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 10 
Abstract. Seasonal snowpack dynamics shape the biophysical and societal characteristics of many global regions. However, 

snowpack accumulation and duration have generally declined in recent decades largely due to anthropogenic climate change. 

Mechanistic understanding of snowpack spatiotemporal heterogeneity and climate change impacts will benefit from snow data 

products that are based on physical principles, that are simulated at high spatial resolution, and that cover large geographic 

domains. Most existing datasets do not meet these requirements, hindering our ability to understand both contemporary and 15 
changing snow regimes and to develop adaptation strategies in regions where snowpack patterns and processes are important 

components of Earth systems. 

We developed a computationally efficient process-based snow model, SnowClim, that can be run in the cloud. The model was 

evaluated and calibrated at Snowpack Telemetry sites across the western United States (US), achieving a site-median root 

mean square error for daily snow water equivalent of 64 mm, bias in peak snow water equivalent of -2.6 mm, and bias in snow 20 
duration of -4.5 days when run hourly. Positive biases were found at sites with mean winter temperature above freezing where 

the estimation of precipitation phase is prone to errors. The model was applied to the western US (a domain covering 3.1 

million km2) using newly developed forcing data created by statistically downscaling pre-industrial, historical, and pseudo-

global warming climate data from the Weather Research and Forecasting (WRF) model. The resulting product is the SnowClim 

dataset, a suite of summary climate and snow metrics, including monthly snow water equivalent (SWE) and snow depth, as 25 
well as annual maximum SWE and snow cover duration, for the western US at 210 m spatial resolution (Lute et al., 2021). 

The physical basis, large extent, and high spatial resolution of this dataset enable novel analyses of changing hydroclimate and 

its implications for natural and human systems. 

1 Introduction 

Seasonal snowpack shapes the climatic, hydrologic, ecological, economic, and cultural characteristics of many global regions. 30 
Snow is an important determinant of the surface energy balance through its effect on land surface albedo, partitioning of 

sensible and latent heat fluxes, near-surface atmospheric stability, and horizontal energy transport (Cohen, 1994; Rudisill et 

al., 2021; Stiegler et al., 2016). Hydrologic benefits of snow include natural water storage, delayed runoff, and cooler stream 
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temperatures (Bales et al., 2006; Luce et al., 2014). Ecologically, seasonal snow insulates flora and snow-dependent fauna, 

controls mobility and foraging opportunities, mediates nutrient cycling, and supplements plant-water availability (Formozov, 35 
1964; Grippa et al., 2005; Jones, 1999). Economically, seasonal snow helps to synchronize water and energy supply and 

demand, enables crop irrigation, fuels a multibillion dollar winter recreation industry in the United States (US) alone, and 

causes transportation delays and accidents (Burakowski and Magnusson, 2012; Qin et al., 2020; Seeherman and Liu, 2015; 

Sturm et al., 2017). Finally, seasonal snow is a defining aspect of many cultures globally, shaping language, traditions, and 

sense of self (Eira et al., 2013; Mergen, 1997).  40 
In many mountain regions, recent decades have seen less precipitation falling as snow, lower peak snow water equivalent 

(SWE), shorter snow duration, and earlier snowmelt runoff (Choi et al., 2010; Fritze et al., 2011; Knowles et al., 2006; Mote 

et al., 2018). These developments are projected to continue in the coming decades, resulting in substantial declines (>50%) in 

seasonal snowpack for areas such as the western US and significant impacts to human and natural systems (Fyfe et al., 2017; 

Huss et al., 2017; Marshall et al., 2019a; Siirila-Woodburn et al., 2021). In addition to these macroscale developments, there 45 
are important nuances to changing snow. Increased atmospheric water vapor due to warming is expected to enable larger 

snowfall events (Lute et al., 2015), which may buffer declines in snowpack (Kumar et al., 2012; Marshall et al., 2020). Changes 

in atmospheric circulation may affect snow accumulation, for example by diminishing orographic precipitation enhancement 

(Luce et al., 2013) or altering characteristics of atmospheric rivers (Dettinger, 2011). Decreasing snow cover will result in 

increased hydrologic importance of microclimates that serve as snow refugia, such as high elevations, deposition zones, and 50 
shaded areas (Marshall et al., 2019b; McLaughlin et al., 2017). A warmer and moister atmosphere will shift the relative 

importance of snowpack energy and mass budget terms, resulting, for example, in earlier but slower snowmelt (Musselman et 

al., 2017), changes to the partitioning of snow ablation between runoff and sublimation (Sexstone et al., 2018), and increasing 

rain-on-snow risk in regions that retain snow cover (Musselman et al., 2018). 

Understanding these changes and their implications often requires snow models and modeled snow data products (hereafter 55 
snow data) that satisfy at least one of several criteria. These criteria include that the data is: a) simulated with physics-based 

representations of energy and mass transfer processes, b) spatially continuous, c) high spatial resolution, d) large extent, e) 

multivariate, and f) multitemporal. To address some questions about contemporary or future snow, the snow models themselves 

are needed and must be able to synthesize data that satisfies these criteria. Snow data developed from process-based equations 

for radiative and turbulent energy exchanges as opposed to temperature index approaches is argued to be necessary for both 60 
capturing the spatial variability of energy fluxes across the landscape and providing physically realistic simulations of the 

effects of climate change (Kumar et al., 2013; Raleigh and Clark, 2014; although see Lute and Luce, 2017). While it is 

increasingly clear that machine learning and artificial intelligence can emulate the net effect of physical processes to, for 

example, predict streamflow based on meteorological data (Fleming & Gupta, 2020), the ability of these approaches to predict 

snow under a changing climate has not been thoroughly evaluated. To assess changes in snowpack across a landscape, spatially 65 
continuous data are needed. In areas of complex terrain, high spatial resolution (< 1 km2) data are necessary to resolve the 

effects of elevation and shading (Barsugli et al., 2020; Sohrabi et al., 2019; Winstral et al., 2014), which contribute to snow 
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refugia that are important for species such as wolverine (Barsugli et al., 2020; Curtis et al., 2014). For some applications, such 

as water management and species distribution modeling, snow data may need to cover large geographic domains. Multiple 

snow metrics are needed for diverse applications. For example, SWE is commonly used for water management applications, 70 
whereas snow depth and density may be most relevant for wildlife applications at both large (e.g., for ungulate movement) 

and small scales (e.g., for wolverine denning sites). Finally, historical and future data are necessary to evaluate changes over 

time and to inform long term planning and development of adaptation strategies for specific locales.  

There are two major hurdles to the development of a snow dataset that meets all of these criteria: appropriate forcing data and 

computational cost. Presently, large-extent climate datasets only achieve horizontal resolutions of up to 1 km (e.g. Abatzoglou 75 
and Brown, 2012; Fick and Hijmans, 2017; Thornton et al., 2020) and the finer resolution datasets cover limited domains or 

are restricted to historical periods (Dietrich et al., 2019; Holden et al., 2011, 2016). Second, even with appropriate forcing data, 

the computational expense of running snow models has generally forced the selection of some of these criteria at the expense 

of others (Winstral et al., 2014). For example, a temperature-index model might be used for applications requiring rapid results 

over large domains (e.g. SNOW-17; Anderson, 2006), a process-based model might be run at high resolution over watershed 80 
sized domains (Garen and Marks, 2005; Liston and Elder, 2006), or a process-based model might be run at coarser resolution 

over a larger extent (e.g. SNODAS, National Operational Hydrologic Remote Sensing Center, 2004; WRF, Rasmussen and 

Liu, 2017; Gergel et al., 2017; Wrzesien et al., 2018). There is potential for clever computational solutions and model 

formulations, such as variable resolution grids, to alleviate these trade-offs to some extent (Marsh et al., 2020). 

We suggest that using a blended approach comprising process-based representations of the most crucial energy and mass 85 
balance fluxes (radiation and turbulent fluxes) and empirical simplifications for more computationally expensive (e.g., snow 

surface temperature) and/or typically minor (e.g., ground heat flux) components, implemented at high spatial resolution, can 

reduce computational cost relative to more process-based approaches and enhance accuracy of spatiotemporal snow 

simulations relative to coarser scale implementations. The spatial resolution of the model implementation is a primary 

controlling factor on model accuracy in complex terrain, since the topographic smoothing inherent in coarser implementations 90 
can result in poor estimates of net shortwave radiation and precipitation phase partitioning (Sohrabi et al., 2019). While subgrid 

parameterizations can achieve similarly low errors to fully distributed approaches (Luce & Tarboton, 2004), they do not 

provide spatially explicit simulations which are useful for applications such as species distribution modeling and identification 

of topography related snow refugia. Higher spatial resolution is especially important in the context of assessing future habitat, 

since snowpack response to climate change is strongly dependent on elevation and aspect (Barsugli et al., 2020). In contrast 95 
to existing process-based models that are implemented over large domains (e.g. VIC, Hamman et al., 2018; WRF, Ikeda et al., 

2021), the present model does not calculate runoff and currently does not consider vegetation effects. Models that account for 

vegetation heterogeneity and dynamics may offer advantages over the present approach for specific applications. 

In this study we developed a computationally efficient largely process-based snow model called SnowClim that has a flexible 

model structure and can be run in the cloud (Lute et al., 2021). The model retains the most important components of process-100 
based models, including the complete energy balance and internal snowpack energetics, while omitting more computationally 
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expensive components such as horizontal transport, multiple layers, and iterative solutions for snow surface temperature. 

Unlike existing models, this simplified process-based model is efficient enough to be run over sub-continental domains at high 

spatial resolution. We force the SnowClim model with pre-industrial (1850-1879), historical (2000-2013), and projected future 

(2071-2100) meteorological data from the Weather Research and Forecasting (WRF) model downscaled to correct for terrain 105 
effects. We then applied the model to the western US (a domain covering 3.1 million km2) to create the SnowClim dataset, a 

multivariate, gridded, snow and climate dataset for three time periods at 210 m spatial resolution. Here we provide a description 

of the model and its application to the western US, including parameterization, calibration, climate forcing data preparation, 

and resultant datasets.  

2 Model Description 110 

2.1 Model Overview 

The SnowClim model is a fully distributed energy and mass balance snow model. It simulates the snowpack as a single layer, 

but accounts for different surface and pack temperatures (Fig. 1). The effects of vegetation, fractional snow cover, and snow 

redistribution via gravitational and wind-driven processes are currently not represented.  

The model has a flexible structure to facilitate uncertainty analysis and application to new conditions. This flexible structure 115 
includes tunable parameters, customizability of the spatiotemporal application, and process modularity. Key parameters (Table 

2) are user-defined as opposed to hard-coded in the model, allowing for calibration of the model to new conditions and regions 

as desired. The temporal and spatial resolution and extent are also user-defined, which allows users to adjust to computational 

constraints and the requirements of the project. Finally, key processes such as albedo and turbulent fluxes are modularized to 

allow evaluation of alternative process representations.  120 
The required forcings are described in Table 1. The model can be run in MATLAB (2020b) and requires the Statistics and 

Machine Learning Toolbox. The code is available at 

https://www.hydroshare.org/resource/dc3a40e067bf416d82d87c664d2edcc7/. The model can be run in the cloud using 

MATLAB Online through the HydroShare Platform hosted by the Consortium of Universities for the Advancement of 

Hydrologic Science, Inc. (CUAHSI). 125 

2.2 Energy Balance 

The SnowClim model evaluates the snowcover energy balance at each time step such that 

𝑄!"# =	𝑆𝑊↓ −	𝑆𝑊↑ + 𝐿𝑊↓ − 𝐿𝑊↑ +𝐻	 +	𝐸& 	+	𝐸' 	+ 	𝑃 + 𝐺       (1) 

where 𝑄!"# is the net snowcover energy flux, 𝑆𝑊↓ is the downward shortwave radiation at the surface, 𝑆𝑊↑ is the upward 

shortwave radiation at the surface,	𝐿𝑊↓ is the downward longwave radiation at the surface, 𝐿𝑊↑ is the upward longwave 130 
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radiation at the surface, 𝐻 is the sensible heat flux, 𝐸& and 𝐸' are the latent heat fluxes of ice and water, 𝑃 is the advected heat 

flux from precipitation, and 𝐺 is the ground heat flux (Fig. 1). 

2.2.1 Shortwave Radiation 

Upward shortwave radiation is equivalent to  

𝑆𝑊↑ = 𝑆𝑊↓𝛼            (2) 135 
where 𝛼 is the spectrally integrated snow surface albedo.  

Springtime snow model simulations are sensitive to the specific albedo algorithm (Etchevers et al., 2004; Günther et al., 2019). 

The SnowClim model provides three options for computing snow albedo (albedo_opt). In all options, albedo decays with time 

and the albedo of shallow snowpacks (<100 mm depth) is diminished to account for the albedo of the ground surface, assumed 

to be 0.25 (Walter et al., 2005). A user-specified maximum albedo parameter (albedo_max) is used in each method.  140 
The simplest albedo model (Essery et al., 2013; hereafter Essery), is empirical and sets albedo decay as a function of snowpack 

temperature. Snow albedo is augmented based on the occurrence and amount of new snow. Parameters other than the maximum 

albedo (minimum albedo, new snow threshold, linear and exponential albedo decline rates) are taken from Douville et al., 

(1995). 

In the second albedo model (Hamman et al., 2018; Liang et al., 1994; hereafter VIC), snowpacks with new snow depth > 10 145 
mm and non-zero cold content receive the maximum snow albedo. Other albedo parameters are taken directly from VIC. Snow 

albedo decays more rapidly for melting snowpacks than cold snowpacks (cold content, 𝑐𝑐 < 0). 

The final albedo model (Dickinson et al., 1993; Tarboton and Luce, 1996; hereafter Tarboton) accounts for the wavelength 

dependence of albedo by computing separate visible and near-infrared band albedos as a function of snow surface age and 

solar illumination angle using a parameterization of global radiation (i.e. separate visible and near-infrared radiation are not 150 
supplied). The maximum albedo parameter is set equal to the average of the maximum visible band and infrared band albedos. 

This is the only albedo model of the three that includes a correction for illumination angle. 

2.2.2 Longwave Radiation 

Upward longwave radiation is a function of snow surface temperature (𝑇() in degrees Celsius, snow emissivity (𝜀), and the 

Stefan-Boltzmann constant (𝜎) such that 155 
𝐿𝑊↑ = 𝜀𝜎(𝑇( + 273.15)) + (1 − 𝜀)𝐿𝑊↓         (3) 

We assume 𝜀 =0.98 (Armstrong and Brun, 2008). We consider 𝑇( to be a function of the dewpoint temperature (𝑇*; Raleigh et 

al., 2013), such that 

𝑇( = 	𝑚𝑖𝑛(0	°𝐶, 𝑇* 	+	𝑇+**)           (4) 

where 	𝑇+** is an augmentation parameter that increases 𝑇( and improves simulations of sublimation. For further discussion 160 
of 𝑇( see section 2.2.6. 



6 
 

2.2.3 Turbulent Fluxes 

The turbulent fluxes, 𝐻, 𝐸&, and 𝐸', are estimated using a Richardson number parameterization of the exchange coefficient 

following Essery et al., (2013). The bulk formula are 

𝐻	 = 	−𝜌+𝑐+𝐶,𝑈+(𝑇( − 𝑇+)          (5) 165 
𝐸& 	= 	−𝜌+𝐶,𝑈+(𝑄( − 𝑄+)𝜆(				𝑓𝑜𝑟	𝑇( < 0          (6) 

𝐸' 	= 	−𝜌+𝐶,𝑈+(𝑄( − 𝑄+)𝜆-				𝑓𝑜𝑟	𝑇( = 0          (7) 

where 𝜌+ is the air density, 𝑐+ is the specific heat capacity of air, 𝐶, is the bulk exchange coefficient that accounts for near-

surface atmospheric stability, 𝑈+ is the wind speed, 𝑄( is the specific humidity of the snow surface, and 𝑄+ is the specific 

humidity of the air which is a required forcing. The specific humidity of the snow surface is calculated from 𝑇(. The exchange 170 
coefficient 𝐶, is parameterized as a function of the near-surface atmospheric stability as captured by the bulk Richardson 

number (𝑅𝑖.) such that  

𝐶, =	𝐹,(𝑅𝑖.)𝐶,/           (8) 

𝑅𝑖. = (𝑔𝑧0(𝑇+ − 𝑇())/(𝑇+𝑈+1)          (9) 

𝐶,/ = 𝑘1[𝑙𝑛(𝑧0/𝑧2)]34[𝑙𝑛(𝑧5/𝑧6)]34                (10) 175 
𝐹,(𝑅𝑖.) 	= 	1																									𝑓𝑜𝑟	𝑅𝑖. = 0         (11) 

𝐹,(𝑅𝑖.) 	= 	1 −	(3𝑐𝑅𝑖.)/(1 + 3𝑐1𝐶,/(−𝑅𝑖.𝑧0/𝑧2)4/1)						𝑓𝑜𝑟	𝑅𝑖. < 0     (12) 

𝐹,(𝑅𝑖.) 	= 	 [1	 +	(2𝑐𝑅𝑖.)/(1 + 	𝑅𝑖.)4/1]34																									𝑓𝑜𝑟	𝑅𝑖. > 0     (13) 

where 𝑔 is gravitational acceleration, 𝑧0 is the height of simulated wind speeds, 𝑧5 is the height of simulated air temperatures, 

𝑧2 is the surface roughness length for momentum, 𝑧6 is the surface roughness length for heat and water vapor, and c is a 180 
constant assumed to equal 5 (Louis, 1979). 𝑧2 and 𝑧6 are adjustable user-specified parameters (Table 2).  

An optional windless exchange coefficient is available to counter large radiative losses particularly during stable conditions 

(Helgason and Pomeroy, 2012; Jordan, 1991). Application of the windless exchange coefficient can be modified through three 

parameters: E0_value, E0_app, and E0_stability (Table 2). E0_value is the value in W m-2 of the windless exchange coefficient. 

E0_app controls the application of the windless heat exchange coefficient to the sensible and latent heat fluxes; an E0_app 185 
value of 1 applies the coefficient only to the sensible heat flux, whereas an E0_app value of 2 applies the coefficient to both 

the sensible and latent heat fluxes.  E0_stability controls the type of conditions where the windless coefficient is applied; an 

E0_stability value of 1 applies the coefficient to all conditions, whereas an E0_stability value of 2 applies the condition only 

under stable atmospheric conditions. 

2.2.4 Precipitation heat flux 190 

The heat flux of liquid precipitation is  

𝑃	 = 	 𝑐'𝜌'𝑇*𝑃8+&!           (14) 
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where 𝑐' is the specific heat of water,	𝜌' is the density of water, and 𝑃8+&! is the rate of liquid precipitation. The heat flux of 

solid precipitation (𝑆) is handled separately for diagnostic purposes and is added directly to the snowpack cold content. 

𝑆	 = 	 𝑐&𝜌'𝑇*𝑃(!9'           (15) 195 
where	𝑐& is the heat capacity of ice and 𝑃(!9' is the rate of snowfall. 

2.2.5 Ground heat flux 

The ground heat flux can be important in controlling the onset of seasonal snow accumulation, particularly in warmer 

environments (e.g., Mazurkiewicz et al., 2008). Many process-based snow models include or couple with a soil temperature 

model to simulate this flux. However, under most circumstances 𝐺 is thought to provide a minor contribution to the energy 200 
budget (DeWalle and Rango, 2008). In the interest of model efficiency and to avoid uncertainties associated with estimating 

soil temperatures and thermal conductivities, we use a constant 𝐺 of 2 W m-2 (Walter et al., 2005), similar to other models 

(Etchevers et al., 2002).  

2.2.6 Enhanced single layer approach 

Single layer snow models typically provide less physically realistic snowpack simulations than multilayer models due to their 205 
simplified treatment of energy transfer within the snowpack (Blöschl and Kirnbauer, 1991; Waliser et al., 2011). Bulk single 

layer conceptualizations treat the surface temperature and energy balance as synonymous with the pack temperature and energy 

balance, ignoring the contrast between the surface layer which is highly sensitive to the near-surface atmosphere, and the 

deeper pack, which is characterized by thermal inertia, i.e., cold content. These distinctions are key to accurate modeling of 

snowpack heat fluxes (Blöschl and Kirnbauer, 1991) and snowpack ablation (Waliser et al., 2011). 210 
 To address these shortcomings, advanced single layer snow models have differentiated between surface and pack 

temperatures, while attempting to maintain the parsimony of a single layer model (Tarboton and Luce, 1996; You et al., 2014). 

To solve for snow surface temperature these approaches typically use iterative methods that can be computationally expensive 

(Wigmosta et al., 1994) or linearization approaches (Best et al., 2011).  

 The present model uses a two-step modification of the net snowcover energy flux to approximate the conduction of energy 215 
between the surface and the snowpack. This approach enables separate temperatures and energy balances for surface and pack 

components while retaining the computational efficiency necessary to accomplish the modeling objectives of both large spatial 

extent and relatively fine resolution. In this approach, the surface is conceptualized as a skin with zero depth. 

 First, we apply a temporal running mean to the net snowcover energy flux to approximate the attenuation with depth of the 

characteristic diurnal variations in energy at the surface, akin to the approach taken by You et al., (2014). The smoothed energy 220 
flux from the surface to the pack at each time step (𝑄!"#RRRRRR) is calculated as the average net snowcover energy flux over a period 

smooth_hrs, that is a tunable parameter (Table 2). This approach reduces unrealistic high frequency modifications of the cold 

content and large amplitude freeze-thaw cycles during the ablation season.  



8 
 

 Second, we apply a progressive tax on the negative net energy flux to the snowpack to limit the excessive accumulation of 

cold content that results from all snowcover energy being directly translated to the pack. The net effect of the energy tax is to 225 
reduce snowpack cold content, resulting in more accurate cold content simulations relative to observations (Table A1) and 

similar to those from other, more complex process-based models (Jennings et al., 2018a). Other single layer models have 

sought to limit cold content, however they used approaches that required site specific calibration (Blöschl and Kirnbauer, 1991; 

Braun, 1984). We apply a progressive tax such that negative energy fluxes to snowpacks with larger cold content receive larger 

taxes: 230 
𝑄:+;< = 𝑄!"#RRRRRR																																										𝑓𝑜𝑟	𝑄!"#RRRRRR 	≥ 0 

𝑄:+;< = 𝑄!"#RRRRRR 	× (1	 − 	𝑡𝑎𝑥)																				𝑓𝑜𝑟	𝑄!"#RRRRRR 	< 0        (16) 

𝑡𝑎𝑥	 = 		 ;;	3	;;!
;;"

	× 𝑚𝑎𝑥𝑡𝑎𝑥  such that 0	 ≤ 	𝑡𝑎𝑥	 ≤ 	𝑚𝑎𝑥𝑡𝑎𝑥 

	𝑄!"#RRRRRR is the smoothed net snowcover energy flux, 𝑄:+;< is the energy flux from the surface to the pack, and 𝑐𝑐 is the snowpack 

cold content which uses a negative sign convention. 𝑐𝑐2, 𝑐𝑐4, and 𝑚𝑎𝑥𝑡𝑎𝑥 are tunable parameters that define the maximum 235 
(least negative) cold content to which the tax should be applied, the range of cold content over which the tax should be applied 

(𝑐𝑐2 to 𝑐𝑐2 + 𝑐𝑐4), and the maximum possible tax, respectively (Table 2). Negative energy fluxes to snowpacks with cold 

contents less negative than 𝑐𝑐2 receive 0 tax, and negative energy fluxes to snowpacks with cold contents more negative than 

𝑐𝑐2 + 𝑐𝑐4 receive a tax equal to 𝑚𝑎𝑥𝑡𝑎𝑥.  

𝑄:+;< is added to the snowpack cold content (𝑐𝑐) at each time step. Pack temperature (𝑇:+;<) can be obtained from cold 240 
content: 

𝑇:+;< = 	𝑐𝑐	/	(𝜌' 	× 𝑐& 	× 𝑆𝑊𝐸)	          (17) 

where 𝑆𝑊𝐸 is the snow water equivalent. 

2.2.7 Modification for shallow snowpacks 

We developed a computationally efficient approach for controlling energy balance instabilities for shallow snowpacks. Marks 245 
et al., (1999) addressed the problem by shifting to progressively smaller time steps. In the interest of computational efficiency, 

we take an alternative approach. When modeled SWE is less than a threshold value, 𝑇:+;< is set equal to the minimum of 𝑇+ 

and 0°C. Cold content is then updated according to this new temperature. The threshold for applying this correction is 15 mm 

of SWE for every hour in the time step (e.g. for a model run at a 4 hour time step the temperature correction would be applied 

to snowpacks with 60 mm SWE or less). Constraining 𝑇:+;< and cold content in this way is reasonable given that surface and 250 
pack temperatures are likely to be similar for shallow snowpacks and the strong correspondence between 𝑇( and 𝑇+ (Helgason 

and Pomeroy, 2012). 
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2.3 Mass Balance 

The mass balance of the solid and liquid portions of the snowpack are evaluated at each time step as 

𝑀( 	= 	𝑀(!9' 	+	𝑀8"> 	−	𝑀?"@# 	+	𝑀*": 	−	𝑀(0A        (18) 255 
𝑀@ 	= 	𝑀8+&! 	−	𝑀8"> 	+	𝑀?"@# 	−	𝑀80!9>> +	𝑀;9!* 	−	𝑀"-+:      (19) 

where 𝑀( is the mass of the solid portion of the snowpack, 𝑀(!9' is the mass of new snowfall, 𝑀8"> is the mass of liquid water 

in the snowpack that has been refrozen, 𝑀?"@# is the mass of snow that has melted, 𝑀*": is the mass of deposition, 𝑀(0A is the 

mass of sublimation, 𝑀@ is the mass of the liquid in the snowpack, 𝑀8+&! is the mass of rain added to the snowpack, 𝑀80!9>> 

is the mass of liquid water that has left the snowpack as runoff, 𝑀;9!* is the mass of condensation, and 𝑀"-+: is the mass of 260 
evaporation (Fig. 1). 

2.3.1 Accumulation 

Snowfall is calculated as an air temperature and relative humidity dependent fraction of precipitation using the bivariate logistic 

regression model of Jennings et al., (2018b). We use a non-binary formulation to allow for mixed phase precipitation. New 

snowfall amounts less than 0.1 mm water equivalent per hour are set to 0.  Rainfall is the difference between precipitation and 265 
snowfall. The temperature of new snowfall is set equal to the minimum of the dewpoint temperature and freezing point (0°C) 

whereas the temperature of rainfall is set equal to the maximum of the dewpoint temperature and the freezing point (Marks et 

al., 2013; Raleigh et al., 2013).  

The density of new snowfall is calculated as a function of air temperature (Anderson, 1976) using constants identified by 

Oleson et al., (2004). Compaction of the snowpack is modeled as a function of SWE and snowpack temperature following 270 
Anderson, (1976) and using constants from Boone, (2002) for the ISBA-ES snow model. Snow depth is a function of SWE 

and density and is updated following changes in either variable. 

2.3.2 Melt 

Positive net energy flux must satisfy the snowpack cold content before melt can occur. Melt is equivalent to the minimum of 

the current SWE and the potential melt, 275 
𝑚𝑒𝑙𝑡:9#	 = 	𝑄:+;</(𝜆> 	× 𝜌')		  for   𝑄:+;< > 	0        (20) 

where 𝜆> is the latent heat of freezing.  

2.3.3 Liquid water content 

Rainfall, melt, and condensation are added to and evaporation is subtracted from the snowpack liquid water content. Snowpack 

liquid water content in excess of the liquid water holding capacity of the snowpack contributes to runoff. The liquid water 280 
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holding capacity of the snowpack is the product of snow depth and the maximum liquid water fraction (lw_max, Table 2). 

Liquid water content below this threshold but greater than the minimum liquid water content (equivalent to 1% of snow depth 

(Marsh, 1991)) is allowed to drain at a rate of 100 mm h-1 (based on values in Armstrong and Brun, 2008; DeWalle and Rango, 

2008).  

2.3.4 Refreezing 285 

Excess cold content can be used to refreeze liquid water in the snowpack. The amount of water refrozen is the minimum of the 

total liquid water content of the snowpack and the potential refreezing, 

𝑟𝑒𝑓𝑟𝑒𝑒𝑧𝑒:9# =	−𝑐𝑐/(𝜆> 	× 	𝜌')		  for 𝑐𝑐 < 	0        (21) 

𝑀8"> = 	𝑚𝑖𝑛(𝑟𝑒𝑓𝑟𝑒𝑒𝑧𝑒:9# , 	𝑀@)        for 𝑐𝑐 < 	0        (22) 

Energy released by refreezing is added to the snowpack cold content and the refrozen mass is added to the SWE, increasing 290 
the snowpack density (we assume no change in snow depth).  

2.3.5 Sublimation and condensation 

Latent heat transfer results in sublimation or evaporation from or deposition or condensation onto the snowpack, such that 

𝑀(0A =	−𝐸& 	/(𝜆( × 𝜌')		  for   𝐸& < 	0	𝑎𝑛𝑑	𝑇( < 0        (23) 

𝑀"-+: =	−𝐸'/(𝜆- 	× 𝜌')		  for   𝐸' < 	0	𝑎𝑛𝑑	𝑇( = 0       (24) 295 
𝑀*": =	−𝐸& 	/(𝜆( 	× 	𝜌')		  for   𝐸& > 	0	𝑎𝑛𝑑	𝑇( < 0        (25) 

𝑀;9!* =	−𝐸'/(𝜆- 	× 	𝜌')		  for   𝐸' > 	0	𝑎𝑛𝑑	𝑇( = 0       (26) 

where 𝜆( is the latent heat of sublimation and 𝜆- is the latent heat of vaporization. 

3 Model Application to the Western United States 

The SnowClim model was evaluated and calibrated at a collection of automated snow stations across montane portions of the 300 
western US and further applied to the broader western US to create the SnowClim dataset. We describe the preparation and 

downscaling of the meteorological forcing data, the model calibration, and the model simulations for the western US. The 

model was calibrated at Snowpack Telemetry (SNOTEL) sites and model performance at these sites was used to select the 

parameters and temporal resolution at which to run the model over the full domain.  

3.1 Spatial resolution 305 

To balance the competing ambitions of high spatial resolution and computational feasibility over the western US domain, we 

used variable spatial resolutions. Regions of complex terrain were modeled at 210 m (hereafter ‘fine’). This high resolution 
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enhances the model’s ability to capture the effects of elevation, aspect, and slope on snowpack in complex terrain. Regions of 

less complex terrain were modeled at 1050 m (hereafter ‘coarse’). Terrain complexity was assessed for each coarse grid cell 

by examining the elevations and downscaled shortwave radiation values for the 25 collocated fine grid cells. If the elevation 310 
difference across the fine cells was less than 50 m and the maximum percent difference in shortwave radiation was less than 

10%, then snow simulations were completed at coarse resolution. Otherwise, simulations were completed at fine resolution. 

This resulted in approximately 30% of the domain (920,605 grid cells) being modeled at coarse resolution (Fig. B1), with the 

remainder (64,310,454 grid cells) being modeled at fine resolution. Grid cells were defined using the 1 arc-second National 

Elevation Dataset Digital Elevation Model (DEM; Gesch et al., 2018), aggregated to either 210 m or 1050 m.  315 

3.2 Forcing data preparation 

Hourly meteorological data from the Weather Research and Forecasting model (WRF; Rasmussen and Liu, 2017) were 

downscaled to force the snow model (Table 3). Forcing data was developed for a historical period, future period, and pre-

industrial period. The raw WRF data consisted of 4 km spatial resolution hourly simulations for 1 October 2000 to 30 

September 2013, that used initial and boundary conditions from ERA-Interim (Dee et al., 2011), herein referred to as the 320 
historical period. A pseudo-global warming run was also performed by perturbing ERA-Interim by average differences from 

a suite of climate models participating in the Fifth Coupled Model Intercomparison Project (CMIP5; Taylor et al., 2012) 

between 1976-2005 and 2071-2100 under the high-warming RCP 8.5 scenario (Rasmussen and Liu, 2017). Pre-industrial 

forcing data was developed by perturbing the downscaled historical WRF data by monthly climatological differences in climate 

between pre-industrial (1850-1879) and the historical period using a pattern scaling approach (Mitchell, 2003) based on 325 
spatially varying differences in variables from the CMIP5 models.  

Spatial downscaling for all variables except shortwave radiation was accomplished using moving window lapse rates (i.e., the 

change in the variable with elevation). Lapse rate downscaling has been shown to perform well relative to other statistical 

downscaling approaches in mountainous terrain (Praskievicz, 2018; Wang et al., 2012). We estimated monthly lapse rates for 

each grid cell and each variable, except for temperature for which we estimated hourly lapse rates for each grid cell. Windows 330 
of 7x7 WRF grid cells, or 28 km x 28 km, were used to balance the competing objectives of sufficient data points and the 

ability to capture local phenomena (Lute and Abatzoglou, 2021). Lapse rate corrections were applied hourly using the elevation 

difference between the WRF grid cell and the target DEM grid cell. For air pressure, lapse rates were calculated from and 

applied to temporally averaged WRF data. Grid cells not classified as land by WRF were excluded from lapse rate calculations.  

For precipitation, a modified version of the methods above was used. Prior to calculating lapse rates, WRF precipitation was 335 
bias-corrected to monthly 4 km precipitation from PRISM (PRISM Climate Group, 2015) by calculating monthly correction 

ratios- the ratio of total monthly PRISM precipitation to total monthly WRF precipitation. Correction ratios were set to 1 (no 

correction) when monthly WRF precipitation was 0 or when the ratio was infinite. Monthly precipitation lapse rates were 
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divided by the number of hours with precipitation each month in the underlying WRF data and hours with 0 precipitation were 

maintained in the downscaled data to avoid precipitation every hour due to non-zero monthly lapse rates.  340 
Shortwave radiation was downscaled to the target DEM using the insol package in R (Corripio, 2015) following the approach 

of Lute and Abatzoglou, (2021) which preserves the atmospheric effects (e.g. cloud cover) captured by WRF and also accounts 

for slope, aspect, self-shading, and shading by adjacent terrain. Parameters required by the algorithm, including visibility, RH, 

and temperature, were assumed to be constant. Terrain corrections were calculated for the midpoint of each hour of the middle 

day of each month, aggregated to the desired temporal resolution using a weighting scheme based on the amount of solar 345 
radiation each hour, and then interpolated to the full time period. 

For model calibration at SNOTEL sites (see next section), the above downscaling procedures were applied, but values were 

adjusted based on the elevation difference between the SNOTEL site and the collocated WRF grid cell based on calculated 

lapse rates. Downscaled WRF precipitation was bias-corrected to SNOTEL sites by applying a monthly correction factor 

consisting of the ratio of the total SNOTEL precipitation to the total WRF precipitation similar to Havens et al., (2019). We 350 
note that such bias correction approaches may not address issues of precipitation undercatch at SNOTEL sites. 

Additional variables needed to force the snow model including specific humidity, relative humidity, and dewpoint temperature 

were derived from the downscaled WRF water vapor mixing ratio, air temperature, and air pressure data using standard 

methods. Dewpoint temperatures exceeding the air temperature were set equal to the air temperature.  

3.3 Model calibration 355 

3.3.1 Calibration methods 

The model was calibrated at SNOTEL sites across the mountains of the western US to select a single best parameter set across 

all sites. While the SNOTEL network may not be perfectly representative of the broader domain (Molotch & Bales, 2005), it 

represents the best available ground observation dataset for calibration purposes due to the number of sites, range of 

hydroclimate conditions monitored, length of record, and relatively consistent observational methods and equipment across 360 
sites. A total of 170 SNOTEL sites were selected meeting the following requirements: 

1. elevation difference of less than 75 m relative to the collocated WRF grid cell; 

2. missing no more than 1% of daily precipitation and SWE observations between October and May in every water 

year between 1 October 2000 and 30 September 2013; 

3. located more than 25 km from any other SNOTEL site. 365 
Missing SWE values were infilled using linear interpolation across time. Missing precipitation values were infilled using an 

inverse distance weighted average of the values at the three closest sites. 

Calibration consisted of running the model across all SNOTEL sites for each possible combination of parameters listed in 

Table 2. Model performance was assessed using the mean absolute percent error (MAPE) of annual maximum SWE (maxswe), 

the MAPE of annual snow duration, and the root mean squared error (RMSE) of daily SWE at each site. Snow duration was 370 



13 
 

defined as the duration (in days) of the longest period of consecutive days with SWE > 0. RMSE was computed for days when 

observed SWE exceeded 10 mm. Additionally, we used the mean error (ME) and mean percent error (MPE) of maxswe and 

duration to visualize calibration errors. The optimal parameter set was selected using Pareto preference ordering (Khu and 

Madsen, 2005) based on the median of each statistic across stations.  

The model was subsequently evaluated for different run time steps (1, 2, 3, 4, 6, 8, 12, and 24 hours). Separate model calibration 375 
for each time step selected similar parameter sets to the hourly run, so the hourly parameter set was used for all time steps. 

Model performance was again assessed as described above.  

3.3.2 Calibration results 

Snow model calibration via Pareto optimization selected a single best parameter set (Table 2). The station median MAPE of 

maxswe, MAPE of snow duration, and daily RMSE for this parameter set were 15.9%, 8.43%, and 64.0mm, respectively.  The 380 
spatial distribution of ME and MPE in maxswe and duration lacked strong coherent spatial patterns (Fig. 2) and spatial 

correlations (R2) for a variety of snow metrics exceeded 0.75 (Table 4), suggesting that the model captured major climate 

related effects and sources of large-scale spatial snow variability. The largest negative biases were found at drier sites with 

relatively shallow or intermittent snowpacks (Fig. B2). The largest positive biases were found at sites with mean winter 

temperatures at or above freezing, where snow accumulation is very sensitive to the partitioning of precipitation into rain vs. 385 
snow (Fig. B2). A time series of observed and modeled SWE at one site with error values close to the station median values 

illustrates the model performance on a daily scale (Fig. 3). The model also captured key components of interannual snowpack 

variability over the short historical period; the station median correlation coefficients for maxswe and for snow duration were 

0.93 and 0.70, respectively. The station correlations did not demonstrate any clear geographic or climatic patterns. This lends 

confidence to the model’s ability to accurately simulate snow dynamics across a range of climates. The parameter sensitivity 390 
of the model is shown in Fig. B3. 

Model performance deteriorated as temporal resolution coarsened from 1 hour to 12 hours but improved slightly for the 24 

hour timestep (Fig. 4). Model performance was somewhat sensitive to the hours used for aggregation; other aggregation 

windows showed continuous performance deterioration with coarsening temporal resolution (not shown). The sensitivity of 

model performance to aggregation window is likely related to how diurnal energy fluxes, particularly shortwave radiation, are 395 
aggregated. A timestep of 4 hours was selected for the full western US model run to balance the objectives of computational 

efficiency and model performance. The station median MAPE of maxswe, MAPE of snow duration, and RMSE for the 4 hour 

time step were 17.6%, 8.31%, and 69.5 mm, respectively. We note that simulations without the modification for shallow 

snowpacks (Sect. 2.2.7) degraded more consistently and significantly with coarsening temporal resolution (Fig. B4). 
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3.4 Model results for the western United States 400 

The SnowClim model was applied to the western US (contiguous US west of 104°W) using the parameters identified above, 

a temporal resolution of 4 hours, and a variable spatial resolution as described previously (210 m-1050 m horizontal resolution). 

The model was run in parallel on a high-performance standalone server (Dell Poweredge R730) with 34 cores and 128GB 

RAM. The compute time for downscaling the climate forcings and executing the snow model was 10 days and 2.5 days, 

respectively, for the historical period. For reference, the model took less than 0.03 seconds per site year when run using a 405 
single core across the 170 SNOTEL sites. 

Large-scale spatial patterns of climatologies and changes in maxswe and snow duration (Fig. 5 and 6) were broadly similar to 

those from existing products developed from a wide range of modeling approaches (Luce et al., 2014; Lute et al., 2015; Ikeda 

et al. 2021). Historical maxswe was 112 mm, spatially averaged across the full western US domain, and locations with 

historical maxswe < 50 mm were found in the warmer southern and southwestern regions and in the northeastern portion of 410 
the domain where winters are relatively dry (Fig. 5a). Under the future scenario, spatially averaged maxswe declined to 54 

mm and the areas with maxswe < 50 mm expanded to encompass many lower elevation areas (Fig. 5b). Historical snow 

duration averaged 83 days, spatially averaged across the full western US domain (Fig. 5c), but declined to 43 days in the future 

scenario (Fig. 5d). There were only a handful of locations with increases in maxswe or duration in the future period compared 

with the historical period, and these increases were small (Fig. 6). The largest relative declines in maxswe and duration were 415 
found at low elevations. On average, maxswe decreased by 49% across locations with at least 50 mm maxswe historically and 

snow duration decreased by 61% across locations with historical snow duration greater than zero. Summaries of historical and 

future maxswe and duration by 4-digit hydrologic unit code (HUC) are provided in Table B1. 

Compared to existing large extent, multitemporal, process-based snow datasets such as that from the 4 km WRF runs 

(Rasmussen and Liu, 2017), SnowClim provided a much more nuanced picture of changing snow, particularly in areas of 420 
complex terrain. For example, Fig. 7 shows relative changes in maxswe for the Uinta Mountains in northeastern Utah as 

simulated directly by the 4 km WRF product and by SnowClim. SnowClim captured effects of elevation and aspect, including 

greater percent reductions in maxswe at lower elevations and on south facing aspects, similar to Barsugli et al., (2020). Nuanced 

results such as these are only possible with high-resolution snow modeling that explicitly simulates spatiotemporal variations 

in the dominant snowcover energy fluxes. 425 
Comparison of SnowClim snow depth with a snapshot of finer resolution Light Detection and Ranging (LiDAR)-based 

observations further highlights some of the strengths and limitations of SnowClim. For example, in the Boulder Creek 

Watershed, Colorado, SnowClim captured the broad scale spatial patterns of snow depth that are present in LiDAR derived 

depth observations (described in Harpold et al., 2014) aggregated from the original 1 m resolution to the resolution of 

SnowClim on 20 May 2010 (Fig. 8). However, SnowClim snow depth was less spatially variable, particularly in the higher 430 
elevation western portion of the domain. Evaluations such as this are particularly challenging as they simultaneously evaluate 

the spatial and temporal fidelity of the forcing data, the snow model, and in particular the snow density algorithm. The muted 
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spatial variability in SnowClim can be attributed to a combination of factors, chief among which may be the lack of wind-

snow interaction in the current SnowClim model formulation. Snow redistribution by wind and blowing snow sublimation 

have a significant effect on snowpack heterogeneity in this region (Knowles et al., 2012; Sexstone et al., 2018; Winstral et al., 435 
2002); one study showed that a model incorporating wind redistribution captured 8-23% more of the spatial variability in snow 

depth than a model without these processes (Winstral et al., 2002). In order to better simulate snowpack in windy environments 

such as the alpine area shown here, incorporation of blowing snow transport and sublimation into future SnowClim model 

formulations should be considered. 

4 Discussion and Conclusion 440 

Through the development of a new computationally efficient snow model, SnowClim, and novel forcing data, we have 

overcome the two major hurdles to achieving snow data that meets the criteria outlined in the introduction. SnowClim’s 

distinctive balance of mostly process-based and some empirical components allows it to capture contrasts in radiative loading 

in complex terrain, timing and rate of ablation, and responses to future climate, while maintaining computational efficiency. 

The SnowClim dataset is spatially continuous across the western US at sub-kilometer resolution in complex terrain, enabling 445 
both high-resolution and large-extent analyses. In particular, the SnowClim model and dataset highlight the effects of elevation 

and aspect on snowpack in a changing climate. The inclusion of multiple snow variables and compatible climate variables 

across multiple time periods will empower analyses of hydroclimatic responses to changing climate and complement existing 

coarser-resolution products. 

The SnowClim model excludes some processes that might be included in more complex, computationally expensive large-450 
scale models (e.g., VIC, WRF) such as vegetation related processes, blowing snow transport and sublimation, and gravitational 

redistribution. In some contexts, these processes may be necessary for accurate modeling of the snowpack (Freudiger et al., 

2017; Musselman et al., 2008; Pomeroy et al., 1993). The western US SnowClim dataset was calibrated at SNOTEL sites, 

which are often in forest clearings, and is therefore expected to be relatively accurate in similar environments. However, user 

judgement should be applied when using the model or dataset in vegetated areas. Given the complexity of vegetation-snow 455 
processes, incorporation of vegetation effects may add significant computational expense and is hindered by the need for 

vegetation related data and parameters that are expected to change between the time periods considered here. Future vegetation 

change is subject to large uncertainty stemming from disturbance regimes and species composition pathways. However, 

incorporation of an optional vegetation routine to be used when data and computational resources are available is a logical 

next step. Approaches for incorporating blowing snow transport either require a) high-resolution wind fields input to semi-460 
empirical or 3D turbulent-diffusion models (summarized in Mott et al., 2018), requiring more sophisticated downscaling of 

wind fields than what was done here and substantially increasing computational cost, or b) require calibration of terrain 

parameters (e.g. Winstral et al., 2013), which would be possible, but both challenging and computationally intensive for a 

large-scale model such as SnowClim. Simple algorithms do exist for modeling gravitational redistribution of snow (Bernhardt 
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and Schulz, 2010), however incorporation of either blowing snow transport or avalanching would necessitate restructuring of 465 
the model as a semi- or fully-distributed model with spatial interaction, which alone would likely reduce the computational 

efficiency of the model. The model also includes simplified representations of the ground heat flux and snow surface 

temperature, which may be better captured by more process-based approaches. In particular, a more nuanced treatment of the 

ground heat flux may be desired in warmer snow climates (Mazurkiewicz et al., 2008).  

Contrasts between modeled and observed snow metrics stem from several factors, including but not limited to: uncertainties 470 
in climate forcings, SNOTEL site specific factors that the model neglects such as fine scale topographic and vegetation 

patterns, and errors in model specification including process representation and calibration. Despite these factors, errors at 

SNOTEL sites from the hourly SnowClim model run were relatively small and compared well with errors reported for other 

gridded snow products. Ikeda et al., (2021) evaluated the snow simulations from the same 4 km WRF model runs that we 

sourced our raw climate forcings from (Rasmussen and Liu, 2017). Relative to SNOTEL sites, they found a -26.2% bias in 475 
maxswe. In contrast, the SnowClim model achieves a maxswe bias of only 0.15%. Wrzesien et al., (2018) compared maxswe 

at SNOTEL sites to maxswe from 9 km WRF simulations. Across sites, they found a correlation coefficient of 0.55 and a bias 

of -89 mm. SnowClim achieves a correlation coefficient of 0.94 and bias of -11 mm. In the California Sierra Nevada 

Mountains, Guan et al., (2013) blended modeled, remotely sensed, and observed data to capture SWE at 6 sites. Their method 

achieved a SWE RMSE of 205 mm compared to snow surveys. The SnowClim mean RMSE of daily SWE was 77 mm across 480 
all sites and 166 mm at Sierra Nevada sites. While errors at SNOTEL sites were generally low, the model did tend to 

overestimate maxswe and duration at some warm/wet sites and underestimate these metrics at dry sites (Fig. B2). Further 

evaluation of the parameters used here in more marginal snow environments would lend additional confidence to the 

application of SnowClim data in these areas. While the model’s excellent performance relative to SNOTEL observations is in 

part due to the fact that the model was calibrated to SNOTEL data, the model could be calibrated to other observations for 485 
application in other contexts. 

The flexible, modularized, structure of the SnowClim model lends itself to calibration, parameter sensitivity assessment, and 

experimentation. In the western US, model performance was particularly sensitive to the choice of albedo algorithm and snow 

surface temperature parameterization, in line with previous findings (Etchevers et al., 2004; Günther et al., 2019; Slater et al., 

2001; Fig. B3). Given the importance of impurities (e.g. tree litter, dust, and black carbon) on snow albedo and consequently 490 
snow melt (Waliser et al., 2011), a future step will be to add albedo algorithms that account for these effects. The modular 

structure of SnowClim would make this relatively straightforward. 

Given the multifaceted importance of snow and ongoing snowpack changes due to climate change, there is a need for models 

that can accurately and efficiently simulate snow to generate spatially extensive, high-resolution datasets to meet the diverse 

requirements of different applications. We anticipate that the SnowClim model and data will be powerful tools for researchers 495 
and managers across a range of disciplines including ecology and wildlife biology, recreation, transportation, hazard planning, 

and glacier and hydrologic modeling. The SnowClim model and data will be particularly useful for applications requiring high 
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spatial resolution data, such as species distribution and refugia modeling, and will complement the existing array of snow 

models and datasets by providing a novel balance of process-based elements and computational efficiency.  

5 Data availability 500 

Climate forcing data and modeled snow variables were aggregated to monthly and annual climatologies for each time period 

to create the SnowClim dataset (Table 5). These data are available from 

https://www.hydroshare.org/resource/acc4f39ad6924a78811750043d59e5d0/ in both netCDF and geoTIFF formats (Lute et 

al., 2021). The data are additionally available in netCDF format on Dryad at 

https://datadryad.org/stash/share/wywmnpELgnP0b3joYVccmZJ0TKvgNsIh7PjQuz3FjXM.  505 

6 Code availability 

The code for the SnowClim model is available from 

https://www.hydroshare.org/resource/acc4f39ad6924a78811750043d59e5d0/ (Lute et al., 2021) under the Creative Commons 

Attribution CC BY. The model can be run using MATLAB Online through HydroShare. The code is also available on Dryad 

at https://datadryad.org/stash/share/wywmnpELgnP0b3joYVccmZJ0TKvgNsIh7PjQuz3FjXM.  510 
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Figure 1: Snow model conceptual diagram. Solid black arrows indicate mass fluxes, dashed grey arrows indicate energy fluxes. 
Fluxes are described in the text. 

 835 
Forcing data Abbreviation 

Downward shortwave radiation flux at the surface 𝑆𝑊↓ 

Downward longwave radiation flux at the surface 𝐿𝑊↓ 
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Air Temperature 𝑇"  

Precipitation 𝑃 

Specific Humidity 𝑄" 

Wind speed 𝑈" 

Air pressure 𝑃"#$ 
Table 1. Required forcing data for the snow model. 

 

Parameter Abbreviated name Values used for calibration Units 

Albedo Algorithm albedo_opt Esserya*, Tarbotonb - 

Momentum 
roughness length 

𝑧% 10-3, 10-4, 10-5* m 

Heat and vapor 
roughness length 

𝑧& 𝑧%/10* m 

Maximum Albedo albedo_max 0.85*, 0.90 - 

Maximum liquid 
water fraction 

lw_max 0.1* - 

Windless heat 
exchange 
coefficient 

E0 0, 1*, 2 Wm-2K-1 

Windless heat 
exchange 
coefficient flux 
application 

E0_app 1* - 

Windless heat 
exchange 
coefficient 
stability condition 

E0_stability 2* - 

Cold content 𝑐𝑐% 0*, -5000, -10000 kJm-2 
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threshold at which 
to start energy tax 

Cold content range 
to tax 

𝑐𝑐' -5000*, -10000, -15000, -20000 kJm-2 

Maximum tax to 
apply to 
snowcover energy 

𝑚𝑎𝑥𝑡𝑎𝑥 0.3, 0.6, 0.9* - 

Snowcover energy 
flux smoothing 
window 

smooth_hrs 8, 12, 24* hours 

Snow surface 
temperature 
augmentation 

𝑇"((  0, 1, 2* °C 

Table 2. Parameters, their abbreviated names, the parameter values used in calibration, and their units. Parameter values with an 
* indicate values chosen for the full model run by calibration at SNOTEL sites. Additional parameter options, including the VIC 
model albedo option, were evaluated in preliminary work but were excluded from the full calibration due to consistently poor 840 
performance. aEssery et al., (2013); bTarboton and Luce, (1996) 

 

WRF data Abbreviation 

Downward shortwave radiation flux at the surface 𝑆𝑊↓ 

Downward longwave radiation flux at the surface 𝐿𝑊↓ 

Mean Air Temperature 𝑇"  

Precipitation 𝑃 

Wind speed 𝑈" 

Air pressure 𝑃"#$ 

Water vapor mixing ratio (kg/kg) 𝑄 
Table 3. WRF data used to derive forcing data for the snow model. 
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Figure 2. Performance metrics for an hourly model run with the selected parameterization. 845 

 

Metric Coefficient of determination (R2) 

Maximum SWE 0.91 

Day of maximum SWE 0.78 

Snow duration 0.86 
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Number of snow cover days 0.89 

Day of snow melt out 0.80 
Table 4. Spatial correlations (R2) between observations at SNOTEL sites and SnowClim simulations for various snow metrics over 
the model calibration period 1 October 2000 - 30 September 2013. 

 
 850 

 
Figure 3. Time series of observed and modeled SWE at the Summit Ranch, Colorado SNOTEL site. Out of all 170 SNOTEL sites, 
errors at this site were closest to the all-station median errors reported in the text. 

 
 855 
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Figure 4. Snow model performance for different time steps using the parameter set selected in calibration of the hourly model. Points 
represent median values across 170 SNOTEL sites. 
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 860 
Figure 5. a) Historical and b) future maxswe (mm), c) historical and d) future snow duration (days). Historical values are averages 
over the period 2000-2013. Future values represent averages during the period 2071-2100 under RCP 8.5. In a) and b), white land 
areas denote areas that had less than 50 mm maxswe. In c) and d), white land areas denote areas where snow duration was 0. Note 
the non-linear color scale in panels a) and b). 

 865 
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Figure 6. a) Absolute and b) percent change in maxswe between historical and future periods. c) Absolute and d) percent change in 
snow duration between historical and future periods. In d), small boxes in Utah and Colorado indicate the regions highlighted in 
Fig. 7 and Fig. 8, respectively. 
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Figure 7. Example of simulations of changing maxswe for a portion of the Uinta Mountains, Utah (location is marked in Fig. 6). The 
elevation (m) of the domain is shown in a). The percent change (%) in maxswe between historical and late 21st century periods as 
simulated by a 4 km WRF product (Rasmussen and Liu, 2017) is shown in b) and the same metric but from the SnowClim dataset 
is shown in c). 875 

 

 
Figure 8. Snow depth on 20 May 2010 in the Boulder Creek Watershed area indicated in Fig. 6 from a) LiDAR (described in Harpold 
et al., 2014) and b) SnowClim. 

 880 
Climate Variables 

Monthly temperature (min, max, and mean) 
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Monthly precipitation 

Monthly solar radiation 

Monthly dewpoint temperature 

Annual number of freeze/thaw cycles 

Snow Variables 

Monthly SWE (min, max, mean) 

Monthly snow depth (min, max, mean) 

Monthly snow cover days 

Monthly snowfall 

Annual size and date of maximum SWE 

Annual size and date of largest snowfall event 

Annual snow duration 

Date of first and last snow 

Number of days without snow between first and last snow 
Table 5. Summary climate and snow variables included in the SnowClim dataset. Summary variables are available for pre-
industrial, historical, and future time periods. 

 

Appendix A 

We compared observed cold content with SnowClim simulated cold content with and without the tax 885 
approach at two sites in the Niwot Ridge Long Term Ecological Research site (LTER), Colorado, an 
alpine site (Saddle) and a subalpine site (C1). The cold content observations are presented in Jennings et 
al., (2018). 

For the comparison, we ran SnowClim at each of the sites using hourly observed climate forcings from 
the sites (Jennings et al., 2021) for water years 2001-2013. The model was first run with the cold 890 
content tax described in section 2.2.6 (i.e., as it is reported in the manuscript). Then, an additional run 
was performed in which the tax approach was turned off. The goal of this experiment was to evaluate 
how well the model simulates cold content relative to observations and to determine whether the tax 
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approach improved cold content simulations compared to the same model without the tax approach. The 
same parameters from the western US run were used for modeling these sites, the model was not 895 
recalibrated. Simulated cold content was smoothed using a two-week moving mean to provide a more 
robust comparison to observations, which were collected at weekly to monthly intervals. Peak 
(minimum) cold content values were averaged across years to get a peak cold content value for each site 
and model run and these were compared with the peak cold content values from observations reported 
in Jennings et al., (2018), Table 1. 900 

Despite scale discrepancies between point observations and 210 m grid cells, SnowClim peak cold 
content compares well with observations when the tax approach is used. In contrast, when the tax 
approach is not used and all negative energy fluxes are directly added to the pack cold content, cold 
content becomes an order of magnitude greater than the observations.  

 905 
Site Observed Peak CC SnowClim Peak CC w/ tax SnowClim Peak CC w/o tax 

Subalpine 
(C1) 

-2.5 MJ/m2 -4.1 MJ/m2 -27.0 MJ/m2 

Alpine 
(Saddle) 

-6.5 MJ/m2 -8.7 MJ/m2 -161.0 MJ/m2 

Table B1. Comparison of peak seasonal cold content values from observations, SnowClim simulations including the 
tax approach described in section 2.2.6, and SnowClim simulations without the tax approach at two sites from the 
Niwot Ridge, Colorado Long Term Ecological Research site. 
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Appendix B 

 910 
Figure B1. Map of 3.1 million km2 modeling domain with locations modeled at 210m spatial resolution in blue. 
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Figure B2. Performance of best hourly model at SNOTEL sites in temperature-precipitation space. Each point represents a SNOTEL 
site. 915 

 



40 
 

 
Figure B3. Parameter sensitivity of hourly model performance. 
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 920 
Figure B4. Performance of snow model without shallow snow correction for different time steps using the parameter set selected in 
calibration of the hourly model with shallow snow correction. Points represent median values across 170 SNOTEL sites. 

 

4-
Digit 
HUC HUC Name 

Total 
Area 

Modeled 
Area 

Historical 
Maxswe 

Future 
Maxswe 

Historical 
Snow 
Duration 

Future 
Snow 
Duration 

Absolute 
Change 
Maxswe 

Percent 
Change 
Maxswe 

Absolute 
Change 
Snow 
Duration 

Percent 
Change 
Snow 
Duration 

901 Souris 26321 1100 24 15 90 50 -9 -37 -40 -45 

904 
Saskatchewan 
River 17604 1748 623 442 228 176 -181 -29 -53 -23 

1002 
Missouri 
Headwaters 36350 36350 216 138 171 116 -79 -36 -55 -32 

1003 
Missouri-
Marias 51423 51423 76 48 109 69 -28 -37 -40 -36 

1004 
Missouri-
Musselshell 60830 60830 30 17 76 40 -13 -44 -36 -47 

1005 Milk 59844 38732 21 13 66 35 -8 -38 -31 -47 
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1006 Missouri-Poplar 34275 28125 18 11 66 31 -7 -40 -36 -54 

1007 
Upper 
Yellowstone 37453 37453 191 137 140 96 -54 -28 -44 -32 

1008 Big Horn 59250 59250 87 56 116 71 -30 -35 -45 -39 

1009 
Powder-
Tongue 48695 48695 27 13 80 34 -14 -51 -46 -57 

1010 
Lower 
Yellowstone 35982 35982 15 7 57 25 -8 -54 -32 -56 

1011 
Missouri-Little 
Missouri 41312 26872 21 8 68 27 -13 -60 -41 -60 

1012 Cheyenne 61764 44105 29 14 87 36 -15 -51 -50 -58 

1013 Missouri-Oahe 39533 6792 18 7 56 21 -11 -61 -35 -63 

1014 Missouri-White 17839 1738 21 10 63 24 -10 -51 -39 -62 

1015 Niobrara 17280 4959 18 9 67 18 -9 -48 -49 -73 

1018 North Platte 78925 68121 78 51 121 67 -26 -34 -54 -45 

1019 South Platte 61585 54444 47 30 91 41 -18 -37 -50 -55 

1025 Republican 34705 2048 13 6 42 8 -7 -51 -34 -81 

1102 Upper Arkansas 64555 50655 40 27 67 33 -13 -34 -34 -50 

1104 
Upper 
Cimarron 20693 3041 20 13 37 13 -7 -36 -24 -64 

1108 
Upper 
Canadian 32307 31937 24 14 45 19 -9 -40 -26 -58 

1109 
Lower 
Canadian 23149 4348 14 8 22 8 -6 -42 -14 -65 

1110 North Canadian 20259 1518 19 12 24 12 -7 -37 -12 -50 

1112 
Red 
Headwaters 20120 1170 13 7 24 9 -5 -41 -15 -61 

1205 
Brazos 
Headwaters 33307 5234 9 3 16 1 -6 -68 -15 -94 

1208 
Upper 
Colorado 39084 5265 8 2 7 0 -6 -74 -7 -96 

1301 
Rio Grande 
Headwaters 19715 19715 154 110 123 86 -44 -28 -37 -30 

1302 
Rio Grande-
Elephant Butte 70248 70248 45 25 50 22 -21 -46 -28 -56 

1303 
Rio Grande-
Mimbres 56317 28836 7 1 7 1 -5 -81 -6 -85 

1304 
Rio Grande-
Amistad 73020 4701 4 0 3 0 -3 -92 -3 -100 

1305 
Rio Grande 
Closed Basins 45513 38932 10 3 14 3 -7 -68 -11 -78 

1306 Upper Pecos 60947 60947 13 6 18 5 -7 -51 -13 -73 

1307 Lower Pecos 53426 14078 3 1 1 0 -2 -72 -1 -97 

1401 
Colorado 
Headwaters 25480 25480 269 183 173 125 -86 -32 -49 -28 

1402 Gunnison 20791 20791 232 162 154 108 -70 -30 -46 -30 

1403 

Upper 
Colorado-
Dolores 21662 21662 111 61 101 53 -50 -45 -47 -47 
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1404 
Great Divide-
Upper Green 53758 53758 81 55 95 55 -26 -32 -39 -42 

1405 White-Yampa 34342 34342 176 110 136 84 -67 -38 -52 -38 

1406 Lower Green 37701 37701 115 70 105 62 -45 -39 -43 -41 

1407 

Upper 
Colorado-Dirty 
Devil 35265 35265 43 20 54 22 -23 -54 -33 -60 

1408 San Juan 64570 64570 74 41 61 26 -32 -44 -35 -58 

1501 

Lower 
Colorado-Lake 
Mead 78401 78401 33 11 44 13 -22 -67 -31 -71 

1502 Little Colorado 70078 70078 22 6 36 7 -15 -71 -29 -80 

1503 Lower Colorado 53742 44549 4 1 6 0 -3 -80 -5 -97 

1504 Upper Gila 39347 39347 20 5 26 6 -16 -77 -20 -78 

1505 Middle Gila 46573 43759 4 0 4 0 -3 -88 -3 -93 

1506 Salt 34899 34899 50 13 53 15 -38 -75 -38 -71 

1507 Lower Gila 39046 39046 2 0 3 0 -2 -85 -3 -96 

1508 Sonora 62266 12927 2 0 2 0 -2 -84 -2 -87 

1601 Bear 19464 19464 214 113 152 95 -101 -47 -57 -37 

1602 Great Salt Lake 74295 74295 92 40 90 40 -51 -56 -50 -55 

1603 

Escalante 
Desert-Sevier 
Lake 42670 42670 89 42 105 51 -47 -53 -54 -51 

1604 

Black Rock 
Desert-
Humboldt 74178 74178 61 23 93 40 -38 -62 -54 -58 

1605 
Central 
Lahontan 32838 32838 91 42 73 36 -48 -53 -37 -50 

1606 
Central Nevada 
Desert Basins 123606 123606 37 15 71 30 -22 -60 -42 -58 

1701 

Kootenai-Pend 
Oreille-
Spokane 134753 94016 394 204 173 114 -190 -48 -59 -34 

1702 
Upper 
Columbia 102909 57668 212 104 114 58 -107 -51 -56 -49 

1703 Yakima 15928 15928 318 129 118 62 -189 -59 -56 -48 

1704 Upper Snake 92909 92909 201 124 135 84 -77 -39 -52 -38 

1705 Middle Snake 95797 95797 163 75 108 53 -87 -54 -55 -51 

1706 Lower Snake 90765 90765 334 175 160 100 -159 -48 -60 -38 

1707 
Middle 
Columbia 77449 77449 147 46 90 36 -101 -69 -54 -60 

1708 
Lower 
Columbia 16121 15815 335 80 106 40 -256 -76 -66 -62 

1709 Willamette 29699 29699 218 51 80 30 -168 -77 -50 -63 

1710 

Oregon-
Washington 
Coastal 65238 59592 136 27 72 18 -109 -80 -54 -75 
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1711 Puget Sound 52957 36404 510 167 120 59 -343 -67 -61 -51 

1712 
Oregon Closed 
Basins 45143 45143 72 26 93 37 -46 -64 -57 -61 

1801 

Klamath-
Northern 
California 
Coastal 67762 64619 189 52 95 39 -137 -73 -57 -59 

1802 Sacramento 72013 72013 188 58 84 40 -130 -69 -44 -53 

1803 
Tulare-Buena 
Vista Lakes 42498 42498 103 57 47 29 -46 -45 -18 -38 

1804 San Joaquin 40984 40984 192 105 63 40 -87 -45 -22 -35 

1805 
San Francisco 
Bay 13910 11448 1 0 0 0 -1 -97 0 -99 

1806 

Central 
California 
Coastal 34287 29377 5 0 3 0 -4 -90 -3 -91 

1807 

Southern 
California 
Coastal 35865 28785 17 3 14 2 -14 -83 -11 -82 

1808 North Lahontan 11791 11791 90 32 112 51 -58 -64 -60 -54 

1809 

Northern 
Mojave-Mono 
Lake 73268 73268 21 10 20 9 -10 -50 -12 -57 

1810 

Southern 
Mojave-Salton 
Sea 44247 41522 3 0 2 0 -3 -84 -2 -83 

Total Western US 3794897 3100511 108 52 80 42 -56 -52 -39 -48 
 
Table B1. Summary of snow metrics by 4-digit HUC. Total and modeled areas are in km2, maxswe has units of mm, and snow 925 
duration has units of days. Values are averaged over all modeled grid cells within each HUC. Total snow metric values, in the last 
row, are averaged across all grid cells across the western U.S. modeling domain and total changes are computed from these total 
snow metric values. 
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