
1 

CMIP6 simulations with the compact Earth system model OSCAR v3.1 

Yann Quilcaille1*, Thomas Gasser2, Philippe Ciais3, Olivier Boucher4 

1 International Institute for Applied Systems Analysis (IIASA), 2361 Laxenburg, Austria;  

* now at Institute for Atmospheric and Climate Science, Department of Environmental Systems Sciences, ETH Zürich, 

Zürich, Switzerland 5 
2 International Institute for Applied Systems Analysis (IIASA), 2361 Laxenburg, Austria 
3 Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, Université Paris-Saclay, CEA – CNRS – UVSQ, 

91191 Gif-sur-Yvette, France 
4 Institut Pierre-Simon Laplace, Sorbonne Université, CNRS 75252 Paris, France 

Correspondence to: Yann Quilcaille (yann.quilcaille@env.ethz.ch) 10 

Abstract. While Earth system models (ESMs) are process-based and can be run at high resolutions, they are only limited 

by computational costs. Reduced complexity models, also called simple climate models or compact models, provide an much 

cheaper alternative to Earth system models (ESMs) with lower computational costs, although at a lossthe expense of spatial 

information. Their structure relies on the sciences of the Earth system, but with a calibration against the most complex models. 

Therefore iIt remains important to evaluate and validate these reduced complexity models. Here, we diagnose evaluate such a 15 

model the newest version (v3.1) of the OSCAR model of OSCAR (v3.1) using observations and results from ESMs from the 

current Coupled Model Intercomparison Project 6. The results follow the same post-processing used for the contribution of 

OSCAR to the Reduced Complexity Model Intercomparison Project Phase 2, with the identification of stable configurations 

and observational constraints. A total of 99 experiments are selected for simulation with OSCAR v3.1 in a probabilistic 

framework, reaching a total of 567,700,000 simulated years. A first highlight of this exercise that the ocean carbon cycle of 20 

the model may diverge under some parametrizations and for high-warming scenarios. The diverging runs caused by this 

unstability were discarded in the post-processing. Then, each physical parametrization is weighted based on its performance 

against a set of observations, providing us with constrained results. Overall, OSCAR v3.1 shows good agreement with 

observations, ESMs and emerging properties. It reproduces the responses of complex ESMs, for all aspects of the Earth system. 

We observe some quantitative differences with these models, most of them being due to the impact of observational constraints 25 

on the weighting of parametrizations. Some specific features of OSCAR also contribute to these differences, such as its fully 

interactive atmospheric chemistry and endogenous calculations of biomass burning, wetlands CH4 and permafrost CH4 and 

CO2 emissions. The Identified main points of needed improvements of the OSCAR model are include a low sensitivity of the 

land carbon cycle to climate change, an unstabilityinstability of the ocean carbon cycle, the seemingly too simple climate 

module, and the too strong climate feedback involving short-lived species. Beyond providing a key diagnosis of the OSCAR 30 

model in the context of the reduced-complexity models intercomparison project (RCMIP), this work is also meant to help with 

the upcoming calibration of OSCAR on CMIP6 results, and to provide a large group of CMIP6 simulations run consistently 

within a probabilistic framework. 
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1. Introduction 

Complex models such as Earth system models (ESMs) are used for climate projections (Collins et al., 2013). ESMs provide 

gridded detailed process-based outputs (Flato et al., 2013), but these strengths are mitigated by heavy computational costs. As 

a complement, some reduced-complexity models, also called simple climate models (SCMs), prove useful to investigate 

couplings and uncertainties (Nicholls et al., 2020; Clarke et al., 2014), especially for large ensembles of scenarios and statistical 40 

analysis of uncertainties to model parameters (Gasser et al., 2015; Li et al., 2016; Quilcaille et al., 2018). SCMs run 

significantly faster, thanks to a parametric modelling approach often calibrated on more complex models such as ESMs 

(Meinshausen et al., 2011a; Crichton et al., 2014; Hartin et al., 2015; Gasser et al., 2017; Smith et al., 2018; Dorheim et al., 

2021). (Gasser et al., 2017; Meinshausen et al., 2011b; Hartin et al., 2015; Smith et al., 2018; Crichton et al., 2014; Dorheim 

et al., 2021). Although more simplesimpler than ESMs, those models exhibit a diversity in their modelling and calibration 45 

(Nicholls et al., 2020; Nicholls et al., 2021). In spite of this relative simple modelling approach, rReduced complexity models 

still need to be validated despite their calibration and their relative simplicity. Even a very simple emulator may have 

difficulties to grasp some features of the Earth system, this diagnose would help in identifying what this emulator would be 

good at. Besides, rReduced complexity models are often built as a coupling combination of modules, each dedicated to aspects 

of the Earth system, such as the atmospheric chemistry, the oceanic carbon cycle, the climate response to radiative forcings, 50 

etc. These models may be calibrated developed as unique an emulators, with all modules calibrated together, for instance to 

emulate a single ESM. These modelsy may also be calibrated developed as a combination of emulators, with each module 

calibrated separately, and thisas it is the case of for OSCAR. Under such an approach, each parametrization may be an existing 

ESM or an unforeseen combination. It broadens the range of potential modelling, butmodelling is broadened but increase the 

need for validation is increased. For these reasons, all reduced complexity models need to be validated in spite of their 55 

calibration and their relative simplicity. 

In this paper, experiments designed under the Coupled Model Intercomparison Project 6 (Eyring et al., 2016) are used to 

diagnose the performances of the latest version of OSCAR, comparing its results to observations and other model outputs. We 

briefly describe the model and its update, the probabilistic setup used, and how it has been constrained using observations. We 

present the CMIP6 simulations run with OSCAR, andOSCAR and compare their results to the available CMIP6 ESM runs. 60 

Beyond diagnosis and despite being a simple model, OSCAR has a number of specificities that make it interesting to some of 

CMIP6-endorsed MIPs: CDRMIP (Keller et al., 2018b) (Keller et al., 2018a) and ZECMIP (Jones et al., 2019) thanks to its 

advanced carbon cycle, and LUMIP (Lawrence et al., 2016) thanks to its book-keeping land use module (section 2.1). OSCAR 

is also part of the RCMIP project phases 1 and 2 (Nicholls et al., 2020; Nicholls et al., 2021), whose objective is to compare 

reduced complexity models together and against some CMIP6 and CMIP5 simulations. 65 

Over the course ofIn this study, we focus on several aspects of the model. To begin with, the approach based on the 

exclusion of diverging parametrizations and observational constraints is only briefly analyzedanalysed, for it is the one used 

in RCMIP phase 2 (Nicholls et al., 2021). Idealized experiments from the DECK and RCMIP (Nicholls et al., 2020) are used 
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to evaluate the climate response, while other idealized experiments from the DECK and C4MIP (Jones et al., 2016) to evaluate 

the carbon cycle response. Then, we use experiments from the DECK (Eyring et al., 2016) to simulate climate change over the 70 

historical period. Experiments from DAMIP (Gillett et al., 2016), AerChemMIP (Collins et al., 2017), C4MIP (Jones et al., 

2016) and LUMIP (Lawrence et al., 2016) form the basis for an attribution exercise of historical global temperature change. 

Climate projections are then obtained using ScenarioMIP (O'Neill et al., 2016). Insights are calculated on the zero emission 

committed warming using ZECMIP (Jones et al., 2019). Further analysis on the behaviour of OSCAR is provided in the 

Appendix. Idealized experiments from the DECK and RCMIP (Nicholls et al., 2020) are used to evaluate the climate response, 75 

while other idealized experiments from the DECK and C4MIP (Jones et al., 2016) to evaluate the carbon cycle response. Some 

insights are obtained on the response to the solar geoengineering using GeoMIP experiments (Kravitz et al., 2015), on carbon 

geoengineering using CDRMIP (Keller et al., 2018a), and on the zero emission commited warming using ZECMIP (Jones et 

al., 2019). Experiments from DAMIP (Gillett et al., 2016), AerChemMIP (Collins et al., 2017), C4MIP (Jones et al., 2016) 

and LUMIP (Lawrence et al., 2016) form the basis for an attribution exercice of historical global temperature change. Land-80 

use is investigated using LUMIP experiments. Climate projections are then obtained using ScenarioMIP (O'Neill et al., 2016) 

and RCMIP experiments, with some variants of these scenarios in different MIPs. 

 

2. Experimental setup 

2.1. Brief description of OSCAR v3.1 85 

OSCAR v3.1 is an open-source Earth system model of reduced complexity, whose modules mimic models of higher 

complexity, and meant to be used in a probabilistic fashion (Gasser et al., 2017). A conceptual description of OSCAR v3.1 is 

given in Figure 1. The full description of OSCAR v2.2 was entirely described incan be found in (Gasser et al., 2017), providing 

details on its structure, equations and calibration, and c. Changes between from v2.2 and to v3.1 are summarized detailed in 

(Gasser et al., 2020a).  We pinpoint that v3.1 is still calibrated on CMIP5 ESMs, then not meant to emulate CMIP6 models. 90 

Furthermore, each module is calibrated on available models, but not all ESMs have implemented every aspect modelled in 

OSCAR, such as permafrost or biomass burning. It means that OSCAR does not emulate the ESMs as such, but these models 

coupled with more modules. 

Global surface temperature changes in response to radiative forcing follows a two-box model formulation (Geoffroy et al., 

2013b). Global precipitation is deduced from global surface temperature and the atmospheric fraction of radiative forcing 95 

(Shine et al., 2015). Linear scaling on the global variables is used to estimate regional temperature and precipitation changes, 

over five broad world regions (Iiasa, 2018b). OSCAR calculates the radiative forcing caused by greenhouse gases (CO2, CH4, 

N2O, 37 halogenated compounds), short-lived climate forcers (tropospheric and stratospheric ozone, stratospheric water 

vapour, nitrates, sulphates, black carbon, primary and secondary organic aerosols) and changes in surface albedo. 
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The ocean carbon cycle is based on the mixed-layer response function of (Joos et al., 1996), albeit with an added 100 

stratification of the upper ocean derived from CMIP5 (Arora et al., 2013a) (Arora et al., 2013b) and with an updated carbonate 

chemistry. The land carbon cycle is divided into five biomes and the same five regions as previously, and each of the 25 

biome/region combinations follows a three-box model (soil, litter and vegetation) described by (Gasser et al., 2020a). The 

preindustrial state of the land carbon cycle is calibrated against TRENDYv7 (Le Quéré et al., 2018a) and its transient response 

to CO2 and climate is calibrated against CMIP5 models (Arora et al., 2013a). (Arora et al., 2013b). 105 

Additionally, OSCAR endogenously estimates some key aspects of the carbon cycle. A dedicated book-keeping module 

tracks land cover change, wood harvest and shifting cultivation, which allows OSCAR to estimate its own CO2 emissions from 

land-use change(Gasser and Ciais, 2013b)  (Gasser et al., 2020a; Gasser and Ciais, 2013b). Permafrost thaw and the resulting 

emissions of CO2 and CH4 are also accounted for (Gasser et al., 2018). CH4 emissions from wetlands are calibrated on 

WETCHIMP (Melton et al., 2013). In addition, biomass burning emissions are calculated endogenously on the basis of the 110 

book-keeping module and wildfires that are simulated as part of the land carbon cycle (Gasser et al., 2017). The latter emissions 

were subtracted from the input data used to drive OSCAR to avoid double counting. 

The atmospheric lifetimes of non-CO2 greenhouse gases are impacted by non-linear tropospheric (Holmes et al., 2013) and 

stratospheric (Prather et al., 2015) chemistries. Tropospheric ozone follows the formulation by (Ehhalt et al., 2001b) (Ehhalt 

et al., 2001a) but recalibrated on ACCMIP (Stevenson et al., 2013). Stratospheric ozone is derived from (Newman et al., 2007) 115 

and (Ravishankara et al., 2009). Aerosol-radiation interactions are based on CMIP5 and AeroCom2 (Myhre et al., 2013), while 

aerosol-cloud interactions depend on the hydrophilic fraction of each aerosol and follows a logarithmic formulation (Hansen 

et al., 2005; Stevens, 2015). Surface albedo change induced by land-cover change follows (Bright and Kvalevåg, 2013). The 

impact of black carbon deposition on snow albedo is calibrated on ACCMIP globally (Lee et al., 2013) and regionalized 

following (Reddy and Boucher, 2007). 120 

We pinpoint that OSCAR v3.1 is still calibrated on CMIP5 ESMs,  and therefore not meant to emulate CMIP6 models. 

Furthermore, each module is calibrated on available models, but not all ESMs have implemented every aspect modelled in 

OSCAR, such as permafrost or biomass burning. It means that OSCAR does not emulate any given ESM, but it combines 

modules emulating specific parts of these models. Every parametrization of OSCAR is thus a combination of parameters, and 

some of these combinations may be unrealistic and need post-processing to keep only the physically realistic ones, as explained 125 

in section 2.3. 

2.2. CMIP6 and RCMIP experiments 

A total of 99 experiments were run with OSCAR, 75 being from CMIP6 and 24 from RCMIP. A list of these experiments 

is provided in Table 1Table 1. We selected the experiments according to several criteria: typically, experiments are global 

and/or with long time-series of output requested, and experiments do not overly focus on a given process or short time scales. 130 

In addition, RCMIP requested additional experiments to complement those of CMIP6, mostly extended and additional 

scenarios, including the RCP scenarios from the previous CMIP5 exercise (Meinshausen et al., 2011c). Between the CMIP5 
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and CMIP6 historical simulations, the concentration- and emission-driven ones, and the land-only experiments of LUMIP, 

eight different spin-up and control experiments had to be performed. Every spin-up is a recycling of the preindustrial forcing 

over 1000 years,. 135 

We use driving datasets for historical concentrations of greenhouse gases (Meinshausen et al., 2017), projected 

concentrations of greenhouse gases (Esgf, 2018), emissions (Iiasa, 2018a; Gidden et al., 2019; Hoesly et al., 2018), land-use 

(Luh2, 2018), solar activity (Matthes et al., 2017), volcanic activity (Zanchettin et al., 2016) and the land-only climate 

climatology for LUMIP experiments (Lawrence et al., 2016). The extensions of scenarios are not those that were initially 

foreseen (O'Neill et al., 2016), but those that have effectively been used during the CMIP6 exercise (Meinshausen et al., 2019). 140 

The volcanic aerosol optical depth has been treated to scale and extend AR5 volcanic radiative forcing (IPCC, 2013), to comply 

with the requirement of OSCAR to have a radiative forcing as driver for this contribution.  

Every single experiment is run for 10,000 different configurations of OSCAR, drawn randomly from the pool of all possible 

parameters values in a Monte-Carlo setup (Gasser et al., 2017). Altogether, the combined experiments and Monte Carlo 

members sum to 569,700,000 simulated years. 145 

 

2.3. Post-processing: exclusion and constraining 

As described in (Gasser et al., 2017), most of the equations of OSCAR may use different sets of parameters or even 

different forms of equations. These parameters may arise from the training over different models, while the forms of equations 

may find their justification in the literature. Each combination of parameters and equations is defined as a configuration of 150 

OSCAR, andOSCAR and represent a different possible modelling of the Earth system. A Monte Carlo setup can beis used 

with OSCAR over these configurations. This method for the uncertainty in the modelling of the Earth system comes with ta 

wo side-effects: some combinations may be physically unrealistic, and some . Other parameterizations may become 

numerically unstable when the model is pushed to the edge of the validity domain of its parametrizations. Therefore, the raw 

outputs of the simulations undergo two rounds of post-processing: one to exclude the diverging simulations, and one to 155 

constrain the resulting Monte Carlo ensemble. We highlight that tThe same method, exclusions and constraintsing, wasare 

used for the contribution of OSCAR in RCMIP phase 2 (Nicholls et al., 2021). The objective of this constraining round is to 

use the flexibility and the probabilistic frameworks of the reduced complexity models to synthesize lines of evidence with the 

modelling of the Earth system. 

In the exclusion round, we identify and discard the configurations that lead to a numerical divergence of the model as 160 

illustrated with Figure 22. Every experiment undergoes a thorough search, and we developed heuristic criteria to exclude these 

diverging runs by trial-error. We identify divergences occurring in high warming scenarios, mostly when the oceanic carbon 

sink drops and then oscillates. We explain this instability with the stratification of the ocean surface, as detailed in equation 4 

of (Gasser et al., 2017). Some parametrizations under high warming scenarios exhibit an additional mode, not diverging in the 
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strictest sense, yet, with the ocean carbon sink becoming a source and then switching back to a sink, which we identified as a 165 

physically unrealistic behaviour of the parametrization. 

To discard the unrealistic configurations, we use the experiments ssp585, ssp370, 1pctCO2 and abrupt-4xCO2 for their 

high warming over different timescales. We use the ocean sink, the land sink, the CO2 emissions from LUC and the CO2 

emissions from permafrost, to ensure that the whole carbon cycle remains within reasonable boundaries. The criteria are set 

based on the performances of the remaining subset. In general, we use 20 PgC/yr in absolute value as a threshold for divergence. 170 

Over ssp585 and ssp370, the domain is restrained to strictly positive values, due to the additional mode mentioned previously. 

Over abrupt-4xCO2, the criteria are applied over the last 50 years of the experiments only. In 1pctCO2, the run is extended by 

another 100 years for better identification. As illustrated in Figure 22, most of the exclusions are related to ocean carbon sink, 

the other variables bring only little exclusions. The 1118 configurations not causing any divergences in all the experiments are 

kept as a common set of configurations for all experiments.In the exclusion round, we identify and discard the configurations 175 

that lead to a numerical divergence of the model. We developed a heuristic criterion to exclude these diverging runs by trial-

error. Every experiment undergoes a thorough search for divergences. The 1118 configurations not causing any divergences 

in all the experiments are kept as a common set of configuratins for all experiments. More precisely, the criteria to identify 

divergences are as follows. We observe that when a divergence occurs, the oceanic carbon sink drops and then oscillates in 

most cases. An ocean sink larger than 20 PgC/yr in absolute value marks the configuration for exclusion. Some 180 

parametrizations under high warming scenarios exhibit an additional mode, not diverging in the strictest sense, yet, with the 

ocean carbon sink becoming a source and then switching back to a sink, which we identified as a physically unrealistic behavior 

of the parametrization. To avoid this mode, we exclude configurations for which the ocean sink of the ssp585, ssp370 and 

1pctCO2 families have values out of the 0-20 PgC/yr domain. The identification of divergent configurations was improved by 

extending the 20 PgC/yr criteria to the land sink, the CO2 emissions from LUC and the CO2 emissions from permafrost, to 185 

ensure that the whole carbon cycle remains within reasonable boundaries. For the scenarios with an abrupt multiplication of 

the atmospheric concentration of CO2, these criteria are applied over the last 50 years of the experiment only. 

The need for exclusion is stronger as the atmospheric concentration of CO2 and the global surface temperature increase. 

Most of the configurations are excluded thanks to the ssp585, ssp370, 1pctCO2 and abrupt-4xCO2. We acknowledge that 

when a significant fraction of the configurations is excluded, confidence in our model’s result is lowered, but such a limitation 190 

of the validity domain is inherent to reduced-complexity models. The model’s results might as well depend on the set thresholds 

for exclusions. However, this bias is reduced through the constraining round because configurations with unrealistic carbon 

cycles receive a low likelihood. 

We observed that in most cases, the reason of the exclusion is due to a diverging ocean sink. The ocean carbon cycle of 

OSCAR is its oldest module (Gasser et al., 2017), and should be redesigned for more stable behaviorbehaviour under high-195 

warming scenarios. 
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 A possibility is to Iincreaseing the number of sub-timesteps in the oceanic carbon module to avoids this issue for a fraction 

of the configurations, but it comes at the expense of the computational cost of the model. The ocean carbon cycle of OSCAR 

is its oldest module (Gasser et al., 2017), and should be redesigned for more stable behavior under high-warming scenarios. 

 200 

After this exclusion, the outputs of OSCAR are constrained using observations. As done for RCMIP phase 2 (Nicholls et 

al., 2021), the objective of this constraining round is to use the flexibility and the probabilistic frameworks of the reduced 

complexity models to synthesize lines of evidence with the modelling of the Earth system. The same method, exclusions and 

constraining, was used for the contribution of OSCAR in RCMIP phase 2 (Nicholls et al., 2021). The objective of this 

constraining round is to use the flexibility and the probabilistic frameworks of the reduced complexity models to synthesize 205 

lines of evidence with the modelling of the Earth system. With OSCAR, we assess the physical likelihood of the model’s 

configurations using lines of evidence from the literature.(Gasser et al., 2020a). For every constraint, we extend a method 

already used with OSCAR but with only one constraint (Gasser et al., 2020a; Le Quéré et al., 2018b). We assume a distribution 

from which we derive the likelikoodlikelihood of every configuration, as illustrated in equation A1 of (Gasser et al., 2020a). 

The product of the probabilities over the set of constraints is the final likelihood of the configurations. 210 

As the first observational constraint, To provide information on the climate system, we choose the surface air ocean blended 

temperature change over 2000-2019 with reference to 1961-1990 are used, provided as an assessed range by RCMIP (Nicholls 

et al., 2021) from the HadCRUT 4.6.0.0 dataset (Morice et al., 2012). This constraint is meant to provide information on the 

climate system.  To constrain the carbon cycle, we use compatible fossil fuel emissions. For now, the OSCAR v3.1 model is 

calibrated on CMIP5, which motivates the use of these compatible emissions of CMIP5, and not those of CMIP6. An initial 215 

set of constraints based solely on observations had revealed that using projections helped the overall constraining round, thanks 

to the larger perturbation in the scenarios than in the historical period. Thus we choose the CMIP5 cumulative compatible 

fossil fuel emissions over the concentrations-driven historical and 4 RCPs are used (Ciais et al., 2013b). For now, the OSCAR 

v3.1 model is calibrated on CMIP5, which motivates the use of these compatible emissions, and not those of CMIP6. Besides, 

an initial set of constraints based solely on observations had revealed that using projections helped the overall constraining 220 

round, thanks to the larger perturbation in the scenarios than in the historical period. To further constrain the partitioning of 

the carbon sinks between land and ocean, we use data on the cumulative net ocean to atmosphere flux of CO2 over 1750-2011 

(Ciais et al., 2013b).  

For every constraint, we extend a method already used with OSCAR but with only one constraint (Gasser et al., 2020a; Le 

Quéré et al., 2018b). We assume a distribution from which we derive the likelikood of every configuration, as illustrated in 225 

equation A1 of (Gasser et al., 2020a). The product of the probabilities over the set of constraints is the final likelihood of the 

configurations. Figure 3 illustrates the impact of these constraining steps. While the constraint for the surface air-ocean blended 

temperature change of 2000-2019 with reference to 1961-1990 is 0.54 K with a 90% confidence interval of 0.46-0.61 K, the 

model returns after constraining 0.55 K with a 90% confidence interval of 0.48-0.62 K. Applying this constraint successfully 

reproduces the observed distribution, but also reduces the range in the other constraints, such as the cumulative net ocean 230 
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carbon flux over 1750-2011 (Figure 3). The constraints on cumulative compatible emissions mostly impacts RCP6.0 and 

RCP8.5, transforming the bimodal distribution of the unconstrained OSCAR into a monomodal distribution.(Mcneall et al., 

2016; Williamson and Sansom, 2019) All final outputs and results are provided as the resulting weighted means and standard 

deviations, using the normalised likelihood as weight. The effect of this constraining is further discussed in the next sections. 

3. Diagnosis of OSCAR v3.1 235 

3.1. Effect of the constraints 

Our constraining approach markedly corrects natural biases in OSCAR, as illustrated in Figure 3. The change in global 

surface air temperature (GSAT) over 2000-2019 with regard to 1961-1990 is constrained to a value of 0.54 ± 0.05 K. Without 

the constraint, OSCAR v3.1 reaches 0.60 ± 0.11 K. Due to the combination of observational constraints, OSCAR v3.1 is 

corrected to 0.55 ± 0.04 K. 240 

Regarding the carbon cycle, the unconstrained OSCAR shows a negative bias in the cumulative net land carbon sink (i.e. 

a too weak removal), balanced by lower cumulative compatible fossil-fuel emissions. Using observational constraints reduces 

these biases but does not entirely remove them. After applying the constraints, the uncertainty ranges of the net land flux and 

of fossil-fuel emissions are significantly reduced. The ocean carbon sink over 1750-2011 of the unconstrained OSCAR is 159 

± 20 PgC, higher than the one of IPCC AR5 (Ciais et al., 2013b), 155 ± 18 PgC, in terms of mean and standard deviation. The 245 

constraints on cumulative compatible emissions mostly impacts RCP6.0 and RCP8.5, transforming the bimodal distribution 

of the unconstrained OSCAR into a monomodal distribution. Using this constraint, the mean of OSCAR is increased and the 

range decreased, reaching 163 ± 15 PgC. 

Applying these constraints successfully reproduce the observed distribution, but also reduces the range in the other 

constraints, such as the cumulative net ocean carbon flux over 1750-2011. We note that combining these constraints leads to 250 

a tightening of the posterior distribution, thus likely introducing a bias. OSCAR could benefit from further development in this 

direction (Mcneall et al., 2016; Williamson and Sansom, 2019).Our constraining approach markedly corrects natural biases in 

OSCAR, as illustrated in Figure 3 for a few key outputs of the concentration-driven historical experiment. The change in 

global surface air temperature (GSAT) over 2000-2019 with regard to 1961-1990 is constrained to a value of 0.55 ± 0.04 K, 

instead of 0.60 ± 0.11 K without the constraint. Due to the combination of observ ational constraints, the mean value remains 255 

still slightly larger than the constraint itself 0.54 ± 0.05 K, but the uncertainty range is significantly reduced to that of the 

observation.  

Regarding the carbon cycle, the unconstrained OSCAR shows a negative bias in the cumulative net land carbon sink (i.e. a too 

weak removal), balanced by lower cumulative compatible fossil-fuel emissions. Using observational constraints reduces these 

biases but does not entirely remove them. After applying the constraints, the uncertainty ranges of the net land flux and of 260 

fossil-fuel emissions are significantly reduced. The ocean carbon sink over 1750-2011 of the unconstrained OSCAR is 159 ± 
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20 PgC, higher than the one of IPCC AR5 (Ciais et al., 2013b), 155 ± 18 PgC, in terms of mean and standard deviation. Using 

this constrain, the mean of OSCAR is increased and the range decreased, reaching 163 ± 15 PgC. 

 

3.2. Climate response 265 

Simulations with an abrupt increase in atmospheric CO2 (and thus in radiative forcing) are typically used to diagnose the 

climate response of complex models. We use three such experiments from CMIP6 and RCMIP with quadrupled, doubling and 

halving atmospheric CO2 (abrupt-4xCO2, abrupt-2xCO2 and abrupt-0p5xCO2). These experiments can be used to estimate 

the ECS of an ESM or a model such as OSCAR (Gregory et al., 2004) and investigate how this metric is influenced by the 

intensity of the forcing. These results are shown in Figure 4Figure 4. 270 

The ECS is defined as the equilibrium temperature that results from the doubling of the preindustrial atmospheric 

concentration of CO2 (Gregory et al., 2004). The ECS and its calculations have evolved with the integration of new components 

to climate models (Meehl et al., 2020). In regard of the computational cost of the ESMs, reaching this equilibrium takes a time 

long enough to use Gregory’s method (Gregory et al., 2004) to calculate the ECS or alternative methods (Lurton et al., 2020; 

Schlund et al., 2020). The ECS using the Gregory method is actually not exactly the equilibrium climate sensitivity per se, but 275 

rather an “effective climate sensitivity” (Sherwood et al., 2020). Paleoclimate data shows that feedbacks from vegetation, 

biogeochemistry or dust affect the equilibrium (Friedrich et al., 2016; Rohling et al., 2012). From CMIP5 to CMIP6, some 

ESMs have improved their treatment of the biogeochemistry and the vegetation, leading to alteration in feedbacks and aerosols 

fields (Meehl et al., 2020). This evolution participates in the observed changes in ECS from CMIP5 to CMIP6, attributed to 

cloud effects (Zelinka et al., 2020) and the pattern effect (Dong et al., 2020). 280 

In OSCAR, there are two ways of estimating the ECS. First, because OSCAR is not process-based, the ECS is actually a 

parameter of the model. Since the formulation of the climate module is linear (Gasser et al., 2017; Geoffroy et al., 2013b), we 

also know that this value is independent of the intensity of the abrupt experiment. This parameter was calibrated on the abrupt-

4xCO2 experiment run by CMIP5 models and normalised to OSCAR’s estimate of RF for a quadrupling of CO2 (Gasser et al., 

2017). Under this definition, the ECS of OSCAR follows the Gregory’s method and does not account for all feedbacks of 285 

OSCAR. When using parameters from OSCAR, the climate feedbacks actually included in the estimated ECS depend on the 

CMIP5 models used for calibration. If calibrated on general circulation models (GCMs), only the so-called Charney feedbacks 

are included (i.e. Planck, water vapour, lapse rate, sea-ice albedo, and clouds) with the possible addition of the CO2 

physiological feedback (Sellers et al., 1996). However, when calibrated on ESMs, additional feedbacks pertaining to interactive 

biogeochemical cycles may be included, depending on what exact processes are implemented in a given ESM. The second 290 

way of estimating the ECS in OSCAR is to define it as the GSAT change at the end of the 1,000 years of the abrupt experiments. 

Here, all of the feedbacks integrated in OSCAR are accounted for, especially, for instance those about 

biogeochemistrybiogeochemical feedbacks. 
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Values related to these two approaches are presented in Table 2. The ECS calculated using parameters of OSCAR, hence 

comparable to Gregory’s approach, is 2.78 ± 0.47 K when constrained, while the unconstrained one is 3.17 ± 0.63 K. This, by 

construction, is consistent with the AR5 estimates (Collins et al., 2013), but also with more recent assessments (Gregory et al., 

2020). Because we use observational constraints, these results are lower than the CMIP5 range 2.1 – 4.7 K (Andrews et al., 330 

2012). The CMIP6 range, 1.8 -– 5.6 K (Zelinka et al., 2020; Meehl et al., 2020) is even higher than the CMIP5 range. The 

higher values for the ECS from some CMIP6 models are significantly reduced when constraining (Nijsse et al., 2020; Bonnet 

et al., 2021), with some ECS estimates even lower (e.g. – 1.38K with a likely range of 1.3-2.1K) – than those shown by OSCAR 

here. Overall, these values provided by OSCAR remain consistent with the litteratureliterature, albeit on the lower end of the 

range (Sherwood et al., 2020). Similarly, the TCR and the TCRE of the unconstrained OSCAR are consistent with the CMIP5 335 

values (Meehl et al., 2020) and (Gillett et al., 2013), thanks to the calibration of the ECS in OSCAR. Constraining OSCAR 

reduces all these metrics both in value and in range, and we attribute this effect to the constraint on historical warming. This 

reduction effect is similar to what was shown recently for CMIP6 models (Tokarska et al., 2020). 

The other approach to derive ECS using abrupt non-doubling experiments are rescaled using the total radiative forcing of 

CO2. This approach is illustrated in Figure 4Figure 4., and It leads in abrupt-2xCO2 it leads to an unconstrained ECS of 2.74 340 

± 0.52 K (Table 2), reduced to 2.52 ± 0.33 K with the constraints. Overall, the ECS is remarkably consistent in terms of 

average, standard deviation and even skewness across the three step abrupt experiments. This is due to the construction of 

OSCAR, with a prescribed logarithmic dependency of the radiative forcing of CO2 to its atmospheric concentration (Lurton et 

al., 2020). This ECS is lower than with the first approach, because it includes several Earth system feedbacks related to short-

lived species that are left free to change during the simulations, owing to the experimental protocol. In OSCAR, this is mostly 345 

explained by an increase in the atmospheric load of tropospheric aerosols (and ozone) caused by the endogenous emission of 

precursors through biomass burning. These feedbacks are also illustrated in Figure 4Figure 4. The RF resulting from the 

prescribed change in atmospheric CO2 (7.42 W.m-2 under quadrupled CO2) is partially compensated by short-lived climate 

forcers. In the case of abrupt-4xCO2, the RF sums up to 3.46 ± 0.25 W.m-2, because of a cooling by scattering aerosols (-0.21 

± 0.16 W.m-2) and aerosol-cloud effects  (-0.21 ± 0.15 W.m-2), besides an additional warming from absorbing aerosols (0.13 350 

± 0.08 W.m-2). Finally, from Table 2, we note that constraining reduces the parameter-based ECS by 0.44 K, while the one 

with all feedbacks has its ECS reduced by 0.22 K. It means that the feedbacks appearing only in the second approach, which 

are mostly related to biogeochemistry, are strongly impacted by the constraints than the others, which implies that 

biogeochemical feedbacks are also significantly constrained. 

 355 

3.3. Carbon cycle response 

The 1pctCO2 experiment, in which atmospheric CO2 increases by +1% every year, is part of the DECK. Two variants of 

1pctCO2 have been performed as part of the C4MIP exercise (Figure 5Figure 5). In 1pctCO2-rad, atmospheric CO2 only has 

a radiative effect on the climate system, as a preindustrial level of CO2 is seen by the carbon cycle. In 1pctCO2-bgc, only the 
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carbon cycle is affected by CO2, whereas a preindustrial CO2 is prescribed to the climate system. The outputs of OSCAR v3.1 

on these experiments are consistent with past C4MIP results (Arora et al., 2013a). (Arora et al., 2013b). The global mean 

surface temperature responds about linearly to the exponential increase in CO2, because of the implemented logarithmic 

dependency of the radiative forcing of CO2 to its atmospheric concentration. Carbon sinks rise in response to the increase in 395 

atmospheric CO2, but the resulting warming dampens the sinks. 

These three experiments can be used to calculate the carbon-concentration and carbon-climate feedback metrics, 

respectively 𝛽 and 𝛾. These metrics, defined and used in former C4MIP exercises (Friedlingstein et al., 2006; Arora et al., 

2013a; Arora et al., 2020) (Arora et al., 2013b; Friedlingstein et al., 2006; Arora et al., 2019), are a means to diagnose the 

model’s sensitivities of the carbon stocks in the land and in the ocean to changes in atmospheric CO2 or GSAT. Table 3Table 400 

3 summarizes these results. As explained by (Arora et al., 2013a), (Arora et al., 2013b), there are three methods to combine 

the three experiments to calculate the metrics: subtracting 1pctCO2-bgc from 1pctCO2-rad (noted R-B, hereafter), subtracting 

1pctCO2 from 1pctCO2-bgc (B-F), and subtracting 1pctCO2 from 1pctCO2-rad (R-F). Methods R-B and B-F are almost 

equivalent for 𝛽, while methods R-B and R-F are almost equivalent for 𝛾. Although LUC affects these metrics (Melnikova et 

al., 2021), these experiments are designed to have a constant LUC. 405 

Table 3Table 3 shows that 𝛽 under the R-F method are lower than the R-B and B-F, becauseF because the non-linearity of 

the Earth system reduces the sensitivity of land and ocean carbon to atmospheric CO2. Similarly, 𝛾 under the R-B and R-F are 

higher than under the B-F, but the non-linearity here is added to R-B and B-F (Arora et al., 2013a). Applying our observational 

constraints increases the absolute values of 𝛽land and 𝛾land of OSCAR, but it does not affect significantly the 𝛽ocean and 𝛾ocean. 

The only exception is the 𝛾ocean under the method B-F. We note that the unconstrained OSCAR v3.1 is closer to the CMIP5 410 

exercicesexercises, be it at 2x or 4xCO2. This result can be explained with OSCAR v3.1 being calibrated on CMIP5. However, 

the unconstrained 𝛽land is the only one to be closer to CMIP6 than to CMIP5. The cause of this difference in the 𝛽land remains 

unclear, butunclear but may come from the form of equation for the fertilization effect. The configurations of OSCAR are not 

only different parameters, but also different equations. Here, half of the configurations of OSCAR follow a logarithmic 

formulation of the fertilisation effect (Gasser et al., 2017), which may not be convex enough to properly represent a saturation 415 

effect found in many ESMs. We note that in our assessment, the land includes permafrost carbon, which was not the case in 

CMIP5 assessment, but the permafrost is mostly sensitive to increase in temperatures (i.e. it impacts 𝛾land but not 𝛽land)., the 

only sensitivity to atmospheric CO2 is due to non-linear contributions.  

Overall, the unconstrained carbon cycle of OSCAR v3.1 is well in line with CMIP exercicesexercises, 

particularyparticularly CMIP5. Yet, the sensitivity of the oceanic carbon stock to increase in GSAT remains too high. This 420 

bias in the ocean module could be attributed to the stratification effect introduced in v2.2 (Gasser et al., 2017). In any case, 

this suggests that our carbon cycle may be too optimistic, which will clearly appear in our emission-driven simulations. 
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3.4. Reconstruction of the historical period 

The concentration- and emission-driven historical experiments (i.e. historical and esm-hist, respectively) were run with 

OSCAR. Their forcers differ only on CO2: the atmospheric CO2 is prescribed in the former, whereas in the latter, fossil-fuel 

emissions are prescribed and atmospheric CO2 is fully interactive. In the concentrations-driven historical, compatible fossil-460 

fuel emissions are back-calculated after the simulation (Jones et al., 2013; Gasser et al., 2015). Altogether, these two 

simulations are relatively close, as shown in Figure 6Figure 6, but with noticeable differences. 

Looking at the carbon-cycle variables, we observe that up to the 1940s, esm-hist is relatively similar to historical in terms 

of fossil-fuel CO2 emissions, atmospheric CO2 and both carbon sinks. The difference observed afterwards can essentially be 

explained by the fact that the emission-driven simulation entirely misses the 1940s plateau in atmospheric CO2. Such a miss 465 

is typical of ESMs (Bastos et al., 2016). For comparison after 1959, we use data from the Global Carbon Budget (Friedlingstein 

et al., 2020) whose assessed ocean carbon sink is slightly closer to our historical than to our esm-hist. The net carbon flux from 

atmosphere to land (i.e. the aggregate of the land sink, emissions from LUC, and those from permafrost) of the two historical 

experiments are similar from the 1980s onward. 

Looking at the effective radiative forcings (ERF), that of CO2 in the concentration-driven historical is directly deduced 470 

from the prescribed CO2 atmospheric concentration (Meinshausen et al., 2017), but slightly higher by about 0.1 W.m-2 than 

the central value from the 5th Assessment Report (AR5) (Myhre et al., 2013). The central value from AR5 (1.82 W.m-2) is 

calculated with reference to 1750, but1750 but becomes 1.66 W.m-2 when calculated with reference to 1850. Because of 

changes mostly in the CO2 concentration in 1850 in CMIP6 data, this value increases to 1.70 W.m-2. With OSCAR and 

prescribed CO2 emissions, the atmospheric CO2 in esm-hist is higher than in historical, the ERF of CO2 is 0.2 W.m-2 higher 475 

than in the AR5. The ERF of other greenhouse gases are consistent with (Myhre et al., 2013). For most ERF components, there 

is very little difference between historical and esm-hist. OSCAR’s overall ability to simulate the RF of short-lived species 

compares well with the IPCC AR5 values. Contributions to the warming from aerosols and ozone are consistent as well, 

although OSCAR tends to amplify these contributions. It may be caused by overestimated biomass burning emissions, and this 

will be examined more in-depth in a future analysis. Since these biases were already diagnosed in the description paper of 480 

OSCAR (Gasser et al., 2017), it shows that our constraining does not markedly alter these aspects of the model. Additional 

constraining could be introduced for separate RF components, albeit this would likely weaken the efficiency of existing 

constraints.  

Looking at climate variables, the increase in GSAT in both historical experiments are consistent with the Special Report 

on Global Warming of 1.5C (IPCC, 2018) and with the historical reconstruction by (Cowtan and Way, 2013). During the 485 

choice of constraints (sections 2.3 and 3.1 Error! Reference source not found.), we observed that constraints on temperatures 

impact much more our results than the other type of constraints. Even while the set of constraints is expanded, constraints on 

temperature have a lasting influence over all outputs. The esm-hist simulation shows a higher GSAT, andGSAT and appears 

to be further away from the observations. This is mostly the result of the higher atmospheric CO2 seen earlier, and it suggests 
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a different set of constraining weights could be used for the emission-driven runs. We choose not to, for the sake of consistency. 490 

Comparing the effective radiative forcing (ERF) of OSCAR to the one of the IPCC AR5 (Myhre et al., 2013), we note 

differences caused by volcanic eruptions. Beyond the update of the time-series of volcanic activity itself, OSCAR make use 

of of a warming efficacy of 0.6 for stratospheric volcanic aerosols (Gasser et al., 2017; Gregory et al., 2016). Finally, the total 

ocean heat content is well reconstructed, although the range of OSCAR is larger than the observed one (Von Schuckmann et 

al., 2020), suggesting this could also be considered a potential constraint for the model in future work. 495 

 

3.5. Attributions 

DAMIP (Gillett et al., 2016) designed a number of experiments meant to attribute the observed climate change to 

anthropogenic and natural factors. Since OSCAR does not feature any internal variability, it cannot contribute to the 

“detection” part of DAMIP. However, with its 10,000more than 1000 Monte Carlo elements, OSCAR is fully capable of 500 

carrying out the “attribution” part. To do this attribution, DAMIP relies on experiments that follow the historical one, but in 

which only one forcing or group of forcing is turned on. Conversely, a number of other MIPs introduced attribution experiments 

in which all forcings but the ones studied are turned on. Neither However, neither of these approaches explicitly considers the 

non-linearities of the system, however. Other more robust methods of attribution to forcings exist (Trudinger and Enting, 2005) 

and have been used with OSCAR in the past (Gasser, 2014b; Li et al., 2016; Fu et al., 2020; Ciais et al., 2013a). (Gasser, 505 

2014a; Li et al., 2016; Fu et al., 2020; Ciais et al., 2013a) Here, but we here focus on results made possible with the CMIP6 

experiments and that are presented in Table 4. 

In the historical experiment, we find a change in GSAT of 0.98 ± 0.17 K in 2006-2015 with regard to 1850-1900, which 

is in line with observations because of our constraining setup. Natural forcings causedOf this total, we find only ~0.03 K was 

caused by natural forcingsof this total, of which ~0.02 and ~0.01 were respectively caused by solar and volcanic activity, 510 

respectively. Note that our volcano-related forcing is defined against an average and constant volcanic activity during the 

preindustrial period, which explains the (slightly) positive response caused by this forcing over the recent past where no major 

volcanic eruption happened. In the IPCC terminology, our results lead to the conclusion that it is extremely unlikely (i.e. 

likelihood <1%) that natural factors alone are causing the current observed climate change. This is of course consistent with 

the IPCC conclusions (Eyring et al., 2021; Gillett et al., 2021). (Bindoff et al., 2013), and with more recent results as 515 

well(Gillett et al., 2021). Nevertheless, we note that our constraining reduces the uncertainty range of all simulations, including 

those driven only by natural forcings. For the simulations under natural forcings, the range from the constrained OSCAR is 

smaller than the ones from (Gillett et al., 2021), which may suggest an over-constraining. It may be solved by using different 

methods for constraining climate simulations (Nicholls et al., 2021). 

Since DAMIP did not include an experiment in which only natural forcings would be turned off, in which only 520 

anthropogenic forcings would be turned on (i.e. natural forcings would be turned off), we cannot conclude as to the (Gillett et 

al., 2021) complementary probability of observed climate change being caused only by anthropogenic factors. Attribution to 
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groups of anthropogenic forcings is possible, however. We find that 1.25 ± 0.11 K (, corresponding to about 128 % of the 

recent warming) , was caused by well-mixed greenhouse gases (WMGHGs) and, -0.26 ± 0.22 K (-27 %) was by near-term 

climate forcers (NTCFs). For comparison, (Gillett et al., 2021)the 90% confidence interval of CMIP6 over 2010-2019 instead 

of 2006-2015 are 1.16 to 1.95 K for WMGHGs and -0.73 to -0.14 K for NTCFs (Gillett et al., 2021). Another contribution of 

-0.03 ± 0.03 K (-3%) is due to land-use change. We highlight that observational constraints affects these contributions as 560 

shown in (Ribes et al., 2021). The contributions corresponding to their central estimate over 2010-2019 are 116% for 

WMGHGs and -32% for NTCFs and land-use change. It follows that the constrained results of OSCAR v3.1 are consistent 

with (Gillett et al., 2021; Ribes et al., 2021). ,  

and another -0.03 ± 0.03 K (-3 %) by land-use change. Notably, tConsidering the other experiments, we observe that the 

DAMIP experiment (hist-aer) and the AerChemMIP one (hist-piNTCF) led to very similar estimates of the contribution of 565 

NTCFs (Table 4), which highlights that this part of our model behaves in a fairly linear fashion. Going further in isolating 

individual forcings, we also estimate that CO2 caused 0.74 ± 0.06 K, chlorofluorocarbons and hydro-chlorofluorocarbons (i.e., 

CFCs and HCFCs) caused 0.13 ± 0.02 K, stratospheric O3 caused -0.03 ± 0.03 K, and all aerosols together caused -0.33 ± 0.21 

K (including direct and indirect effects). We point out that details on CH4, N2O or tropospheric ozone cannot be provided, 

because of the lack of relevant CMIP6 experiments. 570 

The extent to which this attribution to specific forcings is comparable to existing studies remains debatable. One notable 

limitation of OSCAR, in this respect, is that the model’s climate response is not forcing-dependent. The use of effective 

radiative forcing is supposed to ensure that the temperature response to CO2 and non-CO2 forcings is similar, at least for the 

long-term steady-state (Myhre et al., 2013). However, recent work has pointed out that the response may strongly depend on 

the forcing agent (Marvel et al., 2016), thus casting a degree of doubt on our attribution results. More work to integrate such 575 

differentiated responses in reduced-complexity models is warranted. 

3.6. Scenarios of climate change 

ScenarioMIP (O'Neill et al., 2016) chose eight particular SSPs taken from the SSP scenario database (Riahi et al., 2017) 

to cover a range of socio-economic assumptions and climate targets, and then harmonised them to become the default CMIP6 

scenarios to be run by ESMs (Gidden et al., 2019). ScenarioMIP mostly required concentration-driven simulations up to year 580 

2100 or sometimes 2300, however, which was complemented in RCMIP by extending all scenarios up to 2500 and 

systematically running emission-driven simulations in addition (Nicholls et al., 2020). Figure 7Figure 7 displays projections 

of some key global variables of the Earth system following these scenarios, and Table 5 focuses on projected GSAT changes. 

The climate target dimension of the SSP scenarios is defined similarly to the RCPs’ as the total RF targeted in 2100 (Van 

Vuuren et al., 2011). Table 5 shows that this targeted RF is overall within the 1-σ uncertainty range of all our concentrations-585 

driven projections. In the cases with notable differences, such as ssp460, the actual RF reached by the reduced-complexity 

model MAGICC (Iiasa, 2018a) for this scenario is 5.29 W.m-2, which is then in the range of OSCAR. Because MAGICC has 

been used for the design of these scenarios, it demonstrates that we remain consistent with the scenarios. Emission-driven 
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SSPs show lower RF than their concentration-driven counterpart, which can be attributed to a low bias in the atmospheric CO2 

that is especially visible in high CO2 scenarios. This bias is a result of our constraining approach that favoured configurations 590 

with strong CO2-fertilization (as also seen with the C4MIP results). Under high CO2 scenarios, this bias is likely worsened by 

our exclusion procedure during the post-processing, as very high CO2 tends to make the model more unstable. The very low 

uncertainty range we obtain for projected atmospheric CO2 in emission-driven simulations seems over-confident. However, 

we note that the constraints were derived using concentration-driven simulations (that are the focus of CMIP6), and so they 

may not apply properly to emission-driven simulations. 595 

The constraining approach contributes into having the increases in GSAT shown in Table 5 for concentration-driven 

experiments to be lower than the CMIP6 models we could compare our results to. The uncertainty range simulated by OSCAR 

is also much lower, again owing to our constraining approach. With a relative uncertainty in GSAT change in 2500 of ±13% 

under the warmest scenario (SSP5-8.5), one may wonder whether these projections are over-constrained. This stems from our 

constraining of the climate response, as also shown by the relatively small uncertainty range in ECS in the idealised abrupt 600 

CO2 experiments. Further developing that module by adding one or two key parameters (Geoffroy et al., 2013a; Bloch-Johnson 

et al., 2015) would provide more degrees of freedom and likely release part of the constraint. When projecting temperature 

change in an emission-driven mode, however, the uncertainty range is larger, because of the additional uncertainty related to 

the biogeochemical cycles. 

The CMIP6 values are here computed from CMIP6 time series. However, some CMIP6 models exhibit higher warmings 605 

than in previous assessments, and observations can be used to constrain the future warming (Tokarska et al., 2020). Using their 

table S4, the warming in 2081-2100 with reference to 1995-2014 under SSP5-8.5 for the constrained CMIP6 models is 3.44 ± 

0.67 K and 3.11 ± 0.36 K for OSCAR v3.1 constrained. For SSP1-2.6, the values are respectively 0.94 ± 0.30 K and 0.76 ± 

0.17 K. Thus, the observational constraints that we have used contribute to explain the differences to the raw CMIP6 data. 

Nevertheless, the climate module of OSCAR v3.1 could still be improved. 610 

 

3.7. Zero Emissions Commitment 

ZECMIP aims at investigating the zero-emission commitment (ZEC), that is the additional warming that follows a 

cessation of anthropogenic CO2 emissions (Jones et al., 2019). Two categories of experiments were performed. The first one 

(called branched experiments) is a variation of the emission-driven 1pctCO2, in which emissions cease once they reach 750 615 

PgC, 1000 PgC or 2000 PgC of cumulative value. These different levelsdistinct levels of emission are meant to evaluate the 

state dependency of ZEC. The second category consists in three bell-shaped emission pathways whose cumulative emissions 

are the same as in the branched experiments. This was proposed by ZECMIP to evaluate the dependency of the ZEC on CO2 

emission rate, as the emission rate at the time of cessation is near 0zero in these bell experiments (whereas it is very high in 

the branched ones). 620 
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Figure 8Figure 8 shows the time series of the ZEC in both sets of experiments. Two features are remarkable. First, the 

ZEC in branched experiments is systematically lower than the one in bell experiments. WIn the branched experiments, the 

abrupt cessation of CO2 emissions triggers an abrupt increase of temperature change, followed by a decrease. Conversely, in 

the bell experiments, since the cessation is smoother, no abrupt response is visible on the very short term. After this period, 

the shape of the evolutions of the ZEC in branched experiments is similar to the shape in bell experiments. We attribute this 625 

effect to the abrupt cessation of emissions in the branched experiments, causing biomass burning and aerosol lifetime feedbacks 

(the same that affect the ECS) whose response to temperature change happens within the same year. These feedbacks explain 

why the ZEC in branched experiments is systematically lower than the ZEC in bell experiments. 

e attribute this response to the biomass burning and aerosol lifetime feedbacks (the same that affect the ECS) whose 

response to temperature change happens within the same year. And so, in the branched experiments, the abrupt cessation of 630 

CO2 emissions triggers an abrupt response of temperature change that is amplified by the feedbacks. Conversely, in the bell 

experiments, since the cessation is smoother, no abrupt response is visible on the very short term. SecondFigure 8 also shows 

that, the ZEC for a cumulative emission of 2000 PgC is much higher than in the two other cases, highlighting a strong non-

linearity in the model.  that wWe attribute this process to the permafrost response, in complete agreement with our previous 

work (Gasser et al., 2018). Once the branching year has been reached, anthropogenic emissions become zero, while natural 635 

systems such as the permafrost keep emitting. Under higher warming, the existing warming at cessation of emissions comes 

with a legacy, and permafrost contributes to the non-linearity of this legacy. Among the models that contributed to (Macdougall 

et al., 2020), CESM2, NorESM2-LM and UVic ESCM 2.10 were the only ones to model permafrost, with only the later one 

that provided data over the three branched experiments. As shown in Figure 6 of (Macdougall et al., 2020), UVic ESCM 2.10 

is the model with the strongest evolution of the ZEC with cumulative emissions. This similar effect of permafrost on ZEC in 640 

OSCAR 3.1 and UVic ESCM 2.10 calls for more contributions of models with permafrost to the ZECMIP exercise.. 

 As illustrated in Table 6, OSCAR v3.1 estimates a ZEC (in the reference case of the esm-1pct-brch-1000PgC experiment) 

that is within the range of ZECMIP (Macdougall et al., 2020), although the long-term decrease seems to happen later in 

OSCAR.. The evolutions of OSCAR in this experiment are similar to those of the Earth system models of intermediate 

complexity that contributed to the original ZECMIP. 645 

3.8. BehaviorBehaviour of OSCARv3.1 

The focus of this paper is to diagnose this version of OSCAR introduced in (Gasser et al., 2020a), and used with the same 

exclusion and constraining approach used for RCMIP phase 2 (Nicholls et al., 2021). As explained in section 2.2, many 

experiments have been run through OSCAR v3.1, and sections 3.1 to 3.7 have used only the experiments that would allow 

clear comparison with ESMs and therefore diagnosis. In the Appendix, additional results are shown, further illustrating the 650 

behaviour of OSCAR v3.1 on carbon geoengineering (section A.1), solar geoengineering (section A.2), land-use (section A.3), 

NTCFs (section A.4) and a comparison of RCPs to SSPs (section A.5). These additional experiments were not fully considered 

in the diagnosis part of this study, typically because of the lack of published papers doing the same with fully fledged ESMs 
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or because of non-existent diagnostic metrics. These simulations can nevertheless provide valuable insights into the behaviour 

of OSCAR, potentially helping understand past or even future contributions to community exercises such as CDRMIP or 655 

RCMIP.(Gasser et al., 2020b, a) 

 

4. Concluding remarks 

In this paperstudy, we have presented the setup used with OSCAR v3.1 to run 75 CMIP6 and 24 additional experiments 

from RCMIP. We have used the primary results of these simulations to discuss the overall behaviorbehaviour and performance 660 

of our model, comparing our results to those of state-of-the-art complex models whenever possible. Follows We present below 

a brief summary of the model’s main limitations.  

First, the model tends to be unstable under high CO2 and high warming scenarios. This comes mostly from the ocean carbon 

cycle module whose stability is not ensured under our chosen differential system solving scheme, which is also worsened by 

the stratification feedback that was introduced in v2.2 (Gasser et al., 2017). This pleads for a revamp of this module. 665 

 Second, despite a clear improvement of the land carbon cycle module in v3.1 (Gasser et al., 2020a), its unconstrained 

transient response remains wider than the ranges from CMIP5 or CMIP6, which makes the constraining step a strong 

requirement of any simulation with OSCAR. In its current state, however, the constraining step appears to favorfavour 

parameterizations with a strong CO2-fertilization effect. The extent to which this is caused by structural modelling choices is 

unclear. Consequently.,  Tthe land carbon cycle also exhibits a sensitivity to climate change that is too low compared to 670 

complex models, mostly those without permafrost, thus calling for an improved calibration. A potential track would be to 

account for correlations between parameters within the prior distribution of parameters (i.e. when drawn from the Monte 

Carlo).. 

 Third, the constrained climate module shows a relatively low ECS and a rather narrow uncertainty range. Introducing extra 

parameters for the heat uptake feedback (Geoffroy et al., 2013a) and possibly non-linear Charney feedbacks (Bloch-Johnson 675 

et al., 2015) would likely help to gain in a more flexibility during thele constraining approach. This third point is the reason 

behind most of the difference between OSCAR and CMIP6 temperature projections shown in Table 5.  

Fourth, although most of the non-CO2 species are reasonably simulated, the effects of tropospheric ozone and total aerosols 

tend to be overestimated, and t. The whole aerosol module behaves rather linearly, and it exhibits a climate feedback whose 

intensity should be better constrained against existing simulations with complex ESMs. OSCAR would indeed benefit from 680 

further work on short-lived species, although this could prove a challenging endeavour given the aggregated formulation of 

the model and the uncertainties. 

 Finally, we have illustrated how observational constraints can be used to inform projections, how it may affect the results, 

such as the strong decrease of uncertainties in projections. Given the growing importance of these constraints (Tokarska et al., 

2020; Nicholls et al., 2021), this calls for investigating computationally efficient and physically sensible ways of doing so with 685 
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OSCAR. Investigating and controlling the bias introduced in these steps may increase the confidence in the model’s results 

(Mcneall et al., 2016; Williamson and Sansom, 2019). 

In spite of those limitations, we have demonstrated that OSCAR behaves as one should would expect from an Earth system 

model. Applying our two post-processing steps (exclusion and constraining) somewhat overcomes some of the model’s 

limitations, and the resulting quantitative behaviorbehaviour of OSCAR remains largely satisfactory. In some several cases, 690 

we have also shown that OSCAR differs from complex models, due to the features of OSCAR that are not yet found in in part 

of most complex models, such as fully interactive atmospheric chemistry that would allow CH4 and N2O to be emission-driven, 

and endogenous simulation of CH4 emissions from wetlands, CO2 and CH4 emissions from permafrost, and emissions from 

biomass burning. Therefore, some of the results presented here have scientific interests that go beyond the pure model 

evaluation perspective. These valuable insights for other projects will be presented in separate papersstudies, but all many 695 

outputs from the simulations presented here are already publicly available as part of the RCMIP exercise (Nicholls et al., 2021). 

(and mMore outputs can be requested from the authors). Finally, this study will be the basis for a more systematic assessment 

of the model’s performance, as we will use the standardised CMIP6 and RCMIP simulations to diagnose future versions of 

OSCAR and to compare them with older versions. This will provide the wider community with a benchmark of the model, 

hopefully spreading interest in this open-source compact Earth system model. 700 

 

 

Appendix A: BehaviorBehaviour of OSCAR 

A.1. Carbon geoengineering 

A.1.1. Idealized experiments 705 

Experiments of CDRMIP are designed to investigate the consequences of carbon dioxide removal for the Earth system 

(Keller et al., 2018b). In 1pctCO2-cdr, the atmospheric CO2 increases by 1% every year (just like 1pctCO2), but after 140 

years, the atmospheric CO2 decreases following a pathway at the same rath rate than the ramp-up period. Once CO2 has returned 

to its preindustrial state, the experiment is extended over 1000 years. As shown in Figure A. 1, the GSAT reaches 3.68 ± 0.39 K 

at the end of the ramp-up forcing, and it goes back to 0.85 ± 0.22 K at the end of the ramp-down forcing. For all variables, 710 

such as the CH4 emissions from wetlands, removing CO2 from the atmosphere during ramp-down effectively reduces the 

perturbation in the variable that was induced by the ramp-up, albeit within a different time frame that is typical of a dynamic 

hysteresis (Boucher et al., 2012). Even the permafrost carbon stock slowly reconstitutes itself, onceitself once the global 

temperature change is sufficiently reduced. However, the whole Earth system is not fully recovered as soon as the preindustrial 

level of atmospheric CO2 is reached. To return within 10% of the maximum perturbation at the end of the CO2 ramp-up, it 715 

takes GSAT an average 110 extra years, and the land carbon stock an average 26 years. At the end of the 1000-year extension, 

the oceanic carbon stock remains at about 19% of its maximum perturbation. 
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Other CDRMIP experiments based on pulses of carbon emission or removal in an emission-driven configuration were 

performed to evaluate the response of the Earth system to CDR. These experiments are used to calculate the Absolute Global 

Warming and Temperature Potentials (AGWPs and AGTPs) of CO2, which serves to establish the Global Warming and 

Temperature Potentials (GWPs and GTPs) of other greenhouse gases (Myhre et al., 2013). In esm-pi-CO2pulse, a 100 PgC 750 

pulse is emitted from the preindustrial environmental condition in 1860, whereas 100 PgC are removed in esm-pi-cdr-pulse. 

In esm-yr2010CO2-CO2pulse, the 100 PgC pulse is applied in 2015 but under 2010 environmental conditions, whereas these 

100 PgC are removed at the same date in esm-yr2010CO2-cdr-pulse. We calculate time series of AGWPs and AGTPs under 

these experiments (Figure A. 2Figure A. 2), and) and note how close they are. We pinpoint that, just like the other experiments, 

we are calculating these potentials with the interactive permafrost of OSCAR. The larger source of differences lies in the 755 

background: under preindustrial environmental conditions, emission pulses have a stronger AGWP or AGTP over the short 

term, but this is inverted the opposite over the longer term. Over the short term, this is due to the logarithmic expression of the 

CO2 radiative forcing that is less saturated under preindustrial conditions. Over the long term, this is due to the deterioration 

of the carbon sink capacities under current conditions (Raupach et al., 2014). Similar reasons explain why a pulse of carbon 

removal cools the atmosphere slightly more over the short term than a pulse of emission warms it, but less over the long term. 760 

Our results cannot be compared to the final CDRMIP results yet, for they are unpublished, but they are consistent with those 

obtained with a model of intermediate complexity (Zickfeld et al., 2021). 

 

A.1.2. Alternative scenarios 

The C4MIP (Jones et al., 2016) experiments ssp534-over-bgc and ssp585-bgc differ from ssp534-over and ssp585 in that 765 

the prescribed CO2 does not affect the total radiative forcing , thus causing a lower change in GSAT and maintaining a relatively 

high carbon sinks efficiency. Figure A. 3 shows both carbon sinks under the variants and the base scenarios. Note that the -

bgc experiments stem from a different historical simulation (hist-bgc). Under the high warming scenarios ssp585, climate 

change reduces the oceanic carbon sink by 1.93 ± 0.69 PgC.yr-1 and the net land carbon flux by 4.31 ± 1.93 PgC.yr-1 in 2100. 

Under the overshoot scenario ssp534-over, this difference is lower, owing to its declining atmospheric CO2. Removing the 770 

impact of climate change on the carbon cycle increases the land carbon stock by 269 ± 52 PgC in ssp534-over, but by 501 ± 

117 PgC in ssp585 in 2100, due to the higher warming in the latter case. We note that the permafrost carbon stock drives most 

of the changes, because if permafrost is ignored in the bgc variant, these changes are reduced to 57 ± 32 PgC and 131 ± 77 

PgC in ssp534-over and ssp585 respectively. 

 775 
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A.2. Solar geoengineering 

A.2.1. Idealized experiments 

Experiments of GeoMIP (Kravitz et al., 2015) are designed to investigate the geoengineering techniques of Solar Radiation 

Management (SRM). Although OSCAR is not suited for all GeoMIP experiments, as it lacks any spatially resolved process, a 

few simulations remained accessible to our model. We run experiments G1 and G2: G1 essentially follows abrupt-4xCO2, 780 

albeit with a changed incoming solar radiation that compensates for the radiative forcing caused by the increasing atmospheric 

CO2 For G2, an identical principle is applied but using 1pctCO2 as a basis. As explained by (Kravitz et al., 2011), the change 

in solar radiation compensates solely for the radiative forcing of CO2. However, it does not compensate for other radiative 

effects introduced by biogeochemical feedbacks, such as the fertilization by CO2, affecting the carbon cycle, thus changing 

biomass burning emissions. Figure A. 4 shows that offsetting the CO2 radiative forcing with a change in solar activity 785 

effectively compensates the change in GSAT. However, we simulate that the GSAT decreases in G1 and G2 to reach -0.08 ± 

0.20 K and -0.07 ± 0.20 K, respectively, at the end of simulations. The compensation of the sole radiative forcing of CO2 does 

not balance other feedbacks. There remains an additional radiative forcing, mostly due to changes in aerosols (as also shown 

in Figure 4Figure 4), which results in this relatively small cooling in G1 and G2. We estimate that in OSCAR about half of 

this effect is caused by the vegetation being fertilized by CO2 and fuelling increased natural biomass burning emissions, and 790 

the remaining half is caused by the direct impact of GSAT on the atmospheric lifetime of aerosols (not shown). We note that 

the latter effect could be poorly estimated, in these specific experiments, as OSCAR’s formulation for the lifetime of aerosols 

depends only on GSAT and not on the precipitation intensity. 

Indeed, global precipitation does not respond in a similar way, because changes in atmospheric CO2 and solar radiation 

have a different impact of the hydrological cycle (Andrews et al., 2010). In spite of a fully compensated GSAT change, global 795 

precipitation is significantly reduced in G1 and G2, showing that such SRM technique does not entirely negate climate change. 

This demonstrates that OSCAR is capable of reproducing this well-established effect of this SRM technique (Boucher et al., 

2013a). (Boucher et al., 2013b). One added value of having a fully coupled ESM run these GeoMIP experiments is that we 

can also provide an estimate of the impact of the SRM technique on the carbon cycle. Figure A. 4 also shows that the land and 

ocean carbon stocks are increased in G1 and G2, respectively by about 33% and 20% at the end of the simulations, owing to 800 

the loss of carbon sink efficiency that is avoided by maintaining the temperature to its preindustrial level. 

 

A.2.2. Alternative scenarios 

In addition to the few idealized experiments of GeoMIP (Kravitz et al., 2015) that are accessible to OSCAR, one scenario 

variant focusing on SRM was also feasible. The G6solar experiment stems from ssp585, but the solar constant is changed from 805 

2020 onwards to compensate the radiative forcing of ssp585 and match the one of ssp245. As shown in Figure A. 5, although 

the GSAT of G6solar is brought to a level comparable to ssp245, some difference remains. The change in solar constant is 
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calculated ex-ante as the difference from the radiative forcing of ssp245 to ssp585, which by construction excludes some 

feedbacks caused by this change and (as with G1 and G2) does not fully cancel the change in global precipitation. 

Consequently, the carbon stocks still increase in G6solar, even more than in ssp585 thanks to the lower GSAT and despite 810 

lower global precipitation.  

 

A.3. Land-use 

A.3.1.  Alternative historicals 

LUMIP constistsconsists of experiments specifically focusing on land-use activities, and most of them are run by the Earth 815 

system models in a so-called “offline” fashion  (Lawrence et al., 2016). It means that a reconstruction of past climate variables 

GSWP3 (Lawrence et al., 2016; Van Den Hurk et al., 2016) is prescribed to the model, so that the land module is actually 

decoupled from the rest of the model. Despite its simplicity, OSCAR has an added-value in running those simulations, as it 

embeds a book-keeping module that endogenously estimates CO2 emissions from land-use and land-cover change. The main 

land carbon fluxes and stocks simulated under the reference experiment (dubbed land-hist) are shown in Figure A. 6, along 820 

with three sets of sensitivity experiments described hereafter. The results are similar to those obtained recently with the same 

version of the model but with slightly differing forcings and a different constraint (Gasser et al., 2020a). (Gasser et al., 2020b). 

The simulated land carbon stock decreases up to the 1970s, because of land-use activities emitting more CO2 than the sink 

absorbs thanks to CO2 fertilization and other factors. The carbon stock of 2010 is higher than the one of 1850 by only 1 ± 42 

PgC. For comparison, the GCB 2020 provides for 1850-2014 a net budget for the land sink and CO2 emissions from LUC of -825 

5 ± 90 PgC (Friedlingstein et al., 2020). 

The experiments land-cCO2 and land-cClim are used to disentangle the contribution of CO2 fertilization and changing 

climate on the land carbon cycle. In land-cCO2, the atmospheric CO2 is constant and set to preindustrial value. In land-cClim, 

the climate drivers loop over the year 1901-1920 of the data set, thus simulating a preindustrial climate. Figure A. 6 shows the 

differences; for example, land-hist -– land-cCO2 illustrates the effect of atmospheric CO2 on the variables of interest. Thanks 830 

to these experiments, we show that CO2 is the main driver of the land sink in OSCAR, driving most of the trend, with climate 

bringing a significant interannual variability but virtually no trend, except over the recent past. In 2010, climate caused a small 

difference of -10 ± 10 PgC in total land carbon stock, while CO2 did one of 141 ± 42 PgC. This has to be balanced with the 

results of the C4MIP idealized experiments, however, where we saw OSCAR is less sensitive to climate change than CMIP5 

models. Additionally, we see that the effect of climate and CO2 on land-use and land-cover change emissions is minor, which 835 

is consistent with the fact that they are firstly determined by preindustrial carbon densities (Gasser et al., 2020a; Gasser and 

Ciais, 2013b). (Gasser et al., 2020b; Gasser and Ciais, 2013a).  

A second set of experiments is meant to iInvestigate the impact of land-use practices. Land-cover change contributed -

152 ± 44 PgC to the 2010 change in land carbon stock since 1850, which corresponds to most of the total land-use and land-
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cover change emissions. Notably, it also reduced the land sink – an effect called the loss of additional sink capacity that has 840 

been diagnosed and quantified with OSCAR in the past (Gasser et al., 2020a; Le Quéré et al., 2018a; Gasser and Ciais, 2013b; 

Friedlingstein et al., 2020). (Gasser et al., 2020b; Le Quéré et al., 2018b; Gasser and Ciais, 2013a; Friedlingstein et al., 2020). 

Shifting cultivation (i.e. rapidly rotating land-use change between agriculture and natural ecosystems) had a relatively low 

impact on CO2 emissions, leading to a change in land carbon stock of -8 ± 2 PgC at the end of the simulation in 2010. Similarly, 

wood harvest (in woody ecosystems that do not see land-cover change) had an overall impact of -16 ± 4 PgC. Both shifting 845 

cultivation and wood harvest have no impact at all on the land sink, by construction of their formulation in OSCAR (Gasser et 

al., 2020a). (Gasser et al., 2020b). Finally, the effect of having cropland-specific parameters in the model is isolated thanks to 

the land-crop-grass experiment, in which new croplands are treated as grasslands. Having grasslands instead of croplands 

increases both the land sink and the CO2 emissions from land-use and land-cover change, resulting in a land carbon stock 

higher by 31 ± 26 PgC. All these values are entirely in line with an existing assessment of those land-use practices in which 850 

an earlier version of OSCAR took part (Arneth et al., 2017). 

The third set of experiments relates to varying input data sets of land-use and land-cover change drivers. Two of these 

(land-hist-altLu1 and land-hist-alLu2) relied on the two variations of the main LUH2 data set known as the “High” and “Low” 

variants (respectively) (Hurtt et al., 2020). We find that the so-called low variant leads to slightly higher land-use and land-

cover change emissions amounting to an land carbon stock lower by 8 ± 2 PgC over the whole period. The high variant 855 

produces slightly lower total emissions, leading to a land carbon stock higher by 17 ± 5 PgC. Neither variant has a significant 

impact on the land sink. According to the description of these two variations (Hurtt et al., 2020), they differ from the default 

data set mostly in the harvest of biomass, and are very similar from 1920 onwards. The last LUMIP experiment run with 

OSCAR is one that uses the primary data set but an alternative starting year (land-hist-altStartYear). This required making an 

additional spin-up of the model under the environmental conditions and land cover of year 1700. Compared to the reference 860 

experiment, we find a slightly higher land sink after 1850 that decreases through time, owing to the ecosystems not being at 

steady state at that date. Similarly, emissions are slightly higher but the difference to the reference case tends towards zero as 

the legacy of land-use and land-cover change prior to 1850 fades away. The land carbon stock in 2010 is dominated by the 

increased land sink and amounts to a small increasea slight increase of -17 ± 13 PgC in the land. Comparing the latter value 

with the total change in land carbon in the reference experiment suggests starting simulations in 1850 instead of 1700 or 1750 865 

introduces a non-negligible bias in the CMIP6 exercise. 

 

A.3.2.  Alternative scenarios 

LUMIP introduced variants of regular scenarios in which alternative land-use and land-cover change drivers coming from 

another scenario are prescribed (Lawrence et al., 2016), some of which being used in CDRMIP to assess afforestation (Keller 870 

et al., 2018b). (Keller et al., 2018a). Two such experiments are the pessimistic ssp585 and ssp370 combined with the land-use 

activities of the optimistic ssp126 (named ssp585-ssp126Lu and ssp370-ssp126Lu, respectively). A third experiment consists 
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in using the land-use of ssp370 but under ssp126. (named ssp126-ssp370Lu). Comparisons of these experiments with their 

regular counterparts are shown in Figure A. 7. As expected, changing the land-use scenario roughly replaces one SSP’s land-

use emissions by another’s, albeit with some slight differences in the later stage of the simulations  (i.e. after 2050) when 875 

atmospheric CO2 and climate are significantly different from the reference scenario’s, which has an impact in OSCAR because 

of transiently changing land carbon densities. The effect on the land carbon sink is also quantified, showing that sink capacity 

can be preserved by conserving natural ecosystems, although it remains a relatively small effect in absolute value. We note 

that the ability of properly isolating both effects (on land-use emissions and on the sink) is a specific feature of OSCAR that 

stems from the formulation of its land carbon cycle (Gasser et al., 2020a; Gasser and Ciais, 2013b), (Gasser et al., 2020b; 880 

Gasser and Ciais, 2013a), and we do not expect many complex ESMs to be able to provide such a partitioning. The overall 

effect on land carbon stock change in 2100 is 48 ± 15 PgC, 76 ± 28 PgC and -65 ± 23 PgC, in the ssp585-ssp126Lu, ssp370-

ssp126Lu and ssp126-ssp370Lu scenarios respectively. While the land carbon stocks are affected, the change in land cover 

also affects the planetary albedo. The radiative forcing from albedo of land cover change areis exchanged between ssp126 and 

ssp370, but changes remain below 0.1 W.m-2. The net combined effect on projected temperature cannot be estimated, however, 885 

because these experiments are concentration-driven. 

 

A.4. Alternative scenarios for NTCFs 

The ssp370-lowNTCF scenario is a variant of the ssp370 differing by its lower emission of short-lived pollutants affecting 

the RF of NTCFs. As illustrated in Figure A. 8, the variant leads to a somewhatn equivalent warming, although with very 890 

slightly less cooling from NTCFs. This almost negligible effect on global temperature is actually the result of two large but 

compensating effects that manifest the most between 2050 and 2100. The lower emission of warming NTCFs leads to 

absorbing aerosols (i.e. BC) warming less by -0.21 ± 0.11 W m-2 and tropospheric ozone warming less by -0.21 ± 0.03 W m-2 

in 2100. Conversely, it also leads to scattering aerosols cooling less by 0.33 ± 0.12 W m-2 and the indirect aerosol effects 

cooling less by 0.26 ± 0.13 W m-2 at the same date. This results in a small increasea slight increase of the total radiative forcing 895 

of 0.15 ± 0.20 W m-2 and a GSAT change of only 0.07 ± 0.11 K. However, the difference in forcing agents between the two 

scenarios leads to a significant change in global precipitation that reaches 15 ± 11 mm yr-1 in 2100. The change in precipitation 

is consistent with our results for the GeoMIP experiments and what we know of the global water cycle (Shine et al., 2015). 

 

A.5. Comparison of two generations of scenarios 900 

Initially, the SSPs scenarios were designed to reach the RF of RCPs in 2100, to provide a common grid for reading and 

comparing all the SSPs scenarios. Hence, the same four RF targets chosen in CMIP5 with the RCPs (2.6 W.m-2, 4.5 W.m-2, 

6.0 W.m-2, 8.5 W.m-2) have also been chosen in CMIP6 with four out of the eight SSPs used. Yet, CMIP6 ESMs did not run 

RCPs, because these scenarios are not part of the CMIP6 experiments. Therefore, the difference between RCPs projections in 
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CMIP5 and SSPs projections in CMIP6 under the same RF targets are due to both a change in the generation of ESMs and a 905 

change in scenarios. In Figure A. 9, we represent both RCPs and SSPs under the same version of OSCAR, showing the 

difference due to the sole change in scenarios. These scenarios use different drivers, as illustrated with the atmospheric CO2 

prescribed to these concentration-driven experiments, usually with higher CO2 concentrations in the CMIP6 version. Except 

for the 8.5 target, the RF tends to be also higher in the CMIP6 version, compared to the CMIP5 version, meaning changes in 

other drivers are not enough to balance the CO2 increase. While the 2.6 W.m-2 and 8.5 W.m-2 targets are reached in 2100, the 910 

4.5 W.m-2 and 6.0 W.m-2 are not. However, our results can be compared to those of MAGICC in these two cases (Iiasa, 2018b), 

and both reduced-complexity models are consistent. Because of the similar RF targets, GSAT are relatively similar over the 

21st century, but RCPs and SSPs tend to dissociate later onlater. In 2300, moving from RCPs to SSPs changes GSAT by 18 ± 

8%, 9 ± 3%, 5 ± 2% and -6 ± 1% in the four tested scenarios, respectively. Differences in other key variables such as the 

carbon sinks logically respond to these differences in atmospheric CO2 and global temperature change, as also shown in  Figure 915 

A. 9. 
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Table 1. List of CMIP6 and RCMIP simulations run with OSCAR. Standard names are used, and full description of the experiments 

are provided in references. Every experiment that is a scenario has been run with its extension up to 2500. A spin-up of 1000 years is 

associated to each of the 8 control experiments. 

MIP Simulations 

DECK (Eyring et al., 2016) 1pctCO2, abrupt-4xCO2, esm-hist, historical, piControl, esm-piControl 

AerChemMIP (Collins et al., 2017) hist-1950HC, hist-piAer, hist-piNTCF, ssp370-lowNTCF 

C4MIP (Jones et al., 2016) 1pctCO2-bgc, 1pctCO2-rad, esm-ssp585, hist-bgc, ssp534-over-bgc, ssp585-bgc 

CDRMIP (Keller et al., 2018b)  (Keller et 

al., 2018a) 

1pctCO2-CDR, esm-pi-cdr-pulse, esm-pi-CO2pulse, esm-yr2010CO2-cdr-pulse, esm-

yr2010CO2-CO2pulse, esm-yr2010CO2-control, esm-yr2010CO2-noemit, esm-ssp534-over, 

esm-ssp585-ssp126Lu, yr2010CO2 

DAMIP (Gillett et al., 2016) 
hist-aer, hist-CO2, hist-GHG, hist-nat, hist-sol, hist-stratO3, hist-volc, ssp245-aer, ssp245-

CO2, ssp245-GHG, ssp245-nat, ssp245-sol, ssp245-stratO3, ssp245-volc 

LUMIP (Lawrence et al., 2016) 

esm-ssp585-ssp126Lu, hist-noLu, land-cClim, land-cCO2, land-crop-grass, land-hist, land-

hist-altLu1, land-hist-altLu2, land-hist-altStartYear, land-noLu, land-noShiftCultivate, land-

noWoodHarv, ssp126-ssp370Lu, ssp370-ssp126Lu, land-piControl, land-piControl-altLu1, 

land-piControl-altLu2, land-piControl-altStartYear 

GeoMIP (Kravitz et al., 2015) G1, G2, G6solar 

ScenarioMIP (O'Neill et al., 2016) ssp119, ssp126, ssp245, ssp370, ssp434, ssp460, ssp534-over, ssp585 

ZECMIP (Jones et al., 2019) 
esm-1pctCO2, esm-1pct-brch-750PgC, esm-1pct-brch-1000PgC, esm-1pct-brch-2000PgC, 

esm-bell-750PgC, esm-bell-1000PgC, esm-bell-2000PgC 

RCMIP (Nicholls et al., 2020) 

1pctCO2-4xext, abrupt-0p5xCO2, abrupt-2xCO2, esm-abrupt-4xCO2, esm-histcmip5, esm-

rcp26, esm-rcp45, esm-rcp60, esm-rcp85, esm-ssp119, esm-ssp126, esm-ssp245, esm-ssp370, 

esm-ssp370-lowNTCF, esm-ssp434, esm-ssp460, historical-CMIP5, rcp26, rcp45, rcp60, 

rcp85, ssp585-ssp126Lu, esm-piControl-CMIP5, piControl-CMIP5 

 1380 
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Table 2: Metrics of the climate system (ECS, TCR and TCRE). Metrics are provided for OSCAR v3.1 constrained using 

observations, and unconstrained. Values are provided as mean ± standard deviation, median and the [5%-95%] confidence interval. As 1385 
explained in section  3.2section Error! Reference source not found., the ECS in OSCAR may be calculated using its parameters, or simply 

as the temperature at the end of abrupt-2xCO2. These values are compared to the ECS of (Meehl et al., 2020). The same source provides 

the values for the TCR. The TCRE of CMIP5 is compared to (Gillett et al., 2013). Values from RCMIP phase 2 (Nicholls et al., 2021) come 

from different soucessources: (Sherwood et al., 2020) for the ECS, (Tokarska et al., 2020) for the TCR and (Arora et al., 2020) for the 

TCRE. 1390 

 
OSCAR v3.1 

CMIP5 CMIP6 RCMIP, phase 2 
Unconstrained Constrained 

ECS 

(K) 

Parameter value 
3.17 ± 0.63 

3.28 [2.36-4.25] 

2.78 ± 0.47 

2.63 [2.36-3.75] 
3.2 ± 0.7 3.7 ± 1.1 3.10 [2.30-4.70] 

End of abrupt-2xCO2 
2.74 ± 0.52 

2.61 [2.02-3.67] 

2.52 ± 0.33 

2.45 [2.08-3.22] 
   

TCR 

(K) 
 

1.78 ± 0.28 

1.77 [1.37-2.26] 

1.66 ± 0.16 

1.62 [1.41-1.96] 
1.8 ± 0.40 2.0 ± 0.4 1.64 [0.98-2.29] 

TCRE 

(K EgC1000 

PgC-1) 

 
1.67 ± 0.40 

1.63 [1.08-2.37] 

1.44 ± 0.20 

1.41 [1.15-1.82] 

1.63 ± 0.48 

[0.8-2.4] 
1.77 ± 0.37 1.77 [1.03-2.51] 
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Table 3: Metrics of the carbon-cycle (β and 𝛾) from the C4MIP experiments. Metrics are provided for OSCAR v3.1 constrained 

using observations, and unconstrained. As explained by (Arora et al., 2013a), (Arora et al., 2013b), different values for the metrics are 

calculated depending on the combination of experiments used: R stands for radiative (1pctCO2-rad), B for biogeochemical (1pctCO2-bgc) 

and F for full (1pctCO2). The change in the land carbon stocks includes permafrost carbon. Results from CMIP5 and CMIP6 are provided 1395 
by C4MIP (Arora et al., 2020).  

Time Model Method 𝛽 
𝛽 (PgC ppm-1) 

Method 𝛾 
𝛾 (PgC K-1) 

Land Ocean Land Ocean 

2xCO2 

OSCAR v3.1 

constrained 

R-B, B-F 1.26 ± 0.47 1.05 ± 0.03 R-B, R-F -34.7 ± 18.9 -13.0 ± 0.7 

R-F 1.21 ± 0.44 1.00 ± 0.06 B-F -43.2 ± 23.8 -21.6 ± 6.3 

OSCAR v3.1 

unconstrained 

R-B, B-F 1.14 ± 0.64 1.05 ± 0.03 R-B, R-F -30.8 ± 20.5 -13.0 ± 0.7 

R-F 1.10 ± 0.61 1.00 ± 0.05 B-F -37.6 ± 26.4 -21.0 ± 5.7 

CMIP5 B-F 1.15 ± 0.63 0.95 ± 0.07 B-F -37.0 ± 25.5 -9.4 ± 2.7 

CMIP6 B-F 1.22 ± 0.40 0.91 ± 0.09 B-F -34.1 ± 38.4 -8.6 ± 2.9 

4xCO2 

OSCAR v3.1 

constrained 

R-B, B-F 1.06 ± 0.41 0.94 ± 0.03 R-B, R-F -47.7 ± 23.8 -17.7 ± 1.3 

R-F 0.95 ± 0.37 0.86 ± 0.08 B-F -72.3 ± 37.4 -37.1 ± 13.6 

OSCAR v3.1 

unconstrained 

R-B, B-F 0.96 ± 0.57 0.94 ± 0.03 R-B, R-F -43.3 ± 25.5 -17.7 ± 1.3 

R-F 0.87 ± 0.50 0.86 ± 0.07 B-F -63.1 ± 41.5 -35.5 ± 12.4 

CMIP5 B-F 0.93 ± 0.49 0.82 ± 0.07 B-F -57.9 ± 38.2 -17.3 ± 3.8 

CMIP6 B-F 0.97 ± 0.40 0.78 ± 0.07 B-F -45.1 ± 50.6 -17.2 ± 4.9 
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Table 4: Attribution of historical and future climate change. These contributions come either from experiments in which only the 1400 

concerned forcing was prescribed (DAMIP), or from experiments in which it was removed (other MIPs). In either cases, non-linearities are 

ignored. 

 Experiments 
GSAT w.r.t. 

1850-1900 (K) 
RF (W.m-2) 

 2006-2015 2091-2100 2006-2015 2091-2100 2006-2015 2091-2100 

All forcings historical ssp245 0.98 ± 0.19 
2.53 ± 

0.25 
2.07 ± 0.42 4.62 ± 0.29 

WMGHGs† hist-GHG ssp245-GHG 1.24 ± 0.12 
2.67 ± 

0.29 
2.53 ± 0.13 4.73 ± 0.27 

NTCFs‡ hist-aer ssp245-aer -0.26 ± 0.22 
-0.15 

±0.12 
-0.48 ± 0.36 -0.16 ± –0.12 

id. 
historical - hist-

piNTCF 
-- -0.25 ± 0.21 -- -0.46 ± 0.35 -- 

Natural forcings hist-nat ssp245-nat ~ 0.03 ~ 0.01 ~ 0.09 ~ 0.00 

CO2 hist-CO2 ssp245-CO2 0.74 ± 0.07 
2.03 ± 

0.22 
1.52 ± 0.09 3.70 ± 0.24 

CO2 radiative efffect 

only 
historical - hist-bgc -- 0.75 ± 0.08 -- 1.55 ± 0.04 -- 

CFCs aand HCFCs† 
historical - hist-

1950HC 
-- 0.13 ± 0.02 -- 0.27 ± 0.03 -- 

Stratospheric O3 hist-stratO3 
ssp245-

stratO3 
-0.03 ± 0.03 

-0.02 

±0.03 
-0.07 ± 0.06 -0.02 ± 0.05 

– 

Aerosols historical - hist-piAer -- -0.33 ± 0.20 -- -0.63 ± 0.33 -- 

Solar activity hist-sol ssp245-sol ~ 0.02 ~ 0.01 ~ 0.03 ~ 0.02 

Volcanic activity hist-volc ssp245-volc ~ 0.01 ~ -0.01 ~ 0.06 ~ -0.02 

Land-u–se change historical - hist-noLu -- -0.03 ± 0.03 -- -0.05 ± 0.05 -- 

 

† In these experiments, because the atmospheric concentration of WMGHGs is prescribed, the indirect effects on tropospheric O3 (from 

CH4), stratospheric H2O (from CH4) and stratospheric O3 (from N2O and halogenated compounds) are also included. 1405 

‡ The effects listed in the previous note on WMGHGs are excluded from this experiment. Tropospheric O3 does vary, however, but only 

because of the emission of ozone precursors and not because of varying atmospheric CH4. Black carbon deposition on snow is also included 

in this experiment. 
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Table 5: Projected atmospheric CO2, RF and GSAT in SSPs. Concentration- and emission-driven experiments are shown and 1410 
compared to available CMIP6 projections. Values in bold are assumptions or inputs. Experiments whose name start with esm- are emission-

driven; others are concentration-driven. GSAT from CMIP6 are provided as mean and standard deviation as well, with the number of models 

available in parenthesis. Here, projections from OSCAR are constrained to observations, while CMIP6 results are raw, without any 

constraints (Tokarska et al., 2020). 

experiments models ERF (W m-2) GSAT w.r.t. 1850-1900 (K) CO2 (ppm) 

  2100 2041-2050 2091-2100 2291-2300 2491-2500 2100 2300 

esm-ssp585 OSCAR 8.40 ± 0.57 2.02 ± 0.22 3.99 ± 0.40 6.31 ± 0.83 6.29 ± 0.88 1058 ±63 1729 ± 148 

esm-ssp585 CMIP6  2.41 ± 1.67 (3) 5.14 ± 3.92 (2)     

ssp585 OSCAR 8.76 ± 0.50 2.04 ± 0.19 4.16 ± 0.38 7.05 ± 0.87 7.24 ± 0.93 1135 2162 

ssp585 CMIP6  2.72 ± 1.51 (17) 6.19 ± 3.13 (17) 13.51 ± 5.87 (2)  1135 2162 

esm-ssp370 OSCAR 7.04 ± 0.66 1.85 ± 0.25 3.32 ± 0.35 5.54 ± 0.74 5.56 ± 0.80 809 ± 47 1200 ± 109 

ssp370 OSCAR 7.41 ± 0.58 1.87 ± 0.21 3.50 ± 0.32 6.24 ± 0.75 6.41 ± 0.81 867 1483 

ssp370 CMIP6  2.51 ± 1.48 (18) 5.1 ± 2.84 (16)   867 1483 

esm-ssp460 OSCAR 5.32 ± 0.50 1.80 ± 0.23 2.68 ± 0.30 3.43 ± 0.51 3.34 ± 0.55 629 ± 35 667 ± 49 

ssp460 OSCAR 5.64 ± 0.40 1.82 ± 0.19 2.84 ± 0.27 3.91 ± 0.47 3.89 ± 0.50 668 769 

ssp460 CMIP6  2.46 ± 1.28 (4) 4.24 ± 1.80 (4)   668 769 

esm-ssp245 OSCAR 4.63 ± 0.43 1.72 ± 0.21 2.38 ± 0.28 2.59 ± 0.41 2.40 ± 0.42 578 ± 31 565 ± 35 

ssp245 OSCAR 4.86 ± 0.31 1.75 ± 0.17 2.50 ± 0.25 2.92 ± 0.37 2.79 ± 0.37 603 621 

ssp245 CMIP6  2.41 ± 1.33 (15) 3.63 ± 1.82 (15)   603 621 

esm-ssp534-over OSCAR 2.93 ± 0.37 2.00 ± 0.22 1.73 ± 0.25 1.16 ± 0.23 1.02 ± 0.23 458 ± 23 374 ± 12 

ssp534-over OSCAR 3.36 ± 0.27 2.04 ± 0.19 1.95 ± 0.22 1.40 ± 0.20 1.29 ± 0.19 497 398 

ssp534-over CMIP6  2.88 ± 0.84 (6) 3.08 ± 1.06 (6) 1.85 ± 0.66 (2)  497 398 

esm-ssp434 OSCAR 3.45 ± 0.40 1.64 ± 0.20 1.87 ± 0.24 1.51 ± 0.28 1.44 ± 0.29 451 ± 21 371 ± 15 

ssp434 OSCAR 3.70 ± 0.31 1.65 ± 0.17 2.00 ± 0.21 1.73 ± 0.24 1.68 ± 0.25 473 392 

ssp434 CMIP6  2.36 ± 1.1 (5) 3.23 ± 1.32 (5)   473 392 

esm-ssp126 OSCAR 2.66 ± 0.29 1.54 ± 0.18 1.49 ± 0.21 1.17 ± 0.20 1.02 ± 0.20 439 ± 18 381 ± 11 

ssp126 OSCAR 2.80 ± 0.20 1.58 ± 0.15 1.58 ± 0.17 1.31 ± 0.18 1.21 ± 0.18 446 396 

ssp126 CMIP6  2.21 ± 1.1 (17) 2.38 ± 1.17 (17) 1.68 ± 0.7 (2)  446 396 

esm-ssp119 OSCAR 2.0 ± 0.25 1.39 ± 0.17 1.15 ± 0.17 0.71 ± 0.15 0.61 ± 0.15 383 ± 12 334 ± 6 

ssp119 OSCAR 2.14 ± 0.18 1.44 ± 0.14 1.24 ± 0.15 0.82 ± 0.13 0.74 ± 0.13 394 342 

ssp119 CMIP6  2.36 ± 1.07 (6) 2.12 ± 0.92 (2)   394 342 

 1415 
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Table 6: Zero Emissions Commitments at 25, 50, 90 and 500 years after emission cease. Only the ZECs for the experiment esm-

1pct-brch-1000PgC are shown here, for comparison to results of ZECMIP. The full evolution of this experiment is shown in Figure 8Figure 

8. 

 ZEC25 (K) ZEC50 (K) ZEC90 (K) ZEC500 (K) 

OSCAR v3.1 -0.01 ± 0.07 -0.02 ± 0.09 -0.01 ± 0.11 -0.21 ± 0.13 

ZECMIP (Macdougall et al., 2020) -0.01 ± 0.15 -0.06 ± 0.19 -0.11 ± 0.23  

Formatted: Font: Not Bold
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 1425 
Figure 1: Conceptual figure of OSCAR v3.1. The central box with red dashed lines illustrates the framework of OSCAR v3.1, taking 

as inputs anthropogenic emissions (dark grey boxes), land use and land cover change (green boxes) and additional radiative forcings (light 

grey boxes). The components of OSCAR v3.1 are organized in this figure by category: ocean carbon, land carbon and other land processes 

are in yellow boxes, while atmospheric concentrations are in blue boxes, atmospheric chemistry in purple boxes, radiative forcings in orange 

boxes and climate system in red boxes. The complete description of OSCAR v2.2 is in (Gasser et al., 2017), while the update to OSCAR 1430 
v3.1 is described in (Gasser et al., 2020a). 
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Figure 22: Conceptual description of the framework used in this study. The 10000 drawn configurations (Gasser et al., 2017) are 1435 
used in OSCAR in a Monte-Carlo setup for all experiments. The exclusions areis based on their exceedance to thresholds (black dashed 

lines) in the ocean sink, land sink, CO2 emissions form LUC and CO2 emissions from permafrost. The remaining subset common to each 

experimentpercentages are the remaining fractions of configurations after successive exclusions, from left to right. The subset common to 



50 

each experiment is then used for all. The likelihood of the kept configurations is then calculated (Gasser et al., 2020a) and applied to all 

experiments. 1440 
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Figure 3: Effect of the constraining step. The histograms are the results of OSCAR v3.1, with plain lines being for the constrained 

version, while the dotted lines are for the unconstrained version. Horizontal lines correspond to the average plus or minus one standard 1450 
deviation. Cumulative compatible carbon emissions in PgC from historical-CMIP5 are calculated over 1850-2011, while those of the RCPs 

are calculated over 2012-2100. 
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 1455 

Figure 4: Abrupt idealized experiments. In the left panel, the plain lines represent the average change in surface air temperature, and 

its  ± 1 standard deviation ranges using shaded areas. The three middle panels show the contributions to the total RF at equilibrium. Individual 

contributions from stratospheric O3 and deposition of BC on snow are inferior to 0.1 W.m-2 in the abrupt-4xCO2, and have not been 

represented for clarity. The three right panels are the distributions of the ECS, calculated using equilibrium temperature, and thus including 

all the feedbacks of OSCAR. The horizontal plain line is the ECS average and ± 1 standard deviation range. These values with Pearson’s 1460 
moment coefficient of skewness are provided in the legend. 
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Figure 5: Experiments with 1% increase in the atmospheric CO2. The plain lines are the averages, and the shaded areas are 

therepresent  ± 1 standard deviation ranges. 
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Figure 6: Emission- and concentration-driven historical scenarios. The plain lines are the averages, and the shaded areas are the the 

shaded areas represent  ± 1 standard deviation ranges. The fossil-fuel CO2 emissions for the concentrations-driven historical are the 

compatible emissions, whereas those for the emissions-driven esm-hist are directly prescribed to OSCAR. Radiative forcings under esm-hist 

are not represented, for they are too close from the concentrations-driven historical. Radiative forcings are with respect to 1750. The sources 1475 
for the observations are (Friedlingstein et al., 2020) for GCB2020, (Hartmann et al., 2013) for the ‘AR5 WG1 Ch2’, (Ciais et al., 2013b) for 

‘AR5 WG1 Ch3’ and (Myhre et al., 2013) for ‘AR5 WG1 Ch8’. The 90% ranges provided by AR5 are converted to ± 1 standard deviation 

ranges. 
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Figure 7: Global projections following the main CMIP6 scenarios in concentration-driven mode. Extensions are shown 

only up to 2300. The lines are the averages, and the shaded areas are the the shaded areas represent ± 1 standard deviation 

ranges. 
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Figure 8: Change in global mean surface temperature for branched experiments (top panels) and bells experiments (bottom 

panels). The results over the zero-emission phase are shifted along the time axis so that t = 0 corresponds to the time of cessation of emission. 

The lines are the averages, and the shaded areas are the the shaded areas represent ± 1 standard deviation ranges. 1490 
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Figure A. 1: Reversibility experiment from CDRMIP. The orange lines correspond to the ramp-up of 1pctCO2-cdr, the blue line to 

its ramp-down and the grey line to the 1000 years with constant atmospheric CO2. The plain lines are the averages, and the shaded areas are 1495 
the the shaded areas represent ± 1 standard deviation ranges.  
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Figure A. 2: AGWP (blue) and AGTP (orange) of CO2 for 100PgC of CO2 emissions under actual environmental conditions. The 

dependency of this reference to a change of background is on the second line. The dependency to the sign of the pulse, emissions or removal, 1500 
is on the third line. The lines are the averages, and the shaded areas are the the shaded areas represent ± 1 standard deviation ranges. 
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Figure A. 3: Effect of climate change on the carbon cycle in the scenarios ssp534-over and ssp585. The net flux from atmosphere 1505 
from land is the sum of the land carbon sink, CO2 emissions from land-use and land-cover change, and CO2 and CH4 emissions from 

permafrost. The changes in the total land carbon stock include those in the permafrost. Note that the increased uncertainty in the ocean sink 

before 2250 is an artefact of our exclusion procedure (see text on post-processing) that cannot capture some the Monte Carlo members that 

already started diverging. Extensions are shown only up to 2300. The lines are the averages, and the shaded areas are the the shaded areas 

represent ± 1 standard deviation ranges. 1510 
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Figure A. 4: Experiments from GeoMIP compared to their DECK counterpart. The plain lines are the averages, and the shaded 

areas are the the shaded areas represent ± 1 standard deviation ranges. 1515 
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Figure A. 5: Effect of introducing SRM in the SSP5-8.5 to reach the SSP2-4.5. The lines are the averages, and the shaded areas are 

the the shaded areas represent ± 1 standard deviation ranges. 1520 
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Figure A. 6: Land-use experiments from LUMIP. The first row of the figure corresponds to the reference experiment (land-hist) while 

other rows show sensitivity experiments as a difference to land-hist. land-hist-altStartYear is shown only from 1850 despite starting in 1700. 1525 
The lines are the averages, and the shaded areas are the the shaded areas represent ± 1 standard deviation ranges. (Arora et al., 2013a) 
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Figure A. 7: Effect of alternative land-use and land-cover change drivers in the  scenarios ssp126, ssp370 and ssp585. Here, the 

changes in the land carbon stock does not include the changes in the permafrost. The lines are the averages, and the shaded areas are the the 1530 
shaded areas represent ± 1 standard deviation ranges. 
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Figure A. 8: Effect of lower NTCF emissions in the SSP3-7.0. Extensions are shown only up to 2300. The lines are the averages, and 1535 
the shaded areas are the the shaded areas represent ± 1 standard deviation ranges. 
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Figure A. 9: Comparison between RCPs (CMIP5) and SSPs (CMIP6). The lines are the averages, and the shaded areas are the the 1540 
shaded areas represent ± 1 standard deviation ranges. 


