
Referee comments are in black, author responses are in green.

This looks like it might be a useful addition to the suite of datasets of snow simulations
available in the western United States. The combination of a reasonable physical basis,
validation against observations in diverse climates, and an underlying high resolution
provides, at least conceptually, a reasonably satisfying sense that the estimates
provided near the end in Figures 5 and 6 are sound.  It seems appropriate to publish this
presentation of the details of the methods used in producing these data sets. At the
same time, there are improvements that could be made in the writing to provide a more
constructive contribution.

The paper gives a distinct sense of critique of the existing set of snow models available.
Admittedly some are related to questions about run times rather than performance, but
sometimes the criticisms come across more like aspersions than measured or tested
issues.  In this context, I look at all the plots from SNOWMIP2 (Rutter et al. 2009), and
I’m left wondering where this model would fit into the cloud of lines. The bottom line is
that this is another snow model on top of an already long list, with several new
approximations, assertions, and assumptions, and we are left wondering what exactly
we are learning from this particular modeling exercise.  The focus was on improving
model speed so that larger areas could be evaluated at finer resolutions in a reasonable
time, but the net gain in understanding at these larger scales is not really highlighted so
much as alluded to.  This is a problem because there are several products out there and
in use for larger scales, and while this model conceptually critiques these products,
some uncited, it only has a somewhat philosophical basis for that critique.  At a basic
level, the claim for superiority of this modeling approach relates to a reductionist
philosophy that if we can just do our simulations at finer and finer scales, we can resolve
everything.  The paper ultimately bumps into the fact that as we get into finer scale
simulations, we find processes that depend on adjacent areas, and the upshot of this
hazard appears in line 416 – near the end of the paper – where they note that the model
is “most realistic in minimally vegetated areas with relatively little snow redistribution”, a
rare piece of ground in the western US.

So, the question remains about what we learn from this modeling exercise. The central
claim seems to be that when we have more resolution, we can resolve effects of things
like aspect and solar radiation, so we have a better representation than we have had in
the various existing undisclosed products.  This may be true, but at the same time the
paper’s central argument is fundamentally recommending further reduction in element
scale with addition of vegetation and redistribution effects.  Is there simply an argument
for just doing the grind of getting complete lidar coverage over the western US, including
data that can tell us about accumulation enhancement/loss patterns, and running a
hyper-resolution snow model everywhere? Is this the only way that we can ultimately get
a satisfying snow data set?  At what scale does a reductionist argument end?  Is there
any utility in considering subgrid parameterizations of the effects of solar radiation,
redistribution, and forests to a grid scale that is useful … or is that just a side-track that
gets swallowed up by research in computing, storage, and remote sensing? My point is
that this paper – though currently unstated – takes a stand with respect to these



philosophical discussions in the literature. Being unstated, it is a strongly one sided
stand being taken, and it’s possible the authors actually have a more nuanced
perspective and this paper is simply an exploration in one dimension.  In that case they
might want to say something.

None of this detracts from the likelihood that this model product probably provides
greater insights for some purposes about changes that are occurring than some existing
products, but it is important to examine and state in the introduction what the central
argument is and its philosophical history.  At the very least, this makes it easier for
others to follow up on the conceptual advance of the paper.  In this case, the argument
seems to be that some aspects of model physics can be sacrificed in order to better
incorporate the effects of spatial heterogeneity in solar radiation, elevation, and
temperature on snowpack over the same area, and potentially be able to display some
of the heterogeneity in snowpack at finer scales for some purposes.  This is a good
question, and not entirely certain in its outcome, particularly when other subgrid
processes are set aside.  I don’t know that this tradeoff has been assessed in this paper
so much as asserted, and it leaves on the table the question of whether a subgrid
paramaterization coupled with earlier products could potentially generate greater
benefits in time and accuracy … at least for purposes not needing to directly display
fine-scale heterogeneity.  It also leaves open questions about which particular process
for heterogeneity are most critical to incorporate if following a reductionist approach.

It is worth noting here that we have seen images very similar to Figures 5 and 6 (which
display fairly coarse features) in multiple recent publications that are not necessarily
mentioned or cited (including by the first author).  At some level, though, these earlier
coarser resolution papers must be doing something somewhat correctly to get
essentially the same images.  The abstract and introduction begin by pointing out that
there are no existing data sets that are “based on physical principles, simulated at high
spatial resolution, and cover large geographic domains”, but they do not reflect on
applications of these existing somewhat similar data sets, and clearly define “physical
principles” or “high resolution” and explain for what purposes they are valuable.  These
definitions probably relate to the purposes of the simulation and the scale/resolution of
the display.  It is very likely that some of these existing products are adequate for many
tasks, and rather than suggesting a position that this new data set makes all preceding
simulations obsolete, perhaps discussing new applications the higher resolution data
allow or note specific improvements they can demonstrate.  This is partially addressed in
Figure 7 and references, but only for one specific application where details of
heterogeneity are important, although arguably could be focused on very small areas
where redistribution may be important.  On the net, if this data set is intended as
replacement for the other data sets, it would be more polite to acknowledge them and
their utility in the conversation so far rather than to ignore them.  If in no other way, they
could be acknowledged for their corroboration of images like Figures 5 and 6.

There is a similar set of discussions about philosophical subjects with respect to the
framing set up in lines 55-65.  There is a significant discussion in the hydrology literature
at the moment, and spilling into geomorphology and snow as well, about the utility of



machine learning approaches.  Some argue that these are not “physically based”, but
others note that the calibration needs of some models renders them effectively as
non-physically based as some of the machine learning approaches.  Quite a bit of work
has been done in snow with ML and it is currently an area of active research.  I’d
recommend the authors take a look at a brief paper by Fleming et al 2021 to see how
aspects of that framing might be unhelpful to furthering the goals of their work.  I’m
certainly in agreement that we all need to understand 1) the physics of the real world
and 2) how our models represent that physics, but there are sound arguments that a
priori assertions about the details of the physics in model formulation that could detract
from our learning about the physics of the real world.  There are others who deliver that
argument better than I, and hopefully after looking at some of those you might find a
better way to describe the meaning of “physics-based” in the paper.

The above points are for general framing and are important to address so that the
contributions of this specific modeling exercise can be better placed among much that
has occurred before and much going on concurrently.

We thank the referee for their very thorough and thoughtful comments on the manuscript. In
particular, we appreciate the time taken by the referee to highlight how the manuscript can
better contextualize this contribution in the light of past and ongoing developments in snow
modeling and the abundance of existing datasets that have tremendous value. It was
certainly not our intention to discount existing snow data products or approaches, however
we can see how the limited space devoted to this topic in the manuscript and the focus on
our new approach could give that impression. To address this, we have better contextualized
the current work by noting in the introduction the limitations of our approach and applications
for which existing approaches would be better suited. We have also added a sentence in the
section presenting figures 5 and 6 that acknowledges the broad similarity of these results to
previous work. We have also added text in the Conclusion to further highlight the strengths
of our approach and what can be gained from it (a better understanding of the effects of
elevation and aspect on climate change sensitivity of snow, highlighting potential snow
refugia). We believe the discussion of drawbacks of our approach in the Conclusion is
sufficiently thorough, however we have more clearly indicated that some of these drawbacks
are overcome by existing approaches/products.

One of the objections of the referee was with the lack of definitions for the terms physics
based and high spatial resolution. We have clarified these terms in the revised
manuscript (section 1, paragraph 3), defining physics based as incorporating process
based equations for radiative and turbulent energy exchanges and defining high spatial
resolution as < 1 km2. We acknowledge that the lines between empirical methods (such
as temperature index approaches), machine learning (ML) and artificial intelligence (AI)
approaches, and traditional physics based modeling are blurry and recognize that the
former two categories can incorporate physics in some form while the latter can be
empirical to some extent (due to numerous non-physical calibration parameters). Indeed
the latter may be more accurately called process based modeling than physics based
modeling. In light of these nuances, we have largely changed the text to use the term
process-based instead of physics-based. We use process-based to recognize the
inclusion of essential physics equations in the model (e.g. equations 2, 3, and to some



extent the equations for turbulent fluxes), however we emphasize that the SnowClim
model takes a hybrid approach- blending elements that are typically included in
physics-based models with more empirical elements. If anything, the SnowClim model
further emphasizes the lack of strict boundaries between what is a process-based
(typically referred to as physics-based) model and what is an empirical model. We have
also noted in section 1, paragraph 3 that ML and AI approaches have been shown to
accurately simulate net physical processes (for example rainfall-runoff modeling), so
might be considered physics-based to some extent, but these approaches have seen
only limited application in the context of future snow prediction so do not represent a
viable alternative to existing approaches without further development.

The referee notes that the central philosophical argument of the paper is implied but not
stated and suggests that a more transparent presentation of the paper’s argument and
its philosophical history might better enable readers to track the contribution of the paper
in the broader development of the field of snow modeling. We agree that the manuscript
would be enhanced by including or further illuminating these elements. To address this,
we have added a paragraph to the introduction that directly states the central argument
or the manuscript and provides some conceptual context.

We follow up on our central argument in the discussion by addressing the accuracy of
our approach relative to existing large-extent snow products. We show that by modeling
at higher spatial resolution and emphasizing fine-scale topographic effects (elevation,
aspect, slope) but neglecting other processes (e.g. vegetation) we are able to better
capture spatiotemporal snowpack variability across a large range of hydroclimates than
existing, more comprehensive, coarser resolution products. This is even true compared
to a study that used a combination of modeled, remotely sensed, and observed data to
predict SWE (Guan et al., 2013). Furthermore, comparison with an average performance
site (Fig 3) shows that our approach provides robust model performance on daily scales
and in the context of interannual variability.

Another component of our central argument was that the SnowClim model is more
computationally efficient than existing process-based approaches. This is difficult to
assess directly given the lack of documentation of model run times and associated
computational resources and also the difficulty of a meaningful model to model
comparison. However, a handful of references in the literature to model run times
suggest that SnowClim is more computationally efficient. Running SnowClim over the full
western US domain for the historical period (13 years) took ~2.5 days on a standalone
server (Dell Poweredge R730) with 34 cores and 128GB RAM. In contrast, Wrzesian et
al., (2018) note that running WRF at 9 km resolution over North America on
supercomputers for a single year took “~1.8 million core hours and months of real time”.
The run time per site year of the SnowClim model was less than 0.03 seconds when run
across the 170 SNOTEL sites for 13 years using a single core (we have added this to
section 3.4). This is greater than the run time per site year for a temperature index model
(0.01 seconds) and less than an intermediate complexity energy balance snow model
(0.03 to 0.06 seconds) found by Magnusson et al., (2015).



A more specific point begins at line 180 in the characterization of “single” layer
snowpack models and shortcomings, particular with respect to the UEB model.  The
UEB model deals with the issue in two ways. During non-melt periods, it simply uses a
conduction estimate based on a high frequency and a low frequency component –
essentially using a Fourier decomposition approach to calculating the conduction rather
than a finite difference approach – which would use “layers”.  UEB also makes further
computations for heat transfer when the surface is melting.  Insofar as you would like to
emphasize the physical basis of snowclim, you may want to reconcile the “tax” approach
and framing with the physical basis of conduction in the frequency domain.  As it stands,
when the surface is cooling, it looks like only a portion (as low as 10%) of the net flux at
the surface is being removed from the pack – the remainder isn’t accounted for at all.  It
is not clear what errors this accounts for, and you may want to add some content (text
and appendix figures?) to the paper to explain how equations 16 work.  There are at
least 4 parameters involved, all of which are calibration parameters.  This seems
potentially important, but without some validation against temperature data, its difficult to
tell.

We agree that the tax approach could benefit from additional explanation and evaluation
since it is a new method. To this end, we have performed a comparison of our modeled
cold content with and without the tax approach and observed cold content at two sites in
the Niwot Ridge Long Term Ecological Research site (LTER), Colorado, an alpine site
(Saddle) and a subalpine site (C1). The cold content observations are presented in
Jennings et al., (2018).

For the comparison, we ran SnowClim at each of the sites using hourly observed climate
forcings from the sites (Jennings et al., 2021) for water years 2001-2013. The model was
run first as it is reported in the manuscript. Then, an additional run was performed in
which the tax approach was turned off. The goal of this experiment was to evaluate how
well the model (as presented in the manuscript) simulates cold content relative to
observations and to determine whether the tax approach improved cold content
simulations compared to the same model without the tax approach. The same
parameters from the western US run were used for modeling these sites, the model was
not recalibrated. Simulated cold content was smoothed using a two week moving mean
to provide a more robust comparison to observations, which were collected at weekly to
monthly intervals. Peak (minimum) cold content values were averaged across years to
get a peak cold content value for each site and model run and these were compared
with the peak cold content values from observations reported in Jennings et al., (2018),
Table 1.

Despite scale discrepancies between point observations and 210 m grid cells, SnowClim
peak cold content compares well with observations when the tax approach is used. In
contrast, when the tax approach is not used and all negative energy fluxes are directly
added to the pack cold content, cold content becomes an order of magnitude greater
than the observations.



Table A1. Comparison of observed, simulated, and simulated without tax peak cold
content at two sites.

Site Obs Peak CC SnowClim Peak CC
w/ tax approach

SnowClim Peak CC
w/o tax approach

Subalpine (C1) -2.5 MJ/m2 -4.1 MJ/m2 -27.0 MJ/m2

Alpine (Saddle) -6.5 MJ/m2 -8.7 MJ/m2 -161.0 MJ/m2

We have added this analysis as Appendix A in the revised manuscript for those seeking
more information regarding the tax approach and have referenced this analysis in
section 2.2.6 of the revised manuscript.
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Note that the snow surface temperature calculation in UEB takes into account this
conduction heat flux from the surface along with the several other fluxes at the surface
(e.g. solar, longwave, latent, sensible) to find the T at which all fluxes balance. This was
not a particularly computationally burdensome iteration and the uncertainty cited by
Raleigh (2013) was in parameter estimates for conduction, which Snoclim just does not
consider.  In the broad scheme of uncertainties for energy balance, I don’t know that
these are big numbers, but the criticisms in line 189-190, which are drawn mostly from
Raleigh (2013) are not really warranted and don’t bear repeating in the context of this
paper.  There remains some chance that the UEB calculations might be nearly as
parsimonious and generate less uncertainty.  No assessment has been done in this
paper to evaluate these issues.

We thank the referee for this additional insight regarding UEB’s method of calculating
snow surface temperature. Based on these comments and those of the other referee, we
have revised the text in the second paragraph of section 2.2.6, including removing the
reference to Raleigh et al., (2013).

A thorough comparison of the present model with alternate models (specifically those
using other approaches to snow surface temperature) could be a valuable effort.
However, given the difficulty of creating a robust model comparison, we feel that such an
effort is beyond the scope of the current work. In a future iteration of the SnowClim
model we would be interested in further evaluating the pros and cons of different
approaches to solving for snow surface temperature.

Reference (other than already cited in the paper):
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