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Abstract. Numerical weather prediction models and probabilistic extrapolation methods using radar images have been widely 

used for precipitation nowcasting. Recently, machine-learning-based precipitation nowcasting models have also been actively 

developed for relatively short-term precipitation predictions. This study aimed to develop a radar-based precipitation 10 

nowcasting model using an advanced machine learning technique, conditional generative adversarial network (cGAN), which 

shows high performance in image generation tasks. The cGAN-based precipitation nowcasting model, named Rad-cGAN, 

developed in this study was trained with a radar reflectivity map of the Soyang-gang Dam region in South Korea with a spatial 

domain of 128 × 128 km, spatial resolution of 1 km, and temporal resolution of 10 min. The model performance was evaluated 

using previously developed machine-learning-based precipitation nowcasting models, namely convolutional long short-term 15 

memory (ConvLSTM) and U-Net. In addition, Eulerian persistence model and pySTEPS, radar-based probabilistic nowcasting 

system, used as baseline models.  

We demonstrated that Rad-cGAN outperformed reference models at 10 min lead time prediction for the Soyang-gang Dam 

site Basin based on verification metrics Pearson correlation coefficient (R), root mean square error (RMSE), Nash–Sutcliffe 

efficiency (NSE), and critical success index (CSI) at intensity threshold of 0.1-, 1.0-, and 5.0-mm h-1. However, beyond the 20 

lead time of 10 min, the CSI deteriorated rapidly in the case of high rainfall intensity, unlike low rainfall intensity. This was 

also consistent for the entire dam basin, and in FSS and CSI calculated at high rainfall intensity, ConvLSTM maintained better 

performance. This result was interpreted through qualitative evaluation using Typhoon Solik as an example, and the 

ConvLSTM maintains a relatively high amount of precipitation compared to other models. However, for prediction of 

precipitation area, Rad-cGAN showed the best results, and the advantage of cGAN method to reduce the blurring effect was 25 

confirmed through Power Spectrum Density (PSD). We also demonstrated the successful implementation of the transfer 

learning technique to efficiently train model with the data from other dam regions in South Korea, such as the Andong and 

Chungju Dam basins. We used pre-trained model, which was completely trained in the Soyang-gang Dam Basin. Furthermore, 
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we analysed the amount of data to effectively develop the model for the new domain through the transfer learning strategies 

applying the pre-trained model using data for additional dam basins. This study confirms that Rad-cGAN can be successfully 30 

applied to precipitation nowcasting with longer lead times and using the transfer learning approach it shows good performance 

in regions other than the originally trained region. 
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1 Introduction 35 

Nowcasting is defined as a description of the current weather and then forecasting within few hours and is generally applied 

to mesoscale and local scales. Due to the increasing number of disasters in small spatiotemporal scales, nowcasting plays an 

important role in risk management (WMO, 2017). Therefore, the need for accurate precipitation nowcasting for early warning 

systems of floods is increasing to reduce the damage caused by heavy rain, landslides, and flash floods.  

Among the existing precipitation nowcasting models, numerical weather prediction (NWP), which performs rainfall prediction 40 

based on atmospheric physics equations, can generate high-resolution rainfall forecasts with long lead times. However, NWP 

has exhibited poor forecast performance with relatively short (0–2 h) lead times (Berenguer et al., 2012). Several studies have 

demonstrated that radar-based models based on the extrapolation method perform better than NWP, especially in the case of 

precipitation nowcasting, with lead times of up to 6 h (Berenguer et al., 2012; Pierce et al., 2012; Renzullo et al., 2017; Imhoff 

et al., 2020). Additionally, the increased availability of high-resolution remote sensing observation data (e.g., radar) and 45 

computer resources has facilitated the development of advanced precipitation nowcasting models. For example, Ayzel et al. 

(2019) developed an optical flow-based precipitation nowcasting model called rainymotion, and Pulkkinen et al. (2019) 

developed a deterministic and probabilistic nowcasting application called pySTEPS, which have potential applications in 

several countries (Finland, Switzerland, the United States, and Australia). Both models were written in an open-source Python 

library. Furthermore, the blending technique, which combines NWP and radar-based models, has improved the precipitation 50 

nowcasting performance for short-term flood forecasting (Poletti et al., 2019; Hwang et al., 2020). 

Recent availability of large amount of data and increased computational resources led to the development of radar-based 

models using machine learning techniques. Shi et al. (2015) developed a radar-based model with a convolutional long short-

term memory (ConvLSTM) architecture that outperformed the optical flow-based model (real-time optical flow by variational 

methods for echoes of radar). They showed that ConvLSTM can capture the spatiotemporal correlation between input rainfall 55 

image frames, which are recorded every 6 min across Hong Kong. Several studies have shown that the ConvLSTM architecture 

can be successfully applied to the precipitation nowcasting model (Kim et al., 2017; Moishin et al., 2021; Sønderby et al., 

2020; Jeong et al., 2021). Although the convolution neural network (CNN) does not have a structure to conserve temporal 

information, Agrawal et al. (2019) showed that a fully connected CNN called U-Net can make better predictions than 

traditional NWP models. Further studies (e.g., Ayzel et al., 2020; Trebing et al., 2021) also confirmed that the U-Net 60 

architecture can accurately predict precipitation.  

In the field of computer science, the generative adversarial network (GAN) architecture (Goodfellow et al., 2014) showed 

remarkable performance in image-to-image tasks. Isola et al. (2017) demonstrated that the U-Net model with a conditional 

GAN (cGAN) approach called Pix2Pix can generate higher-quality images than the original U-Net model. Rüttgers et al. (2019) 

showed that typhoon tracks and cloud patterns over the Korean Peninsula could be successfully predicted using cGAN 65 

architecture with satellite cloud images. Ravuri et al. (2021) developed a precipitation nowcasting model using a deep 
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generative model inspired by the video GAN model (Clark et al., 2019). In the case study of convective cells over eastern 

Scotland, using video GAN in the model improved the quality of precipitation forecasts significantly (Ravuri et al., 2021). 

These studies indicate that the performance of precipitation nowcasting models can be improved by advanced machine learning 

techniques. However, because machine learning is a data-driven technique, it will perform effectively for only trained data 70 

domains. Generally, it is vital to train from the beginning to develop a model for a new domain, and computation costs will be 

high even if new data are similar to old data. Thus, the models trained for one domain will be limited in their applications for 

multiple regions. 

The aim of the present study was to develop an advanced precipitation nowcasting model for multiple dam basins that can be 

applied as an early warning system. The decision-making process at upstream dams with regard to flood control, which is 75 

directly related to urban and rural water management, influences flood risk considerably. From such a dam management 

perspective, water level and precipitation prediction at dam sites are major factors to be considered, suggesting that increasing 

rainfall prediction accuracy at the dam site is essential for effective flood management. To develop an advanced precipitation 

nowcasting model with good prediction performance for dam sites and basins in general, we designed a model based on the 

cGAN approach (Rad-cGAN) for multiple dam domains of the Soyang-gang, Andong, and Chungju dam basins in South Korea. 80 

We trained the model using radar reflectivity data of the Soyang-gang Dam Basin for summer season during 2014–2017 

(provided by the Korea Meteorological Administration, KMA), and evaluated the model performance by comparing it with 

reference models of ConvLSTM, U-Net, and Eulerian persistence using 2018 data. We applied the transfer learning technique 

(Pan and Yang, 2009) that uses the previously trained model with cost-effective computation to train the model for the other 

two abovementioned domains. Three transfer learning strategies were compared to evaluate which was most effective for the 85 

Andong and Chungju Dam basins. 

2 Materials and methods 

2.1 Study area and Radar reflectivity data 

We developed a precipitation nowcasting model for dam basin areas where an accurate rainfall forecasting system is essential 

for the estimation of urban water supply and flood prevention. The target domains were the Soyang-gang Dam Basin (D1), 90 

Chungju Dam Basin (D2), and Andong Dam Basin (D3) areas. These dams are multi-purpose and are located upstream of the 

major rivers of South Korea (Fig. 1). 

The 1.5-km the constant altitude plan position indicator (CAPPI) radar reflectivity data, provided by KMA, were used as input 

data for training and evaluation of our model. The map product represents the quality-controlled radar reflectivity composite 

(dBZ) of 11 weather radar stations across South Korea (Fig. 1a), with a size of 960 × 1200 pixels, spatial resolution of 1 × 1 95 

km, and temporal resolution of 10 min.  
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The radar composite data were cropped to 128 × 128 pixels, covering three target basins. Figure. 1b shows the different 

topographical characteristics of each domain. Since topography (especially mountainous areas such as study domains) affects 

atmospheric conditions, such as temperature, humidity, air pressure distribution, and cloud formation, it directly or indirectly 

affects rainfall formation and distribution of rainfall in an area (Basist et al., 1994; Prudhomme and Reed, 1998). Consequently, 100 

data extracted from the three domains with different topographic characteristics would exhibit different rainfall patterns. We 

selected the available radar reflectivity data in summer (June–August, JJA) from 2014 to 2018 considering high intensity 

rainfall occurs in summer due to rainfall seasonality, a characteristic of our study domain. Data from 2014 to 2017 were used 

for training the model, and data from 2018 were used for evaluation (Table 1). For rapid and effective training, the raw radar 

reflectivity data (dBZ) were converted to grayscale (0–255), and the data range was scaled to 0–1 using the Min-Max scaler 105 

method (min-max values from training dataset). The predicted radar reflectivity data were converted into precipitation using 

the Z-R relationship (Eq. (1)) (Marshall and Palmer, 1948) to evaluate the rainfall prediction performance of the model. 

𝑍𝑍 = 200𝑅𝑅!.#             (1) 

where Z is the radar reflectivity (dBZ) and R is the rainfall rate (mm h-1).  

2.2 Model architecture 110 

2.2.1 Generative Adversarial Network (GAN) for image translation 

GAN is a recently developed framework for training generators (e.g., CNN encoder-decoder) via an adversarial process. It 

consists of a generator (𝐺𝐺) that produces the distribution of real data from random noise, and a discriminator (𝐷𝐷) that classifies 

whether the input sample is from the generator or the original data distribution (Goodfellow et al., 2014). Furthermore, the 

cGAN framework uses additional conditions (e.g., input data of the generator) for training and can generate targeted outputs 115 

that suit specific conditions (Mirza and Osindero, 2014). For image translation tasks, when 𝐺𝐺 is trained to produce a targeted 

image (𝑦𝑦) from input (𝑥𝑥) with random noise (𝑧𝑧), the objective of 𝐷𝐷 will try to maximize the loss function ℒ$%&'(𝐺𝐺, 𝐷𝐷) while 

𝐺𝐺 will try to minimize ℒ$%&'(𝐺𝐺, 𝐷𝐷). This relation can be expressed as:  

min
%

max
(

ℒ$%&'(𝐺𝐺, 𝐷𝐷) =𝔼𝔼),+[log𝐷𝐷(𝑥𝑥, 𝑦𝑦)] + 𝔼𝔼),,[log(1 − 𝐷𝐷(𝑥𝑥, 𝐺𝐺(𝑥𝑥, 𝑧𝑧))],      (2)  

where losses were calculated as expected (𝔼𝔼) values. After simultaneously training 𝐺𝐺 and 𝐷𝐷, 𝐺𝐺 was trained to generate an 120 

output that cannot be distinguished from real data (𝑦𝑦) by 𝐷𝐷, which was trained in an adversarial manner to detect the fake 

image from 𝐺𝐺. Isola et al. (2017) showed that combining the traditional pixel-wise loss with cGAN loss can improve the quality 

of output images. To generate sharp and realistic images, the 𝐿𝐿1 loss function ℒ-!(𝐺𝐺) was used as the traditional loss (Eq. (3)).  

ℒ-!(𝐺𝐺) = 𝔼𝔼),+[‖𝑦𝑦 − 𝐺𝐺(𝑥𝑥, 𝑧𝑧)‖!]          (3) 

By adding the traditional loss with a weight 𝜆𝜆 to the cGAN loss, the final objective was obtained (Eq. (4)). 125 

𝐺𝐺∗ = 𝑎𝑎𝑎𝑎𝑎𝑎min
%

max
(

ℒ$%&'(𝐺𝐺, 𝐷𝐷) + 𝜆𝜆ℒ-!(𝐺𝐺)         (4) 



 

6 
 

In this study, we developed a radar-based precipitation nowcasting model using a cGAN framework. Recently, research on 

weather prediction using cGAN, an advanced machine learning approach, has been conducted extensively (e.g., Rüttgers et 

al., 2019; Ravuri et al., 2021). For example, Ravuri et al. (2021) proposed a generator consisting of two modules; conditioning 

stack (using CNN to extract representation of input); and sampler (using ConvGRU to generate prediction). The model, which 130 

used ConvGRU, could observe spatiotemporal changes of inputs such as ConvLSTM, and attempted to improve performance 

by extracting features from different spatial dimensions and deriving the results. Whereas the generator used to predict future 

radar map, the discriminator used a dual architecture that distinguishes the real and generated frames, to ensure both temporal 

and spatial consistency. Unlike the model proposed by Ravuri et al. (2021), our model adopts a U-net architecture that uses a 

CNN layer in image generation based on the underlying Pix2Pix model; the architecture exhibits outstanding performance in 135 

image-to-image translation tasks (Isola et al., 2017).  Also, we considered only spatial consistency in the PatchGAN 

discriminator, which distinguishes images for each N × N patch (N can be smaller than the full size of the image). U-net-based 

precipitation nowcasting model has previously demonstrated performance superior to that of a traditional radar-based 

precipitation nowcasting model that uses optical flow (Ayzel et al., 2020). Therefore, here, we apply the basic cGAN 

methodology to the U-net structure to improve performance and confirm the applicability of the transfer learning methodology 140 

to multiple domains. 

 

2.2.2 Generator 

Figure 2a shows the generator using U-Net architecture (a detailed description of U-Net is provided in Sect. 2.3.2). The model 

consists of nine convolutional layers, two max-pooling layers, two up-sampling layers, and an output convolutional layer. Each 145 

convolutional layer, except for the output layer, is composed of the following operations: 3 × 3 2D convolution with zero-

padding, batch normalization, and activation function of ReLU. In the contracting part of the generator, a 2 × 2 2D max-

pooling operation was used to down-sample the input images. To prevent overfitting, a dropout layer with a rate of 0.5 was 

applied after the pooling and convolutional layers of the expanding part of the model (Srivastava et al., 2014). A 2 × 2 2D up-

sampling operation was further applied in the expanding part after skip connection to increase the resolution of featured images 150 

that contain both high- and low-level information. Finally, the output convolutional layer had a 1 × 1 2D convolution that used 

a linear function for activation to obtain future prediction of the radar reflectivity image. 

 

2.2.3 Discriminator 

PatchGAN from the Pix2Pix model was used as the discriminator (Fig. 2b). As in cGAN, the input pair of the discriminator 155 

consists of historical radar reflectivity data (i.e., input of the generator) and future radar reflectivity data. The discriminator 
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classifies real image pairs (input of generator and ground truth image) as 1 and fake image pairs (input and generated image 

from generator) as 0 (Mirza and Osindero, 2014). Particularly, PatchGAN only penalizes the structures over a certain scale of 

image patches; therefore, the discriminator classifies whether the N × N patch in the input pair is real or fake. This patch 

represents the receptive field, which is the region in the input image that is used to measure the associated feature of the output 160 

layer. Consequently, the size of the patch (N) was determined based on the structure of the entire discriminator (e.g., number 

of layers, nodes, filter size, paddings, and strides), and it increased as the model became deeper. We constructed a discriminator 

model with a 34 × 34 patch size through hyperparameter tuning. The model consists of three convolutional layers and an output 

layer. The first two convolutional layers were composed of 4 × 4 2D convolution with strides of two and zero-padding, batch 

normalization, and ReLU activation function, which was leaky and had a 0.2 slope. The third convolutional layer had the same 165 

configuration as the previous layers, except that its stride was 1. To distinguish the input pair in the image form, the output 

layer consisted of 4 × 4 2D convolution with zero-padding and sigmoid activation functions. To train the discriminator as a 

classifier, we manually generated a training dataset consisting of an input image pair and a target image, with spatial 

dimensions of 32 × 32 filled with 1 (for real image pairs) or 0 (for generated image pairs). Therefore, each pixel of the output 

estimates the probability that the discriminator determines each patch of the input pair as the real one.  170 

 

2.2.4 Optimization procedure 

Before proceeding with training to optimize the model for the input data, hyperparameter tuning is required to determine the 

most optimal model structure and training settings. We selected the following hyperparameters: number of layers, number of 

hidden nodes, convolution filter size, patch size, batch size, and learning rate. To select the appropriate hyperparameter 175 

combination, the model for each combination was trained using radar data from 2014 to 2016 (June to August) and data from 

2017 (June to July). Subsequently, using data from 2017 (August), the mean absolute error (MAE) and critical success index 

(CSI) (at an intensity threshold of 0.1 mm/h) were calculated to obtain the optimal combination of hyperparameters. Based on 

the tuning results, the MAE range was 0.45–47.66 and the CSI range was 0.0–0.83, and the results confirmed that 

hyperparameters influence model performance considerably. Based on the combinations that performed optimally, we 180 

determined the model structure and training settings.  

To optimize Rad-cGAN, the training procedure suggested by Isola et al. (2017) was adopted. First, we compared the results 

using a total of four and six consecutive radar reflectivity images to determine the input historical data length. As a result of 

10 min precipitation prediction at the Soyang-gang Dam site, in the case of CSI (at the rainfall intensity of 0.1 mm h-1), the 

case of using six historical data was slightly better than case of using four data, but in R, RMSE, and NSE, the results of using 185 

four data were better. Through this, samples that consisted of four consecutive radar reflectivity images (t-30, t-20, t-10 min, 

and t) and the image at t+10 min were selected.  Subsequently, a training sample for the discriminator was created by adding 
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labels to classify whether the samples were real (image at t+10 min from observation) or fake (t+10 image from the generator) 

pairs. Subsequently, the parameters of the discriminator were updated using the minibatch stochastic gradient descent (SGD) 

method for one step. Binary cross-entropy was used as a loss function, and the ADAM optimizer (Kingma and Ba, 2015) with 190 

a learning rate of 0.0002 and momentum parameters 𝛽𝛽! = 0.5 and 𝛽𝛽/ = 0.999 was applied. Afterwards, the generator was 

trained for one step to optimize Eq. (4). Binary cross-entropy was used as ℒ$%&' for the discriminator to classify the generated 

image into a real image. Additionally, 𝜆𝜆 of the traditional pixel-wise 𝐿𝐿1 loss was set to 100. The minibatch SGD and ADAM 

optimizer were applied to train the generator with the same setting as the discriminator. Both the procedures for updating the 

parameters of the discriminator and generator were run simultaneously during one epoch. Our model was trained using 600 195 

epochs, with a batch size of 8. To achieve the optimal model, an early stopping technique that stops the training model when 

the loss stops improving was applied. The loss metric was defined as the generator loss based on 100 validation samples 

randomly sampled from the training dataset that was not used to train the model. To monitor the loss, we set patience to 30 

epochs and saved the model when the loss improved. The model architecture was written in Python (https://www.python.org/) 

using the Keras deep learning application (https://keras.io/). The entire procedure for training and all the experiments for 200 

evaluation were run on a computer with a single NVIDIA Tesla V100 GPU.  

 

2.3 Reference models 

The model performance of the Rad-cGAN model was compared and validated using reference models. We used the Eulerian 

persistence model (hereinafter referred to as persistence), a traditional radar-based rainfall prediction model, as the first 205 

reference model. The persistence model assumes that rainfall prediction at any lead time will the same as rainfall in the forecast 

time. It is a simple but powerful model for predicting short-term precipitation. For comparison, we used ConvLSTM and U-

Net, which are the common basic structures for machine-learning-based nowcasting models in several studies, as reference 

models. 

 210 

2.3.1 PySTEPS 

PySTEPS (Pulkkinen et al., 2019) is the open-source and community-driven python framework for radar-based probabilistic 

precipitation nowcasting that is considered a strong baseline model (Imhoff et al., 2019; Ravuri et al., 2021). In the present 

study, STEPS (Short-Term Ensemble Prediction System) (Bowler et al., 2006) nowcast ensemble from the pySTEPS library 

was used as the benchmark model.  215 

To generate precipitation predictions, we first provided input precipitation images (unit: dBR) that were transformed from four 

consecutive radar reflectivity images (from t-30 to t) based on a Z-R relationship (Eq. (1)). The transformed precipitation was 
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also used to estimate motion field, and the motion field and precipitation were used as input data in the STEPS model. Future 

precipitation at a lead time of up to 90 min for the test period (JJA of 2018) was generated based on the average across 20 

ensemble members from the results of STEPS nowcasts. The source code of pySTPES is available in GitHub 220 

(https://pysteps.github.io, last accessed: 5 April 2022).  

 

2.3.2 ConvLSTM 

LSTM is a special case of recurrent neural networks (RNNs) and is widely used in temporal sequence predictions (Hochreiter 

and Schmidhuber, 1997). Sutskever et al. (2014) proposed an LSTM encoder-decoder framework for sequence-to-sequence 225 

problems, which consists of concatenated LSTMs for the input and output sequences. Based on this model, Shi et al. (2015) 

developed a ConvLSTM network that can be applied to spatiotemporal sequence prediction, such as radar-based rainfall 

prediction. To handle spatiotemporal sequences, a convolution operator was used in state-to-state and input-to-state transitions. 

The ConvLSTM model was shown to outperform the traditional optical flow-based precipitation nowcasting model. Recent 

studies have shown that the ConvLSTM model can be successfully applied to predict future radar-based precipitation (Kim et 230 

al., 2017; Moishin et al., 2021). 

We designed a ConvLSTM model that uses four radar reflectivity image frames (t-30, t-20, t-10 min, and t) as input to predict 

future frames at time t+10 min, which is similar to input and output of Rad-cGAN. The model consists of three ConvLSTM 

layers and an output layer. Each ConvLSTM layer contains 64 hidden states and 3 × 3 kernels. A 3D convolutional layer with 

a linear activation function was used as the output layer. The hyperparameters of the ConvLSTM model (i.e., number of layers, 235 

number of nodes, convolution filter size, batch size, and learning rate) were tuned using a procedure similar to that applied in 

Rad-cGAN (Sect. 2.2.4). To optimize the model, we used the mean squared error as the loss function and applied the ADAM 

optimizer (learning rate 0.002 and momentum parameters 𝛽𝛽! = 0.9 and  𝛽𝛽/ = 0.999). We trained the model using 600 epochs 

(early stopping applied) with a batch size of 32. 

 240 

2.3.3 U-net  

U-Net-based precipitation nowcasting models efficiently predict future precipitation using historical data, even though U-Net 

does not have a structure, such as RNN, that preserves temporal information (e.g., Ayzel et al., 2020; Trebing et al., 2021). U-

Net was developed by modifying the fully convolutional network (Long et al., 2015), and performed well in image 

segmentation tasks (Ronneberger et al., 2015). This model architecture consists of two parts: a contracting network that 245 

captures the context of the input images and an expanding network that increases the resolution of features from the contracting 

network.  
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The contracting network follows the usual CNN, which consists of convolution and max-pooling layers. Each convolution 

layer is composed of convolution, batch normalization, and activation operations. Batch normalization is used to prevent 

gradient vanishing or exploding problems and can effectively increase the convergence speed (Ioffe and Szegedy, 2015). The 250 

max-pooling operation is applied for down-sampling after convolution of the input image. Through this process, the output of 

the contracting network can incorporate the features of the input image. The expanding network consists of the up-sampling 

and convolution layers. Before applying the up-sampling operation, the skip connection is applied between each layer of the 

contracting network and the layer of the expanding network to prevent gradient vanishing and share the low-level information 

of the input data (Simonyan et al., 2015). The convolution layers of the expanding and contracting networks follow the same 255 

operation.  

As the reference model, hyperparameters for the U-net structure (number of layers, number of nodes, and convolution filter 

size) were set to be equivalent to those of Rad-cGAN (Sect. 2.2.2), and hyperparameters related to training settings (batch size 

and learning rate) were tuned using procedures similar to those of Rad-cGAN (Sect. 2.2.4). To optimize the model, 𝐿𝐿1 loss 

and ADAM optimizers were used as in the case of ConvLSTM (Sect. 2.3.2). The model was trained using 600 epochs with 260 

early stopping and the batch size set to 8. 

 

2.4 Experiments for evaluating model’s prediction skills 

2.4.1 Performance evaluation 

The model was trained using data from the summers (June–August) of 2014–2017 and its precipitation nowcasting capacity 265 

was assessed using data from the summer of 2018. To predict radar reflectivity data 10 min ahead, four latest radar reflectivity 

data (t-30, t-20, t-10 min, and t min; t being the forecast time) were used as input data. The model can generate multiple 

samples (No. of samples, 128, 128, 1) corresponding to the number of samples of the past four consecutive input data (No. of 

samples, 128, 128, 4). To predict beyond the 10 min lead time, we used the prediction data at t+10 min as the latest input data. 

Using this recursive process, predictions were obtained at a lead time of >10 min. Because the model predicts the radar 270 

reflectivity after 10 min using past consecutive radar images, we first evaluated the model performance at a lead time of 10 

min. This allowed us to confirm the prediction tendency of our model and other reference models while performing 

precipitation nowcasting. Furthermore, to assess the applicability of our model to an actual early warning system that needs to 

ensure at least one hour of lead time, the predictive skill was evaluated for >10 min of lead time using the recursive process. 

We measured the verification metrics (see below) using rainfall prediction, converted from the radar reflectivity (Eq. (1)), at a 275 

lead time of up to 90 min to confirm the forecasting time in which the model ensured sufficient performance. 

Furthermore, we evaluated the model performance at a specific dam site as well as for the entire dam domain (Fig. 1b). We 

chose the precipitation data at the dam site as it directly affects the dam water level, which is a major factor in the decision-
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making process of dam management. To evaluate the entire domain, the verification metrics were calculated with increasing 

lead time for all pixels of the predicted image, and the model performance was represented by the 50th percentile (median) of 280 

the metrics. Additionally, to qualitatively evaluate the entire domain, we compared the resulting radar reflectivity images 

obtained using data at a certain forecast time. We set the forecast time at 23 August 2018, 17:50 UTC, when Typhoon Soulik, 

which landed on the Korean Peninsula from 23 August 2018, 12:00 UTC to 24 August 2018, 03:00 UTC, started affecting the 

Soyang-gang Dam Basin. 

Several metrics were used for model evaluation: Pearson correlation coefficient (R), root mean square error (RMSE), Nash–285 

Sutcliffe efficiency (NSE), CSI, fractions skill score (FSS). As the collinearity between actual rainfall and predicted rainfall 

increases, the explanatory power of the rainfall simulated by the model increases, so that the performance of the model can be 

illustrated by strong positive linear relationship between predictions and observations. Hence, we confirmed that the model 

exhibits better performance when R (Eq. (5)), calculated based on the model prediction and observation, is closer to 1. To 

verify the precision of the model, the RMSE (Eq. (6)) between prediction and observation was used. Since we propose a 290 

precipitation nowcasting model, NSE, which is widely used to assess hydrologic models, can be used as a goodness-of-fit 

index for it (McCuen et al., 2006) (Eq. (7)).  

𝑅𝑅 = ∑ (2!324)(6!364)
"
!#$

7∑ (2!324)%"
!#$ ∑ (6!364)%"

!#$

           (5) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = G∑ (2!36!)%"
!#$

'
           (6) 

𝑁𝑁𝑁𝑁𝑁𝑁 = 1 − ∑ (2!36!)%
"
!#$
∑ (2!324)%"
!#$

           (7) 295 

where 𝑂𝑂J  and 𝑃𝑃J	 are the means of observation and prediction, respectively, 𝑂𝑂8  and 𝑃𝑃8  are the observed and predicted 

precipitation, respectively, in the 𝑖𝑖th time of the data period, and 𝑁𝑁 is the total data for the entire period.  

We used the CSI (Eq. (8)), which is a measure of categorical forecast performance, to verify the model accuracy for 

precipitation event detection.  

𝐶𝐶𝐶𝐶𝐶𝐶 = 98:;
98:;<=>?;@	>?>BC;<C8;;@;

          (8) 300 

where	ℎ𝑖𝑖𝑖𝑖𝑖𝑖 (correct event forecasts), 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓	𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (incorrect event forecasts), and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (missed events) are defined by a 

contingency table (Table 2). Also, FSS can spatially verify model performance by comparing fraction of grid points of 

prediction and ground truth, which exceed certain rainfall intensity thresholds within the neighborhood (Eq. (9)).  

𝐹𝐹𝐹𝐹𝐹𝐹 = 1 −
∑ (6&36')%(
!#$

∑ 6&%(
!#$ <∑ (6')%(

!#$
         (9) 

where 𝑃𝑃D and 𝑃𝑃E are the fractions of prediction and observation, respectively, calculated by specific thresholds in neighborhood 305 

size. For calculating CSI and FSS, we selected several intensity thresholds, including 0.1, 1.0, and 5.0 mm h-1, and for FSS, 

we used neighborhood sizes of 1, 5, and 15 km. Additionally, we calculated the radially averaged power spectral density (PSD) 

of predictions and observations to assess blurring effect of predicted image by models.  
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To calculate each verification metric, in the case of the evaluating for dam sites, we calculated all metrics for one pixel (dam 

site location) in the dam basins and averaged them over the data period (No. of samples). Also, in the case of evaluating dam 310 

domain, all metrics for each pixel in the dam basins were calculated and averaged over the data period (No. of samples). 

 

2.4.2 Experiments for transfer learning among different domains 

Since the machine learning model relies on input data as a data-driven model, training on the corresponding new data must be 

conducted from the beginning to develop a model for a new domain, which is also applicable for our precipitation nowcasting 315 

model for a new dam basin with different meteorological, environmental, and geographical characteristics (Fig. 1b). However, 

because this method is time-consuming and computationally expensive, we applied a transfer learning approach that can be 

efficiently used to train models with multiple basin domains. 

Transfer learning is a machine learning technique that uses knowledge and skills from pre-trained models to train a model for 

new datasets (Pan and Yang, 2009). This method is often used when the size of the provided dataset is insufficient for training 320 

and is also used to train the models for the new dataset due to its lower computational cost than that of training from scratch. 

The general training strategies of transfer learning are determined by the data size and similarity between the new and original 

data. For example, if the new dataset is similar to the dataset of the pre-trained model, the new model only fine-tunes for higher 

layers that learn specific features of the input data and freeze the lower layers that capture the general features. Fine-tuning 

uses a smaller learning rate (e.g., ~1/10th of the original learning rate) and is one of the most effective ways to transfer 325 

knowledge. Several studies have shown that the transfer learning approach performs successfully well in image classification 

tasks (Krizhevsky et al., 2012; Simonyan and Zisserman, 2015; He et al., 2016). In the GAN approach, the discriminator acts 

similar to the classifier of the image classification task. Wang et al. (2018) reported that fine-tuning both the generator and 

discriminator resulted in good performance, but the overfitting was a frequent issue that must be considered. Subsequently, 

Mo et al. (2020) proposed a strategy that works only on the discriminator called FreezeD, which freezes the lower layer of the 330 

discriminator and only fine-tunes the upper layers.  

We used transfer learning to train our model for different dam basins, i.e., Andong and Chungju, with a pre-trained model that 

was completely trained by data from the Soyang-gang Dam Basin. In addition, in existing papers that have successfully applied 

the transfer learning strategies, it was used to develop a model for a new domain using a pre-trained model based on vast data. 

Consequently, we used the pre-trained model with Daecheong Dam, Juam Dam, and Yongdam Dam basin data, in addition to 335 

Soyang-gang Dam data, to assess the amount of data required to develop a model for a new dam domain. The selected strategies 

were inspired by a previous approach of transferring GAN (Wang et al., 2018; Mo et al., 2020). We formulated two strategies 

for each pre-trained model. First, the weights of the pre-trained generator were frozen and used directly in new dam domain 

(Case 2, 4). Next, to the weights of the pre-trained generator were fine-tuned (1/10th of the original learning rate) and the 
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discriminator trained (Case 3, 5). In addition, the entire model was trained for the new domain (Case 1) (Table 3a). The model 340 

was trained for the Chungju and Andong Dam domains, separately, using the five strategies (Table 3b). To determine the best 

strategy for training different dam domains, we estimated the performance at the 10-min lead time at each dam site (Fig. 1b). 

Additionally, we compared the predictive skill of each strategy at the lead time of up to 90 min by using the recursive process. 

 

3 Results and discussion 345 

3.1 Model performance at the dam site 

To evaluate the performance of our model, precipitation was predicted at a lead time of 10 min at the Soyang-gang Dam site 

during the summer of 2018 (Table 4). As the general criterion for evaluating hydrological models, when R and NSE are ≥ 0.5, 

the model has acceptable performance (Moriasi et al., 2007). In addition, Germann and Zawadzki (2002) suggested that the 

threshold of predictability is 1/e≒0.37, assuming that the CSI values follow the exponential law. According to the standard, 350 

the results of Table 4 show that the machine learning-based models performed well as precipitation nowcasting models (R 

>0.8, NSE >0.5, CSI >0.5). Among them, Rad-cGAN significantly outperformed the other reference models (Table 4, Fig. 

3).The CSI values at different rainfall intensities showed that the cGAN approach could be successfully applied for short-term 

rainfall prediction after 10 minutes based on the predictive performance (CSI > 0.37), even at high rainfall intensity. The scatter 

plot of each model showed that the prediction of the proposed model strongly correlated with the observation (R = 0.86) 355 

compared to the reference models (average R = ~0.70). Particularly, Rad-cGAN showed improvements in R and NSE values 

by 2.63 % and 32.16 %, respectively, compared with the model results using U-Net, confirming that the cGAN approach could 

mitigate the tendency to underestimate precipitation. This improvement was also observed in the time series plot of the entire 

evaluation period, where our model performs better than U-Net in predicting peak precipitation. However, the prediction 

accuracy of the ConvLSTM model for maximum precipitation was higher than that of our model (Fig.3). Despite this, 360 

ConvLSTM predicts most low-intensity rainfall (<5 mm h-1) as zero. Therefore, we can confirm that Rad-cGAN performs 

better than other reference models in precipitation prediction.  

We predicted the precipitation at a lead time of up to 90 min by using the recursive process to evaluate the model performance. 

(Fig. 4). Based on R, Rad-cGAN was the best model with an average improvement of 51.70 % and 25.02 % over ConvLSTM 

and U-Net, respectively, at overall lead times. Additionally, our model maintained good performance (R >0.5) at lead times of 365 

up to 50 min, while the U-Net and ConvLSTM models maintained it for up to 30 min and 20 min, respectively. Although the 

NSE values converged to 0 with increasing lead times in all the models except persistence, our model showed the lowest 

performance degradation rate. However, with increasing lead time, the RMSE of our model increased more than that of the 

other models since our model generated more outliers than others when predicting rainfall for a lead time of 40 min or more. 
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(Fig. 4). Furthermore, our model maintained sufficient performance (CSI at the intensity of 0.1 mm h-1 >0.5) up to 80-min lead 370 

time, whereas ConvLSTM and U-Net preserved adequate performance for up to 30- and 70-min lead times, respectively. 

However, at higher rainfall intensity, CSI decreases rapidly as the lead time increases (Fig. 4 (d)-(f)). Figure 4 illustrates that, 

as the lead time passes 40 min, the prediction performance was lower than that of ConvLSTM or other baseline models. Based 

on the results, Rad-cGAN generally had good performance compared to U-net; however, Rad-cGAN tends to underestimate 

and whereas ConvLSTM has poor performance when estimating low rainfall intensity, but shows good performance when 375 

estimating high rainfall intensity. 

Thus, we observed a tendency of underestimation of the prediction of high-intensity precipitation in all the models, including 

Rad-cGAN (Figs. 3 and 4). This phenomenon was also reported by Kumar et al. (2020), wherein ConvLSTM made significant 

errors in predicting the precipitation >20 mm h-1. The main reason was data imbalance, which is a common issue in machine 

learning studies (Wang et al., 2016). Data imbalance of our results occurred since unlike low-intensity precipitation (<10 mm 380 

h-1), high-intensity precipitation rarely occurs during the training and testing periods.  

  

3.2 Model performance for the dam domain 

To apply our model in an early warning system, the prediction performance upstream of the dam should be sufficient. Hence, 

the verification metrics were calculated for each grid cell in the entire domain used to train the model, and their performance 385 

in all the grid cells were presented through boxplots for each lead time in all the models (Fig. 5). By comparing the median 

values, Fig. 5 shows average increases of 9.02 % and 17.87% for the R of Rad-cGAN at overall lead times compared to those 

of U-Net and ConvLSTM, respectively, which indicate improved precipitation prediction capacity for the entire domain, and 

is consistent with the results obtained from the Soyang-gang Dam site (Fig. 4). In addition, the relatively small variation in R 

values with pixel location in Rad-cGAN shows that it performs generally well not only for dam site but also for the entire 390 

domain. However, in the cases of RMSE and NSE, Rad-cGAN performs slightly worse than ConvLSTM, with an average 

increases over median values of 1.90% in RMSE and a decrease of 7.67% in NSE over the entire lead time (Fig. 5).  

Moreover, according to the CSI value, our model preserves its predictability performance (CSI at the intensity of 0.1 mm h-1 

>0.5) for the entire lead time, indicating that it can be applied to predict precipitation at lead times of >90 min. The lead time 

for the CSI at the intensity of 0.1 mm h-1 >0.5 was up to 40 min with ConvLSTM in this study while CSI at the intensity of 395 

0.5 (not 0.1) mm h-1 >0.5 was up to 40 min with ConvLSTM-based nowcasting model for Hong Kong region (Shi et al., 2015). 

Ayzel et al. (2020) showed that the U-net-based model preserved performance (CSI at an intensity of 0.125 mm h-1 >0.5) at a 

lead time of >60 min in Germany, whereas the performance of our model with similar CSI (0.1 mm h-1 > 0.5) remained up to 

80 min. Hence, we confirm that the reference model was sufficiently trained to be used for comparison with our model. The 

result indicates that Rad-cGAN has reliable performance in precipitation nowcasting for relatively light rain (rainfall intensity 400 
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of 0.1 mm h-1). However, in the case of CSI at intensities of 1.0- and 5.0-mm h-1, although Rad-cGAN maintained a good 

performance compared to that of U-net, the performance rapidly deteriorated as the lead time increased. Unlike Rad-cGAN 

and U-net, ConvLSTM recorded low CSI under low-intensity rainfall; however, Fig. 5 shows that performance was maintained 

at a relatively high level under higher rainfall intensity. The results can also be confirmed through the FSS of each model (Fig. 

6). When comparing Rad-cGAN and U-net, as lead time and rainfall intensity increase, both models decrease FSS; however, 405 

Rad-cGAN model exhibited superior performance. However, ConvLSTM had a relatively high FSS value under high rainfall 

intensity compared to those of the other two models. 

To better understand model performance with increasing lead time, we predicted precipitation for lead times of 10, 30, 60, and 

90 min for a specific forecast time on 23 August 2018, 17:50 UTC, when Typhoon Soulik began affecting the Soyang-gang 

Dam Basin (Fig 7). We observed that with an increase in lead time, the model performance deteriorated due to the blurring 410 

effect of the predicted image, which is an issue reported in previous machine-learning-based nowcasting models (Ayzel et al., 

2020; Shi et al., 2015). Despite the smoothing trend, Rad-cGAN produced qualitatively better results than those of the other 

reference models (Fig. 7). The prediction (observation-prediction) of Rad-cGAN at 90-min lead time ranged from -1.97 to 

19.68 (mean = 0.83 mm h-1), indicating that our model alleviates the underestimation of radar reflectivity compared to U-Net, 

whose bias ranged from -0.30 to 20.33 (mean = 1.04 mm h-1). The results support the improvement in Rad-cGAN verification 415 

metrics compared to those of U-Net (Fig. 5). Furthermore, in the case of ConvLSTM, the mean bias of 0.86 dBZ under a 90-

min lead time prediction showed that ConvLSTM was less prone to underestimation when compared with U-Net. However, 

the 90-min rainfall prediction by ConvLSTM was recorded to be approximately 0 mm h-1 in areas with an observation of ~5–

10 mm h-1, indicating that it predicted precipitation to be close to zero in most areas with increasing lead times. As Fig. 7 

illustrates, ConvLSTM did not define the boundary of the entire area well but maintained high intensity rainfall compared to 420 

the other two models, which causes the CSI difference depending on the rainfall intensity of ConvLSTM (Figs. 5 and 6).  

Figure 8 shows the PSD for each result in Fig. 7. Based on Fig. 7, all models exhibited a blurring effect compared to the ground 

truth. However, when comparing U-net and Rad-cGAN, Rad-cGAN has slightly lower blurring effect. This is because a sharper 

image can be generated when cGAN is applied to the U-net structure (Isola et al. (2017)), which shows that the cGAN technique 

was successfully applied by our model. Therefore, based on the overall verification metrics, we conclude that Rad-cGAN has 425 

the optimal prediction performance in nowcasting and prediction of spatial patterns of movement of precipitation. 

 

3.3 Performance with transfer learning at different dam sites 

To develop a precipitation nowcasting model for multiple dam basins (Andong and Chungju Dam Basins) other than Soyang-

gang Dam Basin, we proposed to not only retrain our model with data from new dam basins (Case 1) but also apply efficient 430 

transfer learning methodology (Cases 2-5; Sect. 2.4.2).  
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First, we evaluated whether the transfer learning method could be effectively applied to the new domain (Case 2,3) using a 

pre-trained model only for one domain (i.e., Soyang-gang Dam Basin). Table 5a shows the performance of each case with 

model predicted precipitation at 10-min lead times at the Andong Dam site. The results showed that most of the verification 

metrics in Case 3 and Case 2 performed better than those in Case 1. In Case 2, which uses all the parameters of the generator 435 

from the pre-trained model, an NSE of 0.65 was achieved, which is closest to the NSE of the pre-trained model (0.73) with 

data from the Soyang-gang Dam Basin. This was consistent with the verification metrics results at lead times of up to 90 min 

(Fig. 7a).  Based on the R results, Case 2 maintained the prediction performance (R > 0.5) up to an 60-min lead time (Fig. 9a). 

Especially for CSI at higher rainfall intensities, Case 2 showed better performance than Case 1 overall lead times (Fig. 9d-f). 

Hyperparameter tuning would have had a significant impact on the results where Case 2 performs better than Case 1. Unlike 440 

the pre-training model, which confirmed that model optimization and generalization were completed through the 

hyperparameter tuning process, in case 1, we did not proceed with hyperparameter tuning for the new domain. Although the 

new domain has properties similar to those of the previous domain, minor changes in hyperparameters also result in differences 

in performance, so that optimization and generalization of the model (Case 1) were less comprehensive than in the pre-training 

model, resulting in relatively poor performance. However, in Case 3, the performance was lower than that of the other strategies. 445 

This was because of performance degradation due to overfitting during fine-tuning the pre-trained parameters. High similarity 

between the two datasets of the Andong and Soyang-gang dams may be the reason for a major performance degradation of the 

transfer learning using the fine-tuning method (Wang et al., 2018).  

For the Chungju Dam Basin, we trained the model using the methodology used for the Andong Dam Basin. The three cases 

performed similarly for predicting the precipitation at 10-min lead time at the Chungju Dam site (Table 5b). Although Case 1 450 

showed the highest R of 0.86, by comparing other metrics (RMSE, NSE, CSI), transfer learning cases (Case 2 and Case 3) 

performed better than Case 1. Additionally, when the lead time was increased by up to 90 min, Cases 2 and 3 showed better 

performance than Case 1 for the entire lead time (Fig. 10). From the results of CSI at the 0.1 mm h-1, Case 3 preserved sufficient 

performance (CSI >0.5) at a lead time of up to 80 min, which is the same in Case 2. However, as a result of comparing CSI 

with high rainfall intensity, it was confirmed that the performance in Case 2 was better maintained. Through these results, it 455 

can be seen that Case 2 was successfully applied to Andong Dam and Chungju Dam among the transfer learning methodologies 

using a pre-training model for the Soyang-gang Dam basin. 

Considering the advantages of transfer learning that can be effectively applied when data for new domains is insufficient over 

pre-trained domains, we evaluated the results of using pre-training models that had been trained for additional dam basins: 

Daecheong Dam, Juam Dam, and Yongdam Dam basins in addition to Soyang-gang Dam (Case 4,5). Through the R for 10 460 

min precipitation prediction at dam sites, Case 2 and 3, which used pre-trained model with Soyang-gang Dam data, showed 

better performance for both Andong Dam and Chungju Dam (Table 5), but as the lead time increased to 90 min, Case 4 and 5 

showed similar or slightly better performance (Fig 9,10). This trend is notable in RMSE and NSE. In addition, at CSI values 
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of high rainfall intensity, Case 4,5 outperformed other strategies at longer lead time. Since various and numerous data data can 

solve the problem of data imbalance that causes under-estimation of the model, it can be seen that the CSI value was good 465 

even at high rainfall intensity (Wang et al., 2016). In addition, Fang et al., (2022) showed that models trained through diverse 

and numerous data on multiple regions can also learn about the characteristics that contribute to regional differences, and are 

more effective in predicting extreme events and future trends. These results showed that the diversity and amount of data have 

no significant effect on the short-term prediction of low rainfall intensity, but are very important in resolving model 

underestimation and improving prediction accuracy for heavy rainfall. 470 

 

4 Conclusions 

In the present study, our aim was to develop a model that could be applied at each flood control center by focusing on 

developing a model for a dam basin. We developed a rainfall prediction model that could perform sufficiently well with a 

relatively simple structure and low computational costs and evaluated the applicability of the transfer learning technique to 475 

facilitate its application in multiple dam basins. The developed model could be used for rainfall runoff modeling in dam basins 

in future work. To develop radar-based precipitation nowcasting model, we applied a cGAN approach based on the U-net 

architecture. The model architecture was inspired by the image-to-image translation model called Pix2Pix, which consists of 

U-Net as the generator and PatchGAN as the discriminator (Isola et al., 2017). In 10-min lead time precipitation prediction, at 

the Soyang-gang Dam site, our model outperformed the other reference models. Additionally, when we applied the recursive 480 

process to predict precipitation with lead times of up to 90 min, our model achieved adequate performance for low rainfall 

intensity (CSI >0.5) with lead times of up to 80 min, which was an improvement over ConvLSTM (up to 30 min) and U-Net 

(up to 70 min). The R and CSI (at the intensity of 0.1 mm h) results for the entire domain revealed that compared to the 

reference models, our model generated precipitation prediction more accurately at the overall lead times. However, in the case 

of higher rainfall intensity, CSI and FSS showed that Rad-cGAN had relatively poor performance compared to the reference 485 

models (excluding U-net). Although our model tends to underestimate strong precipitation, the qualitative evaluation of the 

Typhoon Soulik confirmed that our model can capture spatiotemporal change in the area of precipitation closest to the ground 

truth. In addition, based on the cGAN approach, our model can generate sharper and realistic images than U-net by calculating 

PSD. Therefore, we conclude that our Rad-cGAN model is the most advanced precipitation nowcasting model when compared 

to the other reference models. 490 

To develop the precipitation nowcasting model for different dam basins (Andong and Chungju dam basins), we proposed 

different transfer learning strategies by using the previously trained model. Comparing the case of using transfer learning (Case 

2-5) and the case of not using transfer learning (Case 1), the case of using transfer learning generally showed better performance 

in both Andong Dam and Chungju Dam. From the results of Cases 2 and 3 in which the performance is somewhat poor in the 
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case of using fine-tuning, it can be seen that it is necessary to pay attention to the overfitting when applying the fine adjustment. 495 

In addition, when a model trained with an additional dam basin was used as a pre-training model (Case 4,5), the prediction 

performance was outperformed, especially at high rainfall intensity, and it was found that data diversity had an effect on model 

generalization and underestimation.  

We confirmed that the proposed precipitation nowcasting model demonstrated improved performance over conventional 

machine learning-based models (U-Net and ConvLSTM) and showed that transfer learning strategies could be effectively 500 

applied to develop models for other domains with summer precipitation in South Korea. However, there are remaining issues 

that must be considered to ensure auditability of our model for real problems, such as predicting heavy precipitation events 

and flash flood forecasting. First, the tendency of the model to underestimate precipitation is a major issue. The decisive cause 

of this issue is data imbalance, as mentioned in general machine-learning tasks (Wang et al., 2016). To address this issue, 

further studies need to be conducted to improve the predictive performance of extreme precipitation events by extending the 505 

duration of training data and assigning weights to the extreme or other events. Additionally, adding information about domain 

characteristics, such as the digital elevation model and land cover map is expected to improve the precipitation nowcasting 

model. Another issue is that we trained models for different domains using basic transfer learning strategies, and evaluated the 

performance only for the new domains, which are not sufficient to develop models for multiple domains that can be used in 

early warning systems. To overcome this issue, for example, Wang et al. (2020) presented a new transfer learning approach 510 

that simultaneously mined the knowledge of multiple pre-trained generators. Therefore, it is expected that further research 

using more advanced transfer learning strategies will help to develop a precipitation nowcasting model with good performance 

in all different domains to enhance practicality. 
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Figure 1: (a) Radar reflectivity composite map and location of the domain; (b) selected domains over the dam basin. The boxes of 650 

D1, D2, and D3 present the domains of Soyang-gang, Chungju, and Andong dam basins, respectively. Maps were created using 

ArcGIS software by Esri; Base-map source: Esri, HERE, Garmin, © OpenStreetMap contributors, and the GIS User Community. 
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 655 

Figure 2: Model architecture consists of a (a) generative and (b) discriminator. 

  



 

26 
 

 

Figure 3: Evaluation of model performance for 10-min lead time prediction at Soyang-gang Dam site with the scatter plot based on 

model results. Left to right represent results of Rad-cGAN, U-net, ConvLSTM, Eulerian Persistence and pySTEPS model. 660 
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Figure 4: Verification metrics of model predictions at the lead time up to 90 min at the Soyang-gang Dam site. (a) R, (b) NSE, (c) 665 

RMSE, and (d,e,f) CSI at intensity threshold of 0.1, 1.0, and 5.0 mm h-1, respectively. 
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Figure 5: Box plot of verification metrics of model predictions at the lead time up to 90 min over all grid cells from the Soyang-gang 

Dam region. Left panels from top to bottom represent R, RMSE, NSE, and right panels from top to bottom represent CSI at intensity 670 

threshold of 0.1, 1.0, 5.0 mm h-1. 
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Figure 6: Fraction Skill Scores (FSS) of model predictions at lead time of 10, 30, and 60 min at Soyang-gang Dam Basin. Panels from 

left to right express FSS of Rad-cGAN, U-net, ConvLSTM.  675 
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 680 

Figure 7: Precipitation observation example at forecasting time t = 23 August 2018, 17:50 UTC, for model predictions and (a) ground 

truth (OBS). Panels from top to bottom express ground truth: (b) prediction of Rad-cGAN model, (c) prediction of U-net based 

model, (d) prediction of ConvLSTM, and € prediction of pySTEPS. 
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Figure 8: Radially averaged power spectral density (PSD) at forecasting time t = 23 August 2018, 17:50 UTC, for model 

predictions and observation.  
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Figure 9: Verification metrics of model predictions at lead time up to 90 min at Andong Dam site. (a) R, (b) NSE, (c) RMSE, and 690 

(d,e,f) CSI at intensity threshold of 0.1, 1.0, and 5.0 mm h-1, respectively. 
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Figure 10: Verification metrics of model predictions at lead time up to 90 min at Chungju Dam site. (a) R, (b) NSE, (c) RMSE, and 695 

(d,e,f) CSI at intensity threshold of 0.1, 1.0, and 5.0 mm h-1, respectively. 
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Table 1: Distribution of precipitation amount and number of examples of (a) train dataset, and (b) test dataset of each dam domains 

and sites.  700 

(a) Train dataset 

Interval in mm h-1 Soyang-gang  
Dam Basin 

Soyang-gang 
Dam site 

Andong 
Dam Basin 

Andong 
Dam site 

Chungju 
Dam Basin 

Chungju 
Dam site 

0 ≤ R < 0.1 84.63 85.00 83.04 83.57 84.81 85.03 

0.1 ≤ R < 1.0 10.23 10.19 11.56 11.02 10.75 10.61 

1.0 ≤ R < 4.0 3.78 3.35 3.91 3.89 3.43 3.30 

4.0 ≤ R < 8.0 0.92 1.03 0.94 0.98 0.68 0.69 

8.0 ≤ R < 10.0 0.18 0.21 0.20 0.23 0.13 0.16 

10.0 ≤ R  0.27 0.23 0.35 0.32 0.20 0.21 

No. of examples 27,905 examples 29,136 examples 29,691 examples 

(b) Test dataset  

Interval in mm h-1 
Soyang-gang  
Dam Basin 

Soyang-gang 
Dam site 

Andong 
Dam Basin 

Andong 
Dam site 

Chungju 
Dam Basin 

Chungju 
Dam site 

0 ≤ R < 0.1 90.77 91.92 87.41 87.73 86.54 87.61 

0.1 ≤ R < 1.0 5.77 5.16 7.59 7.48 8.63 8.06 

1.0 ≤ R < 4.0 2.65 2.26 3.77 3.92 3.80 3.58 

4.0 ≤ R < 8.0 0.58 0.42 0.87 0.54 0.76 0.51 

8.0 ≤ R < 10.0 0.10 0.06 0.15 0.09 0.12 0.13 

10.0 ≤ R  0.14 0.17 0.21 0.24 0.14 0.11 

No. of examples 9,753 examples 6,598 examples 6,137 examples 
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Table 2: Contingency table for the categorical scores. 

 

Observation 

Event detected 
Event not 

detected 

Prediction 

Event 

detected 
Hit False alarm 

Event not 

detected 
Miss 

Correct non-

event 

 

  705 
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Table 3: Experimental design for transfer learning strategies to train model with different domain. (a) Detailed training procedure 

of each strategy, (b) data used to train the model according to each strategy. 

(a) Training strategies 

No. Generator Discriminator 

Case 1 Train from the scratch Train from the scratch 

Case 2 Use pre-trained parameters for one domain - 

Case 3 Fine tuning pre-trained parameters for one domain* Train from the scratch 

Case 4 Use pre-trained parameters for multiple domains - 

Case 5 Fine tuning pre-trained parameters for multiple domains*  Train from the scratch 

(b) Training dataset  

 Pre-trained domain Andong Dam domain Chungju Dam domain 

Case 1 - 
2014–2017 (JJA) at Andong 

Dam domain 
2014–2017 (JJA) at Chungju 

Dam domain 

Case 2 2014-2017 (JJA) at Soyang-gang Dam 
domain 

- - 

Case 3 2014-2017 (JJA) at Soyang-gang Dam 
domain 

2014–2017 (JJA) at Andong 
Dam domain 

2014–2017 (JJA) at Chungju 
Dam domain 

Case 4 
2014-2017 (JJA) at Soyang-

gang/Daecheong/Juam/Yongdam Dam 
domain 

- - 

Case 5 
2014-2017 (JJA) at Soyang-

gang/Daecheong/Juam/Yongdam Dam 
domain 

2014–2017 (JJA) at Andong 
Dam domain 

2014–2017 (JJA) at Chungju 
Dam domain 

* Use 1/10th of original learning rate 
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Table 4: Comparison of the performance scores for 10-min precipitation prediction of different models at the Soyang-gang Dam site 710 

during summer season (June–August) of 2018. 

 

 

 

 715 

 

 

 

  

 R RMSE 
(mm h-1) 

NSE CSI 
(0.1 mm h-1) 

CSI 
(1.0 mm h-1) 

CSI 
(5.0 mm h-1) 

Rad-cGAN 0.8587 0.4248 0.7277 0.8065 0.6316 0.4118 

U-Net 0.8367 0.5457 0.5506 0.7781 0.5961 0.1667 

ConvLSTM 0.7716 0.5241 0.5855 0.7086 0.5247 0.3000 

Persistence 
(baseline) 

0.6023 0.7287 0.1989 0.6716 0.4895 0.1622 

pySTEPS 
(baseline) 

0.6072 0.6080 0.4440 0.7086 0.5303 0.0833 
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 720 

Table 5: Comparison of the 10-min precipitation prediction performance scores for three different model using different transfer 

learning strategies for the (a) Andong and (b) Chungju Dam sites in the summer season (June–August) of 2018. 
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(a) Andong Dam site 

 R 
RMSE 

(mm h-1) 
NSE 

CSI 
(0.1 mm h-1) 

CSI 
(1.0 mm h-1) 

CSI 
(5.0 mm h-1) 

Case 1 0.8249 0.5430 0.5437 0.8000 0.6250 0.1852 

Case 2 0.8553 0.4779 0.6466 0.8046 0.6613 0.2593 

Case 3 0.8667 0.5018 0.6104 0.8222 0.6438 0.1852 

Case 4 0.8529 0.4451 0.6934 0.8182 0.6386 0.3000 

Case 5 0.8421 0.4487 0.6884 0.8195 0.6570 0.2727 

(b) Chungju Dam site 

 R 
RMSE 

(mm h-1) NSE 
CSI 

(0.1 mm h-1) 
CSI 

(1.0 mm h-1) 
CSI 

(5.0 mm h-1) 

Case 1 0.8632 0.6288 0.6191 0.8273 0.6492 0.2400 

Case 2 0.8518 0.5503 0.7083 0.8218 0.6715 0.4074 

Case 3 0.8552 0.5892 0.6655 0.8301 0.6779 0.3529 

Case 4 0.8384 0.5888 0.6660 0.8007 0.6790 0.3585 

Case 5 0.8393 0.5902 0.6644 0.8255 0.6784 0.3846 


