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 29 
Abstract.  Application of lake models coupled within earth-system prediction models, 30 
especially for short-term predictions from days to weeks, requires accurate initialization 31 
of lake temperatures.   Here, we describe a lake initialization method by cycling within 32 
an hourly updated weather prediction model to constrain lake temperature evolution.   33 
We compare these simulated lake temperature values with other estimates from 34 
satellite and in situ and interpolated-SST data sets for a multi-month period in 2021.   35 
The lake cycling initialization, now applied to two operational US NOAA weather 36 
models, was found to decrease errors in lake temperature from as much as 5-10K 37 
(using interpolated-SST data) to about 1-2 K (comparing with available in situ and 38 
satellite observations.   39 
 40 
Short summary 41 
 42 
Application of 1-d lake models coupled within earth-system prediction models will 43 
improve accuracy but requires accurate initialization of lake temperatures.   Here, we 44 
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describe a lake initialization method by cycling within a weather prediction model to 45 
constrain lake temperature evolution. We compare these lake temperature values with 46 
other estimates and found much reduced errors (down to 1-2 K).   The lake cycling 47 
initialization is now applied to two operational US NOAA weather models. 48 
 49 

1    Introduction  50 
 51 
Inclusion of lake representation into numerical weather prediction (NWP) models has 52 
become increasingly necessary to further improve representation of atmosphere-53 
surface fluxes of heat and moisture as model grid resolution becomes finer. 54 
Representation of lake physics to provide time-varying lake surface properties (e.g., 55 
Subin et al, 2012) is essential to improve fluxes of heat, moisture and momentum 56 
between the surface and atmosphere (Hostetler et al, 1993, Thiery et al, 2014).   Lake 57 
representation is part of the overall surface treatment including land-surface models 58 
(LSMs) necessary to accurately model the evolution of the planetary boundary layer. 59 
Lakes are estimated to cover 3.7% of the global non-glaciated land area (Verpoorter et 60 
al, 2014), and they significantly moderate sensible heat and moisture fluxes from this 61 
‘land’ (i.e., non-ocean) area. Water impoundments (reservoirs) that used to account for 62 
about 6% of these ‘lake’ areas (Downing et al, 2006) have recently increased to 9% 63 
(Vanderkelen et al, 2021). Initial conditions for both land and lake surface are an 64 
important consideration due to far larger thermal inertia for soil or water than for air. 65 
Consequently, incorrect soil or lake initial conditions can result in erroneous heat and 66 
moisture fluxes that may persist for days and even weeks (e.g., Dirmeyer et al, 2018). 67 
This potential source of error in fluxes is more pronounced for lake areas with far larger 68 
thermal inertia and heat storage than even saturated soils. 69 
 70 
In the US, operational NWP models have used coarse-resolution daily SST analyses to 71 
specify the surface water temperatures for the ocean and the Laurentian Great Lakes 72 
for the entire forecast period.  However, given the resolution, the temperatures for bays, 73 
sounds, and smaller non-Great Lakes have been obtained by the interpolation of values 74 
from the ocean and the Great Lakes.   An alternative is to incorporate one-dimensional 75 
(1-d) lake models within NWP models. 76 
 77 
Lake representation (via one-dimensional (1-d) models, as in LSMs) within NWP 78 
models is beneficial by providing a first-order accurate lagged effect of the seasonal 79 
variation in temperature, with lake water remaining colder than nearby land in spring 80 
and warmer in autumn. The outcomes are desirable, as described by Balsamo et al, 81 
(2012), for instance by accurately representing increased evaporative fluxes in the fall. 82 
Thus, use of a 1-d lake model improves over land representation by capturing this 83 
slower seasonal response. 84 
 85 
However, lake temperature initialization is still a problem. Use of spatial interpolation to 86 
smaller lakes from larger (and deeper) lakes, or from the ocean, for lake initialization 87 
(e.g., Mallard et al, 2015) can exaggerate this seasonal slower response. Shallow lakes 88 
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warm more slowly in spring than surrounding land, but more quickly than nearby deeper 89 
lakes. Even in summer, it will take at least 1-2 weeks for 1-d models to adjust from 90 
values interpolated from deeper-lake temperatures to become more realistic for shallow 91 
lakes. Therefore, lake temperature initialization becomes the most important factor to 92 
accurately simulate sensible and latent heat fluxes from lakes for short to medium-range 93 
NWP, more so than the use of the lake model itself. One option to solve the lake 94 
initialization problem is to use a model-based climatology for seasonal variation of lake 95 
temperatures (Balsamo et al (2012) and Balsamo (2013)) using a 1-d lake model forced 96 
by reanalysis data. This technique avoids a new spin-up with each new run, but cannot 97 
capture unique weather regime variations in a given region and time. Another option, 98 
described here, is lake cycling, a cost-free option if the atmospheric conditions are 99 
relatively accurate. 100 
 101 
Data assimilation for land-surface fields (e.g., soil temperature, soil moisture, snow 102 
cover, snow water equivalent, snow temperature)has been very beneficial for improved 103 
short-range weather prediction accuracy (e.g., Balsamo and Mahfouf, 2020, Muñoz-104 
Sabater et al, 2019, Benjamin et al, 2022, others), but lake temperature has not been a 105 
part of this surface data assimilation. In December 2020, the NOAA 13-km Rapid 106 
Refresh (RAP) and 3-km High-Resolution Rapid Refresh (HRRR) implemented an 107 
interactive small-lake multi-layer 1-d lake model, the first NOAA weather models to do 108 
so.  The lake coverages for the HRRR and RAP models are shown in Fig. 1.  The 109 
weather models are coupled with the 10-layer Community Land Model (CLM) version 110 
4.5 lake model, (Subin et al, 2012, Mallard et al, 2015), an option within the community 111 
Weather Research and Forecast model (WRF, Skamarock et al, 2019). The CLM lake 112 
model is a 1-d thermal diffusion model allowing 2-way coupling with the atmosphere. 113 
ECMWF had taken a similar approach earlier to improve their overall surface modeling 114 
treatment by implementing the 2-layer FLake (Freshwater Lake Model) model (Mironov 115 
et al, 2010, Balsamo et al, 2012, Boussetta et al, 2021) into their Integrated Forecast 116 
System (IFS) in 2015. To initialize small-lake temperatures in the RAP and HRRR, all 117 
lake variables have been evolving since summer 2018 depending on the cycled 118 
atmospheric conditions and the lake model physics as discussed in section 4.  The 1-d 119 
lake model cannot represent 3-d hydrodynamical processes in larger bodies of water. 120 
Thus, a second major improvement in 2020 with lake representation in the NOAA 3-km 121 
HRRR model occurred with the implementation of lagged data coupling with the 3-d 122 
hydrodynamic-ice model for the Laurentian Great Lakes as described by Fujisaki-123 
Manome et al (2020).    124 
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 125 
Fig. 1a.   Small-lake (green to yellow) areas for the a) 3-km HRRR domain using the 126 
MODIS 0.15” resolution data for land/water and lake information.  Color corresponds to 127 
top-level lake temperature (K) at 01z 15 Oct 2019.    Only small-lake areas treated in 128 
HRRR by the CLM lake model are shown.  Out of the 1,900,000 grid points in this 129 
HRRR CONUS domain, 12,305 of them (~0.6%) are for small lakes (excluding the 5 130 
Laurentian Great Lakes treated by separate coupling as described in text). 131 
 132 
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 133 
Fig. 1b.  Same as Fig. 1a but for the 13-km RAP domain 134 
 135 
 136 
Here, we describe the design and results of a unique approach to inland small lake 137 
initialization by cycling with hourly updating of atmospheric conditions (clouds/radiation, 138 
near-surface temperature/moisture/winds). This lake initialization via cycling is an 139 
important component of earth-system coupled modeling for effective NWP, with goals to 140 
improve prediction of 2-m (air) temperature and moisture, cloud, boundary-layer 141 
conditions, and precipitation for situational awareness enabling short-range decision 142 
making (e.g., aviation, severe weather, hydrology, energy). 143 
 144 

2   Problem  145 
 146 
For the NOAA hourly updated mesoscale models, used frequently for short-range 147 
weather prediction, poor 2-m air temperature and/or dewpoint forecasts have been 148 
reported on many occasions by the US National Weather Service (NWS) in the vicinity 149 
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of inland lakes (Fig. 2). These hourly updated models included the Rapid Update Cycle 150 
(RUC, Benjamin et al 2004) with horizontal grid spacing decreasing from 40-km to 20-151 
km to 13-km (Benjamin et al 2010), succeeded by the 13-km Rapid Refresh (RAP) and 152 
3-km High-Resolution Rapid Refresh (HRRR, Benjamin et al, 2016, Dowell et al, 2022, 153 
James et al, 2022).  Many of these reported systematic deficiencies from the US NWS 154 
were for the 2.5-km NOAA Real-Time Mesoscale Analysis (RTMA, Pondeca et al. 155 
2011), using 1-h forecasts from the 3-km HRRR as a background. The most common 156 
report was too-low 2-m air temperatures near inland lakes in late spring and summer.  157 
At times, spurious prediction of fog formation was also noted on or near small lakes due 158 
to erroneous lake temperatures and resultant fluxes.   159 
 160 

 161 
 162 
Fig. 2.   Lakes (here, in black) circled for those with related problem reports from US 163 
National Weather Service Forecast Offices on nearby deficient 2-m air temperature or 164 
dewpoint forecasts in NOAA hourly updated models during 2004-2019. 165 
 166 
 167 
Further investigation revealed the water temperatures for small lakes used in NOAA 168 
weather models were assigned via horizontal interpolation from larger, deeper bodies of 169 
water (with available AVHRR data) in the design for the NOAA real-time gridded SST 170 
analysis (RTG_SST_HR, Gemmill et al, 2007).  An example of the analysis is shown in 171 
Fig. 3. Temperature for the larger, deeper water areas has a lesser and more lagged 172 
seasonal variation than the smaller, shallower lake areas due to their large heat storage 173 
capacity. So use of the NOAA SST fields for lake temperatures resulted in generally 174 
too-low values through spring and summer, and even into autumn. In situations with 175 

https://doi.org/10.5194/gmd-2021-409
Preprint. Discussion started: 8 February 2022
c© Author(s) 2022. CC BY 4.0 License.



 7 

atmospheric cold outbreaks in the autumn, shallow lake temperatures quickly decrease 176 
(as reflected with lake cycling) and SST-based estimated lake temperatures were too 177 
high. This behavior was consistent with the HRRR and RTMA deficiencies noted by 178 
forecasters. In February 2020, NOAA changed from the RTG_SST_HR to a Near-179 
Surface Sea Temperature (NSST, see NWS, 2020) for SSTs, but using the same 180 
horizontal interpolation method to estimate small-lake temperatures resulting in the 181 
same temperature biases for small lakes. 182 
 183 

 184 
 185 
Fig. 3.   An example of small-lake temperatures spatially interpolated from deeper-water 186 
temperature data in the NOAA SST analysis (Gemmill et al, 2007).   For 9 October 187 
2019, provided by NOAA National Weather Service. 188 
 189 
Hamill (2020), in a comparison benchmarking a statistical method for 2-m temperature 190 
(at 00 UTC), showed the same problem with large summer temperature biases from the 191 
HRRR 1-h forecasts in August 2018 especially in the vicinity of lakes (his Figs. 10, 11).   192 
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His results are shown in Fig. 4, with three stations showing coldest biases (at 00 UTC) 193 
greater than 2 K (circled in red), all adjacent to lakes.  In Fig. 4, these circled stations,  194 
from north to south, are KFGN (Flag Island on Lake of the Woods; >3 K cold bias), 195 
KRRT - Warroad, MN (west of Lake of the Woods), and KVWU – Waskish, MN (east of 196 
Red Lake)). The overall warm or cold biases are generally < 2 K, but these stations 197 
adjacent to lakes are outliers, consistent with introduction of cold-biased lake 198 
temperatures through the NSST. 199 

 200 
Figure 4.  2-m temperature biases for 1-h HRRR forecasts valid at 00 UTC in August 201 
2018 (from HRRRv3, before introduction of lake cycling and using NSST estimates 202 
instead).  Stations with low bias < -2 K are circled in red.  (Credit and thanks to Thomas 203 
Hamill, providing a regional version of his Fig. 10b in Hamill, 2020). 204 
 205 
 206 
With its 3-km grid spacing, the HRRR model can resolve many inland lakes (Fig. 1a). 207 
Specification of surface temperatures for these small lakes using the horizontal 208 
interpolation from the NOAA SST fields was problematic being determined by 209 
interpolation from large lake and ocean temperatures. 210 
 211 
In summary, errors in specified lake temperatures (as well as ice cover and 212 
concentration) due to spatial interpolation from oceans and larger lakes can lead to 213 
degraded atmospheric predictions in the vicinity of lakes. For small lakes, poor short-214 
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range 2-m temperature (T) and 2-m dew point temperature (Td) forecasts were noted in 215 
vicinity of lakes, especially from spring through summer and into autumn. Specifically, 216 
fluxes from lakes were often poorly estimated due to inaccurate lake temperature fields. 217 
 218 

3 Lake model for coupling with NOAA regional atmospheric models 219 
 220 
Similar to the now-commonplace (in NWP models) coupling with land-surface models 221 
(LSMs) to improve fluxes into the atmosphere, a multi-level 1-d lake model was 222 
implemented within the operational 3-km HRRR and 13-km RAP weather models in 223 
December 2020, an extension to atmosphere-surface coupling. An effective lake 224 
initialization is a necessary complement for the lake model coupling, as described in 225 
section 4. Different earth-system coupling processes represented in the HRRR and 226 
RAP models are described in Table 1, including land, snow, ice, and smoke. The 227 
Community Land Model (CLM) lake model (same in versions 4.5 and 5.0) was added 228 
for smaller lakes as an option in the WRF model version 3.6 (Mallard et al, 2015). The 229 
CLM lake model is described in more detail below with its configuration for the NOAA 230 
HRRR and RAP weather models.  A detailed description of the physical processes 231 
(cloud microphysics, turbulent exchange, land-surface, etc.) in the HRRR and RAP 232 
models are described by Dowell et al (2022) and Benjamin et al (2016).   233 
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Component Prognostic 
variables 

Layers 
(below 
surface 
except for 
smoke) 

Year 
introduced for 
experimental 
cycling 

Year 
intro for 
NCEP 

Data 
assimilation 

Other information, 
references 

Soil Temp, 
moisture 

9 1996 (6 levels 
until 2012) 

1998 (6 
levels 
until 
2014) 

Cycling, atmos-
to-soil coupled 
DA 

Moderately coupled 
DA (Benjamin et al 
2022) 

Snow Water 
equiv, 
snow 
depth, 
temp 

2 1997 1998 Cycling, atmos-
to-snow DA for 
temp, trim/build 
from sat for 
cover 

Moderately coupled 
DA.  Subgrid fraction 
intro 2020 

Ice Temp 9 2010 (6 levels 
until 2012) 

2012 (6 
levels 
until 
2014) 

Cycling, atmos-
to-surface 
coupled DA 

Subgrid fraction intro 
2018 

Smoke Smoke 
mixing 
ratio 

50 
atmos 
layers 

2016 2020 Cycling, fire rad 
power from sat 

No direct DA,  only 
cycling 

Small lakes Temp, ice 
fraction, 
mixing 

10 2018 2020 Cycling No direct DA, only 
cycling 

Large lakes 
(Great 
Lakes) 

Temp, ice 
fraction, 
mixing 

FVCOM 
levels 

2018 2020 Independent FVCOM driven by 
HRRR wind, rad, 
temp, 6h lag (Fujisaki-
Manome et al 2020) 

 234 
 235 
Table 1.  Earth-system coupling added to NOAA regional models (HRRR, RAP, RUC 236 
(pre-2012)) 237 
 238 
An additional improvement in lake-atmosphere coupling in NOAA weather models was 239 
recently introduced, a coupling between the NOAA HRRR model using predicted lake 240 
temperatures and ice concentration fields from the NOAA GLERL/NOS 3-dimensional 241 
hydrodynamic-ice model run in real time over the Laurentian Great Lakes, as described 242 
by Fujisaki-Manome et al (2020). This hydrodynamic-ice model is based on the Finite 243 
Volume Community Ocean Model (FVCOM, Chen et al., 2006, 2013) coupled with the 244 
unstructured grid version of Los Alamos Sea Ice Model (CICE; Gao et al., 2011) and is 245 
applied to the Great Lakes Operational Forecast System (GLOFS, Anderson et al., 246 
2018). This time-lagged data coupling (alternate applications of HRRR atmospheric 247 
forcing and FVCOM-CICE lake forcing about 6-12 h in advance) was incorporated to 248 
improve lake-effect snow (LES) predictions in winter but has also been found to improve 249 
near-lake atmospheric predictions year-round especially for upwelling events in the 250 
warm season. The use of FVCOM-CICE to specify lake temperatures addresses 251 
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previous errors in SST from relatively fast changes in lake temperatures due to cold air 252 
outbreaks or upwelling events. These changes sometimes escape AVHRR-derived SST 253 
detection due to multi-day cloud obscuration.  254 
 255 

Small lake 
size (grid 
points) 

# 
Lakes 

% of 
# of 
small  
lakes 

% of 
small lake 
surface 
coverage 

Avg 
depth 
(m) 

Surface 
area of 
lakes (km2) 

 Volume of 
lakes (km3) 

1 grid point 
(3kmx3km) 

917 49% 7% 13 8,812  115 

2 (~20 km2) 323 17% 5% 12 6,208  76 

3 155 8% 4% 11 4,468  49 

4-5 157 8% 6% 14 6,746  97 

6-10 (~100 
km2 ) 

155 8% 10% 14 11,570  162 

11-100 
(~1000 km2) 

141 7% 30% 21 35,518  769 

>100 16 <1% 38% 14 44,926  614 

All 1864 100% 100% 
 

118,248  1,882 

Table 2.  Characteristics of small lakes (not including the five Laurentian Great Lakes) 256 
resolved in the 3-km HRRR CONUS domain over the lower 48 United States and 257 
adjacent areas of Canada and Mexico.  Grid points were assigned as having a lake land 258 
use for points with at least 50% lake representation from the higher-resolution 15” 259 
MODIS land-use data. 260 
 261 
Laurentian 
Great Lakes 

Surface area of 
lakes (km2) 

Volume of lakes  
(km3) 

Superior 82,100 12,000 
Michigan 57,800 4,920 
Huron 59,600 3,540 
Erie 25,670 484 
Ontario 19,010 1,640 

 262 
Table 3.  Characteristics of the five Laurentian Great Lakes (surface area, volume) 263 
(Hunter et al 2015). 264 
 265 
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 266 
 267 
3.1  CLM lake model applied to HRRR for smaller inland lakes 268 
 269 
Subin et al (2012) describe the 1-d CLM lake model as applied within the Community 270 
Earth System Model (CESM) as a component of the overall CESM CLM (Lawrence et al 271 
2019). Gu et al (2015) describe the introduction of the CLM lake model into the WRF 272 
model and initial experiments using its 1-d solution for both Lakes Superior (average 273 
depth of 147 m) and Erie (average depth of 19 m). The CLM lake model divides the 274 
vertical lake profile into 10 layers driven by wind-driven eddies. The atmospheric inputs 275 
into the model are temperature, water vapor, horizontal wind components from the 276 
lowest atmospheric level and short-wave and longwave radiative fluxes (from the HRRR 277 
model in this application).  The CLM lake model then provides latent heat and sensible 278 
heat fluxes back to the HRRR. The CLM lake model is called every 20 s within the 279 
HRRR model.  The CLM lake model was configured with the top layer fixed to a 10-cm 280 
thickness (Gu et al 2015) and with the rest of the lake depth divided evenly into the 281 
other 9 layers. Energy transfer (heat and kinetic energy) occurs between lake layers via 282 
eddy and molecular diffusion as a function of the vertical temperature gradient. The 283 
version of the CLM lake model used for HRRR and RAP was introduced with CLM 284 
version 4.5 and continues without change in CLM version 5 (Lawrence et al, 2019). The 285 
CLM lake model also uses a 10-layer soil model beneath the lake, a multi-layer ice 286 
formation model and up to 5-layer snow-on-ice model (Gu et al, 2015). Testing of the 287 
CLM lake model by the authors within WRF showed computational efficiency of the 288 
model with no change of even 0.1% in run time with the HRRR and RAP applications. 289 
Multiple layers in lake models better represent vertical mixing processes in the lake. By 290 
intention, the CLM lake model was only applied for HRRR and RAP model to smaller 291 
lakes, since NOAA began at the same time to provide temperature and ice cover 292 
through GLOFS for the Laurentian Great Lakes through the 3-d hydrodynamic-ice 293 
model (Fujisaki-Manome et al, 2020, Anderson et al, 2018).    294 
 295 
3.2    Lake area mask 296 
 297 
Grid points were assigned as lake points when the fraction of lake coverage in the grid 298 
cell (derived from yet finer 15” MODIS data) exceeds 50% and when HRRR gridpoint 299 
elevation > 5 m above sea level (to distinguish from ocean). The lake water mask is 300 
therefore binary, set to either 1 or 0.  This binary approach at 3 km seemed capable of 301 
capturing the effect of lakes on regional heat and moisture fluxes.  The alternative 302 
subgrid lake fraction approach was used by ECMWF with their 9-km model (Choulga et 303 
al, 2019). 304 
 305 
An overview of the lake number, areal coverage, and integrated volume for the 3-km 306 
HRRR model are depicted in Table 2. The HRRR CONUS domain (Fig. 1a) is able to 307 
represent 1864 separate lakes occupying 0.6% of the entire domain. These water 308 
bodies represented in HRRR as “lakes” include reservoirs and larger rivers, and about 309 
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half of the 1864 lakes are single-gridpoint lakes. The sixteen largest lakes in the HRRR 310 
CONUS domain have surface area greater than 1,000 km2, nine in Canada and two on 311 
the US-Canada border (Lake of the Woods and Lake St. Clair).  In contrast, the five 312 
Laurentian Great Lakes (Table 3) range in size from 82,000 km2 (Superior) to 19,000 313 
km2 (Ontario), and therefore, their representation in the coupled HRRR system (Table 1) 314 
is handled with 3-d hydrodynamic-ice models (Fujisaki-Manome et al, 2020).   315 
 316 
The lake area mask for the 3-km HRRR used an algorithm for identifying an ocean area 317 
mask for all areas with contiguous water areas and leaving other areas as near-ocean 318 
lagoon regions treated as lakes with the CLM 1-d lake model.   These lagoon areas 319 
separated from ocean by barrier islands in the HRRR representation (Fig. 1a) include 320 
the Intracoastal Waterway in Texas largely separated from the Gulf of Mexico by Padre 321 
Island, Indian River in Florida largely separated from the Atlantic Ocean by Merritt 322 
Island, and Lake Pontchartrain in Louisiana.  This ocean-contiguity technique is similar 323 
to the flood-filling technique used by ECMWF (Choulga et al, 2019). 324 
 325 
 326 
3.3.  Lake depths 327 
 328 
Lake depths for the HRRRv4-WRF-CLM lake configuration are assigned from a global 329 
dataset provided by Kourzeneva et al (2012, hereafter K12).  For some smaller lakes 330 
identified using the 15” MODIS land-water mask not found in K12, a 50-m depth was 331 
assumed.  ECMWF applied a 25-m depth as a default depth for these small lakes 332 
(Choulga et al, 2019).  For many lakes in the K12 database, a single value for maximum 333 
lake depth had been applied to all lake points, which results in excessive lake water 334 
volume and too cold temperatures as discussed in section 5. However, the K12 335 
database still allows overall differentiation between shallow and deep lakes.  The 336 
majority of the small lakes in the northern US and southern Canada are assigned as 337 
shallow, at 5-m depth, but a few are assigned a depth as 30 m or deeper (Fig. 5). 338 

 

 
Figure 5.  Lake depth for small lakes in a subset of the HRRR domain with red for lakes 339 
30 m or deeper. 340 
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 341 
 342 
3.4  Turbidity 343 
 344 
A single value for turbidity to describe absorption of downward short-wave radiation is 345 
used in CLM, allowing for a moderate amount of suspended sedimentation. Subin et al 346 
(2012) describe other options for variations in radiative transfer in lake bodies to capture 347 
degrees of eutrophication, but these are not used here. 348 
 349 
3.5  Salinity 350 
 351 
The CLM lake model is configured for fresh water. The authors manually modified the 352 
freezing temperature to account for non-zero salinity (Railsback, 2006) from 0°C to -5°C 353 
for Mono Lake in California and Great Salt Lake (GSL) in Utah to capture the effect of 354 
salinity.  Other areas of water impoundment from coastal lagoons in the 3-km HRRR 355 
lake representation (Fig. 1a) also have non-zero salinity (e.g., along coasts of Gulf of 356 
Mexico and Atlantic Ocean) but no change in freezing temperature is necessary for 357 
these areas. 358 
 359 
3.6   Elevation  360 
 361 
The elevation value (above sea level) assigned to each lake grid point is the same 362 
assigned to that from the atmospheric model, which may be different from reality, but at 363 
least consistent with the atmospheric conditions. As mentioned earlier, the minimum 364 
elevation above sea level of a grid point to be assigned as a lake is 5 m; other water 365 
grid points are assumed to be ocean. 366 
 367 
3.7   Special situations for CLM lake model application 368 
 369 
The algorithm for the turbulent heat flux calculation in the CLM-lake model was mainly 370 
based on Zenget al. (1998), except that roughness length scales for temperature and 371 
humidity are the same as roughness length scale for momentum for its WRF-lake 372 
application, while they are updated dynamically in CLM 4.5. Charusombat et al (2018) 373 
showed that the same roughness length scales for temperature and salinity as that for 374 
momentum could result in overestimated surface sensible and latent heat fluxes in 375 
autumn and winter. Therefore, a revision to the CLMv4.5 lake model was introduced for 376 
modified roughness lengths over water using modified formulations of the Coupled 377 
Ocean-Atmosphere Response Experiment (COARE) algorithm as described by 378 
Charusombat et al (2018) to improve surface sensible and latent heat fluxes.  379 
 380 
For GSL with a very high value of salinity (270 ppt north of ~41.22°N with freezing point 381 
of 249 K and 150 ppt south of ~41.22°N with freezing point at 263 K), a change of 382 
freezing temperature to -5°C appeared to be not sufficient to keep the lake ice-free 383 
during the cold outbreaks in winter in this high-elevation area. GSL is unusual in various 384 
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aspects – it is hypersaline (far more saline than the ocean), the largest terminal lake 385 
(without outflow) in the Western Hemisphere (Belovsky et al, 2011), shallow (mean 386 
depth of 5 m) and subject to very strong eutrophication (Belovsky et al, 2011). 387 
According to GSL climatology the lake stays ice-free all winter, and its temperature goes 388 
slightly below freezing only for a very short period in January and February. Thus, we 389 
presume that the CLM lake model needs to allow turbidity variation (see section 3.4). A 390 
solution to this representation problem was use of a bi-weekly climatology over each 1-391 
year period to bound the cycled GSL temperature at initial forecast time not to deviate 392 
more than +/- 3°C from the climatological value interpolated to the current day of year. 393 
Also, using special code, GSL was forced stay ice-free for the whole year as observed.   394 
 395 
3.8   Time step 396 

 397 
The CLM lake model within the HRRR/RAP weather models was run with the same time 398 
step as for other physical processes in the HRRR model (20 s) and the RAP model (60 399 
s).  Again, even with this relatively high frequency for calling the CLM lake model, the 400 
computational expense was extremely small, less than 0.1% of overall HRRR run time. 401 
 402 
 403 
4  Initialization for small lake temps by cycling with defined atmospheric 404 

conditions – a strategy 405 
 406 
The central strategy described in this paper is to use accurate, ongoing atmospheric 407 
forcing with a computationally inexpensive 1-d lake model to obtain an equilibrium state 408 
of a lake temperature profile.  This technique responds appropriately to strong changes 409 
in atmospheric forcing (e.g., cold air outbreak or excessive heat events).   With the 410 
NOAA HRRR and RAP atmospheric models performing hourly data assimilation of a 411 
broad set of hourly observations, accurate atmospheric forcing is available. 412 
 413 
The RAP and HRRR hourly data assimilation cycles include these aspects, all of which 414 
are important for cycling initialization of inland lakes. First, cloud assimilation (from 415 
satellite and ceilometer data) to ensure accurate shortwave and longwave radiation 416 
fields (Benjamin et al 2021).  Second, radar reflectivity data are assimilated as part of a 417 
3-km ensemble data assimilation system to ensure accurate short-range precipitation 418 
(Weygandt et al, 2022, Dowell et al, 2022, James et al, 2022, Benjamin et al, 2016).  419 
Finally, 2-m air temperature and moisture and 10-m wind observations are effectively 420 
assimilated (i.e., producing more accurate predictions) including representation through 421 
the boundary layer using pseudo-innovations (James and Benjamin, 2017).  Other 422 
information on the HRRR/RAP data assimilation is provided by Benjamin et al (2016). 423 
 424 
The cycling of the 10-level CLM lake model within the experimental HRRRv4 started on 425 
24 August 2018.  After 10 days of cycling (Fig. 5), differences in lake temperatures 426 
between HRRRv4 and the operational HRRRv3 using interpolated NSST data were 427 
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evident of 5-15°F (3-12°C or 276-285 K), showing that the adjustment with realistic 428 
atmospheric conditions and use of the CLM lake model with roughly accurate lake depth 429 
data was very effective.   430 
 431 
Consequences (to 
right) from strategy 
for lake initialization 
(below) 

Coupling 
lake and 
atmosphere 
within 
initialization 

Lake temps in 
spring-summer 

Lake temps in fall 

SST interpolation to 
small lakes 

None Much too cold, 
especially for shallow 
lakes 

Still generally too cold 
but intermittently too 
warm after cold-air 
outbreaks. 

Lake annual variation 
forced by reanalysis 
atmospheric data – 1-
way cycling from 
atmospheric forcing 

1-way More accurate, 
possibly still too cold.  
No regime variation in 
a given year 

More accurate, still too 
cold for some lakes with 
too-deep bathymetry 
data.  Will not capture 
variation from weather 
regimes in a given year 

2-way cycling 2-way More accurate 
including yearly 
anomalies 

More accurate including 
yearly anomalies 

 432 
Table 4.  Expected seasonal lake-atmosphere temperature consequences from different 433 
lake initialization strategies 434 
 435 
 436 
Possible approaches for initializing lake temperatures are summarized in Table 4.  The 437 
simplest option is via larger-scale water temperature data (SST data) with horizontal 438 
interpolation to smaller water areas including inland lakes and reservoirs; this was the 439 
previous strategy for the HRRR and RAP models before introduction of cycling using 440 
the CLM lake model. An alternate strategy is to run lake models over a multi-year period 441 
forced by reanalysis atmospheric data (ERA-Interim) as described by Balsamo et al 442 
(2012), Dutra et al (2010), and Balsamo (2013) for the ECMWF to obtain a yearly 443 
varying climatology of lake temperature for all lakes represented. This method will 444 
capture the mean annual variation of lake temperatures. However, due to multi-year 445 
averaging, it cannot represent anomalous conditions in a given year (sustained heat or 446 
sustained cold conditions), which can modify temperatures especially for shallow lakes 447 
by several K within 1-2 weeks. Full cycling of the lake model within an ongoing coupled 448 
weather model, the strategy described in this paper, can represent the lingering effects 449 
of anomalously warm or cold weather upon lake temperatures and the resultant fluxes.  450 
ECMWF applies a similar ongoing cycling for lake prognostic variables (ECMWF 2020) 451 
for lake initialization.   452 
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 453 
Figure 6.  Skin temperature (K) including lake temperatures.  From 18-h forecasts valid 454 
at 15 UTC 3 September 2018 for a) operational HRRRv3 using NSST for lake 455 
temperatures, and b) experimental HRRRv4 with CLM lake model and cycling.  456 
 457 
A similar challenge is initialization of lake ice cover. Similar to the treatment for lake 458 
temperature, cycling of a multi-level lake model (like the CLM lake model) can provide 459 
an alternative, adaptive-in-time method for lake-ice initialization.  NOAA has used in the 460 
HRRR and RAP the daily IMS ice cover product1 (US National Ice Center, 2008) for 461 
binary (non-fractional) lake ice cover. The IMS ice cover is used for oceans and large 462 
lakes (e.g., for RAP in Fig. 1b, for Great Slave Lake and Great Bear Lake in northern 463 
Canada). For small lakes below the resolution of the IMS ice map, lakes stayed open for 464 
the winter before introduction of the CLM lake model with lake cycling (for grid-point-465 
specific temperature and ice cover) starting with HRRRv4 and RAPv5. 466 
 467 
 468 
5 Results 469 

 470 
In this section, we describe comparisons of lake surface temperature evolution between 471 
the CLM implementation described here and the lake specification through interpolation 472 
from the NSST dataset (Fig. 3) at lakes in the United States and southern Canada. 473 
 474 

 
1 https://usicecenter.gov/Products/ImsHome 
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Comparisons during 2018–2019 were drawn from real-time simulations from the then-475 
operational HRRRv3 (using interpolated SST) and the experimental HRRRv4 (using 476 
CLM). More recent comparisons were made for March–November 2021 between the 477 
operational HRRRv4 (using CLM) and interpolated NSST values (as used in 2019-2020 478 
for HRRRv3).  In addition, the CLM and NSST values were compared to in situ 479 
observations where available and also to satellite-based estimates defined below.  480 
 481 
 482 
   483 

 
 484 
Fig.  7.   Difference (K) in skin temperature (including lake temperatures) between 485 
versions of HRRR model using cycled lake-model values (HRRRv4 or HRRRX) and   486 
using interpolated NSST data (HRRRv3 or HRRR-NCEP).   Valid 1300 UTC 13 October 487 
2019, and also includes differences from use of FVCOM lake model in HRRRv4 488 
(Fujisaki-Manome et al, 2020).      489 
 490 
5.1    Cases from 2018 – 2019 491 
 492 
Introduction of the CLM lake model forced by ongoing HRRRv4 atmospheric conditions 493 
(i.e., cycling) allowed, within only 10 days, an increase in lake temperatures for Red 494 
Lake and Lake of the Woods (both in Minnesota) from 3 K to over 10 K (Fig. 6) in 495 
September 2018. A comparison in skin temperature for a year later (October 2019) 496 
between versions of the HRRR model (HRRRv4 with lake cycling vs. HRRRv3) 497 
including differences from with and without lake cycling is shown in Fig. 7. Higher 498 
temperatures were evident for the Minnesota/Ontario lakes from cycling (vs. NSST 499 
interpolation).     HRRRv4 also included coupling with the 3-d FVCOM lake model for 500 
the Laurentian Great Lakes, showing areas of upwelling with associated cooler water 501 
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over Lake Superior in Fig. 7 from predominant westerly to southwesterly near-surface 502 
wind at this time. 503 
 504 
Lake 
number 

Lake name State/province, 
country 

HRRR 
I point 

HRRR 
j point 

Area 
(km2) 

Depth 
used (m) 

Ice 
free? 

1 Simcoe ON, CA 1378 799  6 N 
2 St. Clair ON/MI, CA/US 1302 709 1240 6 N 
3  Champlain VT/NY, US 1534 835  77 N 
4  Sebago ME, US 1610 833  33 N 
5 Okefenokee FL, US 1459 145 1510 3 Yes 
6 Pontchartrain LA, US 1136 224 2180 10 Yes 
7 Intracoastal 

Waterway 
(near Corpus 
Christi, TX) 

TX, US 905 128 3300 10 Yes 

8 Salton Sea CA, US 337 387  9 Yes 
9 Tahoe NV/CA, US 259 628  313 N 
10 Great Salt UT, US 486 653 3050 3 Yes 
11 Utah UT, US 496 622  3 N 
12 Bear ID/UT, US 518 684  29 N 
13 Sakakawea ND, US 790 868  27 N 
14 Winnebago WI, US 1143 742  7 N 
15 Lower Red MN, US 961 880  5 N 
16 Lake of the 

Woods 
MB/MN, 
CA/US 

965 919 3030 32 N 

17 Manitoba MB, CA 879 972 3240 5 N 
18 Winnipeg MB, CA 916 977 13270 8 N 
19 Nipigon ON, CA 956 956 5410 55 N 

Table 5.  Lakes for comparison of lake temperatures between HRRR/CLM, NASA 505 
SPoRT, NSST, and in situ observations as shown in Figs. 8 and 9.  Area is shown for 506 
lakes >1000 km2.  Lake depths are constant within each lake except for lakes 2, 3, and 507 
18.   See Fig. 5 for example map of lake depth used in HRRR. Specific HRRR i/j 3-km 508 
grid points (indicated in table) were selected from HRRR data for each lake. 509 
  510 
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 511 
 512 

Name of Lake No. 
from 
Tab. 
5 

Source of 
Observation 

Depth of 
Sensor 
(m) 

URL 

Lake St. Clair 2 ECCC 6 https://www.ndbc.noaa.gov/station_page.php?station=45147 
Lake 
Champlain - 
Schuyler Reef 

3 GLERL 0.45 https://www.ndbc.noaa.gov/station_page.php?station=45195 

Sebago Lake  
@ Lower 

4 Portland 
Water 
District Buoy 

Est 1 https://www.pwd.org/sebago-lake-monitoring-buoy 

Lake 
Pontchartrain 
@ New Canal 
Station 

6 NOAA/ 
National 
Ocean 
Service 

0.6 https://www.ndbc.noaa.gov/station_page.php?station=nwcl1 

Intracoastal 
Waterway @ 
Baffin Bay 
near Padre 
Island 

7 

Texas 
Coastal 
Ocean 
Observing 
Network 

unknown https://www.ndbc.noaa.gov/station_page.php?station=babt2 

Lake Tahoe 9 NASA/JPL 0.5 https://laketahoe.jpl.nasa.gov/get_imp_weather 
Utah Lake @ 
Provo Marina 

11 Utah DWQ 
Water 
Quality 
Network 

unknown https://wqdatalive.com/public/669 

Bear Lake 12 Utah DNR 
State Parks 

unknown https://stateparks.utah.gov/parks/bear-lake/current-
conditions/ 

Lake 
Sakakawea @ 
Missouri River 
near Williston, 
ND 

13 USGS unknown https://waterdata.usgs.gov/monitoring-location/06330000/ 
#parameterCode=00065&period=P7D 

 513 
Table 6.  Sources of available in situ data among 19 lakes in Table 5.   514 
 515 
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 516 
 517 
Figure 8.   Locations of 19 lakes (see Table 5) for lake temperature intercomparison.  518 
These lakes are shown as mapped onto the 3-km CONUS HRRR model domain. 519 
 520 
 521 
5.2     Comparisons of different lake temperature estimates for 19 lakes from lower 48 522 

US and southern Canada during 2021. 523 
 524 
During a period from March to November 2021, a comparison was made of lake 525 
temperatures between the cycled HRRR-CLM values and those from three other 526 
estimates from NASA, NOAA, and in situ observations. A geographically diverse set of 527 
19 lakes over the lower 48 United States and southern Canada was selected for these 528 
comparisons as listed in Table 5 and shown in Fig. 8. Lakes selected included near-529 
ocean lagoon areas separated from ocean areas by coastal land as resolved by the 3-530 
km land-water mask as discussed in section 3.2. The water areas also included a 531 
reservoir (Lake Sakakawea). Some of these lakes are dimictic or polymictic (with ice 532 
cover part of each year, Lewis 1983) but five of them do not experience any ice cover 533 
(Table 5), and lakes 5, 6, 7, and 8 are monomictic.  The CLM lake model was cycled for 534 
all these lakes in the 3-km HRRR model. The 19 lakes included seven lakes with a 535 
surface area greater than 1,000 km2. The March-November evaluation period include 536 
the spring-summer warming period and the cooling period in autumn. Data points were 537 
obtained monthly for March-August and weekly for September-November. 538 
 539 
 540 
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 542 
Figure 9.  Lake temperatures in 2021 (April-October) from the 19 selected lakes (Table 543 
5, Fig. 8) from HRRR-CLM-cycled (blue), NSST (red), SPoRT (gray), in situ (orange). 544 
 545 
 546 
The HRRR-CLM values for these 19 lakes were compared with first, an estimate from 547 
NASA SPoRT (Short-Term Prediction Research and Transition) real-time surface water 548 
temperature composite including time-weighted MODIS and VIIRS data for inland lakes 549 
(NASA, 2021, Kelley et al, 2021). The composite is valid from the surface to 2-m depth 550 
and is averaged over a 7-day period to mitigate for cloud cover on a given day. A 551 
second lake temperature estimate is that from NSST, as discussed earlier. Third, in situ 552 
surface water temperature observations were available from observing platforms in nine 553 
of the 19 lakes (Table 6).   The platforms are operated by Federal, state, and local 554 
government agencies and a regional ocean observing system. The depths of the water 555 
temperature observations were only available at four of the nine platforms. At these four 556 
sites, the depth ranged from 0.45 to 0.9 m.  557 
 558 
In general, the HRRR-CLM-cycled lake temperatures showed the anticipated difference 559 
from NSST values with quicker summer warming from HRRR-CLM cycling for all lakes 560 
except the southern 3 lakes (5, 6, 7 in Table 5, with Lakes 6 and 7 essentially lagoons in 561 
close proximity to the ocean) and Bear Lake in UT/ID (Lake 12, 39-m depth). The NSST 562 
estimates were colder for spring through summer than HRRR values for 15 of the 19 563 
lakes, a consequence from the NSST estimate via horizontal interpolation from deeper 564 
bodies of water.    565 
 566 
For the nine lakes with in situ observations (Table 6), the HRRR-CLM-cycled lake 567 
temperatures are generally able to better capture weekly variability in summer and 568 
autumn months, associated with windy periods increasing mixing or relatively warm and 569 
cool weather periods or varying amounts of cloud cover.  This can be seen, for 570 
example, at Utah Lake and the Intracoastal Waterway west of Padre Island in Texas 571 
(note cooling from passage of Hurricane Nicholas in mid-September).  The most 572 
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dramatic improvement of HRRR-CLM over NSST lake temperatures is seen at Lake 573 
Tahoe and lakes 14-19 in the northern region, with NSST estimates 5-10 K too cool.  At 574 
two of the lakes with in situ observations, the Intracoastal Waterway (linked to the 575 
ocean) and Lake Pontchartrain, both lagoons linked to the ocean, NSST estimates are 576 
generally closer than HRRR-CLM to the observations.   577 
 578 
HRRR-CLM lake temperatures matched in situ observations well for the northern lakes, 579 
usually within 1-2 K.   In contrast, the lake temperature values from SPoRT were 580 
generally warmer than HRRR or in situ observations in the autumn period.  The SPoRT 581 
observations showed a strong confirmation of HRRR-CLM-cycled lake temperatures for 582 
lakes in the western US (Lakes 8-13) and most lakes in the northern areas (Lakes 4, 583 
14-19).  Finally, the HRRR-CLM-cycled lake temperatures during this period often 584 
varied strongly from the NSST estimates, with differences of up to 5-10 K (largest 585 
difference with Red Lake,  Lake 15).    The effect of lake depth was evident with a faster 586 
transition to fully mixed lakes for shallow lakes (e.g., 5-m depth for Red Lake in MN, 587 
Lake 15 in Table 5) but subject to more temporal and horizontal variation for deeper 588 
lakes.   Fig. 10 showed a strong intralake variation of 9 K across Lake of the Woods 589 
(32-m depth) in the HRRR-CLM estimate in contrast with very little variation (< 1 K) 590 
across Red Lake.  Due to a lack of high-resolution observations of lake surface 591 
temperatures, it is difficult to determine which intralake variations are more realistic.  592 
However, we think some of these intralake contrasts from HRRR-CLM may be 593 
exaggerated from actual values, possibly requiring introduction of a small temperature 594 
exchange rate (diffusion) between adjacent lake columns.  Differences in skin 595 
temperature (e.g., SPoRT) and bulk temperature (e.g., in situ) for lakes have been 596 
noted (e.g., Wilson et al, 2013) of up to 0.5 K, but the HRRR vs. NSST differences in 597 
this study are generally much larger than this magnitude. 598 
 599 
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 600 

Fig. 10.  HRRR-CLM lake temperature (K) for 1500 UTC 31 July 2021 for area over 601 
northern Minnesota (US) and southwestern Ontario (Canada). 602 
 603 
The main deficiencies evident so far with the HRRR-CLM lake temperatures appear to 604 
be associated with errors in lake depth values. On the average, the lake depth for most 605 
lakes is too deep, since the preprocessing with the K12 dataset simply assigned a 606 
single lake depth value (maximum or mean) to all grid points for that lake even up to the 607 
modeled lake points adjacent to land, as shown in Table 5 for 16 or the 19 lakes 608 
studied. We also noted too-low lake temperatures in HRRRv4 for lake grid points at the 609 
western edge of a few lakes (e.g., Tahoe, Sebago (ME), Cayuga (NY), Champlain), all 610 
relatively deep lakes (Fig. 6, Table 5).  We attribute this to 1-d upwelling from 611 
insufficient bathymetry data resulting in cylinder-like lake volumes with constant lake 612 
depths, therefore with a) too-deep lake-edge pixels coinciding with b) strong winds 613 
coming off from land areas with predominantly westerly winds.  This deficient effect was 614 
not widespread for the HRRR model and did not affect the overall results. Again, this 615 
behavior is attributed to the behavior of the lake model over integrations with the 616 
inaccurate lake depth information and not to the lake cycling initialization design. 617 
 618 
 619 
6 Conclusions 620 

 621 
We report here on the first use of a small-lake model (CLM4.5, 10 layer) in US NOAA 622 
NWP models along with an ongoing cycling of lake temperatures since 2018 to initialize 623 
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lake temperatures in each prediction. These models are the 3-km HRRRv4 (D22, J22) 624 
and 13-km RAPv5 hourly updated models, both of which became operational in 625 
December 2020 after cycling since August 2018. At 3-km grid spacing, the HRRR 626 
model applied this small-lake modeling and assimilation to 1864 small lakes varying in 627 
size from about 10 km2 (single grid point) to 14 larger lakes over 1000 km2 in surface 628 
area, but not including the Laurentian Great Lakes. The effectiveness of introducing the 629 
multi-layer lake model into the HRRR and RAP models was completely dependent on 630 
the initialization for lake temperatures. The introduction of a cycling capability through 631 
the hourly assimilation allowed the lake temperatures to evolve to accurate values, 632 
consistent with recent weather. In this paper, we describe the lake cycling applied for 633 
the NOAA regional 3-km HRRR and 13-km RAP weather models including the coupled 634 
1-d CLM lake model. We also show some comparisons with other estimates of lake 635 
temperatures. From those comparisons, the cycled lake temperatures from the 3-km 636 
HRRR model were found to be reasonably accurate. HRRR lake temperatures were 637 
found to be generally within 1 K of in situ observations and within 2 K of the SPoRT 638 
estimates. Finally, NSST estimates of small-lake temperatures were found to often differ 639 
from in situ observations and HRRR estimates by 5-12 K. Other differences between 640 
lake-cycled HRRR estimates and SST-based estimates were up to 10-15 K.  641 
 642 
From these initial results, we conclude that the lake-cycling initialization for small lakes 643 
has been effective overall, owing to accurate hourly estimates of near-surface 644 
temperature, moisture and winds, and shortwave and longwave estimates provided to 645 
the 1-d CLM lake model every time step (20 s for 3-km HRRR model). The HRRR-CLM 646 
treatment also allows some inland lakes to freeze in winter, which is more consistent 647 
with observations.  The lake cycling strategy is similar to that initialization method used 648 
by ECMWF for its 9-km (as of 2021) IFS (Integrated Forecast System) and using a 649 
binary lake mask in the 3-km HRRR model. 650 
 651 
One deficiency noted due was development of too-cold lake surface for a few lakes on 652 
their western boundary.  We attribute this to the incorrect bathymetry data with constant 653 
lake depth (e.g., see caption for Table 5) causing an excessive 1-d upwelling from too-654 
deep lake depth at western shores for these lakes. This issue is being addressed with a 655 
current project to improve lake bathymetry data for which results will be reported in the 656 
future.  Also, HRRR-CLM cycling gave poorer results than NSST at least for Lake 657 
Pontchartrain (Lake #6 in Table 5), suggesting to use NSST for near-ocean lagoon 658 
areas.   More investigation is needed for strong intralake variations overall in HRRR-659 
CLM-cycling representation (e.g., Lake of the Woods in Fig. 10) and possible 660 
introduction of horizontal diffusion of temperature between adjacent lake points. 661 
 662 
US NWS forecasters have reported much improved near-surface temperature and 663 
dewpoint predictions in the vicinity of small lakes from the 3-km HRRR model in 2021 664 
since the implementation of the 1-d CLM lake model and lake-cycling initialization.  665 
Again, this effort complements the coupling of the HRRR model with the 3-d FVCOM 666 
hydrodynamical lake model for the Laurentian Great Lakes (Fukisaki-Manome et al, 667 
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2020) design to improve lake-effect snow predictions. These efforts are the most 668 
advanced lake-coupling and lake-initialization efforts at this point in US NOAA weather 669 
models. 670 
 671 
Overall, the improved lake temperatures from the lake cycling initialization technique 672 
driven over a 3-year period by accurate atmospheric conditions described here results 673 
in improved fluxes of heat and moisture over using SST interpolation and improved 674 
nearby predictions of atmospheric 2-m temperature and 2-m moisture.  675 

Code availability 676 

This research used WRF version 3.9.1 including use of the option with the CLM lake 677 
model.  All code is available from the National Center for Atmospheric Research 678 
(NCAR) at https://www2.mmm.ucar.edu/wrf/users/download/get_sources.html 679 

Data availability 680 
HRRR data are publicly available via archives hosted by Amazon Web Services 681 
(https://registry.opendata.aws/noaa-hrrr-pds/) and Google Cloud Platform 682 
(https://console.cloud.google.com/marketplace/product/noaa-public/hrrr?project=python- 683 
232920&pli=1). 684 

Author contributions 685 

SB, TS, and EJ planned the design.   TS and EJ carried out the actual coding for 686 
modeling, data assimilation and scripts.  EJ, SB, JK, and SK extracted data from 687 
experiments and other sources.   EJ and JK analyzed the results.   SB wrote the 688 
manuscript draft and led its revision.  EA, AFM, JK, GM, AG and PC (along with TS and 689 
EJ) reviewed and edited the manuscript. 690 

Acknowledgments 691 
Credit is due to the WRF model team at NCAR (Jimy Dudhia) for their help in applying 692 
the CLM lake model for the HRRR and RAP applications of the WRF model.   We 693 
greatly appreciate our NOAA colleague, Thomas Hamill (NOAA PSL), for Fig. 4 from 694 
another already published article by him.  We also thank Frank J. LaFontaine and Kevin 695 
K. Fuell of the NASA SPoRT Team for providing archived Northern Hemisphere SST 696 
composites.  Thanks also to Rob Cifelli of NOAA/PSL for a very helpful review of our 697 
manuscript.  This work was supported by NOAA Research base funding. 698 

References 699 
Anderson, E. J., Fujisaki-Manome, A., Kessler, J., Lang, G. A., Chu, P. Y., Kelley, J. G. 700 
W., et al.: Ice forecasting in the next-generation Great Lakes Operational Forecast 701 
System (GLOFS). Journal of Marine Science and Engineering, 6(123),  702 
https://doi.org/10.3390/jmse6040123, 2018 703 

Balsamo, G., Salgado, R., Dutra, E., Boussetta, S., Stockdale, T., Potes, M.:  On the 704 
contribution of lakes in predicting near-surface temperature in a global weather 705 
forecasting model.   Tellus A: Dynamic Meteorology and Oceanography.  706 
https://doi.org/10.3402/tellusa.v64i0.15829, 2012 707 

https://doi.org/10.5194/gmd-2021-409
Preprint. Discussion started: 8 February 2022
c© Author(s) 2022. CC BY 4.0 License.



 29 

Balsamo, G., Interactive lakes in the Integrated Forecast System.   ECMWF Newsletter 708 
137, p. 30-34.  10.21957/rffv1gir, 2013. 709 
 710 
Balsamo, G., Mahfouf, J.-F.:  Les schémas de surface continentale pour le suivi et la 711 
prévision du système Terre au CEPMMT.  La Météorologie, 108, 77-81, 2020. 712 
 713 
Belovsky, G., Stephens, D., Perschon, C., et al.:  The Great Salt Lake Ecosystem (Utah, 714 
USA): long term data and a structural equation approach, Ecosphere, 2, 1-40, 715 
doi.org/10.1890/ES10-00091.1, 2011. 716 
 717 
Benjamin, S.G., D. Devenyi, S.S. Weygandt, K.J. Brundage, J.M. Brown, G. Grell, D. 718 
Kim, B.E. Schwartz, T.G. Smirnova, T.L. Smith, G.S. Manikin: An hourly 719 
assimilation/forecast cycle:  the RUC.  Mon. Wea. Rev., 132, 495-518. 2004. 720 

Benjamin, S.G., B.D. Jamison, W.R. Moninger, S. R. Sahm, B. Schwartz, T.W. 721 
Schlatter: Relative short-range forecast impact from aircraft, profiler, radiosonde, VAD, 722 
GPS-PW, METAR, and mesonet observations via the RUC hourly assimilation 723 
cycle. Mon. Wea. Rev., 138, 1319-1343.  2010. 724 

Benjamin, S. G., S.S. Weygandt, M. Hu, C.A. Alexander, T.G. Smirnova, J.B. Olson, 725 
J.M. Brown, E. James, D.C. Dowell, G.A. Grell, H. Lin, S.E. Peckham, T.L. Smith, W.R. 726 
Moninger, G.S. Manikin: A North American hourly assimilation and model forecast 727 
cycle: The Rapid Refresh.  Mon. Wea. Rev., 144, 1669-728 
1694.  http://dx.doi.org/10.1175/MWR-D-15-0242.1 .  2016. 729 

Benjamin, S.G., E.P. James, M. Hu, C.R. Alexander, T.T. Ladwig, J.M. Brown, S.S. 730 
Weygandt, D.D. Turner, P. Minnis, W.L. Smith, Jr., and A. Heidinger:  Stratiform cloud-731 
hydrometeor assimilation for HRRR and RAP model short-range weather prediction.   732 
Mon. Wea. Rev., 149, 2673-2694.  https://doi.org/10.1175/MWR-D-20-0319.1.  2021. 733 

Benjamin, S.G., T.G. Smirnova, E.P. James, L.-F. Lin, M. Hu, D.D. Turner, and S. He:  734 
Land-snow assimilation including a moderately coupled initialization method applied to 735 
NWP.   J. Hydromet., 23, accepted.  2022. 736 
 737 
Boussetta, S.; Balsamo, G.; Arduini, G.; Dutra, E.; McNorton, J.; Choulga, M.; Agustí-738 
Panareda, A.; Beljaars, A.; Wedi, N.; Munõz-Sabater, J.; de Rosnay, P.; Sandu, I.; 739 
Hadade, I.; Carver, G.; Mazzetti, C.; Prudhomme, C.; Yamazaki, D.; Zsoter, E.: 740 
ECLand: The ECMWF Land Surface Modelling System. Atmosphere, 12, 723. 741 
https://doi.org/10.3390/atmos12060723, 2021. 742 
 743 
Charusombat, U., Fujisaki-Manome, A., Gronewold, A. D., Lofgren, B. M., Anderson, E. 744 
J., Blanken, P. D., Spence, C., Lenters, J. D., Xiao, C., Fitzpatrick, L. E., and Cutrell, G.: 745 
Evaluating and improving modeled turbulent heat fluxes across the North American 746 
Great Lakes, Hydrol. Earth Syst. Sci.,  22, 5559–5578, https://doi.org/10.5194/hess-22-747 
5559-2018, 2018. 748 

https://doi.org/10.5194/gmd-2021-409
Preprint. Discussion started: 8 February 2022
c© Author(s) 2022. CC BY 4.0 License.



 30 

 749 
Chen, C., Beardsley, R. C., & Cowles, G.: An unstructured grid, finite volume coastal 750 
ocean model (FVCOM) system. Oceanography, 19(1), 78–89. 751 
https://doi.org/10.5670/oceanog.2006.92, 2006. 752 
 753 
Chen, C., Beardsley, R., Cowles, G., Qi, J., Lai, Z., Gao, G., et al.: An unstructured grid, 754 
Finite-Volume Coastal Ocean Model FVCOM -- User Manual. Tech. Rep., 755 
SMAST/UMASSD-13-0701, Sch. for Mar. Sci. and Technol., Univ. of Mass. Dartmouth, 756 
New Bedford., 416 pp., 2013 757 
 758 
Choulga, M., Kourzeneva, E., Balsamo, G., Boussetta, S., and Wedi, N.: Upgraded 759 
global mapping information for earth system modelling: an application to surface water 760 
depth at the ECMWF, Hydrol. Earth Syst. Sci., 23, 4051–4076, 761 
https://doi.org/10.5194/hess-23-4051-2019, 2019. 762 
 763 
De Pondeca, M.S.F.V., Manikin, G.S., DiMego, G., Benjamin, S.G., Parrish, D.F., 764 
Purser, R.J., Wu. W.-S., Horel, J.D., Myrick, D.T., Lin, Y., Aune, R.M., Keyser, D., 765 
Colman, B., Mann, G., and Vavra, J.: The Real-Time Mesoscale Analysis at NOAA’s 766 
National Centers for Environmental Prediction: Current status and development. Wea. 767 
Forecasting, 26, 593-612, https://doi.org/10.1175/WAF-D-10-05037.1., 2011 768 
 769 
Dirmeyer, P.A., Halder, S., Bombardi, R.:  On the harvest of predictability from land 770 
states in a global forecast model.  J. Geophys. Res. Atmospheres, 123,  13,111-771 
13,127.   https://doi.org/10.1029/2018JD029103, 2018. 772 
 773 
Dowell, D. C., C. R. Alexander, E. P. James, S. S. Weygandt, S. G. Benjamin, G. S. 786 
Manikin, B. T. Blake, J. M. Brown, J. B. Olson, M. Hu, T. G. Smirnova, T. Ladwig, J. S. 787 
Kenyon, R. Ahmadov, D. D. Turner, and T. I. Alcott: The High-Resolution Rapid Refresh 788 
(HRRR): An hourly updating convection-allowing forecast model. Part I: Motivation and 789 
system description. Wea. Forecasting, accepted with revision. 2022. 790 

Downing, J.A. et al:  The global abundance and size distribution of lakes, ponds, and 791 
impoundments.  Limnol. Oceanogr., 51, 2388-2397. 2006. 792 
 793 
Dutra, E, Stepanenko, V. M, Balsamo, G, Viterbo, P, Miranda, P. M and co-authors: An 794 
offline study of the impact of lakes on the performance of the ECMWF surface scheme. 795 
Boreal Env. Res. 15, 100–112, 2010. 796 
 797 
ECMWF, OpenIFS: Lakes, 798 
https://confluence.ecmwf.int/display/OIFS/3.5+OpenIFS:+Lakes.  Accessed 7 Dec 2021, 799 
2020.  800 
 801 
Fujisaki-Manome, A., G. E. Mann, E. J. Anderson, P. Y. Chu, L. E. Fitzpatrick, S. G. 802 
Benjamin, E. P. James, T. G. Smirnova, C. R. Alexander, and D. M. Wright: 803 
Improvements to lake-effect snow forecasts using a one-way air-lake model coupling 804 

https://doi.org/10.5194/gmd-2021-409
Preprint. Discussion started: 8 February 2022
c© Author(s) 2022. CC BY 4.0 License.



 31 

approach. J. Hydrometeor., 21, 2813-2828, https://doi.org/10.1175/JHM-D-20-0079.1, 805 
2020. 806 
 807 
Gao, G., C. Chen, J. Qi, and R. C. Beardsley: An unstructured-grid, finite-volume sea 808 
ice model: Development, validation, and application. J. Geophys. 809 
Res., 116, C00D04, https://doi.org/10.1029/2010JC006688.  2011. 810 
 811 
Gemmill, W., B. Katz, and X. Li: Daily real-time, global sea surface temperature—High-812 
resolution analysis: RTG_SST_HR.  NCEP Office Tech. Note 260, 39 pp. Available 813 
online at http://polar.ncep.noaa.gov/mmab/papers/tn260/MMAB260.pdf , 2007. 814 
 815 
Gu, H., Jin, J., Wu, Y., Ek, M.B., and Subin, Z.M.:  Calibration and validation of lake 816 
surface temperature simulations with the coupled WRF-lake model.  Climatic Change, 817 
129, 471-483.  DOI 10.1007/s10584-013-0978-y, 2015. 818 
 819 
Hamill, T.M.:  Benchmarking the raw model-generated background forecast in rapidly 820 
updated surface temperature analyses.  Part I: Stations.  Mon. Wea. Rev., 148, 689-821 
700.  https://doi.org/10.1175/MWR-D-19-0027.1, 2020. 822 
 823 
Hostetler, S.W., Bates, G., Giorgi, F.:  Interactive coupling of a lake thermal model with 824 
a regional climate model.  J. Geophys. Res., 98, 5045-5057. DOI:10.1029/92JD02843, 825 
1993. 826 

Hunter, T. S., Clites, A. H., Campbell, K. B., & Gronewold, A. D.: Development and 827 
application of a monthly hydrometeorological database for the North American Great 828 
Lakes - Part I: precipitation, evaporation, runoff, and air temperature. Journal of Great 829 
Lakes Research, 41(1), 65–77, 2015 830 

James, E. P., and S. G. Benjamin: Observation system experiments with the hourly 831 
updating Rapid Refresh model using GSI hybrid ensemble-variational data 832 
assimilation. Mon. Wea. Rev., 145(8), 2897-2918. https://doi.org/10.1175/MWR-D-16-833 
0398.1, 2017. 834 
 835 
James, E. P., C. R. Alexander, D. C. Dowell, S. S. Weygandt, S. G. Benjamin, G. S. 836 
Manikin, J. M. Brown, J. B. Olson, M. Hu, T. G. Smirnova, T. Ladwig, J. S. Kenyon, and 837 
D. D. Turner: The High-Resolution Rapid Refresh (HRRR): An hourly updating 838 
convection-allowing forecast model. Part II: Forecast performance. Wea. Forecasting., 839 
accepted with revision, 2022. 840 
 841 
Kelley, S.G.T, J.G.W. Kelley, and E.J. Anderson: Evaluation of the NASA SPoRT 842 
Composite Product of surface water temperatures for large lakes in New England and 843 
New York State.  Abstract, 24th Conference on Satellite Meteorology, Oceanography, 844 
and Climatology.  Available at 845 
https://ams.confex.com/ams/101ANNUAL/meetingapp.cgi/Paper/381301, 2021. 846 
 847 

https://doi.org/10.5194/gmd-2021-409
Preprint. Discussion started: 8 February 2022
c© Author(s) 2022. CC BY 4.0 License.



 32 

Kourzeneva, E., Asensio, H., Martin, E., Faroux: Global gridded dataset of lake 848 
coverage and lake depth for use in numerical weather prediction and climate modelling. 849 
Tellus A., 64: 15640. 10.3402/tellusa.v64i0.15640, 2012. 850 
 851 
Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C., Bonan, 852 
G., et al.: The Community Land Model version 5: Description of new features, 853 
benchmarking, and impact of forcing uncertainty. Journal of Advances in Modeling Earth 854 
Systems, 11, 4245-4287. https://doi.org/10.1029/2018MS001583, 2019. 855 
 856 
Lewis, W. M., Jr.:  A revised classification of lakes based on mixing.  Can. J. Fish. 857 
Aquat. Sci. 40, 1779-1787.  https://doi.org/10.1139/f83-207, 1983 858 
 859 
Mallard, M.S., Nolte, C.G., Spero, T.L., Bullock, O.R., Alapaty, K., Herwehe, J.A., Gula, 860 
J., Bowden, J.H.: Technical challenges and solutions in representing lakes when using 861 
WRF in downscaling applications.  Geosci. Model Dev., 8, 1085-1096, 2015. 862 
 863 
Mironov, D., Heise, E., Kourzeneva, E., Ritter, B., Schneider, N., and Terzhevik, A.: 864 
Implementation of the lake parameterisation scheme FLake into numerical weather 865 
prediction model COSMO, Boreal Environ. Res., 15, 218–230, 2010. 866 
 867 
Muñoz-Sabater, J., H. Lawrence, C. Albergel, P. de Rosnay, L. Isaksen, S. 868 
Mecklenburg, Y. Kerr, and M. Drusch: Assimilation of SMOS brightness temperatures in 869 
the ECMWF Integrated Forecasting System. Quart. J. Roy. Meteor. Soc., 145, 2524–870 
2548, https://doi.org/10.1002/QJ.3577 , 2019. 871 
 872 
NASA:  Surface water temperature composite.   873 
https://weather.msfc.nasa.gov/sport/sst/.   Downloaded 2 Nov 2021, 2021 874 

National Weather Service:  Service Change Notice 20-10.  Available at 875 
https://www.weather.gov/media/notification/scn20-10nsst1_0.pdf , 2020. 876 

Pondeca, M.S.F.V. de, G.S. Manikin, G. DiMego, S.G. Benjamin, D.F. Parrish, R.J. 877 
Purser, W.-S. Wu, J. Horel, Y. Lin, R.M. Aune, D. Keyser, L. Anderson, B. Colman, G. 878 
Mann, and J. Vavra: The Real-Time Mesoscale Analysis at NOAA's National Centers for 879 
Environmental Prediction: Current Status and Development. Wea. Forecasting, 26, 593-880 
612. 2011. 881 

Railsback, B.:  Some fundamentals of mineralogy and geochemistry.  Figure on lake 882 
salinity at http://railsback.org/Fundamentals/SFMGLakeSize&Salinity07I.pdf, 2006 883 
 884 
Skamarock, W. C., and Coauthors, 2019: A description of the Advanced Research WRF 885 
version 4. NCAR Tech. Note NCAR/TN-556+STR, 162 pp., [Available online at 886 
http://www2.mmm.ucar.edu/wrf/users/docs/technote/v4_technote.pdf].  2019. 887 
 888 

https://doi.org/10.5194/gmd-2021-409
Preprint. Discussion started: 8 February 2022
c© Author(s) 2022. CC BY 4.0 License.



 33 

Subin, Z. M., Riley, W. J., & Mironov, D.: An improved lake model for climate 889 
simulations: Model structure, evaluation, and sensitivity analyses in CESM1. Journal of 890 
Advances in Modeling Earth Systems, 4(1). https://doi.org/10.1029/2011ms000072, 891 
2012. 892 
 893 
Thiery, W., Stepanenko, V., Fang, X., Jöhnk, D., Li, Z., Martynov, A., Perroud, M., 894 
Subin, Z., Darchambeau, F., Mironov, D., Van Lipzig, N.:  LakeMIP Kivu: evaluating the 895 
representation of a large, deep tropical lake by a set of one-dimensional lake models, 896 
Tellus A: Dynamic Meteorology and Oceanography, 66:1, 21390, DOI: 897 
10.3402/tellusa.v66.21390, 2014. 898 
 899 

U.S. National Ice Center, updated daily: IMS Daily Northern Hemisphere Snow and Ice 900 
Analysis at 1 km, 4 km, and 24 km Resolutions, Version 1. Boulder, Colorado USA. 901 
NSIDC: National Snow and Ice Data Center. 902 
doi: https://doi.org/10.7265/N52R3PMC.   Accessed 8 November 2021, 2021. 903 
 904 
Vanderkelen, I., van Lipzig, N. P. M., Sacks, W. J., Lawrence, D. M., Clark, M., 905 
Mizukami, N., Pokhrel, Y., and Thiery, W.: The impact of global reservoir expansion on 906 
the present-day climate, EGU General Assembly 2021, online, 19–30 Apr 2021, 907 
EGU21-723, https://doi.org/10.5194/egusphere-egu21-723, 2021 908 
 909 
Verpoorter, C., Kutser, T., Seekell, D.A., and Tranvik. L.J.: A global inventory of lakes 910 
based on high-resolution satellite imagery. Geophys. Res. Lett., 41, 6396–6402, 911 
doi:10.1002/2014GL060641. 2014. 912 
 913 
Wang, F., Ni, G., Riley, W. J., Tang, J., Zhu, D., and Sun, T.: Evaluation of the WRF 914 
lake module (v1.0) and its improvements at a deep reservoir, Geosci. Model Dev., 12, 915 
2119–2138, https://doi.org/10.5194/gmd-12-2119-2019, 2019. 916 
 917 
Weygandt, S. S., S. G. Benjamin, M. Hu, C. R. Alexander, T. G. Smirnova, and E. P. 918 
James: Radar reflectivity-based model initialization using specified latent heating 919 
(Radar-LHI) within a diabatic digital filter or pre-forecast integration.  Wea. Forecasting, 920 
accepted with revision, 2022. 921 
 922 
Wilson, R. C., Hook, S. J., Schneider, P., and Schladow, S. G.: Skin and bulk 923 
temperature difference at Lake Tahoe: A case study on lake skin effect.  J. Geophys. 924 
Res. Atmos., 118, 10,332-10,346, https://doi.org/10.1002/jgrd.50786, 2013. 925 

https://doi.org/10.5194/gmd-2021-409
Preprint. Discussion started: 8 February 2022
c© Author(s) 2022. CC BY 4.0 License.


