observational constraints to OSCAR reduces the 

ECS to 2.78 ± 0.47K. Overall, Iitthe model qualitatively reproduces the responses of complex ESMs, for all aspects of the 

Earth system. We observealthough Ssome of the differences with these modelsremain, most of them being  are due to the 

impact of observational constraints on the weighting of parametrizations. Specific features of OSCAR also contribute to 

these differences, such as its fully interactive atmospheric chemistry and endogenous calculations of biomass burning, 25 

wetlands CH4 and permafrost CH4 and CO2 emissions. Identified main points of needed improvements of the OSCAR model 

include a low sensitivity of the land carbon cycle to climate change, an instability of the ocean carbon cycle, the seemingly 

too simple climate module, and the too strong climate feedback involving short-lived species. Beyond providing a key 

diagnosis of the OSCAR model in the context of the reduced-complexity models intercomparison project (RCMIP), this 

work is also meant to help with the upcoming calibration of OSCAR on CMIP6 results, and to provide a large group of 30 

CMIP6 simulations run consistently within a probabilistic framework. 
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1. Introduction 

Complex models such as Earth system models (ESMs) are used for climate projections (Collins et al., 2013). ESMs 35 

provide gridded detailed process-based outputs (Flato et al., 2013), but these strengths are mitigated by heavy computational 

costs. As a complement, reduced-complexity models, also called simple climate models (SCMs), prove useful to investigate 

couplings and uncertainties (Nicholls et al., 2020; Clarke et al., 2014), especially for large ensembles of scenarios and 

statistical analysis of uncertainties to model parameters (Gasser et al., 2015; Li et al., 2016; Quilcaille et al., 2018). SCMs 

run significantly faster, thanks to a parametric modelling approach often calibrated on more complex models such as ESMs 40 

(Meinshausen et al., 2011a; Crichton et al., 2014; Hartin et al., 2015; Gasser et al., 2017; Smith et al., 2018; Dorheim et al., 

2021). Although simpler than ESMs, those models exhibit diversity in their modelling and calibration (Nicholls et al., 2020; 

Nicholls et al., 2021). Reduced complexity models need to be validated despite their calibration and their relative simplicity. 

Reduced complexity models are often built as a combination of modules, each dedicated to aspects of the Earth system, such 

as the atmospheric chemistry, the oceanic carbon cycle, the climate response to radiative forcings, etc. These models may be 45 

developed as unique emulators, with all modules calibrated together to emulate a single ESM. They may also be developed 

as a combination of emulators, with each module calibrated separately, as it is the case for OSCAR. Under such an approach, 

the range of potential modelling outcomes is broadened but the need for validation is increased. 

Thanks to its relative simplicity, OSCAR is capable to easily include additional processes using existing models of higher 

complexity (Gasser et al., 2018). This SCM is designed to run in a probabilistic framework, where every ensemble member 50 

corresponds to the parametrization of these processes. Thus, OSCAR combines features from a large set of models (Gasser et 

al., 2017): for instance, emissions from land-use change, permafrost, wetlands and biomass burning are endogenously 

calculated in the model. Under such an approach, the range of potential modelling outcomes is broader than that of the 

ESMs. Yet, it also increases the need for validation. As a potential correction, OSCAR may also easily integrate 

observational constraints. In this paper, we evaluate this modelling chain. 55 

In this paper, experiments Experiments designed under the Coupled Model Intercomparison Project 6 (Eyring et al., 

2016) are used to diagnose evaluate the performances of the latest version 3.1 of OSCAR, comparing its results to 

observations and other model outputs. We briefly describe the model and its update, the probabilistic setup used, and how it 

has been constrained using observations. We present the CMIP6 simulations run with OSCAR and compare their results to 

the available CMIP6 ESM runs. Beyond diagnosis evaluation and despite being a simple model, OSCAR has a number of 60 

specificities that make it interesting to some of CMIP6-endorsed MIPs: CDRMIP (Keller et al., 2018a) and ZECMIP (Jones 

et al., 2019) thanks to its advanced carbon cycle, and LUMIP (Lawrence et al., 2016) thanks to its book-keeping land use 

module. OSCAR is also part of the RCMIP project phases 1 and 2 (Nicholls et al., 2020; Nicholls et al., 2021), whose 

objective is to compare reduced complexity models together and against CMIP6 and CMIP5 simulations. 

In this study, we focus on several aspects of the model. To begin with, we describe OSCAR already detailed in (Gasser et 65 

al., 2017) and the setupthe approach based on the exclusion of diverging parametrizations and observational constraints is 



3 

only briefly analysed, for it is the one that was used in RCMIP phase 2 (Nicholls et al., 2021). The climate response of the 

model is investigated using Iidealized experiments from the DECK and RCMIP (Nicholls et al., 2020) are used to evaluate 

the climate response, while o. The carbon response is then analyzed as well thanks to other idealized experiments from the 

DECK and C4MIP (Jones et al., 2016) to evaluate the carbon cycle response. The performances of OSCAR to reconstruct 70 

the historical period are evaluated usingThen, we use experiments from the DECK (Eyring et al., 2016) to simulate climate 

change over the historical period. We extend this analysis thanks to an attribution exercise of historical global temperature 

change, Experiments based on experiments from DAMIP (Gillett et al., 2016), AerChemMIP (Collins et al., 2017), C4MIP 

(Jones et al., 2016) and LUMIP (Lawrence et al., 2016) form the basis for an attribution exercise of historical global 

temperature change. Comparison on climate projections are then obtained using ScenarioMIP (O'Neill et al., 2016). Insights 75 

are calculated on the zero emission committed warming using ZECMIP (Jones et al., 2019). Further analysis on the 

behaviour of OSCAR is provided in the Appendix B. 

2. Experimental setup 

2.1. Brief description of OSCAR v3.1 

OSCAR v3.1 is an open-source Earth system model of reduced complexity, whose modules mimic models of higher 80 

complexity, and. OSCAR is meant to be used in a probabilistic fashion (Gasser et al., 2017). A conceptual description of 

OSCAR v3.1 is given in Figure 1. The full description of OSCAR v2.2 can be found in (Gasser et al., 2017), providing 

details on its structure, equations and calibration. Changes from v2.2 to v3.1 are detailed in (Gasser et al., 2020a).  

Global surface temperature changes in response to radiative forcing follows a two-box model formulation (Geoffroy et 

al., 2013b). Global precipitation is deduced from global surface temperature and the atmospheric fraction of radiative forcing 85 

(Shine et al., 2015). Linear scaling on the global variables is used to estimate regional temperature and precipitation changes, 

over five broad world regions (IIASA, 2018a). OSCAR calculates the radiative forcing caused by greenhouse gases (CO2, 

CH4, N2O, 37 halogenated compounds), short-lived climate forcers (tropospheric and stratospheric ozone, stratospheric water 

vapour, nitrates, sulphates, black carbon, primary and secondary organic aerosols) and changes in surface albedo. 

The ocean carbon cycle is based on the mixed-layer response function of (Joos et al., 1996), albeit with an added 90 

stratification of the upper ocean derived from CMIP5 (Arora et al., 2013) and with an updated carbonate chemistry. The land 

carbon cycle is divided into five biomes and the same five regions as previously, and. E each of the 25 biome/region 

combinations follows a three-box model (soil, litter and vegetation) described by (Gasser et al., 2020a). The preindustrial 

state of the land carbon cycle is calibrated against TRENDYv7 (Le Quéré et al., 2018a) and its transient response to CO2 and 

climate is calibrated against CMIP5 models (Arora et al., 2013). 95 

Additionally, OSCAR endogenously estimates key aspects of the carbon cycle. A dedicated book-keeping module tracks 

land cover change, wood harvest and shifting cultivation, which allows OSCAR to estimate its own CO2 emissions from 

land-use change (Gasser et al., 2020a; Gasser and Ciais, 2013b). Permafrost thaw and the resulting emissions of CO2 and 
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CH4 are also accounted for (Gasser et al., 2018). CH4 emissions from wetlands are calibrated on WETCHIMP (Melton et al., 

2013). In addition, biomass burning emissions are calculated endogenously on the basis of the book-keeping module and 100 

wildfires that are simulated as part of the land carbon cycle (Gasser et al., 2017). The latter emissions were subtracted from 

the input data used to drive OSCAR to avoid double counting. 

The atmospheric lifetimes of non-CO2 greenhouse gases are impacted by non-linear tropospheric (Holmes et al., 2013) 

and stratospheric (Prather et al., 2015) chemistries. Tropospheric ozone follows the formulation by (Ehhalt et al., 2001) but 

recalibrated on ACCMIP (Stevenson et al., 2013). Stratospheric ozone is derived from (Newman et al., 2007) and 105 

(Ravishankara et al., 2009). Aerosol-radiation interactions are based on CMIP5 and AeroCom2 (Myhre et al., 2013), while 

aerosol-cloud interactions depend on the hydrophilic fraction of each aerosol and follows a logarithmic formulation (Hansen 

et al., 2005; Stevens, 2015). Surface albedo change induced by land-cover change follows (Bright and Kvalevåg, 2013). The 

impact of black carbon deposition on snow albedo is calibrated on ACCMIP globally (Lee et al., 2013) and regionalized 

following (Reddy and Boucher, 2007). 110 

We pinpoint that OSCAR v3.1 is still calibrated on CMIP5 ESMs,  and therefore not meant to emulate CMIP6 models. 

Furthermore, each module is calibrated on available models, but not all ESMs have implemented every aspect modelled in 

OSCAR, such as permafrost or biomass burning. It means that OSCAR does not emulate any given ESM, but it combines 

modules emulating specific parts of these models. Every parametrization of OSCAR is thus a combination of parameters, 

and some of these combinations may be unrealistic and need post-processing to keep only the physically realistic ones, as 115 

explained in section 2.3. 

2.2. CMIP6 and RCMIP experiments 

A total of 99 experiments were run with OSCAR, 75 being from CMIP6 and 24 from RCMIP. A list of these experiments 

is provided in Table 1Table 1. We selecteded the experiments according to several criteria: typically, experiments are global 

and/or with long time-series of output requested, and experiments do not overly focus on a given process or short time 120 

scales. In addition, RCMIP requestedsed additional experiments to complement those of CMIP6, mostly extended and 

additional scenarios, including the RCP scenarios from the previous CMIP5 exercise (Meinshausen et al., 2011b). Between 

the CMIP5 and CMIP6 historical simulations, the concentration- and emission-driven ones, and the land-only experiments of 

LUMIP, eight different spin-up and control experiments had to be performed. Every spin-up is a recycling of the 

preindustrial forcing over 1000 years. 125 

We use driving datasets for historical concentrations of greenhouse gases (Meinshausen et al., 2017), projected 

concentrations of greenhouse gases (ESGF, 2018), emissions (IIASA, 2018b; Gidden et al., 2019; Hoesly et al., 2018), land-

use (LUH2, 2018), solar activity (Matthes et al., 2017), volcanic activity (Zanchettin et al., 2016) and the land-only climate 

climatology for LUMIP experiments (Lawrence et al., 2016). The extensions of scenarios are not those that were initially 

foreseen (O'Neill et al., 2016), but those that have effectively been used during the CMIP6 exercise (Meinshausen et al., 130 
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2019). The volcanic aerosol optical depth has been treated to scale and extend AR5 volcanic radiative forcing (IPCC, 2013), 

to comply with the requirement of OSCAR to have a radiative forcing as driver for this contribution.  

Every single experiment is run for 10,000 different configurations of OSCAR, drawn randomly from the pool of all 

possible parameters values in a Monte-Carlo setup (Gasser et al., 2017). Altogether, the combined experiments and Monte 

Carlo members sum to 569,700,000 simulated years. 135 

 

2.3. Post-processing: exclusion and constraining 

As described in (Gasser et al., 2017), most of the equations of OSCAR may use different sets of parameters or even 

different forms of equations. These parameters arise from the training over different models, while the forms of equations 

find their justification in the literature. Each combination of parameters and equations is defined as a configuration of 140 

OSCAR and represent a different possible model of the Earth system. A Monte Carlo setup is used with OSCAR over these 

configurations. This method for the uncertainty in the modelling of the Earth system comes with two side-effects: some 

combinations may be physically unrealistic, and some parameterizations may become numerically unstable when the model 

is pushed to the edge of the validity domain of its parametrizations. Therefore, the raw outputs of the simulations undergo 

two rounds of post-processing: one to exclude the diverging simulations, and one to constrain the resulting Monte Carlo 145 

ensemble. We highlight remind that the same exclusions and constraints are used for the contribution of OSCAR in RCMIP 

phase 2 (Nicholls et al., 2021). All details about the method are provided in Appendix A. All final outputs and results are 

provided as the resulting weighted means and standard deviations, using the normalised likelihood as weight. The effect of 

this constraining is further discussed in the next section. 

 150 

In the exclusion round, we identify and discard the configurations that lead to a numerical divergence of the model as 

illustrated with Figure 2. Every experiment undergoes a thorough search, and we developed heuristic criteria to exclude 

these diverging runs by trial-error. We identify divergences occurring in high warming scenarios, mostly when the oceanic 

carbon sink drops and then oscillates. We explain this instability with the stratification of the ocean surface, as detailed in 

equation 4 of (Gasser et al., 2017). Some parametrizations under high warming scenarios exhibit an additional mode, not 155 

diverging in the strictest sense, yet, with the ocean carbon sink becoming a source and then switching back to a sink, which 

we identified as a physically unrealistic behaviour of the parametrization. 

To discard the unrealistic configurations, we use the experiments ssp585, ssp370, 1pctCO2 and abrupt-4xCO2 for their 

high warming over different timescales. We use the ocean sink, the land sink, the CO2 emissions from LUC and the CO2 

emissions from permafrost, to ensure that the whole carbon cycle remains within reasonable boundaries. The criteria are set 160 

based on the performances of the remaining subset. In general, we use 20 PgC/yr in absolute value as a threshold for 

divergence. Over ssp585 and ssp370, the domain is restrained to strictly positive values, due to the additional mode 

mentioned previously. Over abrupt-4xCO2, the criteria are applied over the last 50 years of the experiments only. In 

Field Code Changed
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1pctCO2, the run is extended by another 100 years for better identification. As illustrated in Figure 2, most of the exclusions 

are related to ocean carbon sink, the other variables bring only little exclusions. The 1118 configurations not causing any 165 

divergences in all the experiments are kept as a common set of configurations for all experiments. 

The need for exclusion is stronger as the atmospheric concentration of CO2 and the global surface temperature increase. 

We acknowledge that when a significant fraction of the configurations is excluded, confidence in our model’s result is 

lowered, but such a limitation of the validity domain is inherent to reduced-complexity models. The model’s results might as 

well depend on the set thresholds for exclusions. However, this bias is reduced through the constraining round because 170 

configurations with unrealistic carbon cycles receive a low likelihood. 

We observed that in most cases, the reason of the exclusion is due to a diverging ocean sink. The ocean carbon cycle of 

OSCAR is its oldest module (Gasser et al., 2017), and should be redesigned for more stable behaviour under high-warming 

scenarios. A possibility is to increase the number of sub-timesteps in the oceanic carbon module to avoid this issue for a 

fraction of the configurations, but it comes at the expense of the computational cost of the model. 175 

After this exclusion, the outputs of OSCAR are constrained using observations. As done for RCMIP phase 2 (Nicholls et 

al., 2021), the objective of this constraining round is to use the flexibility and the probabilistic frameworks of the reduced 

complexity models to synthesize lines of evidence with the modelling of the Earth system. With OSCAR, we assess the 

physical likelihood of the model’s configurations using lines of evidence from the literature. For every constraint, we extend 

a method already used with OSCAR but with only one constraint (Gasser et al., 2020a; Le Quéré et al., 2018b). We assume a 180 

distribution from which we derive the likelihood of every configuration, as illustrated in equation A1 of (Gasser et al., 

2020a). The product of the probabilities over the set of constraints is the final likelihood of the configurations. 

As the first observational constraint, we choose the surface air ocean blended temperature change over 2000-2019 with 

reference to 1961-1990 are used, provided as an assessed range by RCMIP (Nicholls et al., 2021) from the HadCRUT 

4.6.0.0 dataset (Morice et al., 2012). This constraint is meant to provide information on the climate system. To constrain the 185 

carbon cycle, we use compatible fossil fuel emissions. For now, OSCAR v3.1 is calibrated on CMIP5, which motivates the 

use of the compatible emissions of CMIP5, not those of CMIP6. An initial set of constraints based solely on observations 

had revealed that using projections helped the overall constraining round, thanks to the larger perturbation in the scenarios 

than in the historical period. Thus we choose the CMIP5 cumulative compatible fossil fuel emissions over the 

concentrations-driven historical and 4 RCPs are used (Ciais et al., 2013b). To further constrain the partitioning of the carbon 190 

sinks between land and ocean, we use data on the cumulative net ocean to atmosphere flux of CO2 over 1750-2011 (Ciais et 

al., 2013b). 

All final outputs and results are provided as the resulting weighted means and standard deviations, using the normalised 

likelihood as weight. The effect of this constraining is further discussed in the next section. 

Field Code Changed
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3. Diagnosis Evaluation of OSCAR v3.1 195 

In the previousformer section, we give an overview of OSCAR, explain which experiments are run and shortly describe 

how the results are processed. Given this experimental setup, we evaluate how OSCAR reproduces key features by 

comparing against other models and observations. We investigate the extent of the corrections brought by the constraints in 

Section 3.1. As the  two main components of the Earth system, the climate and carbon cycle responses are then respectively 

investigated in Sections 3.2 and 3.3. We evaluate the capacity of OSCAR to reconstruct the historical period in Section 3.4 200 

and calculate the contributions of individual forcings over the historical warming in Section 3.5. After evaluating the 

historical period, we evaluate how OSCAR performs on scenarios, comparing against ESMs in Section 3.6. The zero 

emissions commitment is usepresented in Section 3.7 as a more advanced property of the Earth system to compare the 

performance of OSCAR with respect to other models. Additional experiments are used to provide insights on the behaviour 

of OSCAR, albeit not used for evaluation of the model, as detailed in Section 3.8 and Appendix B. 205 

3.  

3.1. Effect of the constraints 

Our constraining approach markedly corrects natural biases in OSCAR, as illustrated in Figure 3Figure . The change in 

global surface air temperature (GSAT) over 2000-2019 with regard to 1961-1990 is constrained to a value of 0.54 ± 0.05 K. 

Without the constraint, OSCAR v3.1 reaches 0.60 ± 0.11 K. Due to the combination of observational constraints, OSCAR 210 

v3.1 is corrected to 0.55 ± 0.04 K. 

Regarding the carbon cycle, the unconstrained OSCAR shows a negative bias in the cumulative net land carbon sink 

(i.e. a too weak removal), balanced by lower cumulative compatible fossil-fuel emissions. Using oObservational constraints 

reduces these biases but does not entirely remove them. After applying the constraints, the uncertainty ranges of the net land 

flux and of fossil-fuel emissions are reduced. The Similarly, the ocean carbon sink over 1750-2011 of the unconstrained 215 

OSCAR is 159 ± 20 PgC, higher than the one of IPCC AR5 (Ciais et al., 2013b), 155 ± 18 PgC, in terms of mean and 

standard deviation. The constraints on cumulative compatible emissions mostly impacts RCP6.0 and RCP8.5, transforming 

the bimodal distribution of the unconstrained OSCAR into a monomodal distribution. Using this constraint, the mean of 

OSCAR is increased and the range decreased, reaching 163 ± 15 PgC. 

Applying these constraints successfully reproduce the observed distribution, but also reduces the range in the other 220 

constraints, such as the cumulative net ocean carbon flux over 1750-2011. We note that combining these constraints leads to 

a tightening of the posterior distribution, thus likely introducing a bias. OSCAR could benefit from further development in 

this direction, following (McNeall et al., 2016; Williamson and Sansom, 2019). 
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3.2. Climate response 

Simulations with an abrupt increase in atmospheric CO2 (and thus in radiative forcing) are typically used to diagnose 225 

evaluate the climate response of complex models. We use three such experiments from CMIP6 and RCMIP with quadrupled, 

doubling and halving atmospheric CO2 (abrupt-4xCO2, abrupt-2xCO2 and abrupt-0p5xCO2). These experiments can be 

used to estimate the Equilibrium Climate Sensitivity (ECS) of an ESM or a model such as OSCAR (Gregory et al., 2004) 

and investigate how this metric is influenced by the intensity of the forcing. These results are shown in Figure 4Figure . 

The ECS is defined as the equilibrium temperature that results from the doubling of the preindustrial atmospheric 230 

concentration of CO2 (Gregory et al., 2004). The ECS and its calculations have evolved with the integration of new 

components to climate models (Meehl et al., 2020). In regard of the computational cost of the ESMs, reaching this 

equilibrium takes a time long enough to use Gregory’s method (Gregory et al., 2004) to calculate the ECS or alternative 

methods (Lurton et al., 2020; Schlund et al., 2020). The ECS using the Gregory method is actually not exactly the 

equilibrium climate sensitivity per se, but rather an “effective climate sensitivity” (Sherwood et al., 2020). Paleoclimate data 235 

shows that feedbacks from vegetation, biogeochemistry or dust affect the equilibrium (Friedrich et al., 2016; Rohling et al., 

2012). From CMIP5 to CMIP6, ESMs have improved their treatment of the biogeochemistry and the vegetation, leading to 

alteration in feedbacks and aerosols fields (Meehl et al., 2020). This evolution participates in the observed changes in ECS 

from CMIP5 to CMIP6, attributed to cloud effects (Zelinka et al., 2020) and the pattern effect (Dong et al., 2020). 

In OSCAR, there are two ways of estimating the ECS. First, because OSCAR is not process-based, the ECS is actually a 240 

parameter of the model. Since the formulation of the climate module is linear (Gasser et al., 2017; Geoffroy et al., 2013b), 

we also know that this value is independent of the intensity of the abrupt experiment. This parameter was calibrated on the 

abrupt-4xCO2 experiment run by CMIP5 models and normalised to OSCAR’s estimate of RF for a quadrupling of CO2 

(Gasser et al., 2017). Under this definition, the ECS of OSCAR follows the Gregory’s method and does not account for all 

feedbacks of OSCAR. When using parameters from OSCAR, the climate feedbacks actually included in the estimated ECS 245 

depend on the CMIP5 models used for calibration. If calibrated on general circulation models (GCMs), only the so-called 

Charney feedbacks are included (i.e. Planck, water vapour, lapse rate, sea-ice albedo, and clouds) with the possible addition 

of the CO2 physiological feedback (Sellers et al., 1996). However, when calibrated on ESMs, additional feedbacks pertaining 

relative to interactive biogeochemical cycles may be included, depending on what exact processes are implemented in a 

given ESM. The second way of estimating the ECS in OSCAR is to define it as the GSAT change at the end of the 1,000 250 

years of the abrupt experiments. Here, all of the feedbacks integrated in OSCAR are accounted for, especially 

biogeochemical feedbacks. 

Values related to these two approaches are presented in Table 2. The ECS calculated using parameters of OSCAR, 

hence comparable to Gregory’s approach, is 2.78 ± 0.47 K when constrained, while the unconstrained one is 3.17 ± 0.63 K. 

ThisBy construction, this, by construction, is consistent with the AR5 estimates (Collins et al., 2013), but also with more 255 

recent assessments (Gregory et al., 2020). Because we use observational constraints, these results are lower than the CMIP5 
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range 2.1 – 4.7 K (Andrews et al., 2012). The CMIP6 range, 1.8 – 5.6 K (Zelinka et al., 2020; Meehl et al., 2020) is even 

higher than the CMIP5 range. The higher values for the ECS from some CMIP6 models are significantly reduced when 

constraining (Nijsse et al., 2020; Bonnet et al., 2021), with some ECS estimates even lower than those shown here, such as  

(e.g. 1.38K with a likely range of 1.3-2.1K) than those shown here. Overall, these values provided by OSCAR remain 260 

consistent with the literature, albeit on the lower end of the range (Sherwood et al., 2020). SimilarlyAs shown in Table 2, the 

Transient Climate Response (TCR) and the Transient Climate Response to Emissions (TCRE) of the unconstrained OSCAR 

are also consistent with the CMIP5 values (Meehl et al., 2020) and (Gillett et al., 2013), thanks to the calibration of the ECS 

in OSCAR. Constraining OSCAR reduces all these metrics both in value and in range, and. we We attribute this effect to the 

constraint on historical warming. This reduction effect is similar to what was shown recently for CMIP6 models (Tokarska et 265 

al., 2020). 

The other approach to derive ECS using abrupt experiments is illustrated in Figure 4Figure . It leads in abrupt-2xCO2 to 

an unconstrained ECS of 2.74 ± 0.52 K (Table 2), reduced to 2.52 ± 0.33 K with the constraints. Overall, the ECS is 

remarkably consistent in terms of average, standard deviation and even skewness across the three abrupt experiments. This is 

due to the construction of OSCAR, with a prescribed logarithmic dependency of the radiative forcing of CO2 to its 270 

atmospheric concentration (Lurton et al., 2020). This ECS is lower than with the first approach, because it includes several 

Earth system feedbacks related to short-lived species that are left free to change during the simulations, owing to the 

experimental protocol. In OSCAR, this is mostly explained by an increase in the atmospheric load of tropospheric aerosols 

(and ozone) caused by the endogenous emission of precursors through biomass burning. These feedbacks are also illustrated 

in Figure 4Figure . The RF resulting from the prescribed change in atmospheric CO2 (7.42 W.m-2 under quadrupled CO2) is 275 

partially compensated by short-lived climate forcers. In the case of abrupt-4xCO2, the RF sums up to 3.46 ± 0.25 W.m-2, 

because of a cooling by scattering aerosols (-0.21 ± 0.16 W.m-2) and aerosol-cloud effects (-0.21 ± 0.15 W.m-2), besides an 

additional warming from absorbing aerosols (0.13 ± 0.08 W.m-2). Finally, from Table 2, we note that constraining reduces 

the parameter-based ECS by 0.44 K, while the one with all feedbacks has its ECS reduced by 0.22 K, which implies that 

biogeochemical feedbacks are also significantly constrained. 280 

 

3.3. Carbon cycle response 

The 1pctCO2 experiment, in which atmospheric CO2 increases by +1% every year, is part of the DECK. Two variants of 

1pctCO2 have been performed as part of the C4MIP exercise (Figure 5Figure ). In 1pctCO2-rad, atmospheric CO2 only has a 

radiative effect on the climate system, as a preindustrial level of CO2 is seen by the carbon cycle. In 1pctCO2-bgc, only the 285 

carbon cycle is affected by CO2, whereas a preindustrial CO2 is prescribed to the climate system. The outputs of OSCAR 

v3.1 on these experiments are consistent with past C4MIP results (Arora et al., 2013). The global mean surface temperature 

responds about linearly to the exponential increase in CO2, because of the implemented logarithmic dependency of the 

Formatted: Font: (Default) +Headings (Times New Roman),
10 pt, Not Bold



10 

radiative forcing of CO2 to its atmospheric concentration. Carbon sinks rise in response to the increase in atmospheric CO2, 

but the resulting warming dampens the sinks. 290 

These three experiments can be used to calculate the carbon-concentration and carbon-climate feedback metrics, 

respectively 𝛽 and 𝛾. These metrics, defined and used in former C4MIP exercises (Friedlingstein et al., 2006; Arora et al., 

2013; Arora et al., 2020), are a means to diagnose evaluate the model’s sensitivities of the carbon stocks in the land and in 

the ocean to changes in atmospheric CO2 or GSAT. Table 3Table 3 summarizes these results. As explained by (Arora et al., 

2013), there are three methods to combine the three experiments to calculate the metrics: subtracting 1pctCO2-bgc from 295 

1pctCO2-rad (noted R-B, hereafter), subtracting 1pctCO2 from 1pctCO2-bgc (B-F), and subtracting 1pctCO2 from 

1pctCO2-rad (R-F). As shown in Table 3, Mmethods R-B and B-F are almost equivalent for 𝛽, while methods R-B and R-F 

are almost equivalent for 𝛾. Although LUC affects these metrics (Melnikova et al., 2021), these experiments are designed to 

have a constant LUC. 

Table 3Table 3 shows that 𝛽 under the R-F method are is lower than the R-B and B-F because the non-linearity of the 300 

Earth system reduces the sensitivity of land and ocean carbon to atmospheric CO2. Similarly, 𝛾 under the R-B and R-F are is 

higher than under the B-F, but the non-linearity here is added to R-B and B-F (Arora et al., 2013). Applying our 

observational constraints increases the absolute values of 𝛽land and 𝛾land of OSCAR, but it does not affect significantly the 

𝛽ocean and 𝛾ocean. The only exception is the 𝛾ocean under the method B-F. We note that the unconstrained OSCAR v3.1 is closer 

to the CMIP5 exercises, be it at 2x or 4x CO2. This result can be explained with OSCAR v3.1 being calibrated on CMIP5. 305 

However, the unconstrained 𝛽land is the only one to be closer to CMIP6 than to CMIP5. The cause of this difference in the 

𝛽land remains unclear but may come from the form of equation for the fertilization effect. The configurations of OSCAR are 

not only different parameters, but also different equations. Here, half of the configurations of OSCAR follow a logarithmic 

formulation of the fertilisation effect (Gasser et al., 2017), which may not be convex enough to properly represent a 

saturation effect found in many ESMs. We note that in our assessment, the land includes permafrost carbon, which was not 310 

the case in CMIP5 assessment, but the permafrost is mostly sensitive to increase in temperatures (i.e. it impacts 𝛾land but not 

𝛽land).  

Overall, Table 3 shows that the unconstrained carbon cycle of OSCAR v3.1 is well in line with CMIP exercises, 

particularly CMIP5. Yet, the sensitivity of the oceanic carbon stock to increase in GSAT remains too high. This bias in the 

ocean module could be attributed to the stratification effect introduced in v2.2 (Gasser et al., 2017). In any case, this suggests 315 

that our carbon cycle may be too optimistic, which will clearly appear in our emission-driven simulations. 

 

3.4. Reconstruction of the historical period 

The concentration- and emission-driven historical experiments (i.e. historical and esm-hist, respectively) were run with 

OSCAR. Their forcers differ only on for CO2: the atmospheric CO2 is prescribed in the former, whereas in the latter, fossil-320 
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fuel emissions are prescribed and atmospheric CO2 is fully interactive. In the concentrations-driven historical, compatible 

fossil-fuel emissions are back-calculated after the simulation (Jones et al., 2013; Gasser et al., 2015). Altogether, these two 

simulations are relatively close, as shown in Figure 6Figure , but with noticeable differences. 

Looking at the carbon- cycle variables, we observe that up to the 1940s, esm-hist is relatively similar to historical in 

terms of fossil-fuel CO2 emissions, atmospheric CO2 and both carbon sinks. For instance, the cumulative ocean sink over 325 

1850-1940 are respectively 41 PgC and 35 PgC in historical and esm-hist. The difference observed afterwards can 

essentially be explained by the fact that the emission-driven simulation entirely misses the 1940s plateau in atmospheric 

CO2. Such a miss is typical of ESMs (Bastos et al., 2016). For comparison after 1959, we use data from the Global Carbon 

Budget (Friedlingstein et al., 2020) whose assessed ocean carbon sink is slightly closer to our historical than to our esm-hist. 

The net carbon flux from atmosphere to land (i.e. the aggregate of the land sink, emissions from LUC, and those from 330 

permafrost) of the two historical experiments are similar from the 1980s onward. For comparison, the estimates for this 

average net land flux is 1.5 ± 1.1 PgC /yr-1 over 2000-2009 (Friedlingstein et al., 2020) while this flux calculated by OSCAR 

respectively under historical and esm-hist are 0.88 ± 0.48 PgC /yr-1 and 0.85 ± 0.56 PgC/ yr-1, respectively. 

Looking at the effective radiative forcings (ERF), that of CO2 in the concentration-driven historical is directly deduced 

from the prescribed CO2 atmospheric concentration (Meinshausen et al., 2017), but slightly higher by about 0.1 W.m-2 than 335 

the central value from the 5th Assessment Report (AR5) (Myhre et al., 2013). The central value from AR5 (1.82 W.m-2) is 

calculated with reference to 1750 but becomes 1.66 W.m-2 when calculated with reference to 1850. This value increases to 

1.70 W.m-2 in CMIP6 data, mostly bBecause of changes mostly in the CO2 concentration in 1850. in CMIP6 data, this value 

increases to 1.70 W.m-2. With OSCAR and prescribed CO2 emissions, the atmospheric CO2 in esm-hist is higher than in 

historical, the ERF of CO2 is 0.2 W.m-2 higher than in the AR5. The ERF of other greenhouse gases are consistent with 340 

(Myhre et al., 2013). For most ERF components, there is very little difference between historical and esm-hist. OSCAR’s 

overall ability to simulate the RF of short-lived species compares well with the IPCC AR5 values. Contributions to the 

warming from aerosols and ozone are consistent as well, although OSCAR tends to amplify these contributions. In 2011, 

IPCC AR5 estimates the RF from aerosols to -1.01 ± 0.37 W.m-2, while OSCAR calculates them at -1.29 ± 0.52 W.m-2. 

Similarly, IPCC AR5 estimates the RF from tropospheric ozone in 2011 at 0.4 ± 0.2 W.m-2, OSCAR being at 0.50 ± 0.05 345 

W.m-2. It may be caused by overestimated biomass burning emissions, and this will be examined more in-depth in a future 

analysis. Since these biases were already diagnosed evaluated in the description paper of OSCAR (Gasser et al., 2017), it 

shows that our constraining does not markedly alter these aspects of the model. Additional constraining could be introduced 

for separate RF components, albeit this would likely weaken the efficiency of other existing constraints.  

Looking at climate variables, the increase in GSAT in both historical experiments are consistent with the Special Report 350 

on Global Warming of 1.5C (IPCC, 2018) and with the historical reconstruction by (Cowtan and Way, 2013). During the 

choice of constraints (sections 2.3 and 3.1, appendix A), we observed that constraints on temperatures impact much more our 

results than the other type of constraints. Even while the set of constraints is expanded, constraints on temperature have a 

lasting influence over all outputs. The esm-hist simulation shows a higher GSAT and appears to be further away from the 
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observations. This is mostly the result of the higher atmospheric CO2 seen earlier, and it suggests a different set of 355 

constraining weights could be used for the emission-driven runs. We choose not to, for the sake of consistency. Comparing 

the effective radiative forcing (ERF) of OSCAR to the one of the IPCC AR5 (Myhre et al., 2013), we note differences 

caused by volcanic eruptions. Beyond the update of the time-series of volcanic activity itself, OSCAR make use of a 

warming efficacy of 0.6 for stratospheric volcanic aerosols (Gasser et al., 2017; Gregory et al., 2016). Nevertheless, IPCC 

AR5 estimates the ERF at 2.3 ± 1.0 W.m-2 while OSCAR calculates respectively under historical and esm-hist 2.24 ± 0.48 360 

W.m-2 and 2.34 ± 0.50 W.m-2. Finally, the total ocean heat content is well reconstructed, although the range of OSCAR is 

larger than the observed one (von Schuckmann et al., 2020), suggesting this could also be considered a potential constraint 

for the model in future work. 

 

3.5. Attributions 365 

DAMIP (Gillett et al., 2016) designed a number of experiments meant to attribute the observed climate change to 

anthropogenic and natural factors. Since OSCAR does not feature any internal variability, it cannot contribute to the 

“detection” part of DAMIP. However, with more than 1000 Monte Carlo elements, OSCAR is fully capable of carrying out 

the “attribution” part. To do achieve this attribution, DAMIP relies on experiments that follow the historical one, but in 

which only one forcing is turned on. Conversely, a number of other MIPs introduced attribution experiments in which all 370 

forcings but the ones studied are turned on. However, neither of these approaches explicitly considers the non-linearities of 

the system. Other more robust methods of attribution to forcings exist (Trudinger and Enting, 2005) and have been used with 

OSCAR in the past (Gasser, 2014; Li et al., 2016; Fu et al., 2020; Ciais et al., 2013a). Here, we focus on results made 

possible with the CMIP6 experiments, that which are presented in Table 4. 

In the historical experiment, we find a change in GSAT of 0.98 ± 0.17 K in 2006-2015 with regard to 1850-1900, which 375 

is in line with observations because of our constraining setup (Section 2.3). Natural forcings caused only ~0.03 K of this 

total, of which ~0.02 and ~0.01 were respectively caused by solar and volcanic activity. Note that our volcano-related 

forcing is defined against an average and constant volcanic activity during the preindustrial period., which explains the This 

is why the volcanic activity contributes only a positiveto ~0.01K (slightly) positive response caused by this forcing over the 

recent past where no major volcanic eruption happened. In the IPCC terminology, our results lead to the conclusion that it is 380 

extremely unlikely (i.e. likelihood <1%) that natural factors alone are causing the current observed climate change. This is of 

course consistent with the IPCC conclusions (Eyring et al., 2021; Gillett et al., 2021). Nevertheless, we note that our 

constraining reduces the uncertainty range of all simulations, including those driven only by natural forcings. For the 

simulations under natural forcings, the range from the constrained OSCAR is smaller than the ones from (Gillett et al., 

2021), which may suggest an over-constraining. It may be solved by using different methods for constraining climate 385 

simulations (Nicholls et al., 2021; Williamson and Sansom, 2019). 



13 

Since DAMIP did not include an experiment in which only natural forcings would be turned off, we cannot conclude as 

to the (Gillett et al., 2021) complementary probability of observed climate change being caused only by anthropogenic 

factors (Gillett et al., 2021). Attribution to groups of anthropogenic forcings is possible, however. We find that 1.25 ± 0.11 

K, about 128 % of the recent warming, was caused by well-mixed greenhouse gases (WMGHGs) and -0.26 ± 0.22 K (-27 %) 390 

was by near-term climate forcers (NTCFs). For comparison, the 90% confidence interval of CMIP6 over 2010-2019 instead 

of 2006-2015 are 1.16 to 1.95 K for WMGHGs and -0.73 to -0.14 K for NTCFs (Gillett et al., 2021). Another contribution of 

-0.03 ± 0.03 K (-3%) is due to land-use change. We highlight that observational constraints affects these contributions, as 

shown byin (Ribes et al., 2021), whose. The central estimate contributions corresponding to their central estimate over 2010-

2019 are 116% for WMGHGs and -32% for NTCFs and land-use change. It follows that the constrained results of OSCAR 395 

v3.1 are consistent with (Gillett et al., 2021; Ribes et al., 2021).  

Considering the other experiments, we observe that the DAMIP experiment (hist-aer) and the AerChemMIP one (hist-

piNTCF) led to very similar estimates of the contribution of NTCFs (Table 4), which highlights that this part of our model 

behaves in a fairly linear fashion. Going further in isolating individual forcings, we also estimate that CO2 caused 0.74 ± 

0.06 K, chlorofluorocarbons and hydro-chlorofluorocarbons (i.e., CFCs and HCFCs) caused 0.13 ± 0.02 K, stratospheric O3 400 

caused -0.03 ± 0.03 K, and all aerosols together caused -0.33 ± 0.21 K (including direct and indirect effects). We point out 

that details on CH4, N2O or tropospheric ozone cannot be provided, because of the lack of relevant CMIP6 experiments. 

The extent to which this attribution to specific forcings is comparable to existing studies remains debatableunclear. One 

notable limitation of OSCAR, in this respect, is that the model’s climate response is not forcing-dependent. The use of 

effective radiative forcing is supposed to ensure that the temperature response to CO2 and non-CO2 forcings is similar, at 405 

least for the long-term steady-state (Myhre et al., 2013). However, recent work has pointed out that the response may 

strongly depend on the forcing agent (Marvel et al., 2016), thus casting a degree of doubt on our attribution results. More 

work to integrate such differentiated responses in reduced-complexity models is warranted. 

3.6. Scenarios of climate change 

ScenarioMIP (O'Neill et al., 2016) choose eight particular SSPs taken from the SSP scenario database (Riahi et al., 410 

2017) to cover a range of socio-economic assumptions and climate targets., and then harmonised them to After 

harmonization, these SSPs becaome the default CMIP6 scenarios to be run by ESMs (Gidden et al., 2019). ScenarioMIP 

mostly required concentration-driven simulations up to year 2100 or 2300, however, which was complemented i. In RCMIP, 

this wasey were complemented by extending all scenarios up to 2500 and systematically running emission-driven 

simulations in addition (Nicholls et al., 2020). Figure 7 Figure  displays projections of key global variables of the Earth 415 

system following these scenarios, and Table 5 focuses on projected GSAT changes. 

The climate target dimension of the SSP scenarios is defined similarly to the RCPs’ as the total RF targeted in 2100 (van 

Vuuren et al., 2011). Table 5 shows that this targeted RF is overall within the 1-σ uncertainty range of all our concentrations-

driven projections. In the cases with notable differences, such as ssp460, the actual RF reached by the reduced-complexity 
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model MAGICC (IIASA, 2018b) for this scenario is 5.29 W.m-2, which is then in the range of OSCAR. Because Although 420 

MAGICC has beenwas used for the design of these scenarios, this resultit demonstrates that we remain consistent with the 

intended RF of the scenarios. Emission-driven SSPs show lower RF than their concentration-driven counterpart, which can 

be attributed to a low bias in the atmospheric CO2 that is especially visible in high CO2 scenarios. This bias is a result of our 

constraining approach that favoured configurations with strong CO2-fertilization (as also seen with the C4MIP results, 

section 3.3). Under high CO2 scenarios, this bias is likely worsened by our exclusion procedure during the post-processing, 425 

as very high CO2 tends to make the model more unstable. The very low uncertainty range we obtain for projected 

atmospheric CO2 in emission-driven simulations seems is over-confident. However, wWe note that the constraints were 

derived using concentration-driven simulations (that are the focus of CMIP6), and so they may not apply properly to 

emission-driven simulations. 

The constraining approach contributes to having the increases in GSAT for concentration-driven experiments shown in 430 

Table 5 for concentration-driven experiments to be lower than the CMIP6 models we could compare our results to.. The 

uncertainty range simulated by OSCAR is also much lower, again owing to our constraining approach. With a relative 

uncertainty in GSAT change in 2500 of ±13% under the warmest scenario (SSP5-8.5), one may wonder whether these 

projections are likely to be over-constrained, extending the constrain in observed GSAT throughout the scenario. This stems 

from our constraining of the climate response, as also shown by the relatively small uncertainty range in ECS in the idealised 435 

abrupt CO2 experiments. Further developing that module by adding one or two key parameters (Geoffroy et al., 2013a; 

Bloch-Johnson et al., 2015) would provide more degrees of freedom and likely release part of the constraint. When 

projecting temperature change in an emission-driven mode, however, the uncertainty range is larger, because of the 

additional uncertainty related to the biogeochemical cycles. 

The CMIP6 values are here computed from CMIP6 time series. However, some CMIP6 models exhibit higher warmings 440 

than in previous assessments, and observations can be used to constrain the future warming (Tokarska et al., 2020). Using 

their table S4, the warming in 2081-2100 with reference to 1995-2014 under SSP5-8.5 for the constrained CMIP6 models is 

3.44 ± 0.67 K and 3.11 ± 0.36 K for OSCAR v3.1 constrained. For SSP1-2.6, the values are respectively 0.94 ± 0.30 K and 

0.76 ± 0.17 K. Thus, the observational constraints that we have used contribute to explain the differences to the raw CMIP6 

data. Nevertheless, it remains that the climate module of OSCAR v3.1 could still be improved. 445 

 

3.7. Zero Emissions Commitment 

ZECMIP aims at investigating the zero-emission commitment (ZEC), that is the additional warming that follows a 

cessation of anthropogenic CO2 emissions (Jones et al., 2019). Two categories of experiments were performed. The first one 

(called branched experiments) is a variation of the emission-driven 1pctCO2, in which emissions cease once they reach 750 450 

PgC, 1000 PgC or 2000 PgC of cumulative value. These distinct levels of cumulative emissions are meant to evaluate the 

state dependency of ZEC. The second category consists in three bell-shaped emission pathways whose cumulative emissions 
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are the same as in the branched experiments. This was proposed by ZECMIP to evaluate the dependency of the ZEC on CO2 

emission rate, as the emission rate at the time of cessation is near zero in these bell experiments (whereas it is, while very 

high in the branched ones). 455 

Figure 8 Figure  shows the time series of the ZEC in both sets of experiments. In the branched experiments, the abrupt 

cessation of CO2 emissions triggers an abrupt increase of temperature change, followed by a decrease. Conversely, in the bell 

experiments, since the cessation is smoother in the bell experiments, no abrupt response is visible on the very short term. 

After this period, the shape of the evolutions of the ZEC in branched experiments is similar to the shape in bell experiments . 

We attribute this effect to the abrupt cessation of emissions in the branched experiments, causing biomass burning and 460 

aerosol lifetime feedbacks (the same that affect the ECS) whose response to temperature change happens within the same 

year. These feedbacks explain why the ZEC in branched experiments is systematically lower than the ZEC in bell 

experiments. 

Figure 8 Figure  also shows that the ZEC for a cumulative emission of 2000 PgC is much higher than in the two other 

cases, highlighting a strong non-linearity in the model. We attribute this process to the permafrost response, in complete 465 

agreement with our previous work (Gasser et al., 2018). Once the branching year has been reached, anthropogenic emissions 

become zero, while natural systems such as the permafrost keep emitting. Under higher warming, the existing warming at 

cessation of emissions comes with a legacy, and permafrost contributes to the non-linearity of this legacy. Among the 

models that contributed to ZECMIP (MacDougall et al., 2020), CESM2, NorESM2-LM and UVic ESCM 2.10 were the only 

ones to model permafrost, with only the later one that provided data over the three branched experiments. As shown in 470 

Figure 6 of (MacDougall et al., 2020), UVic ESCM 2.10 is the model with the strongest evolution of the ZEC with 

cumulative emissions. This similar effect of permafrost on ZEC in OSCAR v3.1 and UVic ESCM 2.10 calls for more 

contributions of models with permafrost to the ZECMIP exercise and future similar projects. 

As illustrated in Table 6, OSCAR v3.1 estimates a ZEC (in the reference case of the esm-1pct-brch-1000PgC 

experiment) that is within the range of ZECMIP (MacDougall et al., 2020). The evolutions of OSCAR in this experiment are 475 

similar comparable to those of the Earth system models of intermediate complexity that contributed to the original ZECMIP. 

3.8. Behaviour of OSCARv3.1 

The focus of this paper is to diagnose evaluate this version of OSCAR introduced in (Gasser et al., 2020a), and used with 

the same exclusion and constraining approach used for RCMIP phase 2 (Nicholls et al., 2021). As explained in section 2.2, 

many experiments have been run through OSCAR v3.1, and sections 3.1 to 3.7 have used only the experiments that would 480 

allow clear comparison with ESMs and therefore diagnosisevaluation. In the Appendix B, additional results are shown, 

further illustrating the behaviour of OSCAR v3.1 on under experiments that examine carbon geoengineering (section AB.1), 

solar geoengineering (section AB.2), land-use (section AB.3), NTCFs (section AB.4) and a comparison of RCPs againstto 

SSPs (section AB.5). These additional experiments were not fully considered in the diagnosis evaluation part of this study, 

typically because of the lack of published papers doing the same with fully fledged ESMs or because of non-existent 485 
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diagnostic evaluation metrics. These simulations can nevertheless provide valuable insights into the behaviour of OSCAR, 

potentially helping understand past or even future contributions to community exercises such as CDRMIP or RCMIP. 

4. Concluding remarks 

In this study, we have presented the setup used with OSCAR v3.1 to run 75 CMIP6 and 24 additional experiments from 

RCMIP. We have useduse the primary results of these simulations to discuss the overall behaviour and performance of our 490 

model, comparing our results to those of state-of-the-art complex models whenever possible. We present below a brief 

summary of the model’s main limitations.  

First, the model tends to be unstable under high CO2 and high warming scenarios. This comes mostly from the ocean 

carbon cycle module whose stability is not ensured under our chosen differential system solving scheme, which is also 

worsened by the stratification feedback that was introduced in v2.2 (Gasser et al., 2017). This pleads for a revamp of this 495 

module. 

Second, despite a clear improvement of the land carbon cycle module in v3.1 (Gasser et al., 2020a), its unconstrained 

transient response remains wider than the ranges from CMIP5 or CMIP6 models, which makes the constraining step a strong 

requirement of any simulation with OSCAR. In its current state, the constraining step appears to favour parameterizations 

with a strong CO2- fertilization effect. The extent to which this is caused by structural modelling choices is unclear. 500 

Consequently, the land carbon cycle also exhibits a sensitivity to climate change that is too low compared to complex 

models, mostly those without permafrost, thus calling for an improved calibration. A potential track would be to account for 

correlations between parameters within the prior distribution of parameters (i.e., for instance when drawning from the Monte 

Carlo). 

Third, the constrained climate module shows a relatively low ECS and a rather narrow uncertainty range. Introducing 505 

extra parameters for the heat uptake feedback (Geoffroy et al., 2013a) and possibly non-linear Charney feedbacks (Bloch-

Johnson et al., 2015) would likely help to gain flexibility during the constraining. This third point is the reason behind most 

of the difference between OSCAR and CMIP6 temperature projections shown in Table 5. 

Fourth, although most of the non-CO2 species are reasonably simulated, the effects of tropospheric ozone and total 

aerosols tend to be overestimated. The whole aerosol module behaves rather linearly, and it exhibits a climate feedback 510 

whose intensity should be better constrained against existing simulations with complex ESMs. OSCAR would indeed benefit 

from further work on short-lived species, although this could prove a challenging endeavour given the aggregated 

formulation of the model and the uncertainties. 

Finally, we have illustrated how observational constraints can be used to inform projections, how it may affect the 

results, such as the strong decrease of uncertainties in projections. Given the growing importance of these constraints 515 

(Tokarska et al., 2020; Nicholls et al., 2021), this calls for investigating computationally efficient and physically sensible 
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ways of doing so with OSCAR. Investigating and controlling the bias introduced in these steps may increase the confidence 

in the model’s results (McNeall et al., 2016; Williamson and Sansom, 2019). 

In spite of those limitations, we have demonstrated that OSCAR behaves as one would expect from an Earth system 

model. Applying our two post-processing steps (exclusion and constraining) overcomes some of the model’s limitations, and 520 

the resulting quantitative behaviour of OSCAR remains largely satisfactoryis thus improved. In several cases, we have also 

shown that OSCAR differs from complex models, due to the features of OSCAR that are not yet in part of most complex 

models, such as fully interactive atmospheric chemistry that would allow CH4 and N2O to be emission-driven, and 

endogenous simulation of CH4 emissions from wetlands, CO2 and CH4 emissions from permafrost, and emissions from 

biomass burning. Therefore, some of the results presented here have scientific interests that go beyond the pure model 525 

evaluation perspective. These valuable insights for other projects will be presented in separate studiesTo this intent, but 

many outputs from the simulations presented here are already publicly available as part of the RCMIP exercise (Nicholls et 

al., 2021). More outputs can be requested from the authors. Finally, this study will be the basis for a more systematic 

assessment of the model’s performance, as we will use the standardised CMIP6 and RCMIP simulations to diagnose evaluate 

future versions of OSCAR and to compare them with older versions. This will provide the wider community with a 530 

benchmark of the model, hopefully spreading interest in this open-source compact Earth system model. 

 

 

Appendix A: Behaviour of OSCAR 

A.1. Carbon geoengineering 535 

A.1.1. Idealized experiments 

Experiments of CDRMIP are designed to investigate the consequences of carbon dioxide removal for the Earth system 

(Keller et al., 2018a). In 1pctCO2-cdr, the atmospheric CO2 increases by 1% every year (just like 1pctCO2), but after 140 

years, the atmospheric CO2 decreases following a pathway at the same rate than the ramp-up period. Once CO2 has returned 

to its preindustrial state, the experiment is extended over 1000 years. As shown in Figure A. 1, the GSAT reaches 3.68 ± 540 

0.39 K at the end of the ramp-up forcing, and it goes back to 0.85 ± 0.22 K at the end of the ramp-down forcing. For all 

variables, such as the CH4 emissions from wetlands, removing CO2 from the atmosphere during ramp-down effectively 

reduces the perturbation in the variable that was induced by the ramp-up, albeit within a different time frame that is typical 

of a dynamic hysteresis (Boucher et al., 2012). Even the permafrost carbon stock slowly reconstitutes itself once the global 

temperature change is sufficiently reduced. However, the whole Earth system is not fully recovered as soon as the 545 

preindustrial level of atmospheric CO2 is reached. To return within 10% of the maximum perturbation at the end of the CO2 

ramp-up, it takes GSAT an average 110 extra years, and the land carbon stock an average 26 years. At the end of the 1000-

year extension, the oceanic carbon stock remains at about 19% of its maximum perturbation. 
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Other CDRMIP experiments based on pulses of carbon emission or removal in an emission-driven configuration were 

performed to evaluate the response of the Earth system to CDR. These experiments are used to calculate the Absolute Global 550 

Warming and Temperature Potentials (AGWPs and AGTPs) of CO2, which serves to establish the Global Warming and 

Temperature Potentials (GWPs and GTPs) of other greenhouse gases (Myhre et al., 2013). In esm-pi-CO2pulse, a 100 PgC 

pulse is emitted from the preindustrial environmental condition in 1860, whereas 100 PgC are removed in esm-pi-cdr-pulse. 

In esm-yr2010CO2-CO2pulse, the 100 PgC pulse is applied in 2015 but under 2010 environmental conditions, whereas these 

100 PgC are removed at the same date in esm-yr2010CO2-cdr-pulse. We calculate time series of AGWPs and AGTPs under 555 

these experiments (Figure A. 2) and note how close they are. We pinpoint that, just like the other experiments, we are 

calculating these potentials with the interactive permafrost of OSCAR. The larger source of differences lies in the 

background: under preindustrial environmental conditions, emission pulses have a stronger AGWP or AGTP over the short 

term, but this is the opposite over the longer term. Over the short term, this is due to the logarithmic expression of the CO 2 

radiative forcing that is less saturated under preindustrial conditions. Over the long term, this is due to the deterioration of 560 

the carbon sink capacities under current conditions (Raupach et al., 2014). Similar reasons explain why a pulse of carbon 

removal cools the atmosphere slightly more over the short term than a pulse of emission warms it, but less over the long 

term. Our results cannot be compared to the final CDRMIP results yet, for they are unpublished, but they are consistent with 

those obtained with a model of intermediate complexity (Zickfeld et al., 2021). 

 565 

A.1.2. Alternative scenarios 

The C4MIP (Jones et al., 2016) experiments ssp534-over-bgc and ssp585-bgc differ from ssp534-over and ssp585 in 

that the prescribed CO2 does not affect the total radiative forcing , thus causing a lower change in GSAT and maintaining a 

relatively high carbon sinks efficiency. Figure A. 3 shows both carbon sinks under the variants and the base scenarios. Note 

that the -bgc experiments stem from a different historical simulation (hist-bgc). Under the high warming scenarios ssp585, 570 

climate change reduces the oceanic carbon sink by 1.93 ± 0.69 PgC.yr-1 and the net land carbon flux by 4.31 ± 1.93 PgC.yr-1 

in 2100. Under the overshoot scenario ssp534-over, this difference is lower, owing to its declining atmospheric CO2. 

Removing the impact of climate change on the carbon cycle increases the land carbon stock by 269 ± 52 PgC in ssp534-over, 

but by 501 ± 117 PgC in ssp585 in 2100, due to the higher warming in the latter case. We note that the permafrost carbon 

stock drives most of the changes, because if permafrost is ignored in the bgc variant, these changes are reduced to 57 ± 32 575 

PgC and 131 ± 77 PgC in ssp534-over and ssp585 respectively. 
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A.2. Solar geoengineering 

A.2.1. Idealized experiments 

Experiments of GeoMIP (Kravitz et al., 2015) are designed to investigate the geoengineering techniques of Solar 580 

Radiation Management (SRM). Although OSCAR is not suited for all GeoMIP experiments, as it lacks any spatially 

resolved process, a few simulations remained accessible to our model. We run experiments G1 and G2: G1 essentially 

follows abrupt-4xCO2, albeit with a changed incoming solar radiation that compensates for the radiative forcing caused by 

the increasing atmospheric CO2 For G2, an identical principle is applied but using 1pctCO2 as a basis. As explained by 

(Kravitz et al., 2011), the change in solar radiation compensates solely for the radiative forcing of CO2. However, it does not 585 

compensate for other radiative effects introduced by biogeochemical feedbacks, such as the fertilization by CO2, affecting 

the carbon cycle, thus changing biomass burning emissions. Figure A. 4 shows that offsetting the CO2 radiative forcing with 

a change in solar activity effectively compensates the change in GSAT. However, we simulate that the GSAT decreases in 

G1 and G2 to reach -0.08 ± 0.20 K and -0.07 ± 0.20 K, respectively, at the end of simulations. The compensation of the sole 

radiative forcing of CO2 does not balance other feedbacks. There remains an additional radiative forcing, mostly due to 590 

changes in aerosols (as also shown in Figure 4), which results in this relatively small cooling in G1 and G2. We estimate that 

in OSCAR about half of this effect is caused by the vegetation being fertilized by CO2 and fuelling increased natural biomass 

burning emissions, and the remaining half is caused by the direct impact of GSAT on the atmospheric lifetime of aerosols 

(not shown). We note that the latter effect could be poorly estimated, in these specific experiments, as OSCAR’s formulation 

for the lifetime of aerosols depends only on GSAT and not on the precipitation intensity. 595 

Indeed, global precipitation does not respond in a similar way, because changes in atmospheric CO2 and solar radiation 

have a different impact of the hydrological cycle (Andrews et al., 2010). In spite of a fully compensated GSAT change, 

global precipitation is significantly reduced in G1 and G2, showing that such SRM technique does not entirely negate 

climate change. This demonstrates that OSCAR is capable of reproducing this well-established effect of this SRM technique 

(Boucher et al., 2013b). One added value of having a fully coupled ESM run these GeoMIP experiments is that we can also 600 

provide an estimate of the impact of the SRM technique on the carbon cycle. Figure A. 4 also shows that the land and ocean 

carbon stocks are increased in G1 and G2, respectively by about 33% and 20% at the end of the simulations, owing to the 

loss of carbon sink efficiency that is avoided by maintaining the temperature to its preindustrial level. 

 

A.2.2. Alternative scenarios 605 

In addition to the few idealized experiments of GeoMIP (Kravitz et al., 2015) that are accessible to OSCAR, one 

scenario variant focusing on SRM was also feasible. The G6solar experiment stems from ssp585, but the solar constant is 

changed from 2020 onwards to compensate the radiative forcing of ssp585 and match the one of ssp245. As shown in Figure 

A. 5, although the GSAT of G6solar is brought to a level comparable to ssp245, difference remains. The change in solar 



20 

constant is calculated ex-ante as the difference from the radiative forcing of ssp245 to ssp585, which by construction 610 

excludes feedbacks caused by this change and (as with G1 and G2) does not fully cancel the change in global precipitation. 

Consequently, the carbon stocks still increase in G6solar, even more than in ssp585 thanks to the lower GSAT and despite 

lower global precipitation.  

 

A.3. Land-use 615 

A.3.1.  Alternative historicals 

LUMIP consists of experiments specifically focusing on land-use activities, and most of them are run by the Earth 

system models in a so-called “offline” fashion  (Lawrence et al., 2016). It means that a reconstruction of past climate 

variables GSWP3 (Lawrence et al., 2016; van den Hurk et al., 2016) is prescribed to the model, so that the land module is 

actually decoupled from the rest of the model. Despite its simplicity, OSCAR has an added-value in running those 620 

simulations, as it embeds a book-keeping module that endogenously estimates CO2 emissions from land-use and land-cover 

change. The main land carbon fluxes and stocks simulated under the reference experiment (dubbed land-hist) are shown in 

Figure A. 6, along with three sets of sensitivity experiments described hereafter. The results are similar to those obtained 

recently with the same version of the model but with slightly differing forcings and a different constraint (Gasser et al., 

2020a). The simulated land carbon stock decreases up to the 1970s, because of land-use activities emitting more CO2 than 625 

the sink absorbs thanks to CO2 fertilization and other factors. The carbon stock of 2010 is higher than the one of 1850 by 

only 1 ± 42 PgC. For comparison, the GCB 2020 provides for 1850-2014 a net budget for the land sink and CO2 emissions 

from LUC of -5 ± 90 PgC (Friedlingstein et al., 2020). 

The experiments land-cCO2 and land-cClim are used to disentangle the contribution of CO2 fertilization and changing 

climate on the land carbon cycle. In land-cCO2, the atmospheric CO2 is constant and set to preindustrial value. In land-630 

cClim, the climate drivers loop over the year 1901-1920 of the data set, thus simulating a preindustrial climate. Figure A. 6 

shows the differences; for example, land-hist – land-cCO2 illustrates the effect of atmospheric CO2 on the variables of 

interest. Thanks to these experiments, we show that CO2 is the main driver of the land sink in OSCAR, driving most of the 

trend, with climate bringing a significant interannual variability but virtually no trend, except over the recent past. In 2010, 

climate caused a small difference of -10 ± 10 PgC in total land carbon stock, while CO2 did one of 141 ± 42 PgC. This has to 635 

be balanced with the results of the C4MIP idealized experiments, however, where we saw OSCAR is less sensitive to 

climate change than CMIP5 models. Additionally, we see that the effect of climate and CO2 on land-use and land-cover 

change emissions is minor, which is consistent with the fact that they are firstly determined by preindustrial carbon densities 

(Gasser et al., 2020a; Gasser and Ciais, 2013b). 

A second set of experiments is meant to Investigate the impact of land-use practices. Land-cover change contributed -640 

152 ± 44 PgC to the 2010 change in land carbon stock since 1850, which corresponds to most of the total land-use and land-
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cover change emissions. Notably, it also reduced the land sink – an effect called the loss of additional sink capacity that has 

been diagnosed and quantified with OSCAR in the past (Gasser et al., 2020a; Le Quéré et al., 2018a; Gasser and Ciais, 

2013b; Friedlingstein et al., 2020). Shifting cultivation (i.e. rapidly rotating land-use change between agriculture and natural 

ecosystems) had a relatively low impact on CO2 emissions, leading to a change in land carbon stock of -8 ± 2 PgC at the end 645 

of the simulation in 2010. Similarly, wood harvest (in woody ecosystems that do not see land-cover change) had an overall 

impact of -16 ± 4 PgC. Both shifting cultivation and wood harvest have no impact at all on the land sink, by construction of 

their formulation in OSCAR (Gasser et al., 2020a). Finally, the effect of having cropland-specific parameters in the model is 

isolated thanks to the land-crop-grass experiment, in which new croplands are treated as grasslands. Having grasslands 

instead of croplands increases both the land sink and the CO2 emissions from land-use and land-cover change, resulting in a 650 

land carbon stock higher by 31 ± 26 PgC. All these values are entirely in line with an existing assessment of those land-use 

practices in which an earlier version of OSCAR took part (Arneth et al., 2017). 

The third set of experiments relates to varying input data sets of land-use and land-cover change drivers. Two of these 

(land-hist-altLu1 and land-hist-alLu2) relied on the two variations of the main LUH2 data set known as the “High” and 

“Low” variants (respectively) (Hurtt et al., 2020). We find that the so-called low variant leads to slightly higher land-use and 655 

land-cover change emissions amounting to a land carbon stock lower by 8 ± 2 PgC over the whole period. The high variant 

produces slightly lower total emissions, leading to a land carbon stock higher by 17 ± 5 PgC. Neither variant has a 

significant impact on the land sink. According to the description of these two variations (Hurtt et al., 2020), they differ from 

the default data set mostly in the harvest of biomass, and are very similar from 1920 onwards. The last LUMIP experiment 

run with OSCAR is one that uses the primary data set but an alternative starting year (land-hist-altStartYear). This required 660 

making an additional spin-up of the model under the environmental conditions and land cover of year 1700. Compared to the 

reference experiment, we find a slightly higher land sink after 1850 that decreases through time, owing to the ecosystems not 

being at steady state at that date. Similarly, emissions are slightly higher but the difference to the reference case tends 

towards zero as the legacy of land-use and land-cover change prior to 1850 fades away. The land carbon stock in 2010 is 

dominated by the increased land sink and amounts to a slight increase of -17 ± 13 PgC in the land. Comparing the latter 665 

value with the total change in land carbon in the reference experiment suggests starting simulations in 1850 instead of 1700 

or 1750 introduces a non-negligible bias in the CMIP6 exercise. 

 

A.3.2.  Alternative scenarios 

LUMIP introduced variants of regular scenarios in which alternative land-use and land-cover change drivers coming 670 

from another scenario are prescribed (Lawrence et al., 2016), some of which being used in CDRMIP to assess afforestation 

(Keller et al., 2018a). Two such experiments are the pessimistic ssp585 and ssp370 combined with the land-use activities of 

the optimistic ssp126 (named ssp585-ssp126Lu and ssp370-ssp126Lu, respectively). A third experiment consists in using the 

land-use of ssp370 but under ssp126 (named ssp126-ssp370Lu). Comparisons of these experiments with their regular 
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counterparts are shown in Figure A. 7. As expected, changing the land-use scenario roughly replaces one SSP’s land-use 675 

emissions by another’s, albeit with slight differences in the later stage of the simulations  (i.e. after 2050) when atmospheric 

CO2 and climate are significantly different from the reference scenario’s, which has an impact in OSCAR because of 

transiently changing land carbon densities. The effect on the land carbon sink is also quantified, showing that sink capac ity 

can be preserved by conserving natural ecosystems, although it remains a relatively small effect in absolute value. We note 

that the ability of properly isolating both effects (on land-use emissions and on the sink) is a specific feature of OSCAR that 680 

stems from the formulation of its land carbon cycle (Gasser et al., 2020a; Gasser and Ciais, 2013b), and we do not expect 

many complex ESMs to be able to provide such a partitioning. The overall effect on land carbon stock change in 2100 is 48 

± 15 PgC, 76 ± 28 PgC and -65 ± 23 PgC, in the ssp585-ssp126Lu, ssp370-ssp126Lu and ssp126-ssp370Lu scenarios 

respectively. While the land carbon stocks are affected, the change in land cover also affects the planetary albedo. The 

radiative forcing from albedo of land cover change is exchanged between ssp126 and ssp370, but changes remain below 0.1 685 

W.m-2. The net combined effect on projected temperature cannot be estimated because these experiments are concentration-

driven. 

 

A.4. Alternative scenarios for NTCFs 

The ssp370-lowNTCF scenario is a variant of the ssp370 differing by its lower emission of short-lived pollutants 690 

affecting the RF of NTCFs. As illustrated in Figure A. 8, the variant leads to an equivalent warming, although with very 

slightly less cooling from NTCFs. This almost negligible effect on global temperature is the result of two large but 

compensating effects that manifest the most between 2050 and 2100. The lower emission of warming NTCFs leads to 

absorbing aerosols (i.e. BC) warming less by -0.21 ± 0.11 W m-2 and tropospheric ozone warming less by -0.21 ± 0.03 W m-2 

in 2100. Conversely, it also leads to scattering aerosols cooling less by 0.33 ± 0.12 W m-2 and the indirect aerosol effects 695 

cooling less by 0.26 ± 0.13 W m-2 at the same date. This results in a slight increase of the total radiative forcing of 0.15 ± 

0.20 W m-2 and a GSAT change of only 0.07 ± 0.11 K. However, the difference in forcing agents between the two scenarios 

leads to a change in global precipitation that reaches 15 ± 11 mm yr-1 in 2100. The change in precipitation is consistent with 

our results for the GeoMIP experiments and what we know of the global water cycle (Shine et al., 2015). 

 700 

A.5. Comparison of two generations of scenarios 

Initially, the SSPs scenarios were designed to reach the RF of RCPs in 2100, to provide a common grid for reading and 

comparing all the SSPs scenarios. Hence, the same four RF targets chosen in CMIP5 with the RCPs (2.6 W.m-2, 4.5 W.m-2, 

6.0 W.m-2, 8.5 W.m-2) have also been chosen in CMIP6 with four out of the eight SSPs used. Yet, CMIP6 ESMs did not run 

RCPs, because these scenarios are not part of the CMIP6 experiments. Therefore, the difference between RCPs projections 705 

in CMIP5 and SSPs projections in CMIP6 under the same RF targets are due to both a change in the generation of ESMs and 
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a change in scenarios. In Figure A. 9, we represent both RCPs and SSPs under the same version of OSCAR, showing the 

difference due to the sole change in scenarios. These scenarios use different drivers, as illustrated with the atmospheric CO2 

prescribed to these concentration-driven experiments, usually with higher CO2 concentrations in the CMIP6 version. Except 

for the 8.5 target, the RF tends to be also higher in the CMIP6 version, compared to the CMIP5 version, meaning changes in 710 

other drivers are not enough to balance the CO2 increase. While the 2.6 W.m-2 and 8.5 W.m-2 targets are reached in 2100, the 

4.5 W.m-2 and 6.0 W.m-2 are not. However, our results can be compared to those of MAGICC in these two cases (IIASA, 

2018a), and both reduced-complexity models are consistent. Because of the similar RF targets, GSAT are relatively similar 

over the 21st century, but RCPs and SSPs tend to dissociate later. In 2300, moving from RCPs to SSPs changes GSAT by 18 

± 8%, 9 ± 3%, 5 ± 2% and -6 ± 1% in the four tested scenarios, respectively. Differences in other key variables such as the 715 

carbon sinks logically respond to these differences in atmospheric CO2 and global temperature change, as also shown in 

Figure A. 9. 
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Table 1. List of CMIP6 and RCMIP simulations run with OSCAR. Standard names are used, and full description of the 

experiments are provided in references. Every experiment that is a scenario has been run with its extension up to 2500. A spin-up of 1000 

years is associated to each of the 8 control experiments. 

MIP Simulations 

DECK (Eyring et al., 2016) 1pctCO2, abrupt-4xCO2, esm-hist, historical, piControl, esm-piControl 

AerChemMIP (Collins et al., 2017) hist-1950HC, hist-piAer, hist-piNTCF, ssp370-lowNTCF 

C4MIP (Jones et al., 2016) 1pctCO2-bgc, 1pctCO2-rad, esm-ssp585, hist-bgc, ssp534-over-bgc, ssp585-bgc 

CDRMIP (Keller et al., 2018a)  

1pctCO2-CDR, esm-pi-cdr-pulse, esm-pi-CO2pulse, esm-yr2010CO2-cdr-pulse, esm-

yr2010CO2-CO2pulse, esm-yr2010CO2-control, esm-yr2010CO2-noemit, esm-ssp534-over, 

esm-ssp585-ssp126Lu, yr2010CO2 

DAMIP (Gillett et al., 2016) 
hist-aer, hist-CO2, hist-GHG, hist-nat, hist-sol, hist-stratO3, hist-volc, ssp245-aer, ssp245-

CO2, ssp245-GHG, ssp245-nat, ssp245-sol, ssp245-stratO3, ssp245-volc 

LUMIP (Lawrence et al., 2016) 

esm-ssp585-ssp126Lu, hist-noLu, land-cClim, land-cCO2, land-crop-grass, land-hist, land-

hist-altLu1, land-hist-altLu2, land-hist-altStartYear, land-noLu, land-noShiftCultivate, land-

noWoodHarv, ssp126-ssp370Lu, ssp370-ssp126Lu, land-piControl, land-piControl-altLu1, 

land-piControl-altLu2, land-piControl-altStartYear 

GeoMIP (Kravitz et al., 2015) G1, G2, G6solar 

ScenarioMIP (O'Neill et al., 2016) ssp119, ssp126, ssp245, ssp370, ssp434, ssp460, ssp534-over, ssp585 

ZECMIP (Jones et al., 2019) 
esm-1pctCO2, esm-1pct-brch-750PgC, esm-1pct-brch-1000PgC, esm-1pct-brch-2000PgC, 

esm-bell-750PgC, esm-bell-1000PgC, esm-bell-2000PgC 

RCMIP (Nicholls et al., 2020) 

1pctCO2-4xext, abrupt-0p5xCO2, abrupt-2xCO2, esm-abrupt-4xCO2, esm-histcmip5, esm-

rcp26, esm-rcp45, esm-rcp60, esm-rcp85, esm-ssp119, esm-ssp126, esm-ssp245, esm-ssp370, 

esm-ssp370-lowNTCF, esm-ssp434, esm-ssp460, historical-CMIP5, rcp26, rcp45, rcp60, 

rcp85, ssp585-ssp126Lu, esm-piControl-CMIP5, piControl-CMIP5 
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Table 2: Metrics of the climate system (ECS, TCR and TCRE). Metrics are provided for OSCAR v3.1 constrained using 

observations, and unconstrained. Values are provided as mean ± standard deviation, median and the [5%-95%] confidence interval. As 

explained in section 3.2, the ECS in OSCAR may be calculated using its parameters, or simply as the temperature at the end of abrupt-1165 
2xCO2. These values are compared to the ECS of (Meehl et al., 2020). The same source provides the values for the TCR. The TCRE of 

CMIP5 is compared to (Gillett et al., 2013). Values from RCMIP phase 2 (Nicholls et al., 2021) come from different sources: (Sherwood 

et al., 2020) for the ECS, (Tokarska et al., 2020) for the TCR and (Arora et al., 2020) for the TCRE. 

 
OSCAR v3.1 

CMIP5 CMIP6 RCMIP, phase 2 
Unconstrained Constrained 

ECS 

(K) 

Parameter value 
3.17 ± 0.63 

3.28 [2.36-4.25] 

2.78 ± 0.47 

2.63 [2.36-3.75] 
3.2 ± 0.7 3.7 ± 1.1 3.10 [2.30-4.70] 

End of abrupt-2xCO2 
2.74 ± 0.52 

2.61 [2.02-3.67] 

2.52 ± 0.33 

2.45 [2.08-3.22] 
   

TCR 

(K) 
 

1.78 ± 0.28 

1.77 [1.37-2.26] 

1.66 ± 0.16 

1.62 [1.41-1.96] 
1.8 ± 0.40 2.0 ± 0.4 1.64 [0.98-2.29] 

TCRE 

(K 1000 PgC-1) 
 

1.67 ± 0.40 

1.63 [1.08-2.37] 

1.44 ± 0.20 

1.41 [1.15-1.82] 

1.63 ± 0.48 

[0.8-2.4] 
1.77 ± 0.37 1.77 [1.03-2.51] 
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Table 3: Metrics of the carbon- cycle (β and 𝛾) from the C4MIP experiments. Metrics are provided for OSCAR v3.1 constrained 1170 
using observations, and unconstrained. As explained by (Arora et al., 2013), different values for the metrics are calculated depending on 

the combination of experiments used: R stands for radiative (1pctCO2-rad), B for biogeochemical (1pctCO2-bgc) and F for full 

(1pctCO2). The change in the land carbon stocks includes permafrost carbon. Results from CMIP5 and CMIP6 are provided by C4MIP 

(Arora et al., 2020).  

Time Model Method 𝛽 
𝛽 (PgC ppm-1) 

Method 𝛾 
𝛾 (PgC K-1) 

Land Ocean Land Ocean 

2xCO2 

OSCAR v3.1 

constrained 

R-B, B-F 1.26 ± 0.47 1.05 ± 0.03 R-B, R-F -34.7 ± 18.9 -13.0 ± 0.7 

R-F 1.21 ± 0.44 1.00 ± 0.06 B-F -43.2 ± 23.8 -21.6 ± 6.3 

OSCAR v3.1 

unconstrained 

R-B, B-F 1.14 ± 0.64 1.05 ± 0.03 R-B, R-F -30.8 ± 20.5 -13.0 ± 0.7 

R-F 1.10 ± 0.61 1.00 ± 0.05 B-F -37.6 ± 26.4 -21.0 ± 5.7 

CMIP5 B-F 1.15 ± 0.63 0.95 ± 0.07 B-F -37.0 ± 25.5 -9.4 ± 2.7 

CMIP6 B-F 1.22 ± 0.40 0.91 ± 0.09 B-F -34.1 ± 38.4 -8.6 ± 2.9 

4xCO2 

OSCAR v3.1 

constrained 

R-B, B-F 1.06 ± 0.41 0.94 ± 0.03 R-B, R-F -47.7 ± 23.8 -17.7 ± 1.3 

R-F 0.95 ± 0.37 0.86 ± 0.08 B-F -72.3 ± 37.4 -37.1 ± 13.6 

OSCAR v3.1 

unconstrained 

R-B, B-F 0.96 ± 0.57 0.94 ± 0.03 R-B, R-F -43.3 ± 25.5 -17.7 ± 1.3 

R-F 0.87 ± 0.50 0.86 ± 0.07 B-F -63.1 ± 41.5 -35.5 ± 12.4 

CMIP5 B-F 0.93 ± 0.49 0.82 ± 0.07 B-F -57.9 ± 38.2 -17.3 ± 3.8 

CMIP6 B-F 0.97 ± 0.40 0.78 ± 0.07 B-F -45.1 ± 50.6 -17.2 ± 4.9 

 1175 
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Table 4: Attribution of historical and future climate change. These contributions come either from experiments in which only the 

concerned forcing was prescribed (DAMIP), or from experiments in which it was removed (other MIPs). In either cases, non-linearities are 

ignored. 1180 

 Experiments 
GSAT w.r.t. 

1850-1900 (K) 
RF (W.m-2) 

 2006-2015 2091-2100 2006-2015 2091-2100 2006-2015 2091-2100 

All forcings historical ssp245 0.98 ± 0.19 2.53 ± 0.25 2.07 ± 0.42 4.62 ± 0.29 

WMGHGs† hist-GHG ssp245-GHG 1.24 ± 0.12 2.67 ± 0.29 2.53 ± 0.13 4.73 ± 0.27 

NTCFs‡ hist-aer ssp245-aer -0.26 ± 0.22 -0.15 ±0.12 -0.48 ± 0.36 -0.16 ±–0.12 

id. historical - hist-piNTCF -- -0.25 ± 0.21 -- -0.46 ± 0.35 -- 

Natural forcings hist-nat ssp245-nat ~ 0.03 ~ 0.01 ~ 0.09 ~ 0.00 

CO2 hist-CO2 ssp245-CO2 0.74 ± 0.07 2.03 ± 0.22 1.52 ± 0.09 3.70 ± 0.24 

CO2 radiative effect only historical - hist-bgc -- 0.75 ± 0.08 -- 1.55 ± 0.04 -- 

CFCs and HCFCs† historical - hist-1950HC -- 0.13 ± 0.02 -- 0.27 ± 0.03 -- 

Stratospheric O3 hist-stratO3 
ssp245-

stratO3 
-0.03 ± 0.03 -0.02 ±0.03 -0.07 ± 0.06 

-0.02 

± 

0.05– 

Aerosols historical - hist-piAer -- -0.33 ± 0.20 -- -0.63 ± 0.33 -- 

Solar activity hist-sol ssp245-sol ~ 0.02 ~ 0.01 ~ 0.03 ~ 0.02 

Volcanic activity hist-volc ssp245-volc ~ 0.01 ~ -0.01 ~ 0.06 ~ -0.02 

Land-–se change historical - hist-noLu -- -0.03 ± 0.03 -- -0.05 ± 0.05 -- 

 

† In these experiments, because the atmospheric concentration of WMGHGs is prescribed, the indirect effects on tropospheric O3 (from 

CH4), stratospheric H2O (from CH4) and stratospheric O3 (from N2O and halogenated compounds) are also included. 

‡ The effects listed in the previous note on WMGHGs are excluded from this experiment. Tropospheric O3 does vary, however, but 

only because of the emission of ozone precursors and not because of varying atmospheric CH4. Black carbon deposition on snow is also 1185 
included in this experiment. 
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Table 5: Projected atmospheric CO2, RF and GSAT in SSPs. Concentration- and emission-driven experiments are shown and 

compared to available CMIP6 projections. Values in bold are assumptions or inputs. Experiments whose name start with esm- are 

emission-driven; others are concentration-driven. GSAT from CMIP6 are provided as mean and standard deviation as well, with the 1190 
number of models available in parenthesis. Here, projections from OSCAR are constrained to observations, while CMIP6 results are raw, 

without any constraints (Tokarska et al., 2020). 

experiments models ERF (W m-2) GSAT w.r.t. 1850-1900 (K) CO2 (ppm) 

  2100 2041-2050 2091-2100 2291-2300 2491-2500 2100 2300 

esm-ssp585 OSCAR 8.40 ± 0.57 2.02 ± 0.22 3.99 ± 0.40 6.31 ± 0.83 6.29 ± 0.88 1058 ±63 1729 ± 148 

esm-ssp585 CMIP6  2.41 ± 1.67 (3) 5.14 ± 3.92 (2)     

ssp585 OSCAR 8.76 ± 0.50 2.04 ± 0.19 4.16 ± 0.38 7.05 ± 0.87 7.24 ± 0.93 1135 2162 

ssp585 CMIP6  2.72 ± 1.51 (17) 6.19 ± 3.13 (17) 13.51 ± 5.87 (2)  1135 2162 

esm-ssp370 OSCAR 7.04 ± 0.66 1.85 ± 0.25 3.32 ± 0.35 5.54 ± 0.74 5.56 ± 0.80 809 ± 47 1200 ± 109 

ssp370 OSCAR 7.41 ± 0.58 1.87 ± 0.21 3.50 ± 0.32 6.24 ± 0.75 6.41 ± 0.81 867 1483 

ssp370 CMIP6  2.51 ± 1.48 (18) 5.1 ± 2.84 (16)   867 1483 

esm-ssp460 OSCAR 5.32 ± 0.50 1.80 ± 0.23 2.68 ± 0.30 3.43 ± 0.51 3.34 ± 0.55 629 ± 35 667 ± 49 

ssp460 OSCAR 5.64 ± 0.40 1.82 ± 0.19 2.84 ± 0.27 3.91 ± 0.47 3.89 ± 0.50 668 769 

ssp460 CMIP6  2.46 ± 1.28 (4) 4.24 ± 1.80 (4)   668 769 

esm-ssp245 OSCAR 4.63 ± 0.43 1.72 ± 0.21 2.38 ± 0.28 2.59 ± 0.41 2.40 ± 0.42 578 ± 31 565 ± 35 

ssp245 OSCAR 4.86 ± 0.31 1.75 ± 0.17 2.50 ± 0.25 2.92 ± 0.37 2.79 ± 0.37 603 621 

ssp245 CMIP6  2.41 ± 1.33 (15) 3.63 ± 1.82 (15)   603 621 

esm-ssp534-over OSCAR 2.93 ± 0.37 2.00 ± 0.22 1.73 ± 0.25 1.16 ± 0.23 1.02 ± 0.23 458 ± 23 374 ± 12 

ssp534-over OSCAR 3.36 ± 0.27 2.04 ± 0.19 1.95 ± 0.22 1.40 ± 0.20 1.29 ± 0.19 497 398 

ssp534-over CMIP6  2.88 ± 0.84 (6) 3.08 ± 1.06 (6) 1.85 ± 0.66 (2)  497 398 

esm-ssp434 OSCAR 3.45 ± 0.40 1.64 ± 0.20 1.87 ± 0.24 1.51 ± 0.28 1.44 ± 0.29 451 ± 21 371 ± 15 

ssp434 OSCAR 3.70 ± 0.31 1.65 ± 0.17 2.00 ± 0.21 1.73 ± 0.24 1.68 ± 0.25 473 392 

ssp434 CMIP6  2.36 ± 1.1 (5) 3.23 ± 1.32 (5)   473 392 

esm-ssp126 OSCAR 2.66 ± 0.29 1.54 ± 0.18 1.49 ± 0.21 1.17 ± 0.20 1.02 ± 0.20 439 ± 18 381 ± 11 

ssp126 OSCAR 2.80 ± 0.20 1.58 ± 0.15 1.58 ± 0.17 1.31 ± 0.18 1.21 ± 0.18 446 396 

ssp126 CMIP6  2.21 ± 1.1 (17) 2.38 ± 1.17 (17) 1.68 ± 0.7 (2)  446 396 

esm-ssp119 OSCAR 2.0 ± 0.25 1.39 ± 0.17 1.15 ± 0.17 0.71 ± 0.15 0.61 ± 0.15 383 ± 12 334 ± 6 

ssp119 OSCAR 2.14 ± 0.18 1.44 ± 0.14 1.24 ± 0.15 0.82 ± 0.13 0.74 ± 0.13 394 342 

ssp119 CMIP6  2.36 ± 1.07 (6) 2.12 ± 0.92 (2)   394 342 
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Table 6: Zero Emissions Commitments at 25, 50, 90 and 500 years after emission cease. Only the ZECs for the experiment esm-1195 
1pct-brch-1000PgC are shown here, for comparison to results of ZECMIP. The full evolution of this experiment is shown in Figure Figure 

8. 

 ZEC25 (K) ZEC50 (K) ZEC90 (K) ZEC500 (K) 

OSCAR v3.1 -0.01 ± 0.07 -0.02 ± 0.09 -0.01 ± 0.11 -0.21 ± 0.13 

ZECMIP (MacDougall et al., 2020) -0.01 ± 0.15 -0.06 ± 0.19 -0.11 ± 0.23  

Formatted: Font: Not Bold



44 

 
Figure 1: Conceptual figure of OSCAR v3.1. The central box with red dashed lines illustrates the framework of OSCAR v3.1, taking 1200 

as inputs anthropogenic emissions (dark grey boxes), land use and land cover change (green boxes) and additional radiative forcings (light 

grey boxes). The components of OSCAR v3.1 are organized in this figure by category: ocean carbon, land carbon and other land processes 

are in yellow boxes, while atmospheric concentrations are in blue boxes, atmospheric chemistry in purple boxes, radiative forcings in 

orange boxes and climate system in red boxes. The complete description of OSCAR v2.2 is in (Gasser et al., 2017), while the update to 

OSCAR v3.1 is described in (Gasser et al., 2020a). 1205 
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Figure 2: Conceptual description of the framework used in this study. The 10000 drawn configurations (Gasser et al., 2017) are 

used in OSCAR in a Monte-Carlo setup for all experiments. The exclusions are based on their exceedance to thresholds in the ocean sink, 1210 
land sink, CO2 emissions form LUC and CO2 emissions from permafrost. The remaining subset common to each experiment is then used 

for all. The likelihood of the kept configurations is then calculated (Gasser et al., 2020a) and applied to all experiments.  
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 1215 

 

 

 

Figure 32: Effect of the constraining step. The histograms are the results of OSCAR v3.1, with plain lines being for the constrained 

version, while the dotted lines are for the unconstrained version. Horizontal lines correspond to the average plus or minus one standard 1220 
deviation. Cumulative compatible carbon emissions in PgC from historical-CMIP5 are calculated over 1850-2011, while those of the 

RCPs are calculated over 2012-2100. 
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Figure 43: Abrupt idealized experiments. In the left panel, the plain lines represent the average change in surface air temperature, 1225 
and its  ± 1 standard deviation ranges using shaded areas. The three middle panels show the contributions to the total RF at equilibrium. 

Individual contributions from stratospheric O3 and deposition of BC on snow are inferior to 0.1 W.m-2 in the abrupt-4xCO2 and have not 

been represented for clarity. The three right panels are the distributions of the ECS, calculated using equilibrium temperature, and thus 

including all the feedbacks of OSCAR. The horizontal plain line is the ECS average and ± 1 standard deviation range. These values with 

Pearson’s moment coefficient of skewness are provided in the legend. 1230 
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Figure 54: Experiments with 1% increase in the atmospheric CO2. The plain lines are the averages, and the shaded areas represent  1235 
± 1 standard deviation ranges. 
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Figure 65: Emission- and concentration-driven historical scenarios. The plain lines are the averages, and the shaded areas 

represent ± 1 standard deviation ranges. The fossil-fuel CO2 emissions for the concentrations-driven historical are the compatible 1240 
emissions, whereas those for the emissions-driven esm-hist are directly prescribed to OSCAR. Radiative forcings under esm-hist are not 

represented, for they are too close from the concentrations-driven historical. Radiative forcings are with respect to 1750. The sources for 

the observations are (Friedlingstein et al., 2020) for GCB2020, (Hartmann et al., 2013) for the ‘AR5 WG1 Ch2’, (Ciais et al., 2013b) for 

‘AR5 WG1 Ch3’ and (Myhre et al., 2013) for ‘AR5 WG1 Ch8’. The 90% ranges provided by AR5 are converted to ± 1 standard deviation 

ranges. 1245 
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Figure 76: Global projections following the main CMIP6 scenarios in concentration-driven mode. Extensions are 

shown only up to 2300. The lines are the averages, and the shaded areas represent ± 1 standard deviation ranges. 

  1250 
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Figure 87: Change in global mean surface temperature for branched experiments (top panels) and bells experiments (bottom 

panels). The results over the zero-emission phase are shifted along the time axis so that t = 0 corresponds to the time of cessation of 

emission. The lines are the averages, and the shaded areas represent ± 1 standard deviation ranges. 

  1255 
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Figure A. 1: Reversibility experiment from CDRMIP. The orange lines correspond to the ramp-up of 1pctCO2-cdr, the blue line to 

its ramp-down and the grey line to the 1000 years with constant atmospheric CO2. The plain lines are the averages, and the shaded areas 

represent ± 1 standard deviation ranges.  
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1260 
  

Figure A. 2: AGWP (blue) and AGTP (orange) of CO2 for 100PgC of CO2 emissions under actual environmental conditions. The 

dependency of this reference to a change of background is on the second line. The dependency to the sign of the pulse, emissions or 

removal, is on the third line. The lines are the averages, and the shaded areas represent ± 1 standard deviation ranges. 

  1265 
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Figure A. 3: Effect of climate change on the carbon cycle in the scenarios ssp534-over and ssp585. The net flux from atmosphere 

from land is the sum of the land carbon sink, CO2 emissions from land-use and land-cover change, and CO2 and CH4 emissions from 

permafrost. The changes in the total land carbon stock include those in the permafrost. Note that the increased uncertainty in the ocean 

sink before 2250 is an artefact of our exclusion procedure (see text on post-processing) that cannot capture the Monte Carlo members that 1270 
already started diverging. Extensions are shown only up to 2300. The lines are the averages, and the shaded areas represent ± 1 standard 

deviation ranges. 
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Figure A. 4: Experiments from GeoMIP compared to their DECK counterpart. The plain lines are the averages, and the shaded 1275 
areas represent ± 1 standard deviation ranges. 
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Figure A. 5: Effect of introducing SRM in the SSP5-8.5 to reach the SSP2-4.5. The lines are the averages, and the shaded areas 

represent ± 1 standard deviation ranges. 1280 
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Figure A. 6: Land-use experiments from LUMIP. The first row of the figure corresponds to the reference experiment (land-hist) 

while other rows show sensitivity experiments as a difference to land-hist. land-hist-altStartYear is shown only from 1850 despite starting 

in 1700. The lines are the averages, and the shaded areas represent ± 1 standard deviation ranges.  1285 
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Figure A. 7: Effect of alternative land-use and land-cover change drivers in the  scenarios ssp126, ssp370 and ssp585. Here, the 

changes in the land carbon stock does not include the changes in the permafrost. The lines are the averages, and the shaded areas represent 

± 1 standard deviation ranges. 

  1290 
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Figure A. 8: Effect of lower NTCF emissions in the SSP3-7.0. Extensions are shown only up to 2300. The lines are the averages, 

and the shaded areas represent ± 1 standard deviation ranges. 
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Figure A. 9: Comparison between RCPs (CMIP5) and SSPs (CMIP6). The lines are the averages, and the shaded areas represent ± 

1 standard deviation ranges. 

Appendix A: Method for excluding configurations and constraining outputs 

In the exclusion round, we identify and discard the configurations that lead to a numerical divergence of the model as 

illustrated with Figure 2. Every experiment undergoes a thorough search, and we developed heuristic criteria to exclude 1300 

these diverging runs by trial-error. We identify divergences occurring in high warming scenarios, mostly when the oceanic 

carbon sink drops and then oscillates. We explain this instability with the stratification of the ocean surface, as detailed in 

equation 4 of (Gasser et al., 2017). Some parametrizations under high warming scenarios exhibit an additional mode, not 

diverging in the strictest sense, yet, with the ocean carbon sink becoming a source and then switching back to a sink, which 

we identified as a physically unrealistic behaviour of the parametrization. 1305 

To discard the unrealistic configurations, we use the experiments ssp585, ssp370, 1pctCO2 and abrupt-4xCO2 for their 

high warming over different timescales. We use the ocean sink, the land sink, the CO2 emissions from LUC and the CO2 

emissions from permafrost, to ensure that the whole carbon cycle remains within reasonable boundaries. The criteria are set 

based on the performances of the remaining subset. In general, we use 20 PgC/yr in absolute value as a threshold for 

divergence. Over ssp585 and ssp370, the domain is restrained to strictly positive values, due to the additional mode 1310 

mentioned previously. Over abrupt-4xCO2, the criteria are applied over the last 50 years of the experiments only. In 

1pctCO2, the run is extended by another 100 years for better identification. As illustrated in Figure 2, mMost of the 

exclusions are related to ocean carbon sink, the other variables bring only little exclusions. TWe keep the 1118 

configurations not causing any divergences in all the experiments are kept as a common set of configurations for all 

experiments. 1315 

The need for exclusion is stronger as the atmospheric concentration of CO2 and the global surface temperature increase. 

We acknowledge that when a significant fraction of the configurations is excluded, confidence in our model’s result is 

lowered, but such a limitation of the validity domain is inherent to reduced-complexity models. The model’s results might as 

well depend on the set thresholds for exclusions. However, this bias is reduced through the constraining round because 

configurations with unrealistic carbon cycles receive a low likelihood. 1320 

We observed that in most cases, the reason of the exclusion is due to a diverging ocean sink. The ocean carbon cycle of 

OSCAR is its oldest module (Gasser et al., 2017), and should be redesigned for more stable behaviour under high-warming 

scenarios. A possibility is to increase the number of sub-timesteps in the oceanic carbon module to avoid this issue for a 

fraction of the configurations, but it comes at the expense of the computational cost of the model. 

After this exclusion, the outputs of OSCAR are constrained using observations. As done for RCMIP phase 2 (Nicholls et 1325 

al., 2021), the objective of this constraining round is to use the flexibility and the probabilistic frameworks of the reduced 

complexity models to synthesize lines of evidence with the modelling of the Earth system. With OSCAR, we assess the 

physical likelihood of the model’s configurations using lines of evidence from the literature. For every constraint, we extend 

a method already used with OSCAR but with only one constraint (Gasser et al., 2020a; Le Quéré et al., 2018b). We assume a 
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distribution from which we derive the likelihood of every configuration, as illustrated in equation A1 of (Gasser et al., 1330 

2020a). The product of the probabilities over the set of constraints is the final likelihood of the configurations. 

As the first observational constraint, we choose the surface air ocean blended temperature change over 2000-2019 with 

reference to 1961-1990 are used, provided as an assessed range by RCMIP (Nicholls et al., 2021) from the HadCRUT 

4.6.0.0 dataset (Morice et al., 2012). This constraint is meant to provide information on the climate system. To constrain the 

carbon cycle, we use compatible fossil fuel emissions. For now, OSCAR v3.1 is calibrated on CMIP5, which motivates the 1335 

use of the compatible emissions of CMIP5, not those of CMIP6. An initial set of constraints based solely on observations 

had revealed that using projections helped the overall constraining round, thanks to the larger perturbation in the scenarios 

than in the historical period. Thus we choose the CMIP5 cumulative compatible fossil fuel emissions over the 

concentrations-driven historical and 4 RCPs are used (Ciais et al., 2013b). To further constrain the partitioning of the carbon 

sinks between land and ocean, we use data on the cumulative net ocean to atmosphere flux of CO2 over 1750-2011 (Ciais et 1340 

al., 2013b). 

 Formatted: Font: Bold, Underline

Formatted: Indent: First line:  0 cm



63 

 

Figure A. 1: Conceptual description of the framework used in this study. The 10000 drawn configurations (Gasser et al., 2017) are 

used in OSCAR in a Monte-Carlo setup for all experiments. The exclusions are based on their exceedance to thresholds in the ocean sink, 1345 
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land sink, CO2 emissions form LUC and CO2 emissions from permafrost. The remaining subset common to each experiment is then used 

for all. The likelihood of the kept configurations is then calculated (Gasser et al., 2020a) and applied to all experiments. 

 

Appendix B: Behaviour of OSCAR 

1. Carbon geoengineering 1350 

1.1. Idealized experiments 

Experiments of CDRMIP are designed to investigate the consequences of carbon dioxide removal for the Earth system 

(Keller et al., 2018a). In 1pctCO2-cdr, the atmospheric CO2 increases by 1% every year (just like 1pctCO2), but after 140 

years, the atmospheric CO2 decreases following a pathway at the same rath than the ramp-up period. Once CO2 has returned 

to its preindustrial state, the experiment is extended over 1000 years. As shown in Error! Reference source not found., the 1355 

GSAT reaches 3.68 ± 0.39 K at the end of the ramp-up forcing, and it goes back to 0.85 ± 0.22 K at the end of the ramp-

down forcing. For all variables, such as the CH4 emissions from wetlands, removing CO2 from the atmosphere during ramp-

down effectively reduces the perturbation in the variable that was induced by the ramp-up, albeit within a different time 

frame that is typical of a dynamic hysteresis (Boucher et al., 2012). Once the global temperature change is sufficiently 

reduced, the permafrost carbon stock slowly reconstitutes itself as well. However, the whole Earth system is not fully 1360 

recovered as soon as the preindustrial level of atmospheric CO2 is reached. To return within 10% of the maximum 

perturbation at the end of the CO2 ramp-up, it takes GSAT an average 110 extra years, and the land carbon stock an average 

26 years. At the end of the 1000-year extension, the oceanic carbon stock remains at about 19% of its maximum 

perturbation. 

 1365 
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Figure B. 1: Reversibility experiment from CDRMIP. The orange lines correspond to the ramp-up of 1pctCO2-cdr, the blue line to 

its ramp-down and the grey line to the 1000 years with constant atmospheric CO2. The plain lines are the averages, and the shaded areas 

represent ± 1 standard deviation ranges. 

 1370 

Other CDRMIP experiments based on pulses of carbon emission or removal in an emission-driven configuration were 

performed to evaluate the response of the Earth system to CDR. These experiments are used to calculate the Absolute Global 

Warming and Temperature Potentials (AGWPs and AGTPs) of CO2, which serves to establish the Global Warming and 

Temperature Potentials (GWPs and GTPs) of other greenhouse gases (Myhre et al., 2013). In esm-pi-CO2pulse, a 100 PgC 

pulse is emitted from the preindustrial environmental condition in 1860, whereas 100 PgC are removed in esm-pi-cdr-pulse. 1375 

In esm-yr2010CO2-CO2pulse, the 100 PgC pulse is applied in 2015 but under 2010 environmental conditions, whereas these 

100 PgC are removed at the same date in esm-yr2010CO2-cdr-pulse. We calculate timeseries of AGWPs and AGTPs under 

these experiments (). The differences to the reference pulse are shown in a different panel for clarity. We pinpoint that, just 
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like the other experiments, we are calculating these potentials with the interactive permafrost of OSCAR. The larger source 

of differences lies in the background: under preindustrial environmental conditions, emission pulses have a stronger AGWP 1380 

or AGTP over the short term, but this is inverted over the longer term. Over the short term, this is due to the logarithmic 

expression of the CO2 radiative forcing that is less saturated under preindustrial conditions. Over the long term, this is due to 

the deterioration of the carbon sink capacities under current conditions (Raupach et al., 2014). Similar reasons explain why a 

pulse of carbon removal cools the atmosphere slightly more over the short term than a pulse of emission warms it, but less 

over the long term. Our results cannot be compared to the final CDRMIP results yet, for they are unpublished, but they are 1385 

consistent with those obtained with a model of intermediate complexity (Zickfeld et al., 2021). 

  

Figure B. 2: AGWP (blue) and AGTP (orange) of CO2 for 100PgC of CO2 emissions under actual environmental conditions. The 

dependency of this reference to a change of background is on the second line. The dependency to the sign of the pulse, emissions or 1390 
removal, is on the third line. The lines are the averages, and the shaded areas represent ± 1 standard deviation ranges. 

 

1.2. Alternative scenarios 

The C4MIP (Jones et al., 2016) experiments ssp534-over-bgc and ssp585-bgc differ from ssp534-over and ssp585 in 

that the prescribed CO2 does not affect the total radiative forcing , thus causing a lower change in GSAT and maintaining a 1395 
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relatively high carbon sinks efficiency. Error! Reference source not found. shows both carbon sinks under the variants and 

the base scenarios. Note that the -bgc experiments stem from a different historical simulation (hist-bgc). Under the high 

warming scenarios ssp585, climate change reduces the oceanic carbon sink by 1.93 ± 0.69 PgC.yr-1 and the net land carbon 

flux by 4.31 ± 1.93 PgC.yr-1 in 2100. Under the overshoot scenario ssp534-over, this difference is lower, owing to its 

declining atmospheric CO2. Removing the impact of climate change on the carbon cycle increases the land carbon stock by 1400 

269 ± 52 PgC in ssp534-over, but by 501 ± 117 PgC in ssp585 in 2100, due to the higher warming in the latter case. We note 

that the permafrost carbon stock drives most of the changes, because if permafrost is ignored in the bgc variant, these 

changes are reduced to 57 ± 32 PgC and 131 ± 77 PgC in ssp534-over and ssp585 respectively. 

 

Figure B. 3: Effect of climate change on the carbon cycle in the scenarios ssp534-over and ssp585. The net flux from atmosphere from 1405 
land is the sum of the land carbon sink, CO2 emissions from land-use and land-cover change, and CO2 and CH4 emissions from 

permafrost. The changes in the total land carbon stock include those in the permafrost. Note that the increased uncertainty in the ocean 

sink before 2250 is an artefact of our exclusion procedure (see text on post-processing) that cannot capture the Monte Carlo members that 

already started diverging. Extensions are shown only up to 2300. The lines are the averages, and the shaded areas represent ± 1 standard 

deviation ranges. 1410 
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2. Solar geoengineering 

2.1. Idealized experiments 

Experiments of GeoMIP (Kravitz et al., 2015) are designed to investigate the geoengineering techniques of Solar 

Radiation Management (SRM). Although OSCAR is not suited for all GeoMIP experiments, as it lacks any spatially 1415 

resolved process, a few simulations remained accessible to our model. We run experiments G1 and G2: G1 essentially 

follows abrupt-4xCO2, albeit with a changed incoming solar radiation that compensates for the radiative forcing caused by 

the increasing atmospheric CO2 For G2, an identical principle is applied but using 1pctCO2 as a basis. As explained by 

(Kravitz et al., 2011), the change in solar radiation compensates solely for the radiative forcing of CO2. However, it does not 

compensate for other radiative effects introduced by biogeochemical feedbacks, such as the fertilization by CO2, affecting 1420 

the carbon cycle, thus changing biomass burning emissions. Error! Reference source not found. shows that offsetting the 

CO2 radiative forcing with a change in solar activity effectively compensates the change in GSAT. However, we simulate 

that the GSAT decreases in G1 and G2 to reach -0.08 ± 0.20 K and -0.07 ± 0.20 K, respectively, at the end of simulations. 

The compensation of the sole radiative forcing of CO2 does not balance other feedbacks. There remains an additional 

radiative forcing, mostly due to changes in aerosols (as also shown in Figure ), which results in this relatively small cooling 1425 

in G1 and G2. We estimate that in OSCAR about half of this effect is caused by the vegetation being fertilized by CO2 and 

fuelling increased natural biomass burning emissions, and the remaining half is caused by the direct impact of GSAT on the 

atmospheric lifetime of aerosols (not shown). We note that the latter effect could be poorly estimated, in these specific 

experiments, as OSCAR’s formulation for the lifetime of aerosols depends only on GSAT and not on the precipitation 

intensity. 1430 

Indeed, global precipitation does not respond in a similar way, because changes in atmospheric CO2 and solar radiation 

have a different impact of the hydrological cycle (Andrews et al., 2010). In spite of a fully compensated GSAT change, 

global precipitation is significantly reduced in G1 and G2, showing that such SRM technique does not entirely negate 

climate change. This demonstrates that OSCAR is capable of reproducing this well-established effect of this SRM technique 

(Boucher et al., 2013a). One added value of having a fully coupled ESM run these GeoMIP experiments is that we can also 1435 

provide an estimate of the impact of the SRM technique on the carbon cycle. Error! Reference source not found. also 

shows that the land and ocean carbon stocks are increased in G1 and G2, respectively by about 33% and 20% at the end of 

the simulations, owing to the loss of carbon sink efficiency that is avoided by maintaining the temperature to its preindustrial 

level. 
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 1440 

Figure B. 4: Experiments from GeoMIP compared to their DECK counterpart. The plain lines are the averages, and the shaded areas 

represent ± 1 standard deviation ranges. 
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2.2. Alternative scenarios 1445 

In addition to the few idealized experiments of GeoMIP (Kravitz et al., 2015) that are accessible to OSCAR, one 

scenario variant focusing on SRM was also feasible. The G6solar experiment stems from ssp585, but the solar constant 

changes from 2020 onwards to compensate the radiative forcing of ssp585 and match the one of ssp245. As shown in Error! 

Reference source not found., differences remain although the GSAT of G6solar decreases to a level comparable to ssp245. 

We calculate the change in solar constant as the difference from the radiative forcing of ssp245 to ssp585. By construction, it 1450 

excludes feedbacks caused by this change and does not fully cancel the change in global precipitation , just like in G1 and 

G2. Consequently, the carbon stocks still increase in G6solar, even more than in ssp585 thanks to the lower GSAT and 

despite lower global precipitation.  

 

Figure B. 5: Effect of introducing SRM in the SSP5-8.5 to reach the SSP2-4.5. The lines are the averages, and the shaded areas 1455 
represent ± 1 standard deviation ranges. 
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3. Land-use 

3.1. Alternative historicals 

LUMIP consists of experiments specifically focusing on land-use activities, and most of them are run by the Earth 1460 

system models in a so-called “offline” fashion  (Lawrence et al., 2016). It means that a reconstruction of past climate 

variables GSWP3 (Lawrence et al., 2016; van den Hurk et al., 2016) is prescribed to the model, so that the land module is 

actually decoupled from the rest of the model. Despite its simplicity, OSCAR has an added-value in running those 

simulations, as it embeds a book-keeping module that endogenously estimates CO2 emissions from land-use and land-cover 

change. The main land carbon fluxes and stocks simulated under the reference experiment (dubbed land-hist) are shown in 1465 

Error! Reference source not found., along with three sets of sensitivity experiments described hereafter. The results are 

similar to those obtained recently with the same version of the model but with slightly differing forcings and a different 

constraint (Gasser et al., 2020b). The simulated land carbon stock decrease up to the 1970s, because of land-use activities 

emitting more CO2 than the sink absorbs thanks to CO2 fertilization and other factors. The carbon stock of 2010 is higher 

than the one of 1850 by only 1 ± 42 PgC. For comparison, the GCB 2020 provides for 1850-2014 a net budget for the land 1470 

sink and CO2 emissions from LUC of -5 ± 90 PgC (Friedlingstein et al., 2020). 

The experiments land-cCO2 and land-cClim are used to disentangle the contribution of CO2 fertilization and changing 

climate on the land carbon cycle. In land-cCO2, the atmospheric CO2 is constant and set to preindustrial value. In land-

cClim, the climate drivers loop over the year 1901-1920 of the data set, thus simulating a preindustrial climate. Error! 

Reference source not found. shows the differences; for example, land-hist – land-cCO2 illustrates the effect of atmospheric 1475 

CO2 on the variables of interest. Thanks to these experiments, we show that CO2 is the main driver of the land sink in 

OSCAR, driving most of the trend, with climate bringing a significant interannual variability but virtually no trend, except 

over the recent past. In 2010, climate caused a small difference of -10 ± 10 PgC in total land carbon stock, while CO2 did one 

of 141 ± 42 PgC. This has to be balanced with the results of the C4MIP idealized experiments where we saw OSCAR is less 

sensitive to climate change than CMIP5 models. Additionally, we see that the effect of climate and CO2 on land-use and 1480 

land-cover change emissions is minor, which is consistent with the fact that they are firstly determined by preindustrial 

carbon densities (Gasser et al., 2020b; Gasser and Ciais, 2013a).  

A second set of experiments is meant to investigate the impact of land-use practices. Land-cover change contributed -

152 ± 44 PgC to the 2010 change in land carbon stock since 1850, which corresponds to most of the total land-use and land-

cover change emissions. Notably, it also reduced the land sink – an effect called the loss of additional sink capacity that has 1485 

been diagnosed and quantified with OSCAR in the past (Gasser et al., 2020b; Le Quéré et al., 2018b; Gasser and Ciais, 

2013a; Friedlingstein et al., 2020). Shifting cultivation (i.e. rapidly rotating land-use change between agriculture and natural 

ecosystems) had a relatively low impact on CO2 emissions, leading to a change in land carbon stock of -8 ± 2 PgC at the end 

of the simulation in 2010. Similarly, wood harvest (in woody ecosystems that do not see land-cover change) had an overall 

impact of -16 ± 4 PgC. Both shifting cultivation and wood harvest have no impact at all on the land sink, by construction of 1490 
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their formulation in OSCAR (Gasser et al., 2020b). Finally, the effect of having cropland-specific parameters in the model is 

isolated thanks to the land-crop-grass experiment, in which new croplands are treated as grasslands. Having grasslands 

instead of croplands increases both the land sink and the CO2 emissions from land-use and land-cover change, resulting in a 

land carbon stock higher by 31 ± 26 PgC. All these values are entirely in line with an existing assessment of those land-use 

practices in which an earlier version of OSCAR took part (Arneth et al., 2017). 1495 

The third set of experiments relates to varying input data sets of land-use and land-cover change drivers. Two of these 

(land-hist-altLu1 and land-hist-alLu2) relied on the two variations of the main LUH2 data set known as the “High” and 

“Low” variants (respectively) (Hurtt et al., 2020). We find that the so-called low variant leads to slightly higher land-use and 

land-cover change emissions amounting to a land carbon stock lower by 8 ± 2 PgC over the whole period. The high variant 

produces slightly lower total emissions, leading to a land carbon stock higher by 17 ± 5 PgC. Neither variant has a 1500 

significant impact on the land sink. According to the description of these two variations (Hurtt et al., 2020), they differ from 

the default data set mostly in the harvest of biomass, and are very similar from 1920 onwards. The last LUMIP experiment 

run with OSCAR is one that uses the primary data set but an alternative starting year (land-hist-altStartYear). This required 

making an additional spin-up of the model under the environmental conditions and land cover of year 1700. Compared to the 

reference experiment, we find a slightly higher land sink after 1850 that decreases through time, owing to the ecosystems not 1505 

being at steady state at that date. Similarly, emissions are slightly higher but the difference to the reference case tends 

towards zero as the legacy of land-use and land-cover change prior to 1850 fades away. The land carbon stock in 2010 is 

dominated by the increased land sink and amounts to a small increase of -17 ± 13 PgC in the land. Comparing the latter 

value with the total change in land carbon in the reference experiment suggests starting simulations in 1850 instead of 1700 

or 1750 introduces a non-negligible bias in the CMIP6 exercise. 1510 
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Figure B. 6: Land-use experiments from LUMIP. The first row of the figure corresponds to the reference experiment (land-hist) while 

other rows show sensitivity experiments as a difference to land-hist. land-hist-altStartYear is shown only from 1850 despite starting in 

1700. The lines are the averages, and the shaded areas represent ± 1 standard deviation ranges.  Formatted: English (United States)
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 1515 

3.2. Alternative scenarios 

LUMIP introduced variants of regular scenarios in which alternative land-use and land-cover change drivers coming 

from another scenario are prescribed (Lawrence et al., 2016), some of which being used in CDRMIP to assess afforestation 

(Keller et al., 2018b). Two such experiments are the pessimistic ssp585 and ssp370 combined with the land-use activities of 

the optimistic ssp126 (named ssp585-ssp126Lu and ssp370-ssp126Lu, respectively). A third experiment consists in using the 1520 

land-use of ssp370 but under ssp126. (named ssp126-ssp370Lu). Comparisons of these experiments with their regular 

counterparts are shown in Error! Reference source not found.. As expected, changing the land-use scenario roughly 

replaces one SSP’s land-use emissions by another’s, albeit with some slight differences in the later stage of the simulations  

(i.e. after 2050) when atmospheric CO2 and climate are significantly different from the reference scenario’s, which has an 

impact in OSCAR because of transiently changing land carbon densities. The effect on the land carbon sink is also 1525 

quantified, showing that sink capacity can be preserved by conserving natural ecosystems, although it remains a relatively 

small effect in absolute value. We note that the ability of properly isolating both effects (on land-use emissions and on the 

sink) is a specific feature of OSCAR that stems from the formulation of its land carbon cycle (Gasser et al., 2020b; Gasser 

and Ciais, 2013a), and we do not expect many complex ESMs to be able to provide such a partitioning. The overall effect on 

land carbon stock change in 2100 is 48 ± 15 PgC, 76 ± 28 PgC and -65 ± 23 PgC, in the ssp585-ssp126Lu, ssp370-ssp126Lu 1530 

and ssp126-ssp370Lu scenarios respectively. While the land carbon stocks are affected, the change in land cover also affects 

the planetary albedo. The radiative forcing from albedo of land cover change are exchanged between ssp126 and ssp370, but 

changes remain below 0.1 W.m-2. The net combined effect on projected temperature cannot be estimated because these 

experiments are concentration-driven. 
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 1535 

Figure B. 7: Effect of alternative land-use and land-cover change drivers in the  scenarios ssp126, ssp370 and ssp585. Here, the 

changes in the land carbon stock does not include the changes in the permafrost. The lines are the averages, and the shaded areas represent 

± 1 standard deviation ranges. 

 

 1540 

4. Alternative scenarios for NTCFs 

The ssp370-lowNTCF scenario is a variant of the ssp370 differing by its lower emission of short-lived pollutants 

affecting the RF of NTCFs. As illustrated in Error! Reference source not found., the variant leads to a somewhat 

equivalent warming, although with very slightly less cooling from NTCFs. This almost negligible effect on global 

temperature is actually the result of two large but compensating effects that manifest the most between 2050 and 2100. The 1545 

lower emission of warming NTCFs leads to absorbing aerosols (i.e. BC) warming less by -0.21 ± 0.11 W m-2 and 

tropospheric ozone warming less by -0.21 ± 0.03 W m-2 in 2100. Conversely, it also leads to scattering aerosols cooling less 

by 0.33 ± 0.12 W m-2 and the indirect aerosol effects cooling less by 0.26 ± 0.13 W m-2 at the same date. This results in a 

small increase of the total radiative forcing of 0.15 ± 0.20 W m-2 and a GSAT change of only 0.07 ± 0.11 K. However, the 

difference in forcing agents between the two scenarios leads to a significant change in global precipitation that reaches 15 ± 1550 
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11 mm yr-1 in 2100. The change in precipitation is consistent with our results for the GeoMIP experiments and what we 

know of the global water cycle (Shine et al., 2015). 

 

Figure B. 8: Effect of lower NTCF emissions in the SSP3-7.0. Extensions are shown only up to 2300. The lines are the averages, and the 

shaded areas represent ± 1 standard deviation ranges. 1555 

 

5. Comparison of two generations of scenarios 

Initially, the SSPs scenarios were designed to reach the RF of RCPs in 2100, to provide a common grid for reading and 

comparing all the SSPs scenarios. Hence, the same four RF targets chosen in CMIP5 with the RCPs (2.6 W.m-2, 4.5 W.m-2, 

6.0 W.m-2, 8.5 W.m-2) have also been chosen in CMIP6 with four out of the eight SSPs used. Yet, CMIP6 ESMs did not run 1560 

RCPs, because these scenarios are not part of the CMIP6 experiments. Therefore, the difference between RCPs projections 

in CMIP5 and SSPs projections in CMIP6 under the same RF targets are due to both a change in the generation of ESMs and 

a change in scenarios. In Error! Reference source not found., we represent both RCPs and SSPs under the same version of 

OSCAR, showing the difference due to the sole change in scenarios. These scenarios use different drivers, as illustrated with 

the atmospheric CO2 prescribed to these concentration-driven experiments, usually with higher CO2 concentrations in the 1565 
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CMIP6 version. Except for the 8.5 target, the RF tends to be also higher in the CMIP6 version, compared to the CMIP5 

version, meaning changes in other drivers are not enough to balance the CO2 increase. While the 2.6 W.m-2 and 8.5 W.m-2 

targets are reached in 2100, the 4.5 W.m-2 and 6.0 W.m-2 are not. However, our results can be compared to those of 

MAGICC in these two cases (IIASA, 2018a), and both reduced-complexity models are consistent. Because of the similar RF 

targets, GSAT are relatively similar over the 21st century, but RCPs and SSPs tend to dissociate later on. In 2300, moving 1570 

from RCPs to SSPs changes GSAT by 18 ± 8%, 9 ± 3%, 5 ± 2% and -6 ± 1% in the four tested scenarios, respectively. 

Differences in other key variables such as the carbon sinks logically respond to these differences in atmospheric CO2 and 

global temperature change, as also shown in  Error! Reference source not found.. 
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 1575 

Figure B. 9: Comparison between RCPs (CMIP5) and SSPs (CMIP6). The lines are the averages, and the shaded areas represent ± 1 

standard deviation ranges. 
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