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Abstract  11 

Hurricanes commonly disturb and damage tropical forests. It is predicted that changes in climate will result in changes 12 

in hurricane frequency and intensity. Modeling is needed to investigate the potential response of forests to future 13 

disturbances. Unfortunately, existing models of forests dynamics are not presently able to account for hurricane 14 

disturbances. We implement the Hurricane Disturbance in the Ecosystem Demography model (ED2) (ED2-HuDi). 15 

The hurricane disturbance includes hurricane-induced immediate mortality and subsequent recovery modules. The 16 

parameterizations are based on observations at the Bisley Experimental Watersheds (BEW) in the Luquillo 17 

Experimental Forest in Puerto Rico. We add one new plant functional type (PFT) to the model—Palm, as palms cannot 18 

be categorized into one of the current existing PFTs and are known to be an abundant component of tropical forests 19 

worldwide. The model is calibrated with observations at BEW using the generalized likelihood uncertainty estimates 20 

(GLUE) approach. The optimal simulation obtained from GLUE has a mean relative error of -21%, -12%, and -15% 21 

for stem density, basal area, and aboveground biomass, respectively. The optimal simulation also agrees well with the 22 

observation in terms of PFT composition (+1%, -8%, -2%, and +9% differences in the percentages of Early, Mid, 23 

Late, and Palm PFTs, respectively) and size structure of the forest (+0.8% differences in the percentage of large stems). 24 

Lastly, using the optimal parameter set, we study the impact of forest initial condition on the recovery of the forest 25 

from a single hurricane disturbance. The results indicate that, compared to a no-hurricane scenario, a single hurricane 26 

disturbance has little impact on forest structure (+1% change in the percentage of large stems) and composition (< 1% 27 

change in the percentage of each of the four PFTs) but leads to 5% higher aboveground biomass after 80 years of 28 

succession. The assumption of a less severe hurricane disturbance leads to a 4% increase in aboveground biomass. 29 

1 Introduction 30 

Hurricanes are an important disturbance agent in tropical forests. They damage individual trees and reduce 31 

aboveground biomass (Zimmerman et al. 1994; Uriarte et al. 2019; Rutledge et al. 2021; Leitold et al. 2021; Zhang et 32 

al. in revision). In the long term, they alter forest species composition and structure (Royo et al. 2011; Heartsill Scalley 33 

2017; Zhang et al. in revision).  34 

Hurricane-induced mortality varies with many factors, including hurricane severity (Parker et al. 2018), 35 

environmental conditions (Uriarte et al. 2019; Hall et al. 2020), forest structure (Zhang et al. in revision), and traits 36 

and size of individual trees (Curran et al. 2008; Lewis and Bannar-Martin 2011). Trees with a larger diameter have 37 

been found to be more resistant to wind forces but more likely to suffer broken branches (Lewis and Bannar-Martin 38 

2011). Species with higher wood density tend to suffer less from hurricane disturbances (Zimmerman et al. 1994; 39 

Curran et al. 2008). Hurricanes with heavier rainfall and stronger wind generally lead to higher mortality (Uriarte et 40 

al. 2019; Hall et al. 2020). However, forests with a more wind-resistant structure and composition experience lower 41 

mortality even during a stronger hurricane event (Zhang et al. in revision).  42 

The recovery from hurricanes also depends on many factors, such as the disturbance severity (Walker 1991; 43 

Everham and Brokaw 1996; Cole et al. 2014; Heartsill Scalley 2017) and traits of individual species (Curran et al. 44 

2008; Lewis and Bannar-Martin 2011). Species with lower wood density have a faster resprouting (Paz et al. 2018) 45 
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and biomass recovery (Curran et al. 2008). The resprouting of some species further varies with time since disturbance 46 

(Brokaw 1998; Zhang et al. in revision). Less severe disturbances lead to a faster recovery and a higher recovery 47 

equilibrium (Wang and Eltahir 2000; Parker et al. 2018). For example, observations on a tropical forest canopy in 48 

western Mexico after two hurricanes—category 2 Jova and category 4 Patricia—showed that hurricane Jova destroyed 49 

11% of the aboveground biomass while hurricane Patricia destroyed 23%; the recovery was more rapid after the less 50 

intense hurricane Jova (Parker et al. 2018). Wang and Eltahir (2000) provided theoretical and numerical analyses on 51 

multiple-equilibrium nature of a regional climate system. Their results showed that the recovery speed and the 52 

equilibrium state of the coupled biosphere-atmosphere system are sensitive to the initial vegetation condition impacted 53 

by disturbances.  54 

In the past decades, there has been a strong effort to incorporate functional diversity in terrestrial biosphere 55 

models (Moorcroft et al. 2001; Sakschewski et al. 2016; Fisher et al. 2018; Fisher and Koven 2020). This effort 56 

acknowledges the variability in traits and trade-offs that exist in tropical forests (e.g., Baraloto et al. 2010). Fast 57 

growing pioneer species have low wood density, establish and recruit in open gaps formed after disturbances and grow 58 

rapidly in the high light environment. They dominate the early successional stage of the recovery, and thus are 59 

categorized as Early plant functional type (PFT). Species that have intermediate growth and are somewhat shade 60 

tolerant dominate the plant community in the mid successional stage after a disturbance, and thus are categorized as 61 

Mid PFT. Species that have slow growth and are shade tolerant dominate a plant community in the late successional 62 

stage after a disturbance, and thus are categorized as Late PFT. One important and distinct species in tropical forests 63 

in the Caribbean islands is the palm species Prestoea montana. The palm species is more resistant to hurricane damage 64 

compared to trees (Francis and Gillespie 1993). Moreover, the palm species cannot be classified into one of the 65 

successional PFTs, because palms possess some early successional traits, such as low "wood" density and high 66 

fecundity under open canopy (Lugo and Rivera Batlle 1987; Lugo et al. 1998), that allow them to recruit quickly when 67 

the canopy opens (Zhang et al. in revision); and some late successional traits, such as tolerance to shade (Ma et al. 68 

2015), that allow them to thrive when the canopy closes (Zhang et al. in revision). To account for these unique 69 

characteristics, we define a Palm PFT.  70 

In this paper, we describe the implementation of hurricane mortality and recovery modules that account for the 71 

variation with disturbance severity, forest resistance state, PFT and diameter size of individual stems in the Ecosystem 72 

Demography model (ED2). The model is then used to study the recovery of a tropical rainforest after hurricane 73 

disturbances. The results indicate that a single hurricane disturbance has little impact on forest structure and 74 

composition but enhances the aboveground biomass accumulation of a tropical rainforest.  75 

2 Methods and Materials  76 

2.1 Model Description  77 

The Ecosystem Demography model (ED) is a cohort-based model, and it describes the growth, reproduction, and 78 

mortality of each cohort in each patch in a forest site. A cohort is a group of stems with the same PFT and similar 79 

diameter size and age. A patch is an area with the same environmental condition and disturbance history. The model 80 
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simulates transient fluxes of carbon, water, and energy during short-term physiological responses and long-term 81 

ecosystem composition and structure responses to changes in environmental conditions. The second version of the ED 82 

model, ED2, modifies the calculations of radiation and evapotranspiration of the original ED model, leading to a more 83 

realistic long-term response of ecosystem composition and structure to atmospheric forcing (Medvigy et al. 2009; 84 

Longo et al. 2019b). Details of the ED and ED2 models can be found in Moorcroft et al. (2001), Medvigy et al. (2009), 85 

and Longo et al. (2019a). Here we add a new PFT (Palm) and implement hurricane disturbance in the ED2 model, and 86 

we name it ED2-HuDi V1.0.  87 

2.1.1 Adding Palm as a New PFT 88 

The standard ED2 model represents a variety of broadleaf trees, needleleaf trees, grasses and lianas (Albani et al. 89 

2006; Medvidy et al. 2009; Longo et al. 2019a; di Porcia e Brugnera et al. 2019). Yet, to date, none of the existing 90 

PFTs describe the traits of palms, even though palms are a globally abundant component of tropical forests (Muscarella 91 

et al. 2020). Since there is little knowledge about the traits of Palm. We do know that palms have low “wood density” 92 

of ~0.25 g cm-3 (Zanne et al. 2009; Chave et al. 2009) and grow fast in open canopies like early tropical trees and are 93 

tolerant to shade like late tropical trees (Zhang et al. in revision). Hence, we assume that the traits of Palm have the 94 

same probability distributions as those of late tropical trees except for wood density which is assumed the same as 95 

that of early tropical trees. 96 

2.1.2 Modifying the Allometric Relationship 97 

The H-DBH allometric relationships for four tropical PFTs (Early, Mid, Late, and Palm) come from census data at 98 

Bisley Experimental Watersheds (BEW) in the Luquillo Experimental Forest in Puerto Rico. The relationships take 99 

the form,  100 

𝐻 = 𝑎 𝐷𝐵𝐻𝑏  , (1) 

where a and b are PFT-specific scale and shape parameters (Zhang et al. in revision). The diameter range for the Palm 101 

PFT is between 10 and 20 cm while that for the tree PFTs is between 2.5 and 90 cm. The scale parameter a is 1.6388, 102 

2.2054, 2.3833, and 0.1628 for Early, Mid, Late, and Palm PFT, respectively. The shape parameter b for the four PFTs 103 

are 0.80, 0.64, 0.59, and 1.47 (Table S1). Palm has a smaller scale parameter and a significantly larger shape parameter, 104 

demonstrating that palms are shorter than other PFTs given the same DBH. The constrained diameter range and the 105 

H-DBH allometry of Palm makes it difficult for palms to access sunlight and would normally prevent them from 106 

establishing in the ED2 model. A previous study implementing liana to the ED2 model also experienced similar issues. 107 

They then were to use an allometry for liana with DBH between 3 and 20 cm and the allometry of early successional 108 

trees for lianas with DBH less than 3 cm (di Porcia e Brugnera et al. 2019). Following a similar approach and to make 109 

sure Palm has reasonable opportunity to compete with a reasonable diameter range, we assume that the minimum 110 

height of Palm in the model is 4.8 m (corresponding to 10 cm DBH of Palm; other PFTs have a minimum height of 111 

1.5 m for recruitment), and when Palm grows to a height of 18 m (corresponding to 20 cm DBH), they will allocate 112 

all the carbon to reproduction instead of growth (relative allocation to reproduction is 1 for Palm, and 0.3 for other 113 

PFTs) (Table S1).  114 
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For other allometric relationships, such as leaf biomass-DBH, structural biomass-DBH, and crown area-DBH 115 

relationships, we used the model default for Early, Mid, and Late PFTs, and assumed that Palm has the same 116 

relationships as Early (Figure S1).  117 

2.1.3 Implementing Hurricane Disturbance 118 

The ED2 model accounts for several types of disturbances, such as fires, land use, logging (Albani et al. 2006; Longo 119 

et al. 2019a), but not hurricane disturbance. To account for hurricane impacts, we implement a hurricane-induced 120 

wind mortality module and a seedling recovery module in the model. The wind mortality module consists of two 121 

parts—the disturbance rate of the forest area (λd) and the survivorship of each cohort (sc) in the disturbed areas. The 122 

disturbance rate (λd) is the ratio of the area disturbed to the total area of the forest and it is a constant across patches. 123 

The survivorship of each cohort (sc) is the ratio of the cohort density that survived to the cohort density before the 124 

disturbance, and it is cohort dependent. The cohorts that survived in disturbed areas will make up a new patch with 125 

area equal to the disturbed area. In this study, we assume that the forest is fully disturbed and 𝜆𝑑 = 1. The survivorship 126 

of each cohort sc is calculated as sc = 1 - λc, where λc is the mortality of each cohort. Based on previous analyses, λc 127 

varies with hurricane strength, forest structure, the PFT category and the DBH size of the cohort (Zhang et al. in 128 

revision). First, we implement a binary model for the mortality with respect to hurricane wind, where mortality occurs 129 

when hurricane wind exceeds a threshold and no mortality otherwise. This binary model is built on the binary 130 

relationship between hurricane-induced forest damage and hurricane wind speed from nine hurricane events at BEW 131 

between 1989 and 2017 (Supplementary Information S1, S2, and S3). The wind speed threshold was set at 41 m s-1 132 

because the strongest hurricane wind that caused no damage to the forest at BEW was 40 m s-1 from hurricane Georges 133 

in 1998 and the lowest wind speed that caused damage to the forest was 42 m s-1 from hurricane Maria in 2017 134 

(Supplementary Information S1, S2, and S3). Given mortality, the rate of each cohort (λc) is a continuous function of 135 

the size structure of the forest, represented by the proportion of large stems (DBH ≥ 10 cm) to the total recruited stems 136 

(DBH ≥ 2.5 cm). Figure 1 shows the mortality of each PFT and DBH class during two hurricane events (Hugo and 137 

Maria) based on census observations at BEW (see Sect. 2.2). We fit a logistic function to the mortality-structure pair 138 

of each PFT and DBH class based on the observed pairs of mortality and structure from the two hurricane events.  139 

 140 

Figure 1. The mortality for each PFT and DBH class. The dots represent observed mortality and proportion of large stems pairs 141 
from hurricane Hugo and hurricane Maria (Zhang et al. in revision). Four colors represent four PFTs. The solid lines represent the 142 
estimated mortality as a logistic function of the proportion of large stems. The panel on the left is for small stems and that on the 143 
right is for large stems. 144 

 145 
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Hurricanes not only cause immediate stem mortality, but also affect the establishment of seedlings by opening 146 

the canopy (Brokaw 1998). Brokaw (1998) pointed out that hurricanes promote germination and seedling 147 

establishment of the early successional species C. schreberiana, and that the seedling establishment ends shortly after 148 

the disturbance as the canopy closes. The census data at BEW also show abundant recruitments of the Early PFT in 149 

the first 20 years after hurricane Hugo and decreasing recruitment with time (Zhang et al. in revision). Therefore, we 150 

implement a recovery module where the seedling density from seed rain (ns; individuals m−2 yr−1) decreases with time 151 

since the last disturbance, and the reduction varies with PFT categories as: 152 

𝑛𝑠 = 𝑛0 exp(−𝛼𝑡) , (2) 

where ns is the seedling density t years after last hurricane disturbance, n0 and α are PFT-dependent parameters. 153 

Specifically, Mid, Late, and Palm PFTs maintain a low but constant seedling density (n0 = 0.05 individuals m−2 yr−1 154 

and α = 0 yr−1). The Early PFT has high seedling density (n0 = 0.2 individuals m−2 yr−1) shortly after a hurricane 155 

disturbance and the seedling rate decreases to the same value as other PFTs about 20 years after the disturbance (α = 156 

0.06 yr−1), and it continues to decrease thereafter (Figure 2).  157 

 158 

Figure 2. The seedling density for each PFT after a disturbance.  159 

 160 

2.2 Census Observations 161 

Tree censuses were carried out in BEW in the Luquillo Experimental Forest in Puerto Rico starting in 1989, three 162 

months before hurricane Hugo (pre-Hugo 1989), and repeated three months after hurricane Hugo (post-Hugo 1989), 163 

and then every five years since then (1994, 1999, 2004, 2009, 2014). The census recorded the diameter at breast height 164 

(DBH) and species of each stem with DBH ≥ 2.5 cm in 85 dynamics plots in the forest. The last census was conducted 165 

three months after hurricane Maria, and recorded auxiliary damage information of each stem. The detailed description 166 

of the study site and the census observations can be found in Zhang et al. (in review) and the census data between 167 

1989 and 2014 are from Zhang et al. (in review) and the post-Maria census data are from (Zhang et al. 2020). Species 168 

are categorized into four PFTs: early, mid, late successional tropical trees, and palms (Early, Mid, Late, and Palm 169 

PFT, respectively) following Zhang et al. (in review). The stem density, DBH growth rate, and basal area are calculated 170 

from the census data for each PFT in each census, and the aboveground biomass is estimated from DBH using the 171 
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allometric relationship from Scatena et al. (1993). The census observations will be used for initializating, calibrating, 172 

and validating model simulations. 173 

2.3 Model Calibration and Validation 174 

2.3.1 The GLUE approach 175 

The concept of Generalized Likelihood Uncertainty Estimates (GLUE) (Binley and Beven 1991; Beven and Binley 176 

1992; Mirzaei et al. 2015) has been widely used to calibrate parameters in complex hydrological models. The steps of 177 

GLUE include 1) generating a number of samples of the parameter set from a prior distribution of the parameters, 2) 178 

running the simulation for each parameter set, 3) choosing a likelihood function (or weight function) to calculate the 179 

weight of each simulation based on observations and the estimated outputs from the model simulation, and 4) selecting 180 

the optimal parameter set and estimating the posterior distribution of the parameters and the posterior distribution of 181 

the output variables. Here we use GLUE, for the first time, to calibrate the parameters in the ED2 model.  182 

To obtain the prior distribution of parameters, we build on a previous parameter sensitivity analysis using the 183 

ED2 model for a nearby forest in Puerto Rico by Feng et al. (2018). They demonstrated that model simulations are 184 

sensitive to ten parameters, listed in Table 1, and provided the posterior mean and 95% confidence limits of the 185 

parameters calibrated from plant traits observations using the Predictive Ecosystem Analyzer (PEcAn; LeBauer et al. 186 

2013). We select the same parameters and use the posterior distribution of those parameters from Feng et al. (2018) 187 

as the prior distribution for the GLUE in our study. We cannot just use their parameter distributions as final results 188 

because our implementation has a site-specific set of allometric equations, explicitly represents palms as a separate 189 

PFT and considers hurricane disturbances (Sect. 2.1). Feng et al. (2018) reported only the mean and the upper and 190 

lower 95% confidence limits of the parameters (not the entire distribution), we assume that the parameters have 191 

lognormal distributions. For the Palm PFT, we assume that it has the same distributions as Late, except that the woody 192 

tissue density of Palm has the same distribution as that of Early. The dark respiration factor from Feng et al. (2018) 193 

has a too wide range (Wang et al. 2013), and thus we restrict it to a uniform distribution between 0.005 and 0.0175 194 

for each PFT. Consistent with Meunier et al. (in revision), we found that model results are also sensitive to the 195 

parameter clumping factor (Figure S2). Therefore, we add the parameter of clumping to the set being calibrated. 196 

Clumping factor is defined as the projected area of leaves per unit ground area and affects the transmission of radiation 197 

(Chen and Black 1992); it ranges from zero to one with zero representing clumped in a single point (0-area) and one 198 

representing uniformly distributed in the unit area. Because of tree crowns, branches, and subbranches, leaves of plant 199 

canopy are not uniformly distributed per unit area nor clumped at a single point. We assume that the clumping factor 200 

is the same for all PFTs and the distribution of clumping factor is uniform between 0.2 and 0.8.  201 

We sample 10,000 realizations for the 41 parameters (10 parameters for each of the four PFTs and the one 202 

clumping parameter for all PFTs) using the Latin Hypercube Sampling method embedded in MATLAB (Stein 1987). 203 

We initialize the model with the pre-Hugo 1989 observations and run the model for 29 years, corresponding to 1989–204 

2018. The first 25 years (1989–2014) are used to calibrate the model with observations and the last four years (2015–205 

2018) for validation. We calculate the mean squared errors (MSE) of each realization (j, j=1, 2, …, 10,000) for the 206 

calibration period,  207 
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𝑚
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 , 

(3) 

where Xi,t,j represents the jth model simulations for variable i at time t, and Yi,t represents observations for variable i at 208 

time t. The variables used to calculate MSE are stem density (individuals m−2), average DBH growth rate (cm (5 yr)−1), 209 

and basal area (BA) (cm2 m−2) for the four PFTs (n=12) (Figure 3). Times are the six census years (m=6) with 210 

observations before hurricane Maria: post-Hugo 1989, 1994, 1999, 2004, 2009, 2014. Because BA is directly 211 

calculated from the DBH of each cohort and weighted by the stem density of the cohort, the size structure (distribution 212 

of stem DBHs) of the forest is implicitly represented with the variables overall stem density and total BA. Moreover, 213 

the PFT composition is explicitly represented with the PFT-specific variables. Therefore, the MSE metric implicitly 214 

measures the performance of a realization in describing the observed time series of the forest’s size structure and PFT 215 

composition.  216 

We select the simulation with the smallest MSE as the optimal simulation and the corresponding parameter 217 

set as the optimal parameter set. To obtain the posterior distribution of parameters, we first calculate the weight 218 

(likelihood) of each realization following Binley and Beven (1991),  219 

𝑤𝑗 = 𝑀𝑆𝐸𝑗
−𝐾  , (4) 

which is then rescaled to sum to one (𝑤𝑗/ ∑ 𝑤𝑗
𝑁
𝑗=1 ), where K is the parameter that controls the weight of each 220 

realization. When K = 0, every simulation will have equal weights and when K = ∞, the single best simulation will 221 

have a rescaled weight of 1 while all others being zero. We select K such that the weighted standard deviations from 222 

simulations are within and overlap as much as possible with the standard deviations of observations, indicating that 223 

the parameters in those weighted simulations are reasonable given the uncertainty of the observations (Freer et al. 224 

1996). The weighted standard deviation of variable X is calculated as  225 

𝜎𝑋 = √∑ 𝑤𝑗(𝑋𝑗 − 𝑚𝑋)
2𝑁

𝑗=1
 , 

(5) 

where 𝑚𝑋 = ∑ 𝑤𝑗𝑋𝑗
𝑁
𝑗=1  is the weighted mean of the simulated variable. We find that K=8 has the best performance 226 

on the posterior estimates of output variables stem density, aboveground biomass, basal area, proportion of each PFT, 227 

and proportion of large stems (Figure 4, Figure S3, and Figure S4). Lastly, the posterior empirical cumulative 228 

distribution function (CDF) of the parameters is obtained as 229 

𝐹(𝑃 ≤ 𝑝) = ∑ 𝑤𝑗
𝑗:𝑃𝑗≤𝑝

 . (6) 

The posterior empirical CDFs are then fit to lognormal distributions.  230 

2.3.2 Non-Hurricane Mortality  231 

The non-hurricane mortality of palm is not well represented in the model (Figure S5), as initially calibrated. The 232 

observed non-hurricane mortality is an overall mortality regardless of the cause of the death and is calculated from 233 

non-hurricane censuses; whereas the non-hurricane mortality in model simulations includes aging mortality, 234 

competition mortality, and disturbance mortality. We turned off all disturbances except for hurricane and treefall 235 
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disturbance. The disturbance mortality includes the background exogenous mortality rate (0.014 year-1 for small 236 

stems), and treefall disturbance rate (0.0126 year-1 for small stems and 0.014 year-1 for large stems). Competition 237 

mortality is related to the negative carbon balance due to light and water limitation and varies with cohorts. Aging 238 

mortality is the reciprocal of the longevity of the cohort without any biotic and abiotic influences, and it is modeled 239 

as a constant for each PFT depending on the wood density of the PFT (ρPFT) relative to the wood density of the Late 240 

PFT (ρLate): 0.15 × (1 – ρPFT/ρLATE) (Moorcroft et al. 2001). Since Palm has a much lower “wood” density (~0.25 g cm-241 

3) than the Late PFT (model default 0.9 g cm-3), the aging mortality of Palm is ~0.1 year-1, or the longevity of palms 242 

would be equivalent to ~10 years. However, this is in contrast to the average age of the palm species in the Luquillo 243 

Experimental Forest, which was found to be 61.1 years and the oldest palms were more than 100 years old in 1982 244 

(Lugo and Rivera Batlle 1987). This suggests that the aging mortality of Palm calculated from its woody tissue density 245 

is a drastic overestimation. Therefore, we assume that the aging mortality of Palm is independent of its woody tissue 246 

density and is 0 year-1, same as that of Late. 247 

With a lower mortality (decreasing aging mortality from ~0.1 to 0), the density of Palm increases continuously 248 

in the forest because of continuously recruiting seedlings, while the density of other PFTs and the AGB of all PFTs 249 

are less affected (Figure S6). A previous study showed that hurricane disturbance can result in an increase in seed 250 

production in the palm species (Gregory and Sabat 1996). Therefore, we calibrate the seedling recovery module of 251 

Palm that we implemented in Sect. 2.1.3. Specifically, we test several recovery seedling densities (Eq. (2)) for Palm, 252 

assuming that the seedling density of Palm is similar to that of Early—decreasing with time since disturbance—but 253 

with different starting seedling level (n0) and decaying factor (α). We tested 36 combinations of n0 varying from 0 to 254 

0.05 individuals m-2 yr-1 with interval 0.01 individuals m-2 yr-1 and α varying from 0 to 0.05 yr-1 with interval 0.01 yr-255 

1. We found that five of them lead to a smaller MSE (Eq. (3)) than the GLUE optimal simulation (0.1678, 0.1662, 256 

0.1642, 0.1646, and 0.1691 for the five experiments and 0.1803 for the GLUE optimal), and the five combinations 257 

have the same starting seedling density (n0=0.02 individuals m-2 yr-1) but different values of the decaying factor 258 

(α=0.01, 0.02, 0.03, 0.04, and 0.05 yr-1, respectively) (Figure S7). To choose from the five decaying values, we 259 

compared the recovery density schemes with the observed recruitment of Palms. There were 37, 64, 50, 34, and 32 260 

palms recruited in the 85 plots (78.5 m2 each plot) in 1994, 1999, 2004, 2009, and 2014 censuses, respectively, which 261 

corresponds to 0.0011, 0.0019, 0.0015, 0.0010, and 0.0010 individuals m-2 yr-1 after 5, 10, 15, 20, and 25 years of the 262 

Hugo disturbance. In other words, the recruitment decreases to half of the starting level in 20–25 years, or a decaying 263 

factor α≈0.03 yr-1. We assume that the seedling density has the same decaying rate as the recruitment density and thus 264 

we select the seedling density scheme n0=0.02 individuals m-2 yr-1 and α=0.03 yr-1 as the seedling recovery scheme 265 

for Palm.  266 

After changing the aging mortality of Palm to zero and the seedling density to a lower and slowly decreasing 267 

value, we did not repeat the GLUE. This is because Palm has constrained DBH size (between 10 and 25 cm) and 268 

decreasing the aging mortality increases its density while decreasing seedling reproduction decreases its density, 269 

which maintains the overall density of Palm, without affecting other variables of Palm nor variables of other PFTs 270 

(Figure S7). Therefore, we use the parameter set found from the GLUE (Table 1) but with 0-aging mortality and a 271 

lower seedling density recovery (n0=0.02 individuals m-2 yr-1 and α=0.03 yr-1) for simulations in the following studies. 272 
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2.4 Parameter Sensitivity Analyses and Variance Decomposition 273 

Using a similar approach to PEcAn (LeBauer et al. 2013), we analyze the sensitivity of model simulations to the 274 

parameters and the contribution of the parameters to the variances. Specifically, we set up nine experiments for each 275 

of the 41 parameters, corresponding to the nine quantiles (10th, 20th, …, 90th) of the posterior distribution of each 276 

parameter, while all other parameters remain constant at their optimal. For the total 369 sensitivity experiments, we 277 

initialize the model with the pre-Hugo observation and run each experiment for 25 years (1989–2014).  278 

To study the stability of the optimal parameter set, we calculate the MSE of each experiment and compare it 279 

with the MSE of the optimal. To quantitively study the sensitivity of output variables to the parameters, we calculate 280 

the standardized cubic regression coefficient (β),  281 

𝛽 =
𝜕𝑥̃(𝑝𝑜)

𝜕𝑝𝑜

𝑥𝑜

𝑝𝑜

⁄  , 
(7) 

where p and x are a specific parameter and the corresponding output variable. x̃ is the cubic regression function of x 282 

on p: 𝑥̃ = 𝑎𝑝3 + 𝑏𝑝2 + 𝑐𝑝 + 𝑑, estimated from the pairs of parameter p and variable x along the nine quantiles of the 283 

posterior distribution of parameter p. 
𝜕𝑥(𝑝𝑜)

𝜕𝑝𝑜
 is the partial derivative of x̃ on p at po, where po and xo are the optimal 284 

value of the parameter and the corresponding output variable. Only when the R2 metrics of the regression function is 285 

significant at 99% confidence level via student-t test is β calculated. We calculate β for 20 variables [stem density, 286 

BA, AGB, and leaf area index (LAI) of each PFT and of all PFTs] and for the 41 parameters. The β for the variables 287 

at the first and the 25th simulation years are selected to represent the short-term and long-term response of modeled 288 

variables to the parameters, respectively.  289 

To quantitatively study the uncertainty of the simulated variables (stem density, AGB, BA, LAI, etc.) from 290 

the uncertainties of the parameters, we calculate the coefficient of variation (θ) for each variable resulting from 291 

experiments with different parameters:  292 

𝜃 =
𝜎

𝜇
 , (8) 

where σ and μ are the standard deviation and the mean value of the variable from the nine experiments of the parameter. 293 

To study the contribution of each parameter to the uncertainties of the simulated variables, we calculate the total 294 

variance from all the sensitivity experiments (VarT) and the variance from experiments of each parameter (Varp), and 295 

decompose the total variance as follows,  296 

𝑉𝑎𝑟𝑇 = ∑ 𝑉𝑎𝑟𝑝

𝑁𝑝

𝑝=1
+ 𝜔 , 

(9) 

where Varp is the variance of the model outputs from experiments with different values of parameter p, and Np is the 297 

total number of parameters (Np=41), ω represents the variance from the interaction among parameters.  298 

2.5 Experiments with Different Initial Conditions 299 

To study the impact the initial condition of the forest on the recovery, we set up two experiments with different initial 300 

forest states (pre-Hugo state and pre-Maria state) with a hurricane disturbance in the first simulation year (experiment 301 

IhugoH1 and experiment ImariaH1, hereafter), and one control experiment with pre-Hugo state and no hurricane 302 
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disturbance in all simulation years (experiment IhugoHn, hereafter). The three experiments run for 112 simulation 303 

years (corresponding to years 1989–2100). The meteorological drivers between 1989 and 2017 are observations from 304 

meteorological towers at BEW, and the meteorological drivers between 2018 to 2100 are randomly sampled from the 305 

observations between 1989 and 2017. Hurricane disturbance is turned off in all simulation years for experiment 306 

IhugoHn and in all but the first simulation year for experiments IhugoH1 and ImariaH1. Thus, experiment IhugoHn 307 

represents the succession of the forest without hurricane disturbances for more than a century. Experiments IhugoH1 308 

and ImariaH1 represent the recovery of the forest from a hurricane disturbance given different initial conditions of the 309 

forest.  310 

3 Results  311 

3.1 Model Assessment 312 

3.1.1 Optimal Simulation and Optimal Parameter Set  313 

Figure 3 shows the optimal model simulation along with census observations for years 1989–2018. The simulated 314 

stem density of Early increased from 0.0027 individuals m-2 in 1990 to 0.0324 in 1994 (1100% increase) and to 0.0748 315 

in 1999 (131% increase) and decreased steadily thereafter, consistent with observations (0.0030 individuals m-2 in 316 

post-Hugo 1989, 1673% increase in 1994 and 84% increase in 1999). The simulated stem density of Mid is overall 317 

underestimated by 47% compared to the mean from the 85 plots of observations, but is within one standard deviation 318 

of the observations. The simulated stem density of Late and Palm are also consistent with observations with 25% 319 

underestimation and 38% overestimation, respectively. The optimal simulation overestimates the growth rate of the 320 

Early PFT by 133% for years between 2000 and 2014, but it generally captures the decrease of growth rate with time 321 

since the hurricane disturbance for all PFTs. Furthermore, the optimal simulation agrees well with the observations 322 

for the overall stem density (-21% relative bias), basal area (-12% relative bias), and aboveground biomass (-15% 323 

relative bias), and captures well the PFT composition (+1%, -8%, -2%, and +9% differences in the percentages of 324 

Early, Mid, Late, and Palm PFTs, respectively) and size structure (+0.8% differences in the percentage of large stems) 325 

(Figure 4). 326 
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 327 

Figure 3. Time series of variables from observation and the optimal simulation. (a)-(d) stem density of all trees (n; DBH ≥ 2.5 cm) 328 
(individuals m-2) for Early, Mid, Late, and Palm PFTs, respectively. (e)-(h) diameter growth rate (GR; cm (5yrs)-1) for the four 329 
PFTs; (i-l) basal area (BA; cm2 m-2) for the four PFTs. The dots and the error bars represent the means and the one standard 330 
deviations from the means. Period between 1989–2014 is for model calibration and period between 2015–2018 is for model 331 
validation (shaded). 332 

 333 

 334 

Figure 4. The standard deviation of the estimated variables with K=8 in equation (4), along with the optimal simulation and 335 
observation. The figure shows (a) stem density of all stems with DBH ≥ 2.5 cm (individuals m-2), (b) stem density proportion of 336 
large stems with DBH ≥ 10 cm, (c) basal area (BA; cm2 m-2), (d) aboveground biomass (AGB; kgC m-2), and stem density 337 
proportion of (e) Early, (f) Mid, (g) Late, and (h) Palm PFTs.  338 

 339 

In the verification period between 2015–2018, the simulated overall stem density, basal area, and 340 

aboveground biomass have a relative bias of +24%, +23%, and +17%, respectively, compated to the mean of the 341 

observations. The simulated percentages of the four PFTs have a difference of +3%, -7%, -4%, and 8%, respectively; 342 
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and the simulated large stem percentage has a difference of +0.3% compared to the mean of the observations. Overall, 343 

the simulated variables between 2015–2018 are within the standard deviations of the observations (Figure 3 and Figure 344 

4), suggesting that the parameters found using the data between 1989–2014 are valid for the 2015–2018. 345 

Table 1 shows the optimal set of the parameter values. The clumping factor (0.34) is lower than that from 346 

other studies in different locations (~0.7; He et al. 2012). Other parameters are reasonable and are consistent with 347 

reported values. For example, the leaf turnover rate of Late (0.16 year-1) is consistent with a previous study (~0.1; Gill 348 

and Jackson 2000). The leaf turnover rate of Palm (0.42 year-1) is consistent with previous observations of 0.36 year-349 

1 at BEW (Lugo et al. 1998). The woody tissue density of Palm (0.24 g cm-3) is consistent with previous observations 350 

of 0.25 g cm-3 for the palm species Prestoea decurrens (Zanne et al. 2009; Chave et al. 2009) that is the same genus 351 

as the palm species at our study site.  352 

 353 

Table 1. The optimal parameter set obtained from the GLUE method. 354 

Parameter Name Units Early Mid Late Palm 

clumping factor (Clf) proportion 0.34    

fine root allocation (FRA) ratio 0.64 1.2 0.95 1.85 

leaf turnover rate (LTR) year-1 1 0.83 0.16 0.42 

leaf width (LWd) m 0.1 0.07 0.16 0.13 

quantum efficiency (Qef) molCO2 mol-1
photon 0.055 0.069 0.038 0.05 

dark respiration rate (Rdf) proportion 0.0071 0.0144 0.0143 0.0088 

growth respiration rate (Rgf) ratio 0.44 0.595 0.421 0.401 

specific leaf area (SLA) m2kg-1 23.26 22.28 13.19 14.15 

stomatal slope (SSp) ratio 6.17 8.02 5.35 5.07 

carboxylation rate (Vm0) μmolCO2 m-2s-1 23.32 21.73 9.29 12.24 

wood density (WDe) 103 kgm-3 0.32 0.6 0.77 0.24 

 355 

3.1.2 Posterior Distribution of Parameters  356 

Figure 5 shows the posterior and prior probability distribution functions (PDFs) of the parameters. The most significant 357 

differences between the posterior and the prior distributions are for the parameters of clumping factor (Clf) and dark 358 

respiration rate (Rdf). The posterior PDFs of some parameters (i.e., carboxylation rate, specific leaf area, leaf width, 359 

stomatal slope, and wood density) do not change much from the priors (the maximum difference between the prior 360 

and posterior CDFs is generally less than 0.1) because the prior distributions of those parameters are well constrained 361 

by observational trait data (Feng et al. 2018). The posterior PDFs of other parameters (e.g., leaf turnover rate, quantum 362 

efficiency, and fine root allocation), especially for the Early and Mid PFTs, with few observational trait data (Feng et 363 

al. 2018), changed greatly from the prior distributions (the maximum difference between the distributions is around 364 

0.3).  365 
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 366 

Figure 5. The prior (solid line) and posterior (dashed line) probability density functions for the four PFTs (colors) of the 11 367 
parameters. The first ten parameters are PFT-dependent, and the last one leaf clumping factor (Clf) is PFT-independent. Palm has 368 
the same prior distribution as Late for all parameters except that the wood density (WDe) of Palm has the same prior distribution 369 
as that of Early. The long name of each parameter is shown in Table 1.  370 

 371 

3.1.3 Parameter Sensitivity and Uncertainty 372 

Among the 369 sensitivity experiments with different parameter values, 57 of them have slightly smaller MSEs than 373 

the optimal, but the simulated variables (stem density, AGB, PFT composition, and size structure) from those 374 

experiments are very close to those from the optimal (Figure S8), indicating that the optimal simulation we found 375 

from GLUE is stable given the uncertainties of the parameters.  376 

In terms of the sensivitiy of simulated variables on the parameters, the magnitude of standardized cubic 377 

regression coefficients (β) are generally low (~0.2) in the first simulation year (Figure 6 a), indicating that the 378 

parameters do not have strong effect on the variables. LAI is the most sensitive variable in the short term, and it is 379 

sensitive to both the specific leaf area (SLA) of its own PFT and the clumping factor (Clf). Furthermore, each PFT is 380 
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mainly sensitive to the parameters of its own PFT, and vice versa (Figure 6 a). After 25 years of simulation, the 381 

sensitivity of the variables on the parameters becomes more complex (Figure 6 b). First, the magnitude of β increases 382 

significantly, indicating that the parameters show stronger impacts on the variables in the long term. Second, the 383 

variables are sensitive to different parameters in the short term and in the long term. For example, SLA and clumping 384 

factor are the most important parameters to LAI in the first simulation year, but not after 25 years of simulation. 385 

Instead, quantum efficiency (Qef) and dark respiration (Rdf) are the most important parameters to LAI after 25 years 386 

of simulation. Third, besides the sensitivity of variables to the parameters of their own PFT, variables of a specific 387 

PFT also show sensitivity to the parameters of other PFTs. For example, the variables of Early and Mid PFTs are not 388 

only sensitive to Early and Mid PFTs parameters, but also sensitive to Late PFT parameters. Specifically, the quantum 389 

efficiency, wood density, and specific leaf area have significant positive effects on the variables of its own PFT, but 390 

significant negative effects on other PFTs. The Palm PFT is sensitive to its own parameters, but also to the specific 391 

leaf area of the Early PFT (Figure 6 b).  392 

 393 

Figure 6. The standardized cubic regression coefficient (β) of variables at (a) first and (b) 25th year of the simulations regarding to 394 
the parameters. The variables include stem density (nplant), basal area (BA), aboveground biomass (AGB), and leaf area index 395 
(LAI) for each PFT. The parameters include 10 PFT-dependent parameters and one PFT-indipendent parameter listed in Table 1.  396 

 397 

The stem density has a larger variation than LAI, BA and AGB after 25 years of simulation (Figure 7). Given 398 

that large stems contribute more to LAI, BA, and AGB, larger variation of stem density than LAI, BA, and AGB 399 

indicates that small stems are more variable than large stems. The variation of those variable also varies with PFTs. 400 
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For the stem density, Late PFT has the largest variation, followed by Early, then Mid, and Palm has the smallest 401 

variation, indicating that stem density of small Late is the most sensitive to the uncertainty of the parameters. For BA, 402 

AGB, and LAI, Early and Mid PFTs show the highest variability, followed by the Palm PFT, and the Late PFT has 403 

the lowest variation, indicating that large stems of Early and Mid PFTs are more sensitive to the uncertainty of the 404 

parameters than large stems of Late and Palm PFTs. 405 

 406 

Figure 7. The coefficient of variation (θ) for the variables of each PFT at the 25th simulation year.  407 

 408 

 409 

Figure 8. The variance explained by each parameter for variables (a) stem density, (b) basal area, (c) aboveground biomass, and 410 
(d) leaf area index. The variance explained by the interaction among parameters are given in the parenthesis. 411 

 412 
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The variance decomposition analyses reveal that 50% of the uncertainty of the stem density comes from the 413 

quantum efficiency of Late (QefL) (Figure 8). However, QefL explains less than 10% of the uncertainty in BA, AGB, 414 

and LAI, indicating that QefL has significant effects on the density of small stems, but less effects on the density of 415 

large stems. In other words, QefL impacts the recruitment and establishment of stems more than the growth of stems. 416 

The uncertainty of the growth of stems come from the growth respiration factor (Rgf), which explains about 10% of 417 

the uncertainty. The interaction among parameters accounts for 21% of the uncertainty of the stem density, and more 418 

than 50% of the uncertainty of the BA, AGB, and LAI.  419 

3.2 Impact of Initial Condition on Forest Recovery 420 

Figure 9 shows the 112-year simulations of the forest initialized with different forest states (pre-Maria state and pre-421 

Hugo state) with or without hurricane disturbance at the first simulation year. Without hurricane disturbance 422 

(IhugoHn), the forest experiences a decrease (-17%) in stem density in the first 10 years due to the self-thinning 423 

process of the forest (Figure 9 a). The decrease is mainly attributed to mortality of small stems of Mid and Late PFTs 424 

(Figure S9 b and c), which leads to an increase (5%) in the proportion of large stems (DBH ≥ 10 cm) (Figure 9 b) but 425 

BA and AGB remain steady (Figure 9 c and d). After 10 years, a large number of Early PFT stems recruit with DBH 426 

less than 10 cm (Figure S9 a), decreasing the overall large stem proportion. After 30 years, Mid trees recruit and grow 427 

(Figure S9 b and Figure S10 b), increasing the total BA and AGB (Figure 9 c and d). As small Late trees recruit 428 

frequently after 20 years (Figure S9 c), the stem density increases steadily, and the proportion of large stems decreases 429 

steadily. Because small stems contribute little to BA and AGB, BA and AGB have a slower increase with time (Figure 430 

9 c and d) than stem density (Figure 9 a). 431 

 432 

Figure 9. Time series of eight variables from the simulation of the three experiments: IhugoHn, IhugoH1, ImariaH1. The dotted 433 
lines are the initial state of the variables for each experiment (IhugoHn and IhugoH1 have the same initial state). The variables in 434 
(a) stem density, (c) basal area, and (d) aboveground biomass are for stems with DBH ≥ 2.5 cm. The stem proportion in (b) is the 435 
propotion of the stem denisty with DBH ≥ 10 cm to the stem denisty with DBH ≥ 2.5 cm. The variables in (e)-(h) are the proportion 436 
of the stem density of each PFT with DBH ≥ 2.5 cm to the total stem density of all PFTs with DBH ≥ 2.5 cm.  437 

 438 
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After 80 years, the PFT composition reaches a steady state, where the Early, Mid, Late, and Palm PFTs 439 

account for 11.8%, 10.6%, 65.3%, and 12.3% of the total stem density, respectively (Figure 9 e, f, g, h). This state is 440 

significantly different from the initial state and exhibits a 16% reduction on the proportion of the Mid PFT. It exhibits 441 

increases on all other PFTs proportions (+0.7%, +11.4%, and +4.1% for Early, Late, and Palm, respectively). The 442 

Early PFT has stems of all DBH classes (Figure S9 a); while Mid PFT has mostly small stems with DBH less than 5 443 

cm and a small cohort (2 individuals ha-1) of large stems with DBH around 200 cm (Figure S11 b and f), which 444 

contributes a significant portion to the total AGB (Figure S10 b). The Late PFT is the most abundant PFT (Figure S9 445 

c) and contributes the most to the total AGB in the forest (Figure S10 c). The stem density of Late decreases with 446 

DBH (Figure S9 c), and the largest-DBH cohort reaches 180 cm (Figure S11 c), which is smaller than that of Mid but 447 

has a higher density (7 individuals ha-1) (Figure S11 g). The maximum DBH is far larger than that we observed (89 448 

cm in 2017) but is possible given 100 years of growth with a 2 cm yr-1 increment in DBH (Brandeis 2009). Palm 449 

recruits with DBH between 10 and 15 cm, the DBH grows slowly after recruitment, and DBH growth stops after they 450 

reach the reproduction height (18 m, and 25 cm in DBH correspondingly) and allocate all carbon to reproduction 451 

(Sect. 2.1.2), hence palms do not exceed 25 cm DBH (Figure S11 d) and most of them are between 10 and 20 cm 452 

(Figure S9 d and Figure S10 d). This is in agreement with the maximum reported values of DBH (Lugo and Rivera 453 

Batlle 1987).  454 

Compared with the experiment without hurricane disturbance in the first simulation year (IhugoHn), the ones 455 

with hurricane disturbance in the first simulation year (IhugoH1 and ImariaH1) reach higher BA and AGB levels after 456 

60 years of succession from the hurricane disturbance (Figure 9 c and d). This is due to the carbon accumulation of 457 

large Late PFT in disturbed forests (Figure S10 g and k). Large Late trees in disturbed forest (IhugoH1 and ImariaH1) 458 

have higher growth rate and lower background mortality rate compared to those in the undisturbed forest (IhugoHn) 459 

(Figure 10) because of the decreased competition to reach the open canopy. As the disturbed forest recovers, the BA 460 

and AGB increase to the level of the undisturbed forest (Figure 9 c and d), the growth rate decreases (Figure 10 a) and 461 

the mortality rate increases to the levels of those in the undisturbed forest, especially for severely disturbed forest 462 

(IhugoH1) (Figure 10). With lower mortality and higher growth rate in the first 60 years, there will be more large Late 463 

trees in the canopy at the end of the simulation (12 individuals ha-1 vs 8 individuals ha-1) (Figure S11 g) even though 464 

the maximum DBH will be smaller (Figure S11 c).  465 

 466 

Figure 10. Times series of (a) growth rate and (b) mortality rate of Late trees with DBH ≥ 20 cm. The light-colored lines represent 467 
the yearly values, and the solid lines are ten-year moving averages. 468 

 469 
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The recovery is different with different initial states. With pre-Hugo state (IhugoH1), the forest takes 25 years 470 

to recover to the pre-disturbance BA and AGB levels (Figure 9 c and d), but with pre-Maria state (ImariaH1), it takes 471 

only 10 years to recover to the pre-disturbance BA level (Figure 9 c) and 5 years to the pre-disturbance AGB level 472 

(Figure 9 d). The succession dynamics are different, too. With pre-Hugo state, the hurricane-induced mortality is very 473 

high, and thus the canopy opens, and Early and Palm PFTs recruit greatly in the first 20 years (Figure S9 e and h), and 474 

then it is taken over by the Late PFT (Figure S9 g). With pre-Maria initial state, the hurricane-induced mortality is 475 

low, and the canopy is not significantly changed after the hurricane, and Early PFT does not recruit as much as it does 476 

in the pre-Hugo state initialized simulation (Figure S9 i and e). The PFT composition after 100 years is similar for the 477 

two simulations, but the BA and AGB is not (Figure 9). The BA and AGB with the pre-Maria initialization are higher 478 

than those with the pre-Hugo initialization throughout the 110 years of simulations, even though the initial AB and 479 

AGB levels in the pre-Maria state are lower than those in the pre-Hugo state (Figure 9 c and d). This is because of the 480 

higher mortality at the first year with pre-Hugo state, leading to a larger reduction in the density of large stems. With 481 

the succession following the disturbance, there are more large stems, especially Late and Palm, in the pre-Maria 482 

simulation than in the pre-Hugo simulation (Figure S11), contributing to the higher AGB and BA in the pre-Maria 483 

simulation (Figure S10 g, h, k, and l).  484 

4 Discussion  485 

4.1 Limitations and Advantages of GLUE 486 

GLUE samples from continuous distributions, but the sampled parameter sets are in a discrete space, therefore, the 487 

GLUE approach may not lead to the true optimum due to the finite number of samples. To justify the sample size of 488 

10,000 for 41 parameters in this study, we repeated GLUE for a larger sample size (20,000). The optimal simulation 489 

from 20,000-sample GLUE (Figure S12) is very similar to that from the 10,000-sample GLUE (Figure 3) and the 490 

optimal parameter sets from the two GLUEs are similar, suggesting that the two GLUEs found an optimum around 491 

the same local optimum and 10,000 samples are sufficient for the 41 parameters. However, given the nature of 492 

equifinality, there may be multiple parameter sets that can lead to the same observed state (Beven and Freer 2001), 493 

and thus the optimal parameter set we found from GLUE may be one of many possible solutions.  494 

Although GLUE may not guarantee the global optimum, it implicitely handles any effects of model 495 

nonlinearity, model structure errors, input data errors, and parameters covariation (Beven and Freer 2001). Moreover, 496 

GLUE allows us to optimize parameters using any variables of interests in the cost function. For example, in our study, 497 

we want to make sure the model captures the size structure and PFT composition of the forest community, and thus 498 

we utlized forest stand variables including stem density, growth rate, and BA of each PFT in the cost function. 499 

Compared to other optimizers (such as PEcAn) that calibrates parameters using plant traits observations (e.g., wood 500 

density, leaf turnover rate), GLUE’s ability of utlizing observations of forest stand variables (BA, AGB, etc.) could 501 

further reduce the uncertainty of parameters (Wang et al. 2013). Note that we did not calibrate the parameters using 502 

plant traits observations in this study, because the parameters we use are already calibrated with plant traits 503 

observations in Feng et al. (2018) and we adpoted their calibrated parameters in our study (see Sect. 2.3.1). 504 
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4.2 Uncertainty of Model Outputs from Parameters 505 

To be consistent with census observations, we included stems with DBH ≥ 2.5 cm in the analyses. The large variation 506 

of simulated stem density (Figure 7) could be due to the timing of cohorts exceeding the 2.5 cm threshold, and thus 507 

can be minimized by averaging stem density over several years (Massoud et al. 2019). LAI is generally underestimated 508 

in the vegetation dynamic models (e.g., Xu et al. 2016). As shown in Figure 6, the clumping factor is one of the most 509 

important parameters controlling LAI. However, both LAI and the clumping factor are rarely measured and LAI 510 

estimated from satellite remote sensing data often have variable quality, especially in tropical forests (Xiao et al. 2016, 511 

2017). Future census practices should include LAI and clumping factor. Even though the LAI measured from the 512 

ground may be different from the LAI measured from above the canopy (airborne lidar or satellites), ground 513 

measurements could provide useful information for both the vertical structure of the forest and the quality of satellite 514 

remote sensing and airborne lidar data. The clumping factor we calibrated for our study site is lower than that from 515 

other locations (He et al. 2012). Observations of clumping factor in our study site are needed to verify the parameter 516 

from our model calibration and improve model estimates of LAI. 517 

Out results agree with a previous study that modeled variables have different response to parameters in the 518 

short term (e.g., first simulation year) and in the long term (e.g., 25th simulation year) (Massoud et al. 2019). 519 

Furthermore, we showed that variables of a specific PFT are most sensitive to the parameters of the same PFT, but 520 

also sensitive to parameters of other PFTs. Those interactions between variables and parameters indicates the 521 

competition among PFTs. For example, Palm is sensitive to its own parameters, but also to Early SLA. This can be 522 

explained by the competition for light between Early and Palm, where a higher SLA of Early PFT leads to a higher 523 

LAI of Early allowing Early to photosynthesize more efficiently and thus be more competitive in the community. 524 

Those competitions are important for the co-existence of PFTs in model simulations and critical to the PFT 525 

composition and succession.  526 

5 Conclusion 527 

Hurricanes are a major disturbance to tropical forests, but hurricane disturbance has not been implemented in any 528 

model of vegetation dynamic. In this study, we implemented hurricane disturbance in the Ecosystem Demography 529 

model (ED2) and calibrated the model with forest stand observations of a tropical forest in Puerto Rico. The calibrated 530 

model has good representation on the recovery trajectory of PFT composition, size structure, stem density, basal area, 531 

and aboveground biomass of the forest. We used the calibrated model to study the recovery of the forest from a 532 

hurricane disturbance with different initial forest states, and found that a single hurricane disturbance changes forest 533 

structure and composition in the short term and enhances AGB and BA in the long term compared with a no-hurricane 534 

situation. Forests with wind-resistant initial state will have lower mortality, recover faster, and reach a higher BA and 535 

AGB level than forests with a less wind-resistant initial state.  536 

The model developed and results presented in this study can be utilized to understand the fate of tropical 537 

forests under a changing climate. Hurricanes are likely to become more frequent and severe in the future with global 538 

warming (IPCC 2021). With frequent hurricane disturbances in the future, forests will not have enough time to reach 539 
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a steady state, and the structure and composition will be constantly changing, which provides different initial states 540 

for future hurricane disturbances and thus different recovery trajectories. Climate change with changing temperature, 541 

precipitation, and CO2 concentration, etc. will also have an impact on the growth of individual trees and thus the 542 

structure and composition of forests (e.g., Feng et al. 2018). The ED2-HuDi model developed in this study will be a 543 

beneficial tool to understand the impact of frequent hurricane disturbances on forest recovery in the future under the 544 

changing climate. 545 

 546 

Code and data availability. The ED2-HuDi software are publicly available. The most up-to-date source code is 547 

available at https://github.com/zhjiay5/ED2. The exact version used in this paper is archived on Zenodo 548 
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