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Abstract  11 

Hurricanes commonly disturb and damage tropical forests. It is predicted that changes in climate will result in changes 12 

in hurricane frequency and intensity. Hurricane frequency and intensity are predicted to change under the changing 13 

climate. The short-term impacts of hurricane disturbances to tropical forests have been widely studied, but the long-14 

term impacts are rarely investigated. Modeling is critical to needed to investigate the potential response of forests to 15 

future disturbances, particularly if the nature of the disturbances is changing with climate. Unfortunately, existing 16 

models of forests dynamics are not presently able to account for hurricane disturbances. Therefore, Wwe implement 17 

the Hurricane Disturbance in the Ecosystem Demography model (ED2) (ED2-HuDi). The hurricane disturbance 18 

includes hurricane-induced immediate mortality and subsequent recovery modules. The parameterizations are based 19 

on observations at the Bisley Experimental Watersheds (BEW) in the Luquillo Experimental Forest in Puerto Rico. 20 

We add one new plant functional type (PFT) to the model—Palm, as palms cannot be categorized into one of the 21 

current existing PFTs and are known to be an abundant component of tropical forests worldwide. The model is 22 

calibrated with observations at BEW using the generalized likelihood uncertainty estimates (GLUE) approach. The 23 

optimal simulation obtained from GLUE has a mean relative error of -21%, -12%, and -15% for stem density, basal 24 

area, and aboveground biomass, respectively. The optimal simulation also agrees well with the observation in terms 25 

of PFT composition (+1%, -8%, -2%, and +9% differences in the percentages of Early, Mid, Late, and Palm PFTs, 26 

respectively) and size structure of the forest (+0.8% differences in the percentage of large stems). Lastly, using the 27 

optimal parameter set, we study the impact of forest initial condition on the recovery of the forest from a single 28 

hurricane disturbance. The results indicate that, compared to a no-hurricane scenario, a single hurricane disturbance 29 

has little impact on forest structure (+1% change in the percentage of large stems) and composition (< 1% change in 30 

the percentage of each of the four PFTs) but leads to 5% higher aboveground biomass after 80 years of succession. 31 

The assumption of a less severe hurricane disturbance leads to a 4% increase in aboveground biomass. 32 

1 Introduction 33 

Hurricanes are an important disturbance agent in tropical forests. They damage individual trees and reduce 34 

aboveground biomass (Zimmerman et al. 1994; Uriarte et al. 2019; Rutledge et al. 2021; Leitold et al. 2021; Zhang et 35 

al. in revision). For example, hurricane Hugo in 1989 uprooted and snapped 20% of the trees at El Verde in the 36 

Luquillo Experimental Forest (LEF), Puerto Rico (Walker 1991; Walker et al. 1992; Zimmerman et al. 1994) and 37 

reduced the aboveground biomass by 50% at Bisley in the LEF (Scatena et al. 1993; Heartsill Scalley et al. 2010). 38 

Hurricane Katrina in 2005 damaged about 320 million large trees on U.S. Gulf Coast forests, and the damaged trees 39 

are equivalent to 50-140% of the net annual U.S. carbon sink (Chambers et al. 2007). In the long term, they the 40 

recovery from those damages will alter forest species composition and structure (Royo et al. 2011; Heartsill Scalley 41 

2017; Zhang et al. in revision).  42 

Hurricane-induced mortality varies with many factors, including hurricane severity (Parker et al. 2018), 43 

environmental conditions (Uriarte et al. 2019; Hall et al. 2020), forest exposure to hurricane winds (Boose et al. 1994; 44 

Boose et al. 2004), forest structure (Zhang et al. in revision2022b), and traits and size of individual trees (Curran et 45 
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al. 2008; Lewis and Bannar-Martin 2011). Trees with a larger diameter have been found to be more resistant to wind 46 

forces but more likely to suffer broken branches (Lewis and Bannar-Martin 2011). Species with higher wood density 47 

tend to suffer less from hurricane disturbances (Zimmerman et al. 1994; Curran et al. 2008). Hurricanes with heavier 48 

rainfall and stronger wind generally lead to higher mortality (Uriarte et al. 2019; Hall et al. 2020)., and forests that are 49 

more exposed to strong winds tend to have higher mortality (Uriarte et al. 2019). However, forests with a more wind-50 

resistant structure and composition experience lower mortality even during a stronger hurricane event or a higher 51 

exposure (Zhang et al. in revision2022b).  52 

The recovery from hurricanes also depends on many factors, such as the disturbance severity (Walker 1991; 53 

Everham and Brokaw 1996; Cole et al. 2014; Heartsill Scalley 2017) and traits of individual species (Curran et al. 54 

2008; Lewis and Bannar-Martin 2011). Species with lower wood density have a faster resproutingshorter times to 55 

resprout (Paz et al. 2018), higher growth rate (King et al. 2006), and shorter biomass recovery times (Curran et al. 56 

2008). The number of resproutsing of some species further varies with time since disturbance (Brokaw 1998; Zhang 57 

et al. in revision). Less severe disturbances lead to a faster recovery and a higher recovery equilibriumof stem density 58 

and aboveground biomass compared to the level observed prior to the disturbance (Wang and Eltahir 2000; Parker et 59 

al. 2018). For example, observations on a tropical forest canopy in western Mexico after two hurricanes—category 2 60 

Jova and category 4 Patricia—showed that hurricane Jova destroyed 11% of the aboveground biomass while hurricane 61 

Patricia destroyed 23%; the recovery was more rapid after the less intense hurricane Jova (Parker et al. 2018). Wang 62 

and Eltahir (2000) provided theoretical and numerical analyses on multiple-equilibrium nature of a regional climate 63 

system. Their results showed that the recovery speed and the equilibrium state of the coupled biosphere-atmosphere 64 

system are sensitive to the initial vegetation condition impacted by disturbances.  65 

Although the immediate mortality and subsequent recovery of tropical forest from hurricane disturbances 66 

have been thoroughly studied via observations, the long-term effects of consecutive hurricane disturbances on tropical 67 

forests have rarely been studied. Models that can simulate the immediate mortality and subsequent recovery of an 68 

ecosystem can play a role in understanding potential mechanisms driving the mortality and recovery of the ecosystems 69 

and studying the long-term effects of disturbances, particularly if the nature of the disturbances is changing with 70 

climate. Uriarte et al. (2009) implemented hurricane disturbance in a forest simulator and investigated the long-term 71 

dynamics of forest composition, diversity, and structure. However, the biological and environmental processes of the 72 

forest simulator used are not dynamic and thus the model cannot simulate the adaptation of vegetation to the changes 73 

of environment (Jorgensen 2008). Vegetation dynamics models can account for changes in the ecosystem resulting 74 

from a changing environment (Medvigy et al. 2009; Longo et al. 2019b), and further allow us to explore scenarios via 75 

synthetic experiments and thus emulate what might happen in forests under novel environmental conditions. For 76 

example, Feng et al, (2018) used the Ecosystem Demography model (ED2) (Moorcroft et al. 2001) to study the impact 77 

of climate change on the forest studied in Uriarte et al. (2009).  The ED2 model is a process-based vegetation dynamics 78 

model, it represents the size and age structure of the forest, and thus the model can represent the observed differential 79 

impact from disturbances (such as fire, drought, insects, land use change, and natural disturbances) across plants of 80 

different functional groups and size classes (Medvigy et al. 2012; Zhang et al. 2015; Miller et al. 2016, Trugman et 81 
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al. 2016). However, the impacts of hurricane disturbances have not been implemented in vegetation dynamics models, 82 

and thus the long-term effects on the forest of a changing hurricane regime have not been investigated. 83 

As mortality and recovery vary with species, the species composition of the forest is affected by hurricane 84 

disturbances. In modeling studies, it is impractical to incorporate each and individual species (tens and hundreds). To 85 

address variation in species diversity, In the past decades, there has been a strong effort in the past decades to 86 

incorporate functional diversity in terrestrial biospherevegetation dynamics models (Moorcroft et al. 2001; 87 

Sakschewski et al. 2016; Fisher et al. 2018; Fisher and Koven 2020). This effort acknowledges the variability in traits 88 

and trade-offs of species that exist in tropical forests (e.g., Baraloto et al. 2010). Three plant functional types (PFT) 89 

are identified for the species in tropical forests during a secondary succession after a disturbance; they are early, mid, 90 

and late successional PFTs (hereafter Early, Mid, and Late PFTs), corresponding to the three successional stages 91 

during the secondary succession (Kammesheidt 2000). Specifically, Early PFT dominates the early successional stage 92 

of the recovery, it includes Ffast growing pioneer species that have low wood density, establish and recruit in open 93 

gaps formed after disturbances and grow rapidly in the high light environment. They dominate the early successional 94 

stage of the recovery, and thus are categorized as Early plant functional type (PFT). Mid PFT dominates the mid 95 

successional stage after a disturbance, and includes Sspecies that have intermediate growth and are somewhat shade 96 

tolerant. dominate the plant community in the mid successional stage after a disturbance, and thus are categorized as 97 

Mid PFT. Late PFT dominates the late successional stage and includes speciesSpecies that have slow growth and are 98 

shade tolerant dominate a plant community in the late successional stage after a disturbance, and thus are categorized 99 

as Late PFT. Using three PFTs is also a compromise between representing a range of life strategies while not adding 100 

too much complexity in model parameterizations (Moorcroft et al. 2001; Medlyn et al. 2005). 101 

One important and distinct species in tropical forests in the Caribbean islands is the palm species Prestoea 102 

montana (Sierra palm). Many studies in the Luquillo Mountains have either excluded palms from analysis 103 

(Zimmerman et al. 1994) or treated palms separately from other trees (Zimmerman et al. 1994; Uriarte et al. 2009), as 104 

indeed they are monocots, not dicots like the other trees in the forest. A previous study that simulates the response of 105 

the forests in the Luquillo Mountains to climate change using the ED2 model categorized the palm species as a Late 106 

PFT tree (Feng et al. 2018). However, there are important differences, The palms species is are more resistant to 107 

hurricane damage as compared to trees (Francis and Gillespie 1993; Uriarte et al. 2019) and are more resilient to 108 

hurricane disturbances due to their . Moreover, the palm species cannot be classified into one of the successional PFTs, 109 

because palms possess some early successional traits, such as low "wood" density and high fecundity under open 110 

canopy (Lugo and Rivera Batlle 1987; Lugo et al. 1998) , that allow them to recruit quickly when the canopy opens 111 

(Zhang et al. in revision); and some late successional traits, such as and have high tolerance to shade (Ma et al. 2015), 112 

that allow them to thrive when the canopy closes (Zhang et al. in revision). To account for these unique 113 

characteristicsAll those characteristics separate palms from other trees and favor the survival of palms after hurricane 114 

disturbances. We believe palms cannot be categorized into one of the existent PFT categories in the model, and hence 115 

we define a newPalm PFT—Palm.  116 

In this paper, we describe the implementation of hurricane mortality and recovery modules that account for 117 

the variation with disturbance severity, forest resistance state, PFT and diameter size of individual stems in the 118 
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Ecosystem Demography model (ED2). The model is then used to study the recovery of a tropical rainforest after 119 

hurricane disturbances. The results indicate that a scenario with a single hurricane disturbance has little long-term 120 

impact on forest structure and composition but enhances the aboveground biomass accumulation of a tropical 121 

rainforest, relative to a no hurricane disturbance scenario.  122 

2 Methods and Materials  123 

2.1 Census Observations 124 

Tree censuses were carried out at Bisley Experimental Watersheds (BEW) in the Luquillo Experimental Forest in 125 

Puerto Rico starting in 1989, three months before hurricane Hugo (pre-Hugo 1989), and repeated three months after 126 

hurricane Hugo (post-Hugo 1989), and then every five years since then (1994, 1999, 2004, 2009, 2014). The census 127 

recorded the diameter at breast height (1.3m) (DBH) and species of each stem with DBH ≥ 2.5 cm and height (H) of 128 

selected stems in 85 permanent forest dynamics plots in the forest. Each plot is a 10-meter diameter circle and plots 129 

are 40 meters apart extending 13 hectares. The last census was conducted three months after hurricane Maria and 130 

recorded auxiliary damage information of each stem. The detailed description of the study site and the census 131 

observations can be found in Zhang et al. (2022b) and the census data between 1989 and 2014 are from Zhang et al. 132 

(2022a) and the post-Maria census data are from Zhang et al. (2020). Following Zhang et al. (2022b), species are 133 

categorized into four PFTs according to their successional status based on previous studies (Walker 1991; Schowalter 134 

and Ganio 1999; Uriarte et al. 2005; Muscarella et al. 2013; Heartsill Scalley 2017; Feng et al. 2018): early, mid, late 135 

successional tropical trees, and palms (Early, Mid, Late, and Palm PFT, respectively). The stem density, DBH growth 136 

rate, and basal area are calculated from the census data for each PFT in each census. The aboveground biomass (AGB) 137 

of Early, Mid, and Late PFTs are estimated from DBH using the AGB-DBH relationship from Scatena et al. (1993); 138 

the AGB of Palm PFT is estimated from the AGB-Height relationship of P. montana from Scatena et al. (1993) and 139 

the Height-DBH relationship of Palm PFT from the census observations at our study site (Section 2.2.2). 140 

2.12.2 Model Description  141 

The Ecosystem Demography model (ED) is a cohort-based model, and it describes the growth, reproduction, and 142 

mortality of each cohort in each patch in a forest site. A cohort is a group of stems with the same PFT and similar 143 

diameter size and age. A patch is an area with the same environmental condition and disturbance history. A cohort 144 

accumulates carbon through photosynthesis, and the net accumulated carbon (i.e., gross primary productivity minus 145 

respiration and maintenance of living tissues) will be used for growth and reproduction. When a cohort is mature, 146 

reaching the maturity reproductive height (e.g., 18 m), the cohort will allocate a portion of carbon to reproduction 147 

(e.g., 30% of net carbon accumulation to seeds, flowers, and fruits), and the rest of the net accumulated carbon will 148 

be used for structural growth. Structural growth is quantified by the increase of DBH through structural biomass-DBH 149 

allometries; stem height, leaf biomass, and crown area are then scaled given the H-DBH, leaf biomass-DBH, and 150 

crown-DBH allometries. Each cohort will also experience mortality from multiple factors, including aging, 151 

competition, and disturbance, which will be described in detail in Section 2.3.2.  152 
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The model simulates transient fluxes of carbon, water, and energy during short-term physiological responses 153 

and long-term ecosystem composition and structure responses to changes in environmental conditions. The second 154 

version of the ED model, ED2, modifies the calculations of radiation and evapotranspiration of the original ED model, 155 

leading to a more realistic long-term response of ecosystem composition and structure to atmospheric forcing 156 

(Medvigy et al. 2009; Longo et al. 2019b). Details of the ED and ED2 models can be found in Moorcroft et al. (2001), 157 

Medvigy et al. (2009), and Longo et al. (2019a). Here we add a new PFT (Palm) and implement hurricane disturbance 158 

in the ED2 model, and we name it ED2-HuDi V1.0.  159 

2.1.12.2.1 Adding Palm as a New PFT 160 

The standard ED2 model represents a variety of broadleaf trees, needleleaf trees, grasses and lianas (Albani et al. 161 

2006; Medvidy et al. 2009; Longo et al. 2019a; di Porcia e Brugnera et al. 2019). Yet, to date, none of the existing 162 

PFTs describe the traits of palms, even though palms are a globally abundant component of tropical forests (Muscarella 163 

et al. 2020). Since there is little knowledge about the traits of Palm. We do know that palms have low “wood density” 164 

of ~0.25 g cm-3 (Zanne et al. 2009; Chave et al. 2009) and the palm species that occurs at our study site (Prestoea 165 

montana) has a low wood density of 0.31 g cm-3 (Swenson and Umana 2015) and it grows fast in open canopies like 166 

early successional tropical trees (Lugo and Rivera Batlle 1987; Lugo et al. 1998) and are tolerant to shade like late 167 

successional tropical trees (Ma et al. 2015Zhang et al. in revision). Hence, we assume that the physiological traits of 168 

Palm have the same probability distributions as those of late tropical treesLate PFT except for wood density which is 169 

assumed the same as that of early tropical treesEarly PFT. The allometries of Palm are discussed separately in the next 170 

section.  171 

2.1.22.2.2 Modifying the Allometric Relationship 172 

The H-DBH allometric relationships between stem height (H; m) and diameter at breast height (DBH; cm) for four 173 

tropical PFTs (Early, Mid, Late, and Palm) come from census data at Bisley Experimental Watersheds (BEW) in the 174 

Luquillo Experimental Forest in Puerto Rico (Zhang et al. 2022a). The relationships take the form,  175 

𝐻 = 𝑎 𝐷𝐵𝐻𝑏  , (1) 

where a and b are PFT-specific scale and shape parameters (Zhang et al. in revisionFigure 1). The diameter range for 176 

the Palm PFT is between 10 and 20 cm while that for the tree PFTs is between 2.5 and 90 cm. The scale parameter a 177 

is 1.6388, 2.2054, 2.3833, and 0.1628 for Early, Mid, Late, and Palm PFT, respectively. The shape parameter b for 178 

the four PFTs are is 0.80, 0.64, 0.59, and 1.47 for the four PFTs (Table S1). Palm has a smaller scale parameter and a 179 

significantly larger shape parameter, demonstrating that palms are shorter than other PFTs given the same DBH. The 180 

constrained diameter range and the H-DBH allometry of Palm makes it difficult for palms to access sunlight and 181 

would normally prevent them from establishing in the ED2 model. A previous study implementing liana to the ED2 182 

model also experienced similar issues (di Porcia e Brugnera et al. 2019). They then were to use used an allometry for 183 

liana with DBH between 3 and 20 cm and then for lianas with DBH less than 3 cm, they used the allometry of early 184 

successional trees for lianas with DBH less than 3 cm (di Porcia e Brugnera et al. 2019). Following a similar approach 185 

and to make sure Palm has reasonable opportunity to compete with a reasonable diameter range, we assume that the 186 
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minimum height of Palm in the model is 4.8 m (corresponding to 10 cm DBH of Palm; other PFTs have a minimum 187 

height of 1.5 m for recruitment), and when Palm grows to a height of 18 m (corresponding to 20 cm DBH)—maximum 188 

height observed for the Palm in the forest (Figure 1)—, they will allocate all the carbon to reproduction instead of 189 

growth (relative allocation to reproduction is 1 for Palm, and 0.3 for other PFTs) (Table S1).  190 

For other allometric relationships, such as leaf biomass-DBH, structural biomass-DBH, and crown area-DBH 191 

relationships, we used the model default for Early, Mid, and Late PFTs, and assumed that Palm has the same 192 

relationships as Early (Figure S1).  193 

   194 

Figure 1. The height-diameter (DBH) relationship for the four PFTs: (a) Early, (b) Mid, (c) Late, and (d) Palm. The gray dots are 195 
observations with outliers removed (Supplementary Information S1) and the blue lines are the estimated height-DBH relationship 196 
based on these observations. The height-DBH model and the corresponding coefficient of determination (R2) and p-value for each 197 
PFT are given at the bottom of each panel. 198 

 199 

2.1.32.2.3 Implementing Hurricane Disturbance 200 

The ED2 model accounts for several types of disturbances, such as fires, land use, logging (Albani et al. 2006; Longo 201 

et al. 2019a), but not hurricane disturbance. To account for hurricane impacts, we implement a hurricane-induced 202 

wind mortality module and a seedling recovery module in the model. The wind mortality module consists of two 203 

parts—the disturbance rate of the forest area (λd) and the survivorship of each cohort (sc) in the disturbed areas. For 204 

any patch with pre-disturbance area A, the area that is affected by disturbance (Ad) is proportional to λd, following 205 

Moorcroft et al. (2001): Ad = A [1 −exp(−λd∆t)].  The disturbed area (Ad) will be disturbed and become a new patch 206 

(age 0), and the population within the new patch will be determined by the survivorship to disturbance. The remaining 207 

area (A−Ad) will remain undisturbed, and the stem density will remain unchanged. The disturbance rate (λd) is the ratio 208 

of the area disturbed to the total area of the forest and it is a constant across patches. The survivorship of each cohort 209 

(sc) is the ratio of the cohort density that survived after the disturbance to the cohort density before the disturbance, 210 

and it is cohort dependent. The cohorts that survived in disturbed areas will make up a the new patch with area equal 211 

to the disturbed area(age 0). In this study, we assume that the forest is fully disturbed and 𝜆𝑑 = 1. The survivorship 212 
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of each cohort sc is calculated as sc = 1 - λc, where λc is the mortality of each cohort. Based on previous analyses, λc 213 

varies with hurricane strength, forest structure, the PFT category and the DBH size of the cohort (Zhang et al. in 214 

revision2022b). First, we implement a binary model for the mortality with respect to hurricane wind, where mortality 215 

occurs when hurricane wind exceeds a threshold and no mortality otherwise. This binary model is built on the binary 216 

relationship between hurricane-induced forest damage and hurricane wind speed from nine hurricane events at BEW 217 

between 1989 and 2017 (Supplementary Information S1S2, S2S3, and S3S4). The wind speed threshold was set at 41 218 

m s-1 because the strongest hurricane wind that caused no damage to the forest at BEW was 40 m s-1 from hurricane 219 

Georges in 1998 and the lowest wind speed that caused damage to the forest was 42 m s-1 from hurricane Maria in 220 

2017 (Supplementary Information S1S2, S2S3, and S3S4). Given If mortality occurs (i.e., wind speed exceeds the 221 

threshold), the mortality rate of each cohort (λc) is a continuous function of the size structure of the forest, represented 222 

by the proportion of large stems (DBH ≥ 10 cm) to the total recruited stems (DBH ≥ 2.5 cm). Figure 1 2 shows the 223 

mortality of each PFT and DBH class during two hurricane events (Hugo and Maria) based on census observations at 224 

BEW (see Section 2.1. 2.2). We fit a logistic function to the mortality-structure pair of each PFT and DBH class based 225 

on the observed pairs of mortality and structure from the two hurricane events.  226 

 227 

Figure 21. The mortality for each PFT and DBH class. The mortality as a function of the size structure of the forest for each PFT 228 
and DBH class. The size structure is represented as the proportion of large stems (DBH ≥ 10 cm) to the total number of stems in 229 
the forest (DBH ≥ 2.5 cm). The dots represent observed mortality and proportion of large stems pairs from hurricane Hugo and 230 
hurricane Maria (Zhang et al. in revision2022b). Four colors represent four PFTs. The solid lines represent the estimated mortality 231 
as a logistic function of the proportion of large stems. The panel on the left is for small stems and that on the right is for large stems. 232 

 233 

Hurricanes not only cause immediate stem mortality, but also affect the establishment of seedlings by opening 234 

the canopy (Everham 1996; Brokaw 1998; Uriarte et al. 2009; Uriarte et al. 2012). Brokaw (1998) pointed out that 235 

hurricanes promote germination and seedling establishment of the early successional species C. schreberiana, and 236 

that the seedling establishment ends shortly after the disturbance as the canopy closes. The census data at BEW also 237 

show abundant recruitments of the Early PFT in the first 20 years after hurricane Hugo and decreasing recruitment 238 

with time (Zhang et al. in revision2022a). Therefore, based on the recruitment of Early PFT from the census data 239 

(Zhang et al. 2022a), we implement a recovery module where the seedling density from seed rain (ns; individuals m−2 240 

yr−1) decreases with time since the last disturbance, and the reduction varies with PFT categories as: 241 

𝑛𝑠 = 𝑛0 exp(−𝛼𝑡) , (2) 

where ns is the seedling density t years after last hurricane disturbance, n0 and α are PFT-dependent parameters. 242 

Specifically, Mid, Late, and Palm PFTs maintain a low but constant seedling density (n0 = 0.05 individuals m−2 yr−1 243 
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and α = 0 yr−1). The Early PFT has high seedling density (n0 = 0.2 individuals m−2 yr−1) shortly after a hurricane 244 

disturbance and the seedling rate decreases to the same value as other PFTs about 20 years after the disturbance (α = 245 

0.06 yr−1), and it continues to decrease thereafter (Figure 23).  246 

 247 

Figure 32. The seedling density for each PFT after a disturbance.  248 

 249 

2.2 Census Observations 250 

Tree censuses were carried out in BEW in the Luquillo Experimental Forest in Puerto Rico starting in 1989, three 251 

months before hurricane Hugo (pre-Hugo 1989), and repeated three months after hurricane Hugo (post-Hugo 1989), 252 

and then every five years since then (1994, 1999, 2004, 2009, 2014). The census recorded the diameter at breast height 253 

(DBH) and species of each stem with DBH ≥ 2.5 cm in 85 dynamics plots in the forest. The last census was conducted 254 

three months after hurricane Maria, and recorded auxiliary damage information of each stem. The detailed description 255 

of the study site and the census observations can be found in Zhang et al. (in review) and the census data between 256 

1989 and 2014 are from Zhang et al. (in review) and the post-Maria census data are from (Zhang et al. 2020). Species 257 

are categorized into four PFTs: early, mid, late successional tropical trees, and palms (Early, Mid, Late, and Palm 258 

PFT, respectively) following Zhang et al. (in review). The stem density, DBH growth rate, and basal area are calculated 259 

from the census data for each PFT in each census, and the aboveground biomass is estimated from DBH using the 260 

allometric relationship from Scatena et al. (1993). The census observations will be used for initializating, calibrating, 261 

and validating model simulations. 262 

2.3 Model Calibration and Validation 263 

2.3.1 The GLUE approach 264 

The concept of Generalized Likelihood Uncertainty Estimates (GLUE) (Binley and Beven 1991; Beven and Binley 265 

1992; Mirzaei et al. 2015) has been widely used to calibrate parameters in complex hydrological models. The steps of 266 

GLUE include 1) generating a number of samples of the parameter set from a prior distribution of the parameters, 2) 267 

running the simulation for each parameter set, 3) choosing a likelihood function (or weight function) to calculate the 268 

weight of each simulation based on observations and the estimated outputs from the model simulation, and 4) selecting 269 
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the optimal parameter set and estimating the posterior distribution of the parameters and the posterior distribution of 270 

the output variables. Here we use GLUE, for the first time, to calibrate the parameters in the ED2 model.  271 

To obtain the prior distribution of parameters, we build on a previous parameter sensitivity analysis using the 272 

ED2 model for a nearby forest in Puerto Rico by Feng et al. (2018). They demonstrated that model simulations are 273 

sensitive to ten parameters, listed in Table 1, and provided the posterior mean and 95% confidence limits of the 274 

parameters calibrated from plant traits observations using the Predictive Ecosystem Analyzer (PEcAn; LeBauer et al. 275 

2013). We select the same parameters and use the posterior distribution of those parameters from Feng et al. (2018) 276 

as the prior distribution for the GLUE in our study. We cannot just use their parameter distributions as final results 277 

because our implementation has a site-specific set of allometric equations, explicitly represents palms as a separate 278 

PFT and considers hurricane disturbances (Sect. 2.1Section 2.2). Feng et al. (2018) reported only the mean and the 279 

upper and lower 95% confidence limits of the parameters (not the entire distribution), we assume that the parameters 280 

have lognormal distributions. For the Palm PFT, we assume that it has the same distributions as Late, except that the 281 

woody tissue density of Palm has the same distribution as that of Early. The dark respiration factor from Feng et al. 282 

(2018) has a too wide range (Wang et al. 2013), and thus From a different study system, Wang et al. (2013) constrained 283 

the dark respiration factor from 0.01–0.03 to 0.01–0.016 by assimilating observations of model output variables. 284 

Following Wang et al. (2013), we restrict the dark respiration factorit to a smaller range with a uniform distribution 285 

between 0.005 and 0.0175 for each PFT. Consistent with Meunier et al. (in revision2022), we found that model results 286 

are also sensitive to the parameter clumping factor (Figure S2). Therefore, we add the parameter of clumping to the 287 

set being calibrated. Clumping factor is the ratio of effective LAI to the total LAIdefined as the projected area of 288 

leaves per unit ground area and affects the transmission of radiation (Chen and Black 1992); it ranges from zero to 289 

one with zero representing leaves clumped in a single point (0-area) and one representing leaves uniformly distributed 290 

in the unit area. Because of tree crowns, branches, and subbranches, leaves of plant canopy are not uniformly 291 

distributed per unit area nor clumped at a single point. We assume that the clumping factor is the same for all PFTs 292 

and the distribution of the clumping factor is uniform between 0.2 and 0.8.  293 

We sample 10,000 realizations for the 41 parameters (10 parameters for each of the four PFTs and the one 294 

clumping parameter for all PFTs) using the Latin Hypercube Sampling method embedded in MATLAB (Stein 1987). 295 

We initialize the model with the pre-Hugo 1989 observations and run the model for 29 years, corresponding to 1989–296 

2018. The first 25 years (1989–2014) are used to calibrate the model with observations and the last four years (2015–297 

2018) for validation. We tested different calibration lengths (1989–1999, 1989–2004, and 1989-2009). 1989–2009 298 

calibration period gives the same optimal simulation as 1989–2014 calibration period (Figure 4), but shorter 299 

calibration lengths 1989–1999 (Figure S3) and 1989–2004 (Figure S4) throw away critical recovery information and 300 

cannot give robust simulation in the validation period. We calculate the mean squared errors (MSE) of each realization 301 

(j, j=1, 2, …, 10,000) for the calibration period,  302 

𝑀𝑆𝐸𝑗 =
1

𝑛𝑚
∑ ∑ (

𝑋𝑖,𝑡,𝑗 − 𝑌𝑖,𝑡

1
𝑚

∑ 𝑌𝑖,𝑡
𝑚
𝑡=1

)

2

𝑛

𝑖=1

𝑚

𝑡=1
 , 

(3) 

where Xi,t,j represents the jth model simulations for variable i at time t, and Yi,t represents observations for variable i at 303 

time t. The variables used to calculate MSE are stem density (individuals m−2), average DBH growth rate (cm (5 304 
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yrs)−1), and basal area (BA) (cm2 m−2) for the four PFTs (n=12) (Figure 34). Times are the six census years (m=6) 305 

with observations before hurricane Maria: post-Hugo 1989, 1994, 1999, 2004, 2009, 2014. Because BA is directly 306 

calculated from the DBH of each cohort and weighted by the stem density of the cohort, the size structure (distribution 307 

of stem DBHs) of the forest is implicitly represented with the variables overall stem density and total BA. Moreover, 308 

the PFT composition is explicitly represented with the PFT-specific variables. Therefore, the MSE metric implicitly 309 

measures the performance of a realization in describing the observed time series of the forest’s size structure and PFT 310 

composition.  311 

We select the simulation with the smallest MSE as the optimal simulation and the corresponding parameter 312 

set as the optimal parameter set. To obtain the posterior distribution of parameters, we first calculate the weight 313 

(likelihood) of each realization following Binley and Beven (1991),  314 

𝑤𝑗 = 𝑀𝑆𝐸𝑗
−𝐾  , (4) 

which is then rescaled to sum to one (𝑤𝑗/ ∑ 𝑤𝑗
𝑁
𝑗=1 ), where K is the parameter that controls the weight of each 315 

realization. When K = 0, every simulation will have equal weights and when K = ∞, the single best simulation will 316 

have a rescaled weight of 1 while all others being zero. We select K such that the weighted standard deviations from 317 

simulations are within and overlap as much as possible with the standard deviations of observations, indicating that 318 

the parameters in those weighted simulations are reasonable given the uncertainty of the observations (Freer et al. 319 

1996). The weighted standard deviation of variable X is calculated as  320 

𝜎𝑋 = √∑ 𝑤𝑗(𝑋𝑗 − 𝑚𝑋)
2𝑁

𝑗=1
 , 

(5) 

where 𝑚𝑋 = ∑ 𝑤𝑗𝑋𝑗
𝑁
𝑗=1  is the weighted mean of the simulated variable. We find that K=8 has the best performance 321 

on the posterior estimates of output variables stem density, aboveground biomass, basal area, proportion of each PFT, 322 

and proportion of large stems (Figure 34, Figure S3S5, and Figure S4S6). Lastly, the posterior empirical cumulative 323 

distribution function (CDF) of the parameters is obtained as 324 

𝐹(𝑃 ≤ 𝑝) = ∑ 𝑤𝑗
𝑗:𝑃𝑗≤𝑝

 . (6) 

The posterior empirical CDFs are then fit to lognormal distributions.  325 

2.3.2 Non-Hurricane Mortality  326 

The non-hurricane mortality of palm Palm is not well represented in the model (Figure S5S7), as initially calibrated. 327 

The observed non-hurricane mortality is an overall mortality regardless of the cause of the death and is calculated 328 

from non-hurricane censuses,; whereas the non-hurricane mortality in model simulations includes aging mortality, 329 

competition mortality, and disturbance mortality. We turned off all disturbances except for hurricane disturbance and 330 

treefall disturbance. The disturbance mortality includes the background exogenous mortality rate (0.014 year-1 for 331 

small stems), and treefall disturbance rate (0.0126 year-1for small stems and 0.014 year-1 for large stems). Background 332 

mortality rate is 0.014 yr-1 for small trees and zero for large stems because, following Moorcroft et al. (2001), this 333 

mortality is accounted for in the treefall disturbance rate (i.e., the background mortality of large trees is what causes 334 

the treefall disturbance). The treefall disturbance rate mortality is a combination of the area impacted by treefall 335 
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disturbance and the survivorship of this disturbance. By default, in ED2, it is assumed that the treefall disturbance rate 336 

is 0.014 yr-1, survivorship to treefall disturbance is zero for large trees and 10% for small trees, and thus overall treefall 337 

mortality is 0.014 yr-1 for large trees and 0.0126 yr-1 for small trees. Competition mortality is related to carbon 338 

starvation (i.e., negative net carbon accumulation) the negative carbon balance due to light and water limitation and 339 

varies with cohorts. Aging mortality is the reciprocal of the longevity of the cohort without any biotic and abiotic 340 

influences, and it is modeled as a constant for each PFT depending on the wood density of the PFT (ρPFT) relative to 341 

the wood density of the Late PFT (ρLate): 0.15 × (1 – ρPFT/ρLATE) (Moorcroft et al. 2001). Since Palm has a much lower 342 

“wood” density (~0.25 0.31 g cm-3; Swenson and Umana 2015) than the Late PFT (model default 0.9 g cm-3), the 343 

aging mortality of Palm is ~0.1 year-1yr-1, or the longevity of palms would be equivalent to ~10 years. However, this 344 

is in contrast to the average age of the palm species in the Luquillo Experimental Forest, which was found to be 61.1 345 

years and the oldest palms were more than 100 years old in 1982 (Lugo and Rivera Batlle 1987). This suggests that 346 

the aging mortality of Palm calculated from its woody tissue density is a drastic overestimation. Therefore, we assume 347 

that the aging mortality of Palm is independent of its woody tissue density and is 0 year-1yr-1, same as that of Late. 348 

With a lower mortality (decreasing aging mortality from ~0.1 to 0), the density of Palm increases 349 

continuously in the forest because of continuously recruiting seedlings, while the density of other PFTs and the AGB 350 

of all PFTs are less affected (Figure S6S8). A previous study showed that hurricane disturbance can result in an 351 

increase in seed production in the palm species (Gregory and Sabat 1996). Therefore, we calibrate the seedling 352 

recovery module of Palm that we implemented in Section 2.2.3. 2.1.3. Specifically, we test several recovery seedling 353 

densities (Eq. (2)) for Palm, assuming that the seedling density of Palm is similar to that of Early—decreasing with 354 

time since disturbance—but with different starting seedling level (n0) and decaying factor (α). We tested 36 355 

combinations of n0 varying from 0 to 0.05 individuals m-2 yr-1 with interval 0.01 individuals m-2 yr-1 and α varying 356 

from 0 to 0.05 yr-1 with interval 0.01 yr-1. We found that five of them lead to a smaller MSE (Eq. (3)) than the GLUE 357 

optimal simulation (0.1678, 0.1662, 0.1642, 0.1646, and 0.1691 for the five experiments and 0.1803 for the GLUE 358 

optimal), and the five combinations have the same starting seedling density (n0=0.02 individuals m-2 yr-1) but different 359 

values of the decaying factor (α=0.01, 0.02, 0.03, 0.04, and 0.05 yr-1, respectively) (Figure S7S9). To choose from the 360 

five decaying values, we compared the recovery density schemes with the observed recruitment of Palms.  (stems 361 

entering the census with DBH ≥ 2.5 cm and H ≥ 1.5 m each year). As we do not have seedlings but only recruited 362 

stems in our census data, we assumed that seedling density has the same response (varying with time since disturbance) 363 

as recruitment, but not necessarily the same magnitude (density) as recruitment. Based on the census data, Tthere were 364 

37, 64, 50, 34, and 32 palms recruited in the 85 plots (78.5 m2 each plot) in 1994, 1999, 2004, 2009, and 2014 censuses, 365 

respectively, which corresponds to 0.0011, 0.0019, 0.0015, 0.0010, and 0.0010 individuals m-2 yr-1 after 5, 10, 15, 20, 366 

and 25 years of the Hugo disturbance. In other words, the recruitment decreases to half of the starting level in 20–25 367 

years, or a decaying factor α≈0.03 yr-1. We assume that the seedling density has the same decaying rate as the 368 

recruitment density and thus we select the seedling density scheme n0=0.02 individuals m-2 yr-1 and α=0.03 yr-1 as the 369 

seedling recovery scheme for Palm.  370 

After changing the aging mortality of Palm to zero and the seedling density to a lower and slowly decreasing 371 

value, we did not repeat the GLUE. This is because Palm has constrained DBH size (between 10 and 25 cm) and 372 
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decreasing the aging mortality increases its density while decreasing seedling reproduction decreases its density, 373 

which maintains the overall density of Palm, without affecting other variables of Palm nor variables of other PFTs 374 

(Figure S7S9). Therefore, we use the parameter set found from the GLUE (Table 1) but with 0-aging mortality and a 375 

lower seedling density recovery (n0=0.02 individuals m-2 yr-1 and α=0.03 yr-1) for simulations in the following studies. 376 

2.4 Parameter Sensitivity Analyses and Variance Decomposition 377 

Using a similar approach to PEcAn (LeBauer et al. 2013), we analyze the sensitivity of model simulations to the 378 

parameters and the contribution of the parameters to the variances. Specifically, we set up nine experiments for each 379 

of the 41 parameters, corresponding to the nine quantiles (10th, 20th, …, 90th) of the posterior distribution of each 380 

parameter, while all other parameters remain constant at their optimal. For the total 369 sensitivity experiments, we 381 

initialize the model with the pre-Hugo observation and run each experiment for 25 years (1989–2014).  382 

To study the stability of the optimal parameter set, we calculate the MSE of each experiment and compare it 383 

with the MSE of the optimal. To quantitatively study the sensitivity of output variables to the parameters, we calculate 384 

the standardized cubic regression coefficient (β),  385 

𝛽 =
𝜕�̃�(𝑝𝑜)

𝜕𝑝𝑜

𝑥𝑜

𝑝𝑜

⁄  , 
(7) 

where p and x are a specific parameter and the corresponding output variable. x̃ is the cubic regression function of x 386 

on p: �̃� = 𝑎𝑝3 + 𝑏𝑝2 + 𝑐𝑝 + 𝑑, estimated from the pairs of parameter p and variable x along the nine quantiles of the 387 

posterior distribution of parameter p. 
𝜕𝑥(𝑝𝑜)

𝜕𝑝𝑜
 is the partial derivative of x̃ on p at po, where po and xo are the optimal 388 

value of the parameter and the corresponding output variable. Only when the R2 metrics of the regression function is 389 

significant at 99% confidence level via student-t test is β calculated. We calculate β for 20 variables [stem density, 390 

BA, AGB, and leaf area index (LAI) of each PFT and of all PFTs] and for the 41 parameters. The β for the variables 391 

at the first and the 25th simulation years are selected to represent the short-term and long-term response of modeled 392 

variables to the parameters, respectively.  393 

To quantitatively study the uncertainty of the simulated variables (stem density, AGB, BA, LAI, etc.) from 394 

the uncertainties of the parameters, we calculate the coefficient of variation (θ) for each variable resulting from 395 

experiments with different parameters:  396 

𝜃 =
𝜎

𝜇
 , (8) 

where σ and μ are the standard deviation and the mean value of the variable from the nine experiments of the parameter. 397 

To study the contribution of each parameter to the uncertainties of the simulated variables, we calculate the total 398 

variance from all the sensitivity experiments (VarT) and the variance from experiments of each parameter (Varp), and 399 

decompose the total variance as follows,  400 

𝑉𝑎𝑟𝑇 = ∑ 𝑉𝑎𝑟𝑝

𝑁𝑝

𝑝=1
+ 𝜔 , 

(9) 

where Varp is the variance of the model outputs from experiments with different values of parameter p, and Np is the 401 

total number of parameters (Np=41), ω represents the variance from the interaction among parameters.  402 
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2.5 Experiments with Different Initial Conditions 403 

To study the impact of the initial condition of the forest on the recovery, we set up two experiments with different 404 

initial forest states (pre-Hugo state and pre-Maria state) with a hurricane disturbance in the first simulation year 405 

(experiment IhugoH1 and experiment ImariaH1, hereafter), and one control experiment with pre-Hugo state and no 406 

hurricane disturbance in all simulation years (experiment IhugoHn, hereafter). The three experiments run for 112 407 

simulation years (corresponding to years 1989–2100). The meteorological drivers between 1989 and 2017 are 408 

observations from meteorological towers at BEW, and the meteorological drivers between 2018 to 2100 are randomly 409 

sampled from the observations between 1989 and 2017. Hurricane disturbance is turned off in all simulation years for 410 

experiment IhugoHn and in all but the first simulation year for experiments IhugoH1 and ImariaH1. Thus, experiment 411 

IhugoHn represents the succession of the forest without hurricane disturbances for more than a century. Experiments 412 

IhugoH1 and ImariaH1 represent the recovery of the forest from a hurricane disturbance given different initial 413 

conditions of the forest.  414 

3 Results  415 

3.1 Model Assessment 416 

3.1.1 Optimal Simulation and Optimal Parameter Set  417 

Figure 3 4 shows the optimal model simulation along with census observations for years 1989–2018. The simulated 418 

stem density of Early increased from 0.0027 individuals m-2 in 1990 to 0.0324 in 1994 (1100% increase) and to 0.0748 419 

in 1999 (131% increase) and decreased steadily thereafter, consistent with observations (0.0030 individuals m-2 in 420 

post-Hugo 1989, 1673% increase in 1994 and 84% increase in 1999). The simulated stem density of Mid is overall 421 

underestimated by 47% compared to the mean from the 85 plots of observations, but is within one standard deviation 422 

of the observations. The simulated stem density of Late and Palm are also within one standard deviation of the 423 

consistent with observations although the mode predictions suggest with 25% underestimation and 38% 424 

overestimation, respectively. The optimal simulation overestimates the growth rate of the Early PFT by 133% for 425 

years between 2000 and 2014, but it generally captures the decrease of growth rate with time since the hurricane 426 

disturbance for all PFTs. Furthermore, the optimal simulation agrees well with the observations for the overall stem 427 

density (-21% relative bias), basal area (-12% relative bias), and aboveground biomass (-15% relative bias), and 428 

captures well the PFT composition (+1%, -8%, -2%, and +9% differences in the percentages of Early, Mid, Late, and 429 

Palm PFTs, respectively) and size structure (+0.8% differences in the percentage of large stems) (Figure 45). 430 
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 431 

 432 

Figure 43. Time series of variables from observation (dots and error bars) and the optimal simulation (red lines). (a)-(d) stem 433 
density of all trees (n; DBH ≥ 2.5 cm) (individuals m-2) for Early, Mid, Late, and Palm PFTs, respectively. (e)-(h) diameter growth 434 
rate (GR; cm (5yrs)-1) for the four PFTs; (i-l) basal area (BA; cm2 m-2) for the four PFTs. The dots and the error bars represent the 435 
means and the one standard deviations from the means across the 85 plots. Period between 1989–2014 is for model calibration and 436 
period between 2015–2018 is for model validation (shaded). 437 

 438 
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 439 

Figure 54. The standard deviation of the estimated variables with K=8 in equation (4), along with the optimal simulation and 440 
observation. The figure shows (a) stem density of all stems with DBH ≥ 2.5 cm (individuals m-2), (b) stem density proportion of 441 
large stems with DBH ≥ 10 cm, (c) basal area (BA; cm2 m-2), (d) aboveground biomass (AGB; kgC m-2), and stem density 442 
proportion of (e) Early, (f) Mid, (g) Late, and (h) Palm PFTs.  443 

 444 

In the verification period between 2015–2018, the simulated overall stem density, basal area, and 445 

aboveground biomass have a relative bias of +24%, +23%, and +17%, respectively, compatedcompared to the mean 446 

of the observations. The simulated percentages of the four PFTs have a difference of +3%, -7%, -4%, and 8%, 447 

respectively; and the simulated large stem percentage has a difference of +0.3% compared to the mean of the 448 

observations. Overall, the simulated variables between 2015–2018 are within the standard deviations of the 449 

observations (Figure 3 4 and Figure 45), suggesting that the parameters found using the data between 1989–2014 are 450 

valid for the 2015–2018.  451 

Table 1 shows the optimal set of the parameter values. The clumping factor (0.34) is lower than that from 452 

other studies in different locations (~0.7; He et al. 2012). Other parameters are reasonable and are consistent with 453 

reported values. For example, the leaf turnover rate of Late (0.16 year-1yr-1) is consistent with a previous study (~0.1; 454 

Gill and Jackson 2000). The leaf turnover rate of Palm (0.42 year-1yr-1) is consistent with previous observations of 455 

0.36 year-1yr-1 at BEW (Lugo et al. 1998). The woody tissue density of Palm (0.24 g cm-3) is consistent with previous 456 

observations of 0.31 g cm-3 (Swenson and Umana 2015). 0.25 g cm-3 for the palm species Prestoea decurrens (Zanne 457 

et al. 2009; Chave et al. 2009) that is the same genus as the palm species at our study site.  458 

 459 

Table 1. The optimal parameter set obtained from the GLUE method. 460 

Parameter Name Units Early Mid Late Palm 

clumping factor (Clf) proportion 0.34    

fine root allocation (FRA) ratio 0.64 1.2 0.95 1.85 

leaf turnover rate (LTR) year-1yr-1 1 0.83 0.16 0.42 



17 

 

leaf width (LWd) m 0.1 0.07 0.16 0.13 

quantum efficiency (Qef) molCO2 mol-1
photon 0.055 0.069 0.038 0.05 

dark respiration rate (Rdf) proportion 0.0071 0.0144 0.0143 0.0088 

growth respiration rate (Rgf) ratio 0.44 0.595 0.421 0.401 

specific leaf area (SLA) m2kg-1 23.26 22.28 13.19 14.15 

stomatal slope (SSp) ratio 6.17 8.02 5.35 5.07 

carboxylation rate (Vm0) μmolCO2 m-2s-1 23.32 21.73 9.29 12.24 

wood density (WDe) 103 kgm-3 0.32 0.6 0.77 0.24 

 461 

3.1.2 Posterior Distribution of Parameters  462 

Figure 5 6 shows the posterior and prior probability distribution functions (PDFs) of the parameters. The most 463 

significant differences between the posterior and the prior distributions are for the parameters of clumping factor (Clf) 464 

and dark respiration rate (Rdf). The posterior PDFs of some parameters (i.e., carboxylation rate, specific leaf area, leaf 465 

width, stomatal slope, and wood density), which are well constrained by observational trait data (Feng et al. 2018), do 466 

not change much from the priors (the maximum difference between the prior and posterior CDFs is generally less than 467 

0.1) because the prior distributions of those parameters are well constrained by observational trait data (Feng et al. 468 

2018). The posterior PDFs of other parameters (e.g., leaf turnover rate, quantum efficiency, and fine root allocation), 469 

especially for the Early and Mid PFTs, with few observational trait data (Feng et al. 2018), changed greatly from the 470 

prior distributions (the maximum difference between the distributions is around 0.3).  471 
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 472 

Figure 65. The prior (solid line) and posterior (dashed line) probability density functions for the four PFTs (colors) of the 11 473 
parameters. The first ten parameters are PFT-dependent, and the last one leaf clumping factor (Clf) is PFT-independent. Palm has 474 
the same prior distribution as Late for all parameters except that the wood density (WDe) of Palm has the same prior distribution 475 
as that of Early. The long name of each parameter is shown in Table 1.  476 

 477 

3.1.3 Parameter Sensitivity and Uncertainty 478 

Among the 369 sensitivity experiments with different parameter values, 57 of them have slightly smaller MSEs than 479 

the optimal, but the simulated variables (stem density, AGB, PFT composition, and size structure) from those 480 

experiments are very close to those from the optimal (Figure S8S10), indicating that the optimal simulation we found 481 

from GLUE is stable given the uncertainties of the parameters.  482 

In terms of the sensivitiy sensitivity of simulated variables on the parameters, the magnitude of standardized 483 

cubic regression coefficients (β) areis generally low (~0.2) in the first simulation year (Figure 6 7 a), indicating that 484 

the parameters do not have a strong effect on the variables. LAI is the most sensitive variable in the short term, and it 485 

is sensitive to both the specific leaf area (SLA) of its own PFT and the clumping factor (Clf). Furthermore, each PFT 486 
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is mainly sensitive to the parameters of its own PFT, and vice versa (Figure 6 7 a). After 25 years of simulation, the 487 

sensitivity of the variables on the parameters becomes more complex (Figure 6 7 b). First, the magnitude of β increases 488 

significantly, indicating that the parameters show stronger impacts on the variables in the long term. Second, the 489 

variables are sensitive to different parameters in the short term and in the long term. For example, SLA and clumping 490 

factor are the most important parameters to LAI in the first simulation year, but not after 25 years of simulation. 491 

Instead, quantum efficiency (Qef) and dark respiration (Rdf) are the most important parameters to LAI after 25 years 492 

of simulation. Third, besides the sensitivity of variables to the parameters of their own PFT, variables of a specific 493 

PFT also show sensitivity to the parameters of other PFTs. For example, the variables of Early and Mid PFTs are not 494 

only sensitive to Early and Mid PFTs parameters, but also sensitive to Late PFT parameters. Specifically, the quantum 495 

efficiency, wood density, and specific leaf area have significant positive effects on the variables of its own PFT, but 496 

significant negative effects on other PFTs. The Palm PFT is sensitive to its own parameters, but also to the specific 497 

leaf area of the Early PFT (Figure 6 7 b).  498 
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Figure 76. The standardized cubic regression coefficient (β) of variables at (a) first and (b) 25th year of the simulations regarding 501 
to the parameters. The variables include stem density (nplant), basal area (BA), aboveground biomass (AGB), and leaf area index 502 
(LAI) for each PFT. The parameters include 10 PFT-dependent parameters and one PFT-indipendent independent parameter listed 503 
in Table 1.  504 

 505 

The stem density has a larger variation than LAI, BA and AGB after 25 years of simulation (Figure 78). 506 

Given that large stems contribute more to LAI, BA, and AGB, larger variation of stem density than LAI, BA, and 507 

AGB indicates that small stems are more variable than large stems. The variation of those variables also varies with 508 

PFTs. For the stem density, Late PFT has the largest variation, followed by Early, then Mid, and Palm has the smallest 509 

variation, indicating that stem density of small Late is the most sensitive to the uncertainty of the parameters. For BA, 510 

AGB, and LAI, Early and Mid PFTs show the highest variability, followed by the Palm PFT, and the Late PFT has 511 

the lowest variation, indicating that large stems of Early and Mid PFTs are more sensitive to the uncertainty of the 512 

parameters than large stems of Late and Palm PFTs. 513 

 514 

Figure 87. The coefficient of variation (θ) for the variables of each PFT at the 25th simulation year.  515 

 516 
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 517 

Figure 98. The variance explained by each parameter for variables (a) stem density, (b) basal area, (c) aboveground biomass, and 518 
(d) leaf area index. The variance explained by the interaction among parameters are given in the parenthesis. 519 

 520 

The variance decomposition analyses reveal that 50% of the uncertainty of the stem density comes from the 521 

quantum efficiency of Late (QefL) (Figure 89). However, QefL explains less than 10% of the uncertainty in BA, AGB, 522 

and LAI, indicating that QefL has significant effects on the density of small stems, but less effects on the density of 523 

large stems. In other words, QefL impacts the recruitment and establishment of stems more than the growth of stems. 524 

The uncertainty of the growth of stems comes from the growth respiration factor (Rgf), which explains about 10% of 525 

the uncertainty. The interaction among parameters accounts for 21% of the uncertainty of the stem density, and more 526 

than 50% of the uncertainty of the BA, AGB, and LAI.  527 

3.2 Impact of Initial Condition on Forest Recovery 528 

Figure 9 10 shows the 112-year simulations of the forest initialized with different forest states (pre-Maria state and 529 

pre-Hugo state) with or without hurricane disturbance at the first simulation year. Without hurricane disturbance 530 

(IhugoHn), the forest experiences a decrease (-17%) in stem density in the first 10 years due to the self-thinning 531 

process of the forest (Figure 9 10 a). The decrease is mainly attributed to mortality of small stems of Mid and Late 532 

PFTs (Figure S9 S11 b and c), which leads to an increase (5%) in the proportion of large stems (DBH ≥ 10 cm) (Figure 533 

9 10 b) but BA and AGB remain steady (Figure 9 10 c and d). After 10 years, a large number of Early PFT stems 534 
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recruit with DBH less than 10 cm (Figure S9 S11 a), decreasing the overall large stem proportion. After 30 years, Mid 535 

trees recruit and grow (Figure S9 S11 b and Figure S10 S12 b), increasing the total BA and AGB (Figure 9 10 c and 536 

d). As small Late trees recruit frequently after 20 years (Figure S9 S11 c), the stem density increases steadily, and the 537 

proportion of large stems decreases steadily. Because small stems contribute little to BA and AGB, BA and AGB have 538 

a slower increase with time (Figure 9 10 c and d) than stem density (Figure 9 10 a). 539 

 540 

Figure 109. Time series of eight variables from the simulation of the three experiments: IhugoHn, IhugoH1, ImariaH1. The dotted 541 
lines are the initial state of the variables for each experiment (IhugoHn and IhugoH1 have the same initial state). The variables in 542 
(a) stem density, (c) basal area, and (d) aboveground biomass are for stems with DBH ≥ 2.5 cm. The stem proportion in (b) is the 543 
propotion proportion of the stem denisty density with DBH ≥ 10 cm to the stem denisty density with DBH ≥ 2.5 cm. The variables 544 
in (e)-(h) are the proportion of the stem density of each PFT with DBH ≥ 2.5 cm to the total stem density of all PFTs with DBH ≥ 545 
2.5 cm.  546 

 547 

After 80 years, the PFT composition reaches a steady state (the change of 30-year moving average is less 548 

than 1% compared to the previous year; Figure S13), where the Early, Mid, Late, and Palm PFTs account for 11.8%, 549 

10.6%, 65.3%, and 12.3% of the total stem density, respectively (Figure 9 10 e, f, g, h). This state is significantly 550 

different from the initial state and exhibits a 16% reduction on the proportion of the Mid PFT. It exhibits increases on 551 

all other PFTs proportions (+0.7%, +11.4%, and +4.1% for Early, Late, and Palm, respectively). The Early PFT has 552 

stems of all DBH classes (Figure S9 S11 a); while Mid PFT has mostly small stems with DBH less than 5 cm and a 553 

small cohort (2 individuals ha-1) of large stems with DBH around 200 cm (Figure S11 S14 b and f), which contributes 554 

a significant portion to the total AGB (Figure S10 S12 b). The Late PFT is the most abundant PFT (Figure S9 S11 c) 555 

and contributes the most to the total AGB in the forest (Figure S10 S12 c). The stem density of Late decreases with 556 

DBH (Figure S9 S11 c), and the largest-DBH cohort reaches 180 cm (Figure S11 S14 c), which is smaller than that 557 

of Mid but has a higher density (7 individuals ha-1) (Figure S11 S14 g). The maximum DBH is far larger than that we 558 

observed (89 cm in 2017), but is possible given 100 years of growth with a 2 cm yr-1 increment in DBH (Brandeis 559 

2009)which could be an overestimation due to no nutrient limitation. Palm recruits with DBH between 10 and 15 cm, 560 

the DBH grows slowly after recruitment, and DBH growth stops after they reach the reproduction height (18 m, and 561 
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25 cm in DBH correspondingly) and allocate all carbon to reproduction (Section 2.2.2. 2.1.2), hence palms do not 562 

exceed 25 cm DBH (Figure S11 S14 d) and most of them are between 10 and 20 cm (Figure S9 S11 d and Figure S10 563 

S12 d). This is in agreement with the maximum reported values of DBH (Lugo and Rivera Batlle 1987).  564 

Compared with the experiment without hurricane disturbance in the first simulation year (IhugoHn), the ones 565 

experiments with hurricane disturbance in the first simulation year (IhugoH1 and ImariaH1) reach higher BA and 566 

AGB levels after 60 years of succession from the hurricane disturbance (Figure 9 10 c and d). This is due to the carbon 567 

accumulation of large Late PFT in disturbed forests (Figure S10 S12 g and k). Large Late trees in disturbed forest 568 

(IhugoH1 and ImariaH1) have higher growth rate and lower background mortality rate compared to those in the 569 

undisturbed forest (IhugoHn) (Figure 1011) because of the decreased competition to reach the open canopy. As the 570 

disturbed forest recovers, the BA and AGB increase to the level of the undisturbed forest (Figure 9 10 c and d), the 571 

growth rate decreases (Figure 10 11 a) and the mortality rate increases to the levels of those in the undisturbed forest, 572 

especially for severely disturbed forest (IhugoH1) (Figure 1011). With lower mortality and higher growth rate in the 573 

first 60 years, there will be more large Late trees in the canopy at the end of the simulation (12 individuals ha-1 vs 8 574 

individuals ha-1) (Figure S11 S14 g) even though the maximum DBH will be smaller (Figure S11 S14 c).  575 

 576 

Figure 1110. Times series of (a) average growth rate and (b) mortality rate of Late trees with DBH ≥ 20 cm. The light-colored 577 
lines represent the yearly values, and the solid lines are ten-year moving averages. 578 

 579 

The recovery is different with different initial states. With pre-Hugo state (IhugoH1), the forest takes 25 years 580 

to recover to the pre-disturbance BA and AGB levels (Figure 9 10 c and d), but with pre-Maria state (ImariaH1), it 581 

takes only 10 years to recover to the pre-disturbance BA level (Figure 9 10 c) and 5 years to the pre-disturbance AGB 582 

level (Figure 9 10 d). The succession dynamics are different, too. With pre-Hugo state, the hurricane-induced mortality 583 

is very high, and thus the canopy opens, and Early and Palm PFTs recruit greatly in the first 20 years (Figure S9 S11 584 

e and h), and then it is taken over by the Late PFT (Figure S9 S11 g). With pre-Maria initial state, the hurricane-585 

induced mortality is low, and the canopy is not significantly changed after the hurricane, and Early PFT does not 586 

recruit as much as it does in the pre-Hugo state initialized simulation (Figure S9 S11 i and e). The PFT composition 587 

after 100 years is similar for the two simulations, but the BA and AGB is are not (Figure 910). The BA and AGB with 588 

the pre-Maria initialization are higher than those with the pre-Hugo initialization throughout the 110 years of 589 

simulations, even though the initial AB BA and AGB levels in the pre-Maria state are lower than those in the pre-590 

Hugo state (Figure 9 10 c and d). This is because of the higher mortality at the first year with pre-Hugo state, leading 591 

to a larger reduction in the density of large stems. With the succession following the disturbance, there are more large 592 
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stems, especially Late and Palm, in the pre-Maria simulation than in the pre-Hugo simulation (Figure S11S14), 593 

contributing to the higher AGB and BA in the pre-Maria simulation (Figure S10 S12 g, h, k, and l).  594 

4 Discussion  595 

We developed a hurricane module (including a mortality module and a recovery module) for the ED2-HuDi model, 596 

based on census observations. We then applied a parameter estimation algorithm, GLUE, to calibrate important 597 

parameters in the model and selected the optimal parameter set for the final model simulation. However, because the 598 

observations are limited to only two hurricane events, the hurricane module may be biased toward the two 599 

observations. The simulation results show some discrepancies with observations, and these discrepancies could be in 600 

part due to the GLUE approach and parameter uncertainties. Here we discuss the uncertainty associated with the 601 

developed hurricane module, the limitations and advantages of the GLUE framework, and the uncertainties of model 602 

outputs. 603 

4.1 Uncertainty of the hurricane module 604 

We included a hurricane mortality module and a hurricane recovery module for hurricane disturbance. Crown damage 605 

is also an important part of hurricane disturbance and could have important impact on forest structure and carbon 606 

accumulation (Leitold et al. 2021), but we did not include crown damage in the hurricane disturbance module because 607 

the census data used to develop and calibrate the module do not include crown damage information. The hurricane 608 

mortality module was developed based on observations from two hurricane events at the study site. The relationship 609 

between mortality and forest size structure (proportion of large stems) was fitted to a logistic function (Figure 2) for 610 

each PFT and DBH class. Generally, Palm PFT has a lower mortality than other PFTs, but Palm mortality was higher 611 

(11% for Palm, 9% for Mid, and 3% for Late) when the forest was dominated by large stems (e.g., large stem 612 

proportion is 0.6, except for the high mortality of 39% for Early (Figure 2b). This was due to the high mortality of 613 

Palm during Maria, which was a result of plant pathogens (Zhang et al. 2022b; Heartsill Scalley 2017). The mortality 614 

of large-stem Early PFT is significantly different from other PFTs, and this difference was due to the significantly 615 

higher mortality of large-stem Early during hurricane Maria compared to other PFTs. Such high mortality of large-616 

stem Early may be a result of other factors besides hurricane disturbance, and it could be further studied if there were 617 

more observations. Future work could include observations from other study sites to improve the hurricane disturbance 618 

module.  619 

 There are four critical parameters associated with the hurricane disturbance module, including disturbance 620 

rate of forest area (λd) and survivorship of each cohort (sc) from the mortality module, initial seedling density (ns) and 621 

decay factor of seedling density with time since disturbance (α) from the recovery module. We tested the sensitivity 622 

of the parameters of the recovery module but did not test the uncertainty of the parameters of the mortality module 623 

because the values are from observations at the study site. For future studies using this module, either testing the 624 

uncertainty of the parameters or using site specific values are encouraged.   625 

4.14.2 Limitations and Advantages of GLUE 626 
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GLUE samples from continuous distributions, but the sampled parameter sets are in a discrete space, therefore, the 627 

GLUE approach may not lead to the true optimum due to the finite number of samples. To justify the sample size of 628 

10,000 for 41 parameters in this study, we repeated GLUE for a larger sample size (20,000). The optimal simulation 629 

from 20,000-sample GLUE (Figure S12S15) is very similar to that from the 10,000-sample GLUE (Figure 34) and 630 

the optimal parameter sets from the two GLUEs are similar, suggesting that the two GLUEs found an optimum around 631 

the same local optimum and 10,000 samples are sufficient for the 41 parameters. However, given the nature of 632 

equifinality, there may be multiple parameter sets that can lead to the same observed state (Beven and Freer 2001), 633 

and thus the optimal parameter set we found from GLUE may be one of many possible solutions.  634 

Although GLUE may not guarantee the global optimum, it implicitely implicitly handles any effects of model 635 

nonlinearity, model structure errors, input data errors, and parameters covariation (Beven and Freer 2001). Moreover, 636 

GLUE allows us to optimize parameters using any variables of interests in the cost function. For example, in our study, 637 

we want to make sure the model captures the size structure and PFT composition of the forest community, and thus 638 

we utlized utilized forest stand variables including stem density, growth rate, and BA of each PFT in the cost function. 639 

Compared to other optimizers (such as PEcAn) that calibrates parameters using plant traits observations (e.g., wood 640 

density, leaf turnover rate), GLUE’s ability of utlizing utilizing observations of forest stand variables (BA, AGB, etc.) 641 

could further reduce the uncertainty of parameters (Wang et al. 2013). Note that we did not calibrate the parameters 642 

using plant traits observations in this study, because the parameters we use are already calibrated with plant traits 643 

observations in Feng et al. (2018) and we adpoted adopted their calibrated parameters in our study (see Section 2.3.1. 644 

2.3.1). 645 

4.24.3 Uncertainty of Model Outputs from Parameters 646 

To be consistent with census observations, we included stems with DBH ≥ 2.5 cm in the analyses. The large 647 

variation of simulated stem density (Figure 78) could be due to the timing of cohorts exceeding the 2.5 cm threshold, 648 

and thus can be minimized by averaging stem density over several years (Massoud et al. 2019). The optimization is 649 

sensitive to light-related parameters, such as clumping factor, quantum efficiency, and dark respiration (Figure 9). 650 

This is consistent with Meunier et al. (2021) who found that light limitation contributes partly to model uncertainties. 651 

The clumping factor we calibrated for our study site is lower than that from other locations (He et al. 2012), which 652 

could be due to uncertainties of the allometries and estimates on the Leaf Area Index (LAI). LAI is generally 653 

underestimated in the vegetation dynamics models (e.g., Xu et al. 2016). As discussed in Shiklomanov et al. (2021), 654 

the ED2 model has a less robust estimation on LAI because of structural errors in representing direct radiation 655 

backscatter. As shown in Figure 6, the clumping factor is one of the most important parameters controlling LAI. 656 

However, bBoth LAI and the clumping factor are rarely measured, and LAI estimated from satellite remote sensing 657 

data often have variable quality, especially in tropical forests (Xiao et al. 2016, 2017). Future census practices should 658 

include LAI and the clumping factor. Even though the LAI measured from the ground may be different from the LAI 659 

measured from above the canopy (with airborne lidar or satellites), ground measurements could provide useful 660 

information for both the vertical structure of the forest and the quality of satellite remote sensing and airborne lidar 661 

data. Furthermore, acclimation to understory light is not considered in this model, however, traits respond strongly to 662 
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light environments (Lloyd et al. 2010; Keenan and Niinemets 2016), therefore it needs to be considered in future 663 

developments (Xu and Trugman 2021).The clumping factor we calibrated for our study site is lower than that from 664 

other locations (He et al. 2012). Observations of clumping factor in our study site are needed to verify the parameter 665 

from our model calibration and improve model estimates of LAI. 666 

Out Our results agree with a previous study that modeled variables have different responses to parameters in 667 

the short term (e.g., first simulation year) and in the long term (e.g., 25th simulation year) agree with a previous study 668 

(Massoud et al. 2019). Furthermore, we showed that variables of a specific PFT are most sensitive to the parameters 669 

of the same PFT, but also sensitive to parameters of other PFTs. Those interactions between variables and parameters 670 

indicates the competition among PFTs. For example, Palm is sensitive to its own parameters, but also to Early SLA. 671 

This can be explained by the competition for light between Early and Palm, where a higher SLA of Early PFT leads 672 

to a higher LAI of Early allowing Early to photosynthesize more efficiently and thus be more competitive in the 673 

community. Those competitions are important for the co-existence of PFTs in model simulations and critical to the 674 

PFT composition and succession.   675 

5 Conclusion 676 

Hurricanes are a major disturbance to tropical forests, but hurricane disturbance has had not been implemented in any 677 

model of vegetation dynamics. In this study, we implemented hurricane disturbance in the Ecosystem Demography 678 

model (ED2) and calibrated the model with forest stand observations of a tropical forest in Puerto Rico. The calibrated 679 

model has good representation on the recovery trajectory of PFT composition, size structure, stem density, basal area, 680 

and aboveground biomass of the forest. We used the calibrated model to study the recovery of the forest from a 681 

hurricane disturbance with different initial forest states, and found that a single hurricane disturbance changes forest 682 

structure and composition in the short term and enhances AGB and BA in the long term compared with a no-hurricane 683 

situation. Forests with wind-resistant initial state will have lower mortality, recover faster, and reach a higher BA and 684 

AGB level than forests with a less wind-resistant initial state.  685 

The model developed and results presented in this study can be utilized to understand the fate of tropical 686 

forests under a changing climate. Hurricanes are likely to become more frequent and severe in the future with global 687 

warming (IPCC 2021). With frequent hurricane disturbances in the future, forests will not have enough time to reach 688 

a steady state, and the structure and composition will be constantly changing, which provides different initial states 689 

for future hurricane disturbances and thus different recovery trajectories. Climate change with changing temperature, 690 

precipitation, and CO2 concentration, etc. will also have an impact on the growth of individual trees and thus the 691 

structure and composition of forests (e.g., Feng et al. 2018). The ED2-HuDi model developed in this study will be a 692 

beneficial tool to understand the impact effects of frequent hurricane disturbances on forest recovery in the future 693 

under the changing climate. 694 

 695 

Code and data availability. The ED2-HuDi software are is publicly available. The most up-to-date source code is 696 

available at https://github.com/zhjiay5/ED2. The exact version used in this paper is archived on Zenodo 697 
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(https://dx.doi.org/10.5281/zenodo.5565063). Input data and scripts to run the model and produce the plots for all the 698 

simulations presented in this paper are also publicly available at http://www.hydrology.gatech.edu/.  699 
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