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Abstract.  Application of lake models coupled within earth-system prediction models, 30 
especially for predictions from days to weeks, requires accurate initialization of lake 31 
temperatures.  Commonly used methods to initialize lake temperatures include 32 
interpolation of global SST analyses to inland lakes, daily satellite-based observations 33 
or model-based re-analyses. However, each of these methods have limitations in 34 
capturing the temporal characteristics of lake temperatures (e.g., effects of anomalously 35 
warm or cold weather) for all lakes within a geographic region, and/or during extended 36 
cloudy periods.  An alternative lake initialization method was developed which uses 2-37 
way coupled cycling of a small-lake model within an hourly data assimilation system of a 38 
weather prediction model.   The lake model simulated lake temperatures were 39 
compared with other estimates from satellite and in-situ observations and interpolated-40 
SST data for a multi-month period in 2021.   The lake cycling initialization, now applied 41 
to two operational US NOAA weather models, was found to decrease errors in lake 42 
surface temperature from as much as 5-10 K vs. interpolated-SST data to about 1-2 K 43 
compared to available in-situ and satellite observations.   44 

Deleted: Stan Benjamin (stan.benjamin45 

Deleted: short-term 46 
Deleted:  Here, we describe a47 

Deleted: by48 
Deleted: updated49 
Deleted:  to constrain lake temperature evolution.   We 50 
compare these …51 
Deleted: temperature values52 
Deleted:  53 
Deleted:  sets54 
Deleted: 10K (using55 
Deleted: )56 
Deleted: (comparing with57 
Deleted:  58 



 

 2 

 59 
Short summary 60 
 61 
Application of 1-d lake models coupled within earth-system prediction models will 62 
improve accuracy but requires accurate initialization of lake temperatures.   Here, we 63 
describe a lake initialization method by coupled cycling within a weather prediction 64 
model to constrain lake temperature evolution. We compare these lake temperature 65 
values with other estimates and found much reduced errors (down to 1-2 K).   The lake 66 
cycling initialization is now applied to two operational US NOAA weather models. 67 
 68 

1    Introduction  69 
 70 
Inclusion of lake representation into numerical weather prediction (NWP) models has 71 
become increasingly necessary to further improve representation of atmosphere-72 
surface fluxes of heat and moisture as model grid resolution becomes finer. 73 
Representation of lake physics to provide time-varying lake surface properties (e.g., 74 
Subin et al, 2012) is essential to improve fluxes of heat, moisture and momentum 75 
between the surface and atmosphere (Hostetler et al, 1993, Thiery et al, 2014).   Lake 76 
representation is part of the overall surface treatment including land-surface models 77 
(LSMs) necessary to accurately model the evolution of the planetary boundary layer in 78 
the atmosphere. Lakes are estimated to cover 3.7% of the global non-glaciated land 79 
area (Verpoorter et al, 2014), and they significantly moderate sensible heat and 80 
moisture fluxes from this ‘land’ (i.e., non-ocean) area. Water impoundments (reservoirs) 81 
that used to account for about 6% of these ‘lake’ areas (Downing et al, 2006) have 82 
recently increased to 9% (Vanderkelen et al, 2021). Initial conditions for both land and 83 
lake surface are an important consideration due to far larger thermal inertia for soil or 84 
water than for air. Consequently, incorrect soil or lake initial conditions can result in 85 
erroneous heat and moisture fluxes that may persist for days and even weeks (e.g., 86 
Dirmeyer et al, 2018). This potential source of error in fluxes is more pronounced for 87 
lake areas with far larger thermal inertia and heat storage than even saturated soils. 88 
 89 
In operational US NOAA weather prediction models (global and regional) up to this 90 
point, daily sea-surface temperature (SST) analyses have been used to specify the 91 
surface water temperatures for even small inland lakes.  Inland lake temperatures in 92 
North America have been obtained by the interpolation of SST values from the ocean 93 
and the Laurentian Great Lakes.   An alternative is to incorporate one-dimensional (1-d) 94 
lake models within NWP models and use a continuous lake simulation forced by 95 
atmospheric conditions updated regularly by new atmospheric observations to obtain 96 
realistic lake water temperatures (e.g., “cycling”).  This cycling to initialize small lakes in 97 
NOAA operational regional weather prediction models complements loose coupling with 98 
a 3-d hydrodynamical lake model for the Laurentian Great Lakes as described 99 
elsewhere in Fujisaki-Manome et al 2020. 100 
 101 
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Lake representation (via one-dimensional (1-d) models, as in LSMs) within NWP 105 
models is beneficial by providing a first-order accurate lagged effect of the seasonal 106 
variation in temperature, with lake water remaining colder than nearby land in spring 107 
and warmer in autumn. The outcomes are desirable, as described by Balsamo et al 108 
(2012), for instance by accurately representing increased evaporative fluxes in the fall. 109 
Thus, use of a 1-d lake model has the potential to improve over land representation by 110 
capturing this slower seasonal response. 111 
 112 
However, lake temperature initialization from SST (e.g., Mallard et al, 2015) can 113 
exaggerate this seasonal slower response. Shallow lakes warm more slowly in spring 114 
than surrounding land, but more quickly than nearby deeper lakes. Even in summer, it 115 
will take at least 1-2 weeks for cycled 1-d models to adjust from values interpolated from 116 
deeper-lake temperatures to become more realistic for shallow lakes. Therefore, lake 117 
temperature initialization becomes the most important factor to accurately simulate 118 
sensible and latent heat fluxes from lakes for short to medium-range NWP, more so 119 
than the use of the lake model itself. One option to solve the lake initialization problem 120 
is to use a model-based climatology for seasonal variation of lake temperatures 121 
(Balsamo et al (2012) and Balsamo (2013), ECMWF) using a 1-d lake model forced by 122 
reanalysis data.  The 1-d lake model used by ECMWF for this method is the 2-layer 123 
FLake (Freshwater Lake Model) model (Mironov et al, 2010, Balsamo et al, 2012, 124 
Boussetta et al, 2021) and also implemented into their Integrated Forecast System (IFS) 125 
in 2015.  A similar technique was applied by Mironov et al (2010) using FLake for the 126 
COSMO model.  Kourzeneva et al (2012a) describe application of 20-year reanalysis 127 
data to create a global lake climatology dataset using FLake.   This technique avoids a 128 
new spin-up with each new run, but cannot capture unique weather regime variations in 129 
a given region and time. The UK Met Office uses satellite data to update their lake 130 
surface water temperatures using the previous day values as a background (Fiedler et 131 
al, 2014).   Another option to solve the lake initialization problem, described here, is lake 132 
temperature evolution, referred to as “lake cycling”, with the ongoing 1-d lake prediction 133 
within an NWP model, a cost-free option if the atmospheric conditions are relatively 134 
accurate. 135 
 136 
Data assimilation for land-surface fields (e.g., soil temperature, soil moisture, snow 137 
cover, snow water equivalent, snow temperature) has been very beneficial for improved 138 
short-range weather prediction accuracy (e.g., Balsamo and Mahfouf, 2020, Muñoz-139 
Sabater et al, 2019, Benjamin et al, 2022, others), but lake temperature has not been a 140 
part of this surface data assimilation. In December 2020, the two NOAA hourly updated 141 
weather models, the 13-km Rapid Refresh (RAP) and 3-km High-Resolution Rapid 142 
Refresh (HRRR) implemented an interactive small-lake multi-layer 1-d lake model, the 143 
first NOAA weather models to do so.  The lake coverage for the HRRR model is shown 144 
in Fig. 1 (RAP model lake coverage not shown).  The HRRR and RAP weather models 145 
are coupled with the 10-layer Community Land Model (CLM) version 4.5 lake model, 146 
(Subin et al, 2012, Mallard et al, 2015), an option within the community Weather 147 
Research and Forecast model (WRF, Skamarock et al, 2019). The CLM lake model is a 148 
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1-d thermal diffusion model allowing 2-way coupling with the atmosphere.  Virtually no 150 
additional computational cost (<0.1 %) was added by use of the CLM lake model within 151 
the HRRR model.   To initialize small-lake temperatures in the RAP and HRRR, all lake 152 
variables have been evolving (e.g., “lake cycling”) since summer 2018 depending on the 153 
cycled atmospheric conditions and the lake model physics as discussed in section 4.  154 
This cycling is similar to the land-surface cycling in HRRR and RAP as described by 155 
Benjamin et al (2022).  The 1-d lake model cannot represent 3-d hydrodynamical 156 
processes in larger bodies of water. Thus, a second major improvement in 2020 with 157 
lake representation in the NOAA 3-km HRRR model occurred with the implementation 158 
of lagged data coupling with the 3-d hydrodynamic-ice model for the much larger 159 
Laurentian Great Lakes as described by Fujisaki-Manome et al (2020).   These new 160 
improved lake treatments are in the newer HRRR version 4 (HRRRv4) replacing the 161 
previous HRRRv3 (differences described in Dowell et al, 2022; hereafter D22).    162 
 163 
 164 

 165 
Fig. 1.   Small-lake areas for the 3-km HRRR domain using the MODIS 0.15” resolution 166 
data for land/water and lake information.  Only small-lake areas treated in HRRR by the 167 
1-d CLM lake model are shown.  A zoomed-in insert for HRRR small-lake coverage in 168 
the vicinity of the state of Wisconsin is shown in the lower left.   Out of the 1,900,000 169 
grid points in this HRRR CONUS domain, 12,305 of them (~0.6%) are for small lakes 170 
(excluding the 5 Laurentian Great Lakes treated by separate coupling as described in 171 
text).   Lakes circled in black were related to problem reports from US National Weather 172 
Service Forecast Offices on nearby deficient 2 m air temperature or dewpoint forecasts 173 
in NOAA hourly updated models as discussed in section 2. 174 
 175 
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Here, we describe the design and results of a unique approach to inland-small-lake 178 
initialization by cycling with hourly updating of atmospheric conditions (clouds/radiation, 179 
near-surface temperature/moisture/winds). This lake initialization via cycling is an 180 
important component of earth-system coupled modeling for effective NWP, with goals to 181 
improve prediction of 2-m (air) temperature and moisture, cloud, boundary-layer 182 
conditions, and precipitation for situational awareness enabling short-range decision 183 
making (e.g., aviation, severe weather, hydrology, energy). 184 
 185 

2   The Lake Initialization Problem  186 
 187 
For the NOAA hourly updated mesoscale models, used frequently for short-range 188 
weather prediction, poor 2 m air temperature and/or dewpoint forecasts have been 189 
reported intermittently during 2004-2019 by the US National Weather Service (NWS) in 190 
the vicinity of inland lakes (Fig. 1). These hourly updated models included the Rapid 191 
Update Cycle (RUC, Benjamin et al, 2004) with horizontal grid spacing decreasing from 192 
40-km to 20-km to 13-km (Benjamin et al, 2010), succeeded by the 13-km RAP and 3-193 
km HRRR (Benjamin et al, 2016, D22, James et al, 2022 (J22)).  Many of these 194 
reported systematic deficiencies from the US NWS were for the 2.5-km NOAA Real-195 
Time Mesoscale Analysis (RTMA, Pondeca et al. 2011), using 1-h forecasts from the 3-196 
km HRRR as a background. The most common report was too-low 2 m air temperatures 197 
near inland lakes in late spring and summer.  At times, spurious prediction of fog 198 
formation was also noted on or near small lakes due to too-cold lake temperatures and 199 
erroneous heat and moisture fluxes into the atmosphere.   200 
 201 
Further investigation revealed the water temperatures for small lakes used in NOAA 202 
weather models were assigned via horizontal interpolation from larger, deeper bodies of 203 
water (with available AVHRR data) in the design for the NOAA real-time gridded SST 204 
analysis (RTG_SST_HR, Gemmill et al, 2007).  An example of the analysis is shown in 205 
Fig. 2. Temperature for the larger, deeper water areas has a lesser and more lagged 206 
seasonal variation than the smaller, shallower lake areas due to their large heat storage 207 
capacity. Therefore, use of the NOAA SST fields for lake temperatures resulted in 208 
generally too-low values through spring and summer, and even into autumn. In 209 
situations with atmospheric cold outbreaks in the autumn, shallow lake temperatures 210 
quickly decrease (as reflected with lake cycling) and SST-based estimated lake 211 
temperatures were too high. This behavior was consistent with the HRRR and RTMA 212 
deficiencies noted by forecasters. In February 2020, NOAA changed from the 213 
RTG_SST_HR to a Near-Surface Sea Temperature (NSST, see NWS, 2020) for SSTs, 214 
but using the same horizontal interpolation method to estimate small-lake temperatures 215 
resulting in the same temperature biases for small lakes. 216 
 217 
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 227 
 228 
Fig. 2.   An example of small-lake temperatures spatially interpolated from deeper-water 229 
temperature data in the NOAA SST analysis (Gemmill et al, 2007).   For 9 October 230 
2019, provided by NOAA National Weather Service. 231 
 232 
Hamill (2020), in a comparison benchmarking a statistical method for 2 m temperature 233 
(at 00 UTC), showed the same problem with large summer temperature biases from the 234 
HRRRv3 1-h forecasts in August 2018 especially in the vicinity of lakes (his Figs. 10, 235 
11).   His results are shown in Fig. 3, with three stations showing coldest biases (at 00 236 
UTC) greater than 2 K (circled in red), all adjacent to lakes.  In Fig. 3, these circled 237 
stations,  from north to south, are KFGN (Flag Island on Lake of the Woods; > 3 K cold 238 
bias), KRRT - Warroad, MN (west of Lake of the Woods), and KVWU – Waskish, MN 239 
(east of Red Lake)). The overall warm or cold biases are generally < 2 K, but these 240 
stations adjacent to lakes are outliers, consistent with introduction of cold-biased lake 241 
temperatures through the NSST. 242 
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 245 
Figure 3.  2 m temperature biases for 1-h HRRR forecasts valid at 00 UTC in August 246 
2018 (from HRRRv3, before introduction of lake cycling and using NSST estimates 247 
instead.  HRRR versions and dates are listed in D22.).  Stations with low bias < -2 K are 248 
circled in red.  (Credit and thanks to Thomas Hamill, providing a regional version of his 249 
Fig. 10b in Hamill, 2020). 250 
 251 
 252 
With its 3 km grid spacing, the HRRR model can resolve many inland lakes (Fig. 1). 253 
Specification of surface temperatures for these small lakes using the horizontal 254 
interpolation from the NOAA SST fields was problematic being determined by 255 
interpolation from large lake and ocean temperatures. 256 
 257 
In summary, errors in specified lake temperatures (as well as ice cover and 258 
concentration) due to spatial interpolation from oceans and larger lakes can lead to 259 
degraded atmospheric predictions in the vicinity of lakes. For small lakes, poor short-260 
range 2 m temperature (T) and 2 m dew point temperature (Td) forecasts were noted in 261 
vicinity of lakes, especially from spring through summer and into autumn. Specifically, 262 
fluxes from lakes were often poorly estimated due to inaccurate lake temperature fields. 263 
 264 

3 Lake model for coupling with NOAA regional atmospheric models 265 
 266 
To complement the now-commonplace (in NWP models) coupling with land-surface 267 
models (LSMs) to improve fluxes into the atmosphere, a multi-level 1-d lake model was 268 
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implemented within the operational 3-km HRRRv4 and 13-km RAP weather models in 273 
December 2020, an extension to atmosphere-surface coupling. An effective lake 274 
initialization is a necessary complement for the lake model coupling, as described in 275 
section 4. Different earth-system coupling processes represented in the HRRR and 276 
RAP models are described in Table 1, including land, snow, ice, and smoke. The 277 
Community Land Model (CLM) lake model (same in versions 4.5 and 5.0) was added 278 
for smaller lakes as an option in the WRF model version 3.6 (Mallard et al, 2015). The 279 
CLM lake model is described in more detail below with its configuration for the NOAA 280 
HRRRv4 and RAP weather models.  A detailed description of the physical processes 281 
(cloud microphysics, turbulent exchange, land-surface, etc.) in the HRRR and RAP 282 
models are described by D22 and Benjamin et al (2016).   283 
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Component Prognostic 
variables 

Layers 
(below 
surface 
except for 
smoke) 

Year 
introduced for 
experimental 
cycling 

Year 
intro for 
NCEP 

Data 
assimilation 

Other information, 
references 

Soil Temp, 
moisture 

9 1996 (6 levels 
until 2012) 

1998 (6 
levels 
until 
2014) 

Cycling, atmos-
to-soil coupled 
DA 

Moderately coupled 
DA (Benjamin et al 
2022) 

Snow Water 
equiv, 
snow 
depth, 
temp 

2 1997 1998 Cycling, atmos-
to-snow DA for 
temp, trim/build 
from sat for 
cover 

Moderately coupled 
DA.  Subgrid fraction 
intro 2020 

Ice Temp 9 2010 (6 levels 
until 2012) 

2012 (6 
levels 
until 
2014) 

Cycling, atmos-
to-surface 
coupled DA 

Subgrid fraction intro 
2018 

Smoke Smoke 
mixing 
ratio 

50 
atmos 
layers 

2016 2020 Cycling, fire rad 
power from sat 

No direct DA,  only 
cycling 

Small lakes Temp, ice 
fraction, 
mixing 

10 2018 2020 Cycling No direct DA, only 
cycling 

Large lakes 
(Great 
Lakes) 

Temp, ice 
fraction, 
mixing 

FVCOM 
levels 

2018 2020 Independent FVCOM driven by 
HRRR wind, rad, 
temp, 6h lag (Fujisaki-
Manome et al 2020) 

Table 1.  Earth-system coupling added to NOAA regional models (HRRR, RAP, RUC 286 
(pre-2012)). 287 
 288 
An additional improvement in lake-atmosphere coupling in NOAA weather models for 289 
large lakes (>15,000 km2) was recently introduced, a coupling between the NOAA 290 
HRRR model using predicted lake temperatures and ice concentration fields from the 291 
NOAA GLERL/NOS 3-dimensional hydrodynamic-ice model run in real time over the 292 
Laurentian Great Lakes, as described by Fujisaki-Manome et al (2020). This 293 
hydrodynamic-ice model is based on the Finite Volume Community Ocean Model 294 
(FVCOM, Chen et al., 2006, 2013) coupled with the unstructured grid version of Los 295 
Alamos Sea Ice Model (CICE; Gao et al., 2011) and is applied to the NOAA Great 296 
Lakes Operational Forecast System (GLOFS, Anderson et al., 2018). This time-lagged 297 
data coupling (alternate applications of HRRR atmospheric forcing and FVCOM-CICE 298 
lake forcing about 6-12 h in advance) was incorporated to improve lake-effect snow 299 
(LES) predictions in winter but has also been found to improve near-lake atmospheric 300 
predictions year-round especially for upwelling events in the warm season. The use of 301 
FVCOM-CICE to specify lake temperatures addresses previous errors in SST from 302 
relatively fast changes in lake temperatures due to cold air outbreaks or upwelling 303 
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events. These changes sometimes escape AVHRR-derived SST detection due to multi-305 
day cloud obscuration.  306 
 307 

Small lake 
size (grid 
points) 

# 
Lakes 

% of 
# of 
small  
lakes 

% of 
small lake 
surface 
coverage 

Avg 
depth 
(m) 

Surface 
area of 
lakes (km2) 

 Volume of 
lakes (km3) 

1 grid point 
(3kmx3km) 

917 49% 7% 13 8,812  115 

2 (~20 km2) 323 17% 5% 12 6,208  76 

3 155 8% 4% 11 4,468  49 

4-5 157 8% 6% 14 6,746  97 

6-10 (~100 
km2 ) 

155 8% 10% 14 11,570  162 

11-100 
(~1000 km2) 

141 7% 30% 21 35,518  769 

>100 16 <1% 38% 14 44,926  614 

All 1864 100% 100% 
 

118,248  1,882 

Table 2.  Characteristics of small lakes (not including the five Laurentian Great Lakes) 308 
resolved in the 3-km HRRRv4 CONUS domain over the lower 48 United States and 309 
adjacent areas of Canada and Mexico.  Grid points were assigned as having a lake land 310 
use for points with at least 50% lake representation from the higher-resolution 15” 311 
MODIS land-use data. 312 
 313 
 314 
Laurentian 
Great Lakes 

Surface area of 
lakes (km2) 

Volume of lakes  
(km3) 

Superior 82,100 12,000 
Michigan 57,800 4,920 
Huron 59,600 3,540 
Erie 25,670 484 
Ontario 19,010 1,640 

 315 
Table 3.  Characteristics of the five Laurentian Great Lakes (surface area, volume) 316 
(Hunter et al 2015). 317 
 318 
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3.1  CLM lake model applied to HRRR for smaller inland lakes 320 
 321 
Subin et al (2012) describe the 1-d CLM lake model as applied within the Community 322 
Earth System Model (CESM) as a component of the overall CESM CLM (Lawrence et al 323 
2019). Gu et al (2015) describe the introduction of the CLM lake model into the WRF 324 
model and initial experiments using its 1-d solution for both Lakes Superior (average 325 
depth of 147 m) and Erie (average depth of 19 m). The CLM lake model divides the 326 
vertical lake profile into 10 layers driven by wind-driven eddies. The atmospheric inputs 327 
into the model are temperature, water vapor, horizontal wind components from the 328 
lowest atmospheric level and short-wave and longwave radiative fluxes (from the HRRR 329 
model in this application).  The CLM lake model then provides latent heat and sensible 330 
heat fluxes back to the HRRR. The CLM lake model is called every 20 s within the 331 
HRRR model.  The CLM lake model was configured with the top layer fixed to a 10-cm 332 
thickness (Gu et al 2015) and with the rest of the lake depth divided evenly into the 333 
other 9 layers. Energy transfer (heat and kinetic energy) occurs between lake layers via 334 
eddy and molecular diffusion as a function of the vertical temperature gradient. The 335 
version of the CLM lake model used for HRRRv4 and RAP was introduced with CLM 336 
version 4.5 and continues without change in CLM version 5 (Lawrence et al, 2019). The 337 
CLM lake model also uses a 10-layer soil model beneath the lake, a multi-layer ice 338 
formation model and up to 5-layer snow-on-ice model (Gu et al, 2015). Again, testing of 339 
the CLM lake model by the authors within WRF showed computational efficiency of the 340 
model with no change of even 0.1% in run time with the HRRR and RAP applications. 341 
Multiple layers in lake models better represent vertical mixing processes in the lake. By 342 
intention, the CLM lake model was only applied for HRRR and RAP model to smaller 343 
lakes, since NOAA began at the same time to provide temperature and ice cover 344 
through GLOFS for the Laurentian Great Lakes through the 3-d hydrodynamic-ice 345 
model (Fujisaki-Manome et al, 2020, Anderson et al, 2018).    346 
 347 
3.2    Lake area mask 348 
 349 
Grid points were assigned as lake points when the fraction of lake coverage in the grid 350 
cell (derived from yet finer 15” MODIS data) exceeds 50% and when HRRR gridpoint 351 
elevation > 5 m above sea level (ASL, to distinguish from ocean) and is disconnected 352 
from ocean areas with the 3-km land-water mask. The lake water mask is therefore 353 
binary, set to either 1 or 0.  This binary approach at 3 km seemed capable of capturing 354 
the effect of lakes on regional heat and moisture fluxes.  The alternative subgrid lake 355 
fraction approach was used by ECMWF with their 9-km model (Choulga et al, 2019). 356 
 357 
An overview of the lake number, areal coverage, and integrated volume for the 3-km 358 
HRRRv4 model are depicted in Table 2. The HRRR CONUS domain (Fig. 1) is able to 359 
represent 1864 separate lakes occupying 0.6% of the entire domain. These water 360 
bodies represented in HRRR as “lakes” include reservoirs and larger rivers, and about 361 
half of the 1864 lakes are single-gridpoint lakes. The sixteen largest lakes in the HRRR 362 
CONUS domain have surface area greater than 1,000 km2, nine in Canada and two on 363 
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the US-Canada border (Lake of the Woods and Lake St. Clair).  In contrast, the five 367 
Laurentian Great Lakes (Table 3) range in size from 82,000 km2 (Superior) to 19,000 368 
km2 (Ontario), and therefore, their representation in the coupled HRRR system (Table 1) 369 
is handled with 3-d hydrodynamic-ice models (Fujisaki-Manome et al, 2020).   370 
 371 
The lake area mask for the 3-km HRRRv4 used an algorithm for identifying an ocean 372 
area mask for all areas with contiguous water areas and leaving other areas also below 373 
5 m ASL as near-ocean lagoon regions treated as lakes with the CLM 1-d lake model.   374 
These lagoon areas separated from ocean by barrier islands in the HRRR 375 
representation (Fig. 1) include the Intracoastal Waterway in Texas largely separated 376 
from the Gulf of Mexico by Padre Island, Indian River in Florida largely separated from 377 
the Atlantic Ocean by Merritt Island, and Lake Pontchartrain in Louisiana.  This ocean-378 
contiguity technique is similar to the flood-filling technique used by ECMWF (Choulga et 379 
al, 2019). 380 
 381 
3.3.  Lake depths 382 
 383 
Lake depths for the HRRRv4-WRF-CLM lake configuration (Fig. 4) are assigned from a 384 
global dataset provided by Kourzeneva et al (2012b, hereafter K12).  For some smaller 385 
lakes identified using the 15” MODIS land-water mask not found in K12, a 50 m depth 386 
was assumed (too deep, will be reduced in future).  K12 identified uncertainties in their 387 
own database including estimates of lake depth and errors in coastlines. More recently, 388 
ECMWF applied a 10 m depth as a default depth for these small lakes (Choulga et al, 389 
2019).  For many lakes in the K12 database, a single value for maximum lake depth had 390 
been applied to all lake points, which results in excessive lake water volume and too 391 
cold temperatures as discussed in section 5. However, the K12 database still allows 392 
overall differentiation between shallow and deep lakes.   393 
 394 

 395 
Figure 4.  Lake depth for small lakes in a subset of the HRRR domain. 396 
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 405 
3.4  Turbidity 406 
 407 
A single value for turbidity to describe absorption of downward short-wave radiation is 408 
used in CLM, allowing for a moderate amount of suspended sedimentation. Subin et al 409 
(2012) describe other options for variations in radiative transfer in lake bodies to capture 410 
degrees of eutrophication, but these are not used here. 411 
 412 
3.5  Salinity 413 
 414 
The CLM lake model is configured for fresh water. The authors manually modified the 415 
freezing temperature to account for non-zero salinity (Railsback, 2006) from 0°C to -5°C 416 
for Mono Lake in California and Great Salt Lake (GSL) in Utah to capture the effect of 417 
salinity.  Other areas of water impoundment from coastal lagoons in the 3-km HRRR 418 
lake representation (Fig. 1) also have, in reality, non-zero salinity (e.g., along coasts of 419 
Gulf of Mexico and Atlantic Ocean) but this is not applied in HRRR/RAP. Moreover, no 420 
change in freezing temperature is necessary for these areas anyway. 421 
 422 
3.6   Elevation  423 
 424 
The elevation value (above sea level) assigned to each lake grid point is the same 425 
assigned to that from the atmospheric model, which may be different from reality, but at 426 
least consistent with the atmospheric conditions. As mentioned earlier, the minimum 427 
elevation above sea level of a grid point to be assigned as a lake is 5 m; other water 428 
grid points are assumed to be ocean. 429 
 430 
3.7   Special situations for CLM lake model application 431 
 432 
The algorithm for the turbulent heat flux calculation in the CLM-lake model was mainly 433 
based on Zenget al. (1998), except that roughness length scales for temperature and 434 
humidity are the same as roughness length scale for momentum for its WRF-lake 435 
application, while they are updated dynamically in CLM 4.5. Charusombat et al (2018) 436 
showed that the same roughness length scales for temperature and salinity as that for 437 
momentum could result in overestimated surface sensible and latent heat fluxes in 438 
autumn and winter. Therefore, a revision to the CLMv4.5 lake model was introduced for 439 
modified roughness lengths over water using modified formulations of the Coupled 440 
Ocean-Atmosphere Response Experiment (COARE) algorithm as described by 441 
Charusombat et al (2018) to improve surface sensible and latent heat fluxes.  442 
 443 
For GSL with a very high value of salinity (270 ppt north of ~41.22°N with freezing point 444 
of 249 K and 150 ppt south of ~41.22°N with freezing point at 263 K), a change of 445 
freezing temperature to -5°C appeared to be not sufficient to keep the lake ice-free 446 
during the cold outbreaks in winter in this high-elevation area. GSL is unusual in various 447 
aspects – it is hypersaline (far more saline than the ocean), the largest terminal lake 448 

Deleted: ¶449 



 

 14 

(without outflow) in the Western Hemisphere (Belovsky et al, 2011), shallow (mean 450 
depth of 5 m) and subject to very strong eutrophication (Belovsky et al, 2011). 451 
According to GSL climatology the lake stays ice-free all winter, and its temperature goes 452 
slightly below freezing only for a very short period in January and February. Thus, we 453 
presume that the CLM lake model needs to allow turbidity variation (see section 3.4). A 454 
solution to this representation problem was use of a bi-weekly climatology over each 1-455 
year period to bound the cycled GSL temperature at initial forecast time not to deviate 456 
more than +/- 3°C from the climatological value interpolated to the current day of year. 457 
Also, using special code, GSL was forced stay ice-free for the whole year as observed.   458 
 459 
3.8   Time step 460 

 461 
The CLM lake model within the HRRR/RAP weather models was run with the same time 462 
step as for other physical processes in the HRRR model (20 s) and the RAP model (60 463 
s).  Again, even with this relatively high frequency for calling the CLM lake model, the 464 
computational expense was extremely small, less than 0.1% of overall HRRR run time. 465 
 466 
 467 
4  Initialization for small lake temps by cycling with ongoing atmospheric 468 

predictions – a strategy 469 
 470 
The central strategy described in this paper is to use accurate, ongoing atmospheric 471 
forcing with a computationally inexpensive 1-d lake model to obtain an equilibrium state 472 
of a lake temperature profile.  This technique responds appropriately to strong changes 473 
in atmospheric forcing (e.g., cold air outbreak or excessive heat events).   With the 474 
NOAA HRRR and RAP atmospheric models performing hourly data assimilation of a 475 
broad set of hourly observations, accurate atmospheric forcing is available. 476 
 477 
The RAP and HRRR hourly data assimilation cycles include these aspects, all of which 478 
are important for cycling initialization of inland lakes. First, cloud assimilation (from 479 
satellite and ceilometer data) to ensure accurate shortwave and longwave radiation 480 
fields (Benjamin et al 2021).  Second, radar reflectivity data are assimilated as part of a 481 
3-km ensemble data assimilation system to ensure accurate short-range precipitation 482 
(Weygandt et al, 2022, D22, J22, Benjamin et al, 2016).  Finally, 2 m air temperature 483 
and moisture and 10 m wind observations are effectively assimilated (i.e., producing 484 
more accurate predictions) including representation through the boundary layer using 485 
pseudo-innovations (James and Benjamin, 2017, meaning estimated observation-486 
background forecast differences but not actual).  Other information on the HRRR/RAP 487 
data assimilation is provided by Benjamin et al (2016) and D22. 488 
 489 
The cycling of the 10-level CLM lake model within the then-experimental HRRRv4 490 
started on 24 August 2018.  After 10 days of cycling (Fig. 4), differences in lake 491 
temperatures between HRRRv4 and the operational HRRRv3 using interpolated NSST 492 



 

 15 

data were evident of 5-15°F (3-12°C or 276-285 K), showing that the adjustment with 493 
realistic atmospheric conditions and use of the CLM lake model with roughly accurate 494 
lake depth data was very effective.   495 
 496 
Consequences (to 
right) from strategy 
for lake initialization 
(below) 

Coupling 
lake and 
atmosphere 
within 
initialization 

Lake temps in 
spring-summer 

Lake temps in fall 

SST interpolation to 
small lakes 

None Much too cold, 
especially for shallow 
lakes 

Still generally too cold 
but intermittently too 
warm after cold-air 
outbreaks. 

Lake annual variation 
forced by reanalysis 
atmospheric data – 1-
way cycling from 
atmospheric forcing 

1-way More accurate.  No 
weather regime variation 
in a given year 

More accurate.  Will not 
capture variation from 
weather regimes in a 
given year. 

Daily updating with 
satellite data  

None More accurate but 
cannot keep up with 
changes during cloudy 
periods. 

More accurate but 
cannot keep up with 
changes during cloudy 
periods. 

2-way coupled 
cycling 

2-way More accurate including 
response to specific 
yearly/seasonal 
anomalies. 

More accurate including 
yearly/seasonal 
anomalies 

 497 
Table 4.  Expected seasonal lake-atmosphere temperature consequences from different 498 
lake initialization strategies 499 
 500 
Possible approaches for initializing lake temperatures are summarized in Table 4.  The 501 
simplest option is via larger-scale water temperature data (SST data) with horizontal 502 
interpolation to smaller water areas including inland lakes and reservoirs; this was the 503 
previous strategy for the HRRRv3 and older RAP models before introduction of cycling 504 
using the CLM lake model. An alternate strategy is to run lake models over a multi-year 505 
period forced by reanalysis atmospheric data (ERA-Interim) as described by Balsamo et 506 
al (2012), Dutra et al (2010), and Balsamo (2013) for the ECMWF to obtain a yearly 507 
varying climatology of lake temperature for all lakes represented. This method will 508 
capture the mean annual variation of lake temperatures. However, due to multi-year 509 
averaging, it cannot represent anomalous conditions in a given year (sustained heat or 510 
sustained cold conditions), which can modify temperatures especially for shallow lakes 511 
by several K within 1-2 weeks. Use of daily updating from satellite data can be effective 512 
(e.g., MetOffice – Fiedler et al, 2014) under clear-sky conditions. Full cycling of the lake 513 
model within an ongoing coupled weather model, the strategy described in this paper, 514 
can represent the lingering effects of anomalously warm or cold weather upon lake 515 
temperatures and the resultant fluxes.   516 
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 519 
The 2-way coupled cycling (Table 4) used now in the HRRR and RAP models benefit 520 
via hourly data assimilation using latest hourly observations both for the atmosphere 521 
(D22) and land-surface snow conditions (Benjamin et al 2021).   In the 3-km HRRR 522 
model, the 3-d state of the atmosphere, land surface, and inland lake conditions are 523 
advanced on 20-second time steps using the HRRR-specific configuration (described in 524 
D22) of the WRF model (Powers et al, 2017; Mallard et al, 2015).   As atmospheric 525 
conditions change every 20 s (including temperature, moisture, wind, and radiation), the 526 
exchange of heat, moisture, and momentum between inland lake points and the 527 
atmosphere also vary.  Lake temperature is not modified in the hourly data assimilation 528 
step, but the ongoing exchange recalculated every 20 s forces an evolution of lake 529 
conditions to values consistent with atmospheric conditions. ECMWF applies a similar 530 
ongoing cycling for lake prognostic variables (ECMWF, 2020) for lake initialization.   531 
 532 

 533 
 534 
Figure 5.  Lake surface temperatures from 18-h forecasts valid at 1500 UTC 3 535 
September 2018 for a) operational HRRRv3 using NSST for lake temperatures, and b) 536 
then-experimental HRRRv4 with CLM lake model and cycling.  537 
 538 
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A similar challenge is initialization of lake ice cover. Similar to the treatment for lake 543 
temperature, cycling of a multi-level lake model (like the CLM lake model) can provide 544 
an alternative, adaptive-in-time method for lake-ice initialization.  NOAA has used in the 545 
HRRR and RAP the daily IMS ice cover product1 (US National Ice Center, 2008) for 546 
binary (non-fractional) lake ice cover. The IMS ice cover is used for oceans and large 547 
lakes (e.g., for RAP for Great Slave Lake and Great Bear Lake in northern Canada). For 548 
small lakes below the resolution of the IMS ice map, lakes stayed open for the winter.  549 
Starting with HRRRv4 and RAPv5, ice concentration from the NOAA global model is 550 
used for oceans, FVCOM ice fraction is used for the Great Lakes, and ice fraction from 551 
the CLM lake model for small lakes.  552 
 553 
5 Results 554 

 555 
In this section, we describe comparisons of lake surface temperature evolution between 556 
the CLM implementation described here and the lake specification through interpolation 557 
from the NSST dataset (Fig. 2) at lakes in the United States and southern Canada. 558 
 559 
Comparisons during 2018–2019 were drawn from real-time simulations from the then-560 
operational HRRRv3 (using interpolated SST) and the then-experimental HRRRv4 561 
(using CLM). More recent comparisons were made for March–November 2021 between 562 
the operational HRRRv4 (using CLM) and interpolated NSST values (as used in 2019-563 
2020 for HRRRv3).  In addition, the CLM and NSST values were compared to in situ 564 
observations where available and also to satellite-based estimates defined below.  565 
   566 

 
1 https://usicecenter.gov/Products/ImsHome 
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 568 
 569 
Figure  6.   Difference (K) in lake surface temperatures between versions of HRRR 570 
model using cycled lake-model values (HRRRv4) and using interpolated NSST data 571 
(HRRRv3).   Valid 1300 UTC 13 October 2019, and also includes differences from use 572 
of FVCOM lake model in HRRRv4 (Fujisaki-Manome et al, 2020).      573 
 574 
5.1    Cases from 2018 – 2019 575 
 576 
Introduction of the CLM lake model forced by ongoing HRRRv4 atmospheric conditions 577 
(i.e., cycling) allowed, within only 10 days, an increase in lake temperatures for Red 578 
Lake and Lake of the Woods (both in Minnesota) from 3 K to over 10 K (Fig. 5) in 579 
September 2018. A comparison in skin temperature for a year later (October 2019) 580 
between versions of the HRRR model (HRRRv4 with lake cycling vs. HRRRv3) 581 
including differences from with and without lake cycling is shown in Fig. 6. Higher 582 
temperatures were evident for the Minnesota/Ontario lakes from cycling (vs. NSST 583 
interpolation).     HRRRv4 also included coupling with the 3-d FVCOM lake model for 584 
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the Laurentian Great Lakes, showing areas of upwelling with associated cooler water 590 
over Lake Superior in Fig. 6 from predominant westerly to southwesterly near-surface 591 
wind at this time. 592 
 593 
 594 
Lake 
number 

Lake name State/province, 
country 

HRRR 
I point 

HRRR 
j point 

Area 
(km2) 

Depth 
used (m) 

Ice 
free? 

1 Simcoe ON, CA 1378 799  6 N 
2 St. Clair ON/MI, CA/US 1302 709 1240 6 N 
3  Champlain VT/NY, US 1534 835  77 N 
4  Sebago ME, US 1610 833  33 N 
5 Okefenokee FL, US 1459 145 1510 3 Yes 
6 Pontchartrain LA, US 1136 224 2180 10 Yes 
7 Intracoastal 

Waterway 
(near Corpus 
Christi, TX) 

TX, US 905 128 3300 10 Yes 

8 Salton Sea CA, US 337 387  9 Yes 
9 Tahoe NV/CA, US 259 628  313 N 
10 Great Salt UT, US 486 653 3050 3 Yes 
11 Utah UT, US 496 622  3 N 
12 Bear ID/UT, US 518 684  29 N 
13 Sakakawea ND, US 790 868  27 N 
14 Winnebago WI, US 1143 742  7 N 
15 Lower Red MN, US 961 880  5 N 
16 Lake of the 

Woods 
MB/MN, 
CA/US 

965 919 3030 32 N 

17 Manitoba MB, CA 879 972 3240 5 N 
18 Winnipeg MB, CA 916 977 13270 8 N 
19 Nipigon ON, CA 956 956 5410 55 N 

Table 5.  Lakes for comparison of lake surface temperatures between HRRRv4/CLM, 595 
NASA SPoRT, NSST, and in situ observations as shown in Figs. 7 and 8.  Area is 596 
shown for lakes >1000 km2.  Lake depths are constant within each lake except for lakes 597 
2, 3, and 18.   See Fig. 4 for example map of lake depth used in HRRR. Specific HRRR 598 
i/j 3-km grid points (indicated in table) were selected from HRRR data for each lake. 599 
  600 
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 602 
 603 

Name of 
Lake 

No. 
from 
Tab. 
5 

Source of 
Observation 

Depth of 
Sensor 
(m) 

URL 

Lake St. Clair 2 ECCC 6 https://www.ndbc.noaa.gov/station_page.php?station=45147 
Lake 
Champlain - 
Schuyler Reef 

3 GLERL 0.45 https://www.ndbc.noaa.gov/station_page.php?station=45195 

Sebago Lake  
@ Lower 

4 Portland 
Water 
District Buoy 

Est 1 https://www.pwd.org/sebago-lake-monitoring-buoy 

Lake 
Pontchartrain 
@ New Canal 
Station 

6 NOAA/ 
National 
Ocean 
Service 

0.6 https://www.ndbc.noaa.gov/station_page.php?station=nwcl1 

Intracoastal 
Waterway @ 
Baffin Bay 
near Padre 
Island 

7 

Texas 
Coastal 
Ocean 
Observing 
Network 

unknown https://www.ndbc.noaa.gov/station_page.php?station=babt2 

Lake Tahoe 9 NASA/JPL 0.5 https://laketahoe.jpl.nasa.gov/get_imp_weather 
Utah Lake @ 
Provo Marina 

11 Utah DWQ 
Water 
Quality 
Network 

unknown https://wqdatalive.com/public/669 

Bear Lake 12 Utah DNR 
State Parks 

unknown https://stateparks.utah.gov/parks/bear-lake/current-
conditions/ 

Lake 
Sakakawea @ 
Missouri River 
near Williston, 
ND 

13 USGS unknown https://waterdata.usgs.gov/monitoring-location/06330000/ 
#parameterCode=00065&period=P7D 

 604 
Table 6.  Sources of available in situ data among 19 lakes in Table 5.   605 
 606 
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 607 
 608 
Figure 7.   Locations of 19 lakes (see Table 5) used for the lake surface temperature 609 
intercomparison in this paper in Fig. 8.  These lakes are shown as mapped onto the 3-610 
km CONUS HRRR model domain. 611 
 612 
 613 
5.2     Comparisons of different lake temperature estimates for 19 lakes from lower 48 614 

US and southern Canada during 2021. 615 
 616 
During a period from March to November 2021, a comparison was made of lake  617 
surface temperatures between the cycled HRRRv4-CLM values and those from three 618 
other estimates from NASA, NOAA, and in situ observations. A geographically diverse 619 
set of 19 lakes over the lower 48 United States and southern Canada was selected for 620 
these comparisons as listed in Table 5 and shown in Fig. 7. Lakes selected included 621 
near-ocean lagoon areas separated from ocean areas by coastal land as resolved by 622 
the 3-km land-water mask as discussed in section 3.2. The water areas also included a 623 
reservoir (Lake Sakakawea). Some of these lakes are dimictic or polymictic (with ice 624 
cover part of each year, Lewis 1983) but five of them do not experience any ice cover 625 
(Table 5), and lakes 5, 6, 7, and 8 are monomictic.  The CLM lake model was cycled for 626 
all these lakes in the 3-km HRRRv4 model. The 19 lakes included seven lakes with a 627 
surface area greater than 1,000 km2. The March-November evaluation period include 628 
the spring-summer warming period and the cooling period in autumn. Data points were 629 
obtained monthly for March-August and weekly for September-November. 630 
 631 

Deleted: ¶632 

Deleted: HRRR633 

Deleted: HRRR634 



 

 22 

 635 

 637 
 638 
Figure 8.  Lake surface temperatures in 2021 (April-October) from the 19 selected lakes 639 
(Table 5, Fig. 7) from HRRR-CLM-cycled, NSST, SPoRT, and in situ data. 640 
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 647 
 648 
The HRRRv4-CLM values for these 19 lakes were compared with first, an estimate from 649 
NASA SPoRT (Short-Term Prediction Research and Transition) real-time surface water 650 
temperature composite including time-weighted MODIS and VIIRS data for inland lakes 651 
(NASA, 2021, Kelley et al, 2021).  The SPoRT estimates are similar to the satellite-652 
based lake temperature estimates from the Met Office (Fiedler et al 2014).   The SPoRT 653 
composite is valid from the surface to 2 m depth and is averaged over a 7-day period to 654 
mitigate for cloud cover on a given day. A second lake temperature estimate is that from 655 
NSST, as discussed earlier. Third, in situ surface water temperature observations were 656 
available from observing platforms in nine of the 19 lakes (Table 6).   The platforms are 657 
operated by Federal, state, and local government agencies and a regional ocean 658 
observing system. The depths of the water temperature observations were only 659 
available at four of the nine platforms. At these four sites, the depth ranged from 0.45 to 660 
0.9 m.  661 
 662 
In general, the HRRRv4-CLM-cycled lake surface temperatures showed the anticipated 663 
difference from NSST values with quicker summer warming from HRRR-CLM cycling for 664 
all lakes except the southern 3 lakes (5, 6, 7 in Table 5, with Lakes 6 and 7 essentially 665 
lagoons in close proximity to the ocean) and Bear Lake in UT/ID (Lake 12, 39 m depth). 666 
The NSST estimates were colder for spring through summer than HRRR values for 15 667 
of the 19 lakes, a consequence from the NSST estimate via horizontal interpolation from 668 
deeper bodies of water.    669 
 670 
For the nine lakes with in situ observations (Table 6), the HRRR-CLM-cycled lake 671 
temperatures are generally able to better capture weekly variability in summer and 672 
autumn months, associated with windy periods increasing mixing or relatively warm and 673 
cool weather periods or varying amounts of cloud cover.  This can be seen, for 674 
example, at Utah Lake and the Intracoastal Waterway west of Padre Island in Texas 675 
(note cooling from passage of Hurricane Nicholas in mid-September).  The most 676 
dramatic improvement of HRRR-CLM over NSST lake temperatures is seen at Lake 677 
Tahoe and lakes 14-19 in the northern region, with NSST estimates 5-10 K too cool.  At 678 
two of the lakes with in situ observations, the Intracoastal Waterway (linked to the 679 
ocean) and Lake Pontchartrain, both lagoons linked to the ocean, NSST estimates are 680 
generally closer than HRRR-CLM to the observations.   681 
 682 
HRRR-CLM lake surface temperatures matched in situ observations well for the 683 
northern lakes, usually within 1-2 K.   In contrast, the lake temperature values from 684 
SPoRT were generally warmer than HRRR or in situ observations in the autumn period.  685 
The SPoRT observations showed a strong confirmation of HRRR-CLM-cycled lake 686 
temperatures for lakes in the western US (Lakes 8-13) and most lakes in the northern 687 
areas (Lakes 4, 14-19).  Finally, the HRRR-CLM-cycled lake temperatures during this 688 
period often varied strongly from the NSST estimates, with differences of up to 5-10 K 689 
(largest difference with Red Lake,  Lake 15).    The effect of lake depth was evident with 690 
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a faster transition to fully mixed lakes for shallow lakes (e.g., 5 m depth for Red Lake in 693 
MN, Lake 15 in Table 5) but subject to more temporal and horizontal variation for 694 
deeper lakes.   Fig. 9 showed a strong intralake variation of 7 K across Lake of the 695 
Woods (32 m depth) in the HRRR-CLM estimate in contrast with very little variation (< 1 696 
K) across Red Lake.  Due to a lack of high-resolution observations of lake surface 697 
temperatures, it is difficult to determine which intralake variations are more realistic.  698 
However, we think some of these intralake contrasts from HRRR-CLM may be 699 
exaggerated from actual values, possibly requiring a future introduction of a small 700 
temperature exchange rate (diffusion) between adjacent lake columns.  Differences in 701 
skin temperature (e.g., SPoRT) and bulk temperature (e.g., in situ) for lakes have been 702 
noted (e.g., Wilson et al, 2013) of up to 0.5 K, but the HRRR vs. NSST differences in 703 
this study are generally much larger than this magnitude. 704 
 705 

 706 
Fig. 9.  HRRRv4-CLM lake surface temperature (K) for 1500 UTC 31 July 2021 for area 707 
over northern Minnesota (US) and southwestern Ontario (Canada). 708 
 709 
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The main deficiencies evident so far with the HRRR-CLM lake temperatures appear to 713 
be associated with errors in lake depth values. On the average, the current specified 714 
values for mean lake depth for most lakes are too deep compared to reality, since the 715 
preprocessing with the K12 dataset simply assigned a single lake depth value 716 
(maximum or mean) to all grid points for that lake even up to the modeled lake points 717 
adjacent to land, as shown in Table 5 for 16 or the 19 lakes studied. We also noted too-718 
low lake temperatures in HRRRv4 for lake grid points at the western edge of a few lakes 719 
(e.g., Tahoe, Sebago (ME), Cayuga (NY), Champlain), all relatively deep lakes (Fig. 5, 720 
Table 5).  We attribute this to 1-d upwelling from insufficient bathymetry data resulting in 721 
cylinder-like lake volumes with constant lake depths, therefore with a) too-deep lake-722 
edge pixels coinciding with b) strong winds coming off from land areas with 723 
predominantly westerly winds.  This deficient effect was not widespread for the HRRR 724 
model and did not affect the overall results. Again, this behavior is attributed to the 725 
behavior of the lake model over integrations with the inaccurate lake depth information 726 
and not to the lake cycling initialization design. 727 
 728 
 729 
6 Conclusions 730 

 731 
We report here on the first use of a small-lake model (CLM4.5, 10 layer) in US NOAA 732 
NWP models along with an ongoing cycling of lake temperatures since 2018 to initialize 733 
lake temperatures in each prediction. These models are the 3-km HRRRv4 (D22, J22) 734 
and 13-km RAPv5 hourly updated models, both of which became operational in 735 
December 2020 after cycling since August 2018. At 3-km grid spacing, the HRRR 736 
model applied this small-lake modeling and assimilation to 1864 small lakes varying in 737 
size from about 10 km2 (single grid point) to 14 larger lakes over 1000 km2 in surface 738 
area, but not including the Laurentian Great Lakes. The effectiveness of introducing the 739 
multi-layer lake model into the HRRR and RAP models was completely dependent on 740 
the initialization for lake temperatures. The introduction of a cycling capability through 741 
the hourly assimilation allowed the lake temperatures to evolve to accurate values, 742 
consistent with recent weather. In this paper, we describe the lake cycling applied for 743 
the NOAA regional 3-km HRRR and 13-km RAP weather models including the coupled 744 
1-d CLM lake model. We also show some comparisons with other estimates of lake 745 
surface temperatures. From those comparisons, the cycled lake surface temperatures 746 
from the 3-km HRRR model were found to be reasonably accurate. HRRR lake surface 747 
temperatures were found to be generally within 1 K of in situ observations and within 2 748 
K of the SPoRT estimates. Finally, NSST estimates of small-lake temperatures were 749 
found to often differ from in situ observations and HRRR estimates by 5-12 K. Other 750 
differences between lake-cycled HRRR estimates and SST-based estimates were up to 751 
10-15 K.  752 
 753 
From these initial results, we conclude that the lake-cycling initialization for small lakes 754 
has been effective overall, owing to accurate hourly estimates of near-surface 755 
temperature, moisture and winds, and shortwave and longwave estimates provided to 756 
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the 1-d CLM lake model every time step (20 s for 3-km HRRR model). The HRRR-CLM 757 
treatment also allows some inland lakes to freeze in winter, which is more consistent 758 
with observations.  The lake cycling strategy is similar to that initialization method used 759 
by ECMWF for its 9-km (as of 2021) IFS (Integrated Forecast System) and using a 760 
binary lake mask in the 3-km HRRR model. 761 
 762 
One deficiency noted was development of too-cold lake surface for a few lakes on their 763 
western boundary.  We attribute this to the incorrect bathymetry data with constant lake 764 
depth (e.g., see caption for Table 5) causing an excessive 1-d upwelling from too-deep 765 
lake depth at western shores for these lakes. This issue is being addressed with a 766 
current project to improve lake bathymetry data for which results will be reported in the 767 
future.  Also, HRRR-CLM cycling gave poorer results than NSST at least for Lake 768 
Pontchartrain (Lake #6 in Table 5), suggesting to use NSST for near-ocean lagoon 769 
areas.   More investigation is needed for strong intralake variations overall in HRRR-770 
CLM-cycling representation (e.g., Lake of the Woods in Fig. 9) and possible introduction 771 
of horizontal diffusion of temperature between adjacent lake points. 772 
 773 
US NWS forecasters have reported much improved near-surface temperature and 774 
dewpoint predictions in the vicinity of small lakes from the 3-km HRRR model in 2021 775 
since the implementation of the 1-d CLM lake model and lake-cycling initialization.  776 
Again, this effort complements the coupling of the HRRR model with the 3-d FVCOM 777 
hydrodynamical lake model for the Laurentian Great Lakes (Fujisaki-Manome et al, 778 
2020) design to improve lake-effect snow predictions. These efforts are the most 779 
advanced lake-coupling and lake-initialization efforts at this point in US NOAA weather 780 
models. 781 
 782 
Overall, the improved lake temperatures from the lake cycling initialization technique 783 
driven over a 3-year period by accurate atmospheric conditions described here results 784 
in improved fluxes of heat and moisture over using SST interpolation and improved 785 
nearby predictions of atmospheric 2 m temperature and 2 m moisture.  786 
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