
 

 

[RC1]  
We thank the reviewers for their constructive comments on our manuscript. In the following 

paragraphs, the reviewers’ comments are in black font, and our point-by-point responses are in blue. 

 

Major comments 

Context with Ravuri et al. (2021) 

In their study, Choi & Kim suggest a conditional Generative Adversarial Network. A similar 

approach had been suggested by Ravuri et al. (2021) with good success for the UK. 

Unfortunately, Choi and Kim do not put their own design in context with the work of Ravuri et al. 

(2021). It would be helpful to point out, justify and discuss differences in the network 

design, and resulting implications. 

 

è As pointed out by the reviewer, we have added following paragraph about differences between 

our work and the work of Ravuri et al. (2021) to clarify our intentions. 

 

L74: “The aim of the present study was to develop an advanced precipitation nowcasting model for 

multiple dam basins that can be applied as an early warning system. The decision-making process at 

upstream dams with regard to flood control, which is directly related to urban and rural water 

management, influences flood risk considerably. From such a dam management perspective, water 

level and precipitation prediction at dam sites are major factors to be considered, suggesting that 

increasing rainfall prediction accuracy at the dam site is essential for effective flood management. 

To develop an advanced precipitation nowcasting model with good prediction performance for dam 

sites and basins in general, we designed a model based on the cGAN approach (Rad-cGAN) for 

multiple dam domains of the Soyang-gang, Andong, and Chungju dam basins in South Korea.” 

 

L127: “In this study, we developed a radar-based precipitation nowcasting model using a cGAN 

framework. Recently, research on weather prediction using cGAN, an advanced machine learning 

approach, has been conducted extensively (e.g., Rüttgers et al., 2019; Ravuri et al., 2021). For 

example, Ravuri et al. (2021) proposed a generator consisting of two modules; conditioning stack 

(using CNN to extract representation of input); and sampler (using ConvGRU to generate 

prediction). The model, which used ConvGRU, could observe spatiotemporal changes of inputs such 

as ConvLSTM, and attempted to improve performance by extracting features from different spatial 



 

 

dimensions and deriving the results. Whereas the generator used to predict future radar map, the 

discriminator used a dual architecture that distinguishes the real and generated frames, to ensure 

both temporal and spatial consistency. Unlike the model proposed by Ravuri et al. (2021), our model 

adopts a U-net architecture that uses a CNN layer in image generation based on the underlying 

Pix2Pix model; the architecture exhibits outstanding performance in image-to-image translation 

tasks (Isola et al., 2017).  Also, we considered only spatial consistency in the PatchGAN 

discriminator, which distinguishes images for each N × N patch (N can be smaller than the full size 

of the image). U-net-based precipitation nowcasting model has previously demonstrated 

performance superior to that of a traditional radar-based precipitation nowcasting model that uses 

optical flow (Ayzel et al., 2020). Therefore, here, we apply the basic cGAN methodology to the U-net 

structure to improve performance and confirm the applicability of the transfer learning methodology 

to multiple domains.” 

 

Spatial verification set-up 

The study is about the development and evaluation of different deep learning designs for 

precipitation nowcasting in Korea. Surprisingly for me, Choi & Kim limit the model verification to 

arbitrary spatial subsets of their model domain: first and foremost, to the location of the Soyang-gang 

dam, and second, to the upstream catchment of the dam. While I cannot see any hydrological 

justification to predict the precipitation at the dam location itself, I can understand, in the context of 

dam operation and early warning, the relevance of predicting precipitation for the dam’s catchment. 

However, as the paper is about nowcasting methods, the limitation to the catchment area is 

unwarranted as it unnecessarily reduces the amount of data that is available for verification. Besides, 

I do not understand why the authors first compute the verification metrics for each pixel in the 

catchment separately and then compute the metric’s median from this. In my view, using the median 

improves the resulting metrics specifically for the Rad-cGAN model since it is prone to produce 

outliers, as the authors state themselves. 

 

è To clarify why we evaluate model for dam site and whole basin, we have added more 

explanations to explain our main objective, as follows:  

 

L74: “The aim of the present study was to develop an advanced precipitation nowcasting model for 

multiple dam basins that can be applied as an early warning system. The decision-making process at 

upstream dams with regard to flood control, which is directly related to urban and rural water 



 

 

management, influences flood risk considerably. From such a dam management perspective, water 

level and precipitation prediction at dam sites are major factors to be considered, suggesting that 

increasing rainfall prediction accuracy at the dam site is essential for effective flood management. To 

develop an advanced precipitation nowcasting model with good prediction performance for dam sites 

and basins in general, we designed a model based on the cGAN approach (Rad-cGAN) for multiple 

dam domains of the Soyang-gang, Andong, and Chungju dam basins in South Korea.”  

 

As per the reviewer’s suggestion, we have revised the resulting metrics as boxplots: 

 

 
Figure 5: Box plot of verification metrics of model predictions at the lead time up to 90 min over all 

grid cells from the Soyang-gang Dam region. Left panels from top to bottom represent R, RMSE, 

NSE, and right panels from top to bottom represent CSI at intensity threshold of 0.1, 1.0, 5.0 mm h-1. 

 

Lack of a competitive benchmark 

It has become - and rightly so - the standard in deep learning benchmarking studies to use at least 

one competitive benchmark model in order to demonstrate the added value of the data-driven 

models. Several Python libraries have become available in recent years which allow to generate 

strong benchmark predictions based on tracking (e.g. optical flow) and extrapolation. The authors 

themselves cite e.g. PySTEPS (Pulkkinen et al., 2019) and rainymotion (Ayzel et al., 2019). I would 



 

 

like to ask the authors to include at least one strong (and open) benchmark from any such library. 

 

è As per reviewer’s suggestion, we used PySTEPS to predict future precipitation based on our test 

dataset (summer of 2018), and the results have been added as a benchmark model for use in 

evaluation of model performance. 

 

L211: “2.3.1 PySTEPS 

PySTEPS (Pulkkinen et al., 2019) is the open-source and community-driven python framework for 

radar-based probabilistic precipitation nowcasting that is considered a strong baseline model (Imhoff 

et al., 2019; Ravuri et al., 2021). In the present study, STEPS (Short-Term Ensemble Prediction System) 

(Bowler et al., 2006) nowcast ensemble from the pySTEPS library was used as the benchmark model.  

To generate precipitation predictions, we first provided input precipitation images (unit: dBR) that 

were transformed from four consecutive radar reflectivity images (from t-30 to t) based on a Z-R 

relationship (Eq. (1)). The transformed precipitation was also used to estimate motion field, and the 

motion field and precipitation were used as input data in the STEPS model. Future precipitation at a 

lead time of up to 90 min for the test period (JJA of 2018) was generated based on the average across 

20 ensemble members from the results of STEPS nowcasts. The source code of pySTPES is available 

in GitHub (https://pysteps.github.io, last accessed: 5 April 2022).” 

 

Insufficient metrics 

One of the major issues of deep learning models for precipitation nowcasting is that they struggle to 

predict intense precipitation, and that they introduce spatial smoothing to account for predictive 

uncertainty. The smoothing effect becomes increasingly pronounced over lead lead time if the model 

is applied recursively. This important issue needs to be explicitly and extensively addressed in the 

present study, specifically since Ravuri et al. (2021) appeared to have made substantial progress on 

that matter. To this end, various de-facto standards have emerged, e.g. to provide skill scores (such 

as the CSI) for higher intensity thresholds (up to at least 10 mm/h), to evaluate the power spectral 

density (PSD) for various lead times, and to show the fractions skill score over various spatial scales, 

lead times and intensity thresholds. The use of correlation, RMSE, NSE and CSI for a threshold of 

only 0.1 mm/h does not meet these standards. 

 

è As per the reviewer’s suggestion, we have added the CSI for higher rainfall intensity thresholds. 

Also, we have added fraction skill score (FSS) and power spectral density (PSD) to evaluate model 



 

 

results in the revised manuscript. When calculating CSI and FSS, we used intensity thresholds of 0.1, 

1.0, and 5.0 mm/h, and when calculating FSS, we used neighborhood sizes of 1, 5, and 15 km. 

 

L298: “We used the CSI (Eq. (8)), which is a measure of categorical forecast performance, to verify 

the model accuracy for precipitation event detection.  

𝐶𝐶𝐶𝐶𝐶𝐶 = !"#$
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where ℎ𝑖𝑖𝑖𝑖𝑖𝑖  (correct event forecasts), 𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓	𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑖𝑖  (incorrect event forecasts), and 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖 

(missed events) are defined by a contingency table (Table 2). Also, FSS can spatially verify model 

performance by comparing fraction of grid points of prediction and ground truth, which exceed certain 

rainfall intensity thresholds within the neighborhood (Eq. (9)).  
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where 𝑃𝑃2 and 𝑃𝑃3 are the fractions of prediction and observation, respectively, calculated by specific 

thresholds in neighborhood size. For calculating CSI and FSS, we selected several intensity thresholds, 

including 0.1, 1.0, and 5.0 mm h-1, and for FSS, we used neighborhood sizes of 1, 5, and 15 km. 

Additionally, we calculated the radially averaged power spectral density (PSD) of predictions and 

observations to assess blurring effect of predicted image by models.” 

 

L405: “The results can also be confirmed through the FSS of each model (Fig. 6). When comparing 

Rad-cGAN and U-net, as lead time and rainfall intensity increase, both models decrease FSS; however, 

Rad-cGAN model exhibited superior performance. However, ConvLSTM had a relatively high FSS 

value under high rainfall intensity compared to those of the other two models.” 

  

L423: Figure 8 shows the PSD for each result in Fig. 7. Based on Fig. 7, all models exhibited a blurring 

effect compared to the ground truth. However, when comparing U-net and Rad-cGAN, Rad-cGAN has 

slightly lower blurring effect. This is because a sharper image can be generated when cGAN is applied 

to the U-net structure (Isola et al. (2017)), which shows that our model successfully applied the cGAN 

technique. Therefore, based on the overall verification metrics, we conclude that Rad-cGAN has the 

optimal prediction performance in nowcasting and prediction of spatial patterns of movement of 



 

 

precipitation.” 

 

 

 

Figure 6: Fraction Skill Scores (FSS) of model predictions at lead time of 10, 30, and 60 min at 

Soyang-gang Dam Basin. Panels from left to right express FSS of Rad-cGAN, U-net, ConvLSTM. 

 

 

 

 



 

 

Figure 8: Radially averaged power spectral density (PSD) at forecasting time t = 23 August 2018, 

17:50 UTC, for model predictions and observation  

 

Transfer learning, hyperparameters 

In my opinion, the transfer learning experiment is the most interesting part of this study, yet it 

requires further attention and analysis. This includes the following aspects: 

● In ll. 361 ff., the authors “[...] infer that by using transfer learning, a model can be successfully 

developed with different domains, although it does not optimize the hyperparameter to fit the model 

with the new domain.” The issue of hyperparameter tuning was not addressed in the manuscript 

before, though. Which hyperparameters were tuned for the Soyang-gang domain, and to which 

effect? What are the implications for evaluating the transfer learning if you do not analyse the effects 

of hyperparameter tuning?  

 

è To decide the model structure and training setup, we tuned the following hyperparameters: number 

of layers, number of hidden nodes, convolution filter size, patch size (defined by structure of 

discriminator), batch size and learning rate. We used radar 2014–2016 data (June–August) and 2017 

data (June–July) to train model of each combination. Then, 2017 data (August) were used to calculate 

mean absolute error (MAE) and CSI (at an intensity threshold of 0.1mm/h) to obtain the optimal 

combination of hyperparameters. The results of each model showed an MAE range of 0.4514~41.6607 

and a CSI range of 0.0~0.8322. As such, hyperparameters have a great influence on model performance, 

and we pointed out that if we use an already optimal model through transfer learning, sufficient 

performance can be obtained without any effort to tune the hyperparameters.  

 

We have added paragraph about hyperparameter tuning in revised manuscript. 

 

L173: “Before proceeding with training to optimize the model for the input data, hyperparameter 



 

 

tuning is required to determine the most optimal model structure and training settings. We selected 

the following hyperparameters: number of layers, number of hidden nodes, convolution filter size, 

patch size, batch size, and learning rate. To select the appropriate hyperparameter combination, the 

model for each combination was trained using radar data from 2014 to 2016 (June to August) and 

data from 2017 (June to July). Subsequently, using data from 2017 (August), the mean absolute error 

(MAE) and critical success index (CSI) (at an intensity threshold of 0.1 mm/h) were calculated to 

obtain the optimal combination of hyperparameters. Based on the tuning results, the MAE range was 

0.45–47.66 and the CSI range was 0.0–0.83, and the results confirmed that hyperparameters influence 

model performance considerably. Based on the combinations that performed optimally, we determined 

the model structure and training settings.” 

 

● Of course, case 1 provides an important reference for evaluating cases 2 and 3: What does it 

mean if cases 2 or 3 outperform case 1 in which the model is fully retrained? In addition, I 

recommend adding another case: the evaluation of the model without any transfer learning, just using 

the pretrained weights. I think this is important to appreciate the effects of transfer learning. 

 

è There was a mistake in the original manuscript about the explanation of case 2 strategies. Case 2 

had weights similar to those of pre-trained model; therefore, we already evaluated the model without 

transfer learning. This has been corrected, and a few more transfer strategies have been added to 

Table 2 in the revised manuscript as follow: 

 

L333: “We used transfer learning to train our model for different dam basins, i.e., Andong and 

Chungju, with a pre-trained model that was completely trained by data from the Soyang-gang Dam 

Basin. In addition, in existing papers that have successfully applied the transfer learning strategies, 

it was used to develop a model for a new domain using a pre-trained model based on vast data. 

Consequently, we used the pre-trained model with Daecheong Dam, Juam Dam, and Yongdam Dam 

basin data, in addition to Soyang-gang Dam data, to assess the amount of data required to develop a 

model for a new dam domain. The selected strategies were inspired by a previous approach of 

transferring GAN (Wang et al., 2018; Mo et al., 2020). We formulated two strategies for each pre-

trained model. First, the weights of the pre-trained generator were frozen and used directly in new 

dam domain (Case 2, 4). Next, to the weights of the pre-trained generator were fine-tuned (1/10th of 

the original learning rate) and the discriminator trained (Case 3, 5). In addition, the entire model 

was trained for the new domain (Case 1) (Table 3a). The model was trained for the Chungju and 



 

 

Andong Dam domains, separately, using the five strategies (Table 3b).” 

 

Table 2: Experimental design for transfer learning strategies to train model with different domain. (a) 

Detailed training procedure of each strategy, (b) data used to train the model according to each 

strategy. 

(a) Training strategies 

No. Generator Discriminator 

Case 1 Train from the scratch Train from the scratch 

Case 2 Use pre-trained parameters for one domain - 

Case 3 Fine tuning pre-trained parameters for one domain* Train from the scratch 

Case 4 Use pre-trained parameters for multiple domains - 

Case 5 Fine tuning pre-trained parameters for multiple domains*  Train from the scratch 

(b) Training dataset  

 Pre-trained domain Andong Dam domain Chungju Dam domain 

Case 1 - 
2014–2017 (JJA) at Andong 

Dam domain 
2014–2017 (JJA) at Chungju 

Dam domain 

Case 2 
2014-2017 (JJA) at Soyang-gang Dam 

domain 
- - 

Case 3 2014-2017 (JJA) at Soyang-gang Dam 
domain 

2014–2017 (JJA) at Andong 
Dam domain 

2014–2017 (JJA) at Chungju 
Dam domain 

Case 4 
2014-2017 (JJA) at Soyang-

gang/Daecheong/Juam/Yongdam Dam 
domain 

- - 

Case 5 
2014-2017 (JJA) at Soyang-

gang/Daecheong/Juam/Yongdam Dam 
domain 

2014–2017 (JJA) at Andong 
Dam domain 

2014–2017 (JJA) at Chungju 
Dam domain 

* Use 1/10th of original learning rate 

 

Model software and reproducibility 

For model description papers, GMD states that “[...] code must be published on a persistent public 

archive with a unique identifier for the exact model version described in the paper or uploaded to the 

supplement”. Some code is available on a GitHub repository (https://github.com/SuyeonC/Rad-



 

 

cGAN), yet, this does neither qualify as a persistent public archive nor as a unique identifier. Instead, 

the published model version requires a persistent DOI. Furthermore, I am not satisfied with the level 

of reproducibility provided by the GitHub repository: it lacks sufficient documentation (or, strictly 

speaking, it is not documented at all), it lacks the benchmark model implementations (U-Net, 

ConvLSTM), and it lacks a minimal working example with corresponding data and pre-trained 

weights. Speaking of data, I could not find any way to download the radar reflectivity composite data 

samples as pointed out by the authors in the “Code and data availability” section with the provided 

URL (https://data.kma.go.kr/resources/html/en/ncdci.html). Maybe this works in the Korean version 

of the website, but this is not sufficient for a study to be published in GMD. Instead, I suggest that 

the data (or at least samples) are included in another persistent, openly available repository, and that 

the authors provide sufficient guidance and a working example how to use the data with their code. 

 

è As pointed out by the reviewer, we will provide more documentation and the pre-trained models 

(i.e., Rad-cGAN and reference models) in our GitHub repository to share our work. Also, for the 

data availability, as mentioned in the “Code and data availability” statement, the entire dataset can 

be obtained through a separate request to KMA; therefore, we will add some sample data (e.g., 

typhoon Soulik event) in our GitHub repository. 

 

Presentation quality 

The presentation quality of the manuscript needs to be improved. This particularly applies to the 

quality of the figures which all have a very low resolution. For rainfall maps, make sure that you use 

colormaps that are appropriate for colour-blind people. 

 

Specific comments 

- I think that two statements in the introduction are incorrect: NWP are not the standard tool for 

nowcasting (l. 30), and rainymotion is not data-driven (as suggested in l. 35)  

 

è We have corrected it as follows: 

 

L40: “Among the existing precipitation nowcasting models, numerical weather prediction (NWP), 

which performs rainfall prediction based on atmospheric physics equations, can generate high-

resolution rainfall forecasts with long lead times. However, NWP has exhibited poor forecast 

performance with relatively short (0–2 h) lead times (Berenguer et al., 2012).” 



 

 

 

L45: “Additionally, the increased availability of high-resolution remote sensing observation data (e.g., 

radar) and computer resources has facilitated the development of advanced precipitation nowcasting 

models. For example, Ayzel et al. (2019) developed an optical flow-based precipitation nowcasting 

model called rainymotion…” 

 

- Formatting of equations is odd: it is difficult to separate them from the main text due to the lack of 

vertical spacing. 

 

è We have corrected it. 

 

- ll. 82 ff: Speculation - topography does not necessarily suggest anything on rainfall patterns 

(whatever is meant by “rainfall patterns”). 

 

è We have added explanations with related references in the revised manuscript, as follows:  

 

L98: "Since topography (especially mountainous areas such as study domains) affects atmospheric 

conditions, such as temperature, humidity, air pressure distribution, and cloud formation, it directly 

or indirectly affects rainfall formation and distribution of rainfall in an area (Basist et al., 1994; 

Prudhomme and Reed, 1998). Consequently, data extracted from the three domains with different 

topographic characteristics would exhibit different rainfall patterns.” 

 

Reference 

Basist, A., Bell, G. D., & Meentemeyer, V.: Statistical relationships between topography and 

precipitation patterns. Journal of climate, 7(9), 1305-1315, 1994. 

Prudhomme, C. and Reed, D.W.: Relationships between extreme daily precipitation and topography 

in a mountainous region: a case study in Scotland. Int. J. Climatol., 18: 1439-1453, 1998. 

 

- Fig.2: Please add spatial dimensions to the presented data volumes. Furthermore, for the 

discriminative model (subplot b), it is not clear how PatchGAN’s output (34x34) compares to ground 

truth (pixelwise, averaging, etc.). 

 

è As per reviewer’s suggestion, we have added spatial dimensions in Fig. 2, as follows: 



 

 

 
Figure 2. Model architecture consists of a (a) generative and (b) discriminative model. 

 

The output of PatchGAN size is not 34 × 34. The patch size (34) is the size of the receptive field, which 

is the region in the input image that is used to measure one pixel of output feature. So, the patch size 

was defined based on structure of discriminator (e.g., number of layers, nodes, and filter sizes). Also, 

while training PatchGAN, we generated the ground truth of the training dataset, which was labeled 

based on input dataset (if the input data is an actual image, the resulting image is filled with 1, otherwise 

it is filled with 0). We have added this explanation about PatchGAN in the revised manuscript to avoid 

any confusion. 

 

L158: “Particularly, PatchGAN only penalizes the structures over a certain scale of image patches; 

therefore, the discriminator classifies whether the N × N patch in the input pair is real or fake. This 

patch represents the receptive field, which is the region in the input image that is used to measure the 

associated feature of the output layer. Consequently, the size of the patch (N) was determined based 

on the structure of the entire discriminator (e.g., number of layers, nodes, filter size, paddings, and 

strides), and it increased as the model became deeper. We constructed a discriminator model with a 

34 × 34 patch size through hyperparameter tuning.” 

 

- Model description and analysis: 

- The authors stated that the size of the optimised patch is 34x34. However, it is not clear how that 



 

 

patch is clipped from the generated/ground truth image – the output of the discriminative model 

has a spatial dimension of 32x32 suggesting that there is some overlapping strategy. 

 

è As in the response to the previous comment, patch size is the region used to measure the output 

feature (e.g., neuron of each hidden layer or each pixel value of output image), which is 

automatically defined by the structure of a discriminator. So, it is not the manually cropped region 

from the input (generated/ground truth) image. We have added following explanation about it. 

 

L167: “To train the discriminator as a classifier, we manually generated a training dataset consisting 

of an input image pair and a target image, with spatial dimensions of 32 × 32 filled with 1 (for real 

image pairs) or 0 (for generated image pairs). Therefore, each pixel of the output estimates the 

probability that the discriminator determines each patch of the input pair as the real one.” 

 

- ll.141-142 state “...each pixel of the output referred to the probability that the discriminative 

model determines each patch of the input pair as the real one.” It would be interesting to see the 

corresponding results on some real examples in the analysis.  

 

èSince the GAN framework calculate and use the output of the discriminator automatically, we 

did not design the model to obtain the output from the discriminator separately. 

 

- Based on Goodfellow (NIPS 2016 Tutorial): “...If both models have sufficient capacity, then the 

Nash equilibrium of this game corresponds to the G(z) being drawn from the same distribution as 

the training data, and D(x) = 1/2 for all x.” It would be interesting to see the corresponding results 

for the discriminative model on some real examples.  

 

è As mentioned in Goodfellow (NIPS 2016 Tutorial), in the ideal case, the change in the loss 

function during training is the same as what the reviewer said. However, due to the characteristics 

of the GAN model, the training process is unstable compared to those of other machine learning 

models, so that the actual loss functions of generator and discriminator show highly oscillating 

shapes. Therefore, we did not show it separately because we did not find implications in showing 

the loss function graph. 

 

- ll. 227 ff.: “Since the precipitation prediction of the model was more accurate, the prediction and 



 

 

observation showed a strong positive linear relationship.” - doesn't make sense to me. 

 

è We have corrected as follows: 

 

L286: “As the collinearity between actual rainfall and predicted rainfall increases, the explanatory 

power of the rainfall simulated by the model increases, so that the performance of the model can be 

illustrated by strong positive linear relationship between predictions and observations. Hence, we 

confirmed that the model exhibits better performance when R (Eq. (5)), calculated based on the 

model prediction and observation, is closer to 1.” 

 

- Fig. 6: In order to appreciate the spatial patterns, I would prefer to see the predicted rainfall instead 

of the bias. If bias plays a role, it should be expressed in adequate verification metrics.  

 

è We have corrected Fig. 6, which is Fig. 7 in the revised manuscript, as follows: 

 



 

 

 

Figure 7: Precipitation observation example at forecasting time t = 23 August 2018, 17:50 UTC, for 

model predictions and (a) ground truth (OBS). Panels from top to bottom express ground truth: (b) 

prediction of Rad-cGAN model, (c) prediction of U-net based model, (d) prediction of ConvLSTM, 

and € prediction of pySTEPS 

 

- I don’t think that such metrics should be presented with a precision of 4 digits.  

 

è We have corrected it 

 

- Fig. 3: I do not see the added value of the (right hand) time series panel - there is not much to see 

and learn when you look at two months of 10 min data. - I don’t see the need for Tab. 3 when you 



 

 

have Fig. 4.  

 

è Since the model was trained to generate 10-min prediction images, it is necessary to show 

quantitative indicators of the results after 10 minutes when evaluating the model's performance; 

therefore, we created Table 3 separately from Fig. 4, to highlight performance according to the increase 

in lead time. 

 

- L. 277: “All models except for persistence performed extremely well”- what is the basis for such a 

strong statement? 

 

Our statements are based on verification metrics. Generally, for evaluating hydrological model, the R 

and NSE greater than 0.5 are acceptable (Moriasi et al, 2007). Germann and Zawadzki (2002) also 

suggested that the threshold of predictability is 1/e≒0.37, assuming that the CSI values follow the 

exponential law. Considering these criteria, we determined that the model has great performance when 

R >0.8, NSE >0.5, and CSI >0.5. We have elaborated our statement with references in revised 

manuscript. 

 

L349: “As the general criterion for evaluating hydrological models, when R and NSE are ≥ 0.5, the 

model has acceptable performance (Moriasi et al., 2007). In addition, Germann and Zawadzki (2002) 

suggested that the threshold of predictability is 1/e≒0.37, assuming that the CSI values follow the 

exponential law. According to the standard, the results of Table 4 show that the machine learning-

based models performed well as precipitation nowcasting models (R >0.8, NSE >0.5, CSI >0.5).” 

 

Reference 

Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L.: Model 

evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. 

ASABE, 50(3), 885-900, 2007. 

Germann, U. and Zawadzki, I.: Scale-Dependence of the Predictability of Precipitation from 

Continental Radar Images. Part I: Description of the Methodology, Mon. Weather Rev., 130, 2859–

2873, https://doi.org/10.1175/1520-0493(2002)130<2859:SDOTPO>2.0.CO;2, 2002.  

 

- L. 283-285: “our model performs better than U-Net in predicting peak precipitation [...] prediction 



 

 

accuracy of the ConvLSTM model for maximum precipitation was higher than that of our model” - 

please confirm these statements by adequate metrics, not from visual inspection  

 

è We have added a few more verification metrics (FSS, PSD) to support our discussion: 

 

L405: “The results can also be confirmed through the FSS of each model (Fig. 6). When comparing 

Rad-cGAN and U-net, as lead time and rainfall intensity increase, both models decrease FSS; however, 

Rad-cGAN model exhibited superior performance. However, ConvLSTM had a relatively high FSS 

value under high rainfall intensity compared to those of the other two models.. 

  

L423: “Figure 8 shows the PSD for each result in Fig. 7. Based on Fig. 7, all models exhibited a 

blurring effect compared to the ground truth. However, when comparing U-net and Rad-cGAN, Rad-

cGAN has slightly lower blurring effect. This is because a sharper image can be generated when cGAN 

is applied to the U-net structure (Isola et al. (2017)), which shows that the cGAN technique was 

successfully applied by our model.” 



 

 

 

Figure 6: Fraction Skill Scores (FSS) of model predictions at lead time of 10, 30, and 60 min at 

Soyang-gang Dam Basin. Panels from left to right express FSS of Rad-cGAN, U-net, ConvLSTM. 



 

 

 

Figure 8: Radially averaged power spectral density (PSD) at forecasting time t = 23 August 2018, 

17:50 UTC, for model predictions and observation 

 

 

- Ll. 287 ff: what is the basis for normative statements such as “good” and “sufficient”?  

 

è As in the response of previous comment, we state that the model has good and sufficient 

performance when CSI, R, are greater than 0.5 by considering references. We have added the number 

of metrics to support our statement in the revised manuscript. 

 

- Why use an entirely different presentation format in Fig. 5 to evaluate the performance in the 

catchments? Anyway, a revised version of the paper should not evaluate model performance for the 

dam locations and the catchments. 

 

è As in the response of previous comment about verification on dam site and basin, we have added 

more explanation about our main objective.  

 

L74: “The aim of the present study was to develop an advanced precipitation nowcasting model for 

multiple dam basins that can be applied as an early warning system. The decision-making process at 

upstream dams with regard to flood control, which is directly related to urban and rural water 

management, influences flood risk considerably. From such a dam management perspective, water 

level and precipitation prediction at dam sites are major factors to be considered, suggesting that 

increasing rainfall prediction accuracy at the dam site is essential for effective flood management. To 

develop an advanced precipitation nowcasting model with good prediction performance for dam sites 

and basins in general, we designed a model based on the cGAN approach (Rad-cGAN) for multiple 

dam domains of the Soyang-gang, Andong, and Chungju dam basins in South Korea.”  



 

 

 

To clarify this, we have revised the title as follows: 

 

"Rad-cGAN v1.0: Radar-based precipitation nowcasting model with conditional Generative 

Adversarial Networks for multiple dam domains” 

  



 

 

[RC2]  
We thank the reviewers for their constructive comments on our manuscript. In the following 

paragraphs, the reviewers’ comments are in black font and our point-by-point responses are in blue. 

This work adapts several classical CNN-based deep learning (DL) models for precip nowcasting. 

Specifically, the authors used Rad-cGAN, an adversarial learning network, to perform short-term 

prediction using radar data. The authors also demonstrated transfer learning, which is interesting. I 

think the work is publishable after some moderate revision. 

 

1. L100, “For image translation tasks …” Here the objective of G should be minimizing the whole 

L_{cGAN}, not just the second part of it. 

 

è We have corrected as follows: 

 

L116: “For image translation tasks, when 𝐺𝐺 is trained to produce a targeted image (𝑦𝑦) from input 

(𝑥𝑥) with random noise (𝑧𝑧), the objective of 𝐷𝐷 will try to maximize the loss function ℒ4567(𝐺𝐺, 𝐷𝐷) 

while 𝐺𝐺 will try to minimize ℒ4567(𝐺𝐺, 𝐷𝐷).” 

 

2. Lookback period was fixed to 3 steps (i.e, t-30, t-20, and t-10). We know recurrent neural 

networks can be sensitive to length of lookbacks. Have you tried longer lookback? 

 

è As per reviewer’s suggestion, we have added results of model trained with longer lookback, with 

5 steps (i.e., t-50, t-40, t-30, t-20, and t-10). 

 

L182: “First, we compared the results using a total of four and six consecutive radar reflectivity 

images to determine the input historical data length. As a result of 10 min precipitation prediction at 

the Soyang-gang Dam site, in the case of CSI (at the rainfall intensity of 0.1 mm h-1), the case of 

using six historical data was slightly better than case of using four data, but in R, RMSE, and NSE, 

the results of using four data were better. Through this, samples that consisted of four consecutive 

radar reflectivity images (t-30, t-20, t-10 min, and t) and the image at t+10 min were selected.” 

 

3. Model domain is fixed to 128x128. To me, this is really inconvenient. What if you need to deal 

with large model domains? Can you apply the 128x128 model to other nearby areas? 



 

 

 

è We used 128 × 128 domain that can cover whole-dam basins, because our main purpose was to 

develop a rainfall prediction model to improve prediction skill for dam sites and watersheds. In 

addition, in terms of computational cost and computer sources, it was judged that it was inefficient to 

train the model using excessive area data.  

Although a model was developed for the dam basin, the model can be used for other regions if the 

spatial dimension is 128 × 128 due to the model structure. 

 

4. Resolution of all figures need to be improved. The fonts are all blurry. Suggest regenerate the 

figure using DPI>=300. 

 

è We have improved figure quality. 

 

5. Figure 3. I don’t see a significant advantage of Rad-cGAN over Unet and Conv-LSTM. All the 

deep learning models underestimated the high magnitude rainfall events, which leads to my next 

comment. 

 

è As we mentioned in the conclusion, the underestimation trends in the machine-learning-based 

model is a persisting issue; however, what we have shown is that applying the cGAN method can 

increase predictability compared to using only the U-net structure. 

 

6. Here the authors only considered autoregression using radar reflectivity. Do you think 

incorporating other features (e.g., DEM, Wind, temp) can improve prediction skill? 

 

è We also expect that the performance will be improved when topographical and meteorological 

factors that affect rainfall are added, and as we have written in the conclusion. We  expect to confirm 

this in future research. 

 

  



 

 

[RC3]  
We thank the reviewers for their constructive comments on our manuscript. In the following 

paragraphs, the reviewers’ comments are in black font and our point-by-point responses are in blue. 

 

Summary: 

This paper is concerned with the prediction of precipitation at high temporal and spatial resolution 

and short lead-time commonly referred to as precipitation nowcasting. The authors explore the use of 

conditional generative adversarial networks (cGAN) to generate auto-regressive predictions of rain 

from radar images (1 km resolution) up to 90 min. The authors compare their results to several 

baselines from the deep learning field on data collected in sub-regions of Korea. They also explore 

several fine-tuning strategies to transfer the learning from one region to another. 

  

Overall, the paper tackles an interesting problem where traditional methods such as NWP do not 

perform well. Given the growing availability of observation data, I expect that deep learning 

approaches will become more popular in this field. Therefore, this study, and especially its 

exploration of transfer learning, is timely. However, I have several major comments that require 

clarifications from the authors before the manuscript can be recommended for publication. 

  

Major comments: 

1. This paper should provide more context on the existing literature and on how it contributes to the 

field of nowcasting. In particular Ravuri et. al. 2021 also investigates the use of conditional GAN for 

precipitation nowcasting with extensive (probabilistic) evaluation. Could the authors further discuss 

how their method differs from Ravuri et. al.? 

 

è As pointed out by reviewer, we have added following paragraph about differences between our 

work and the work of Ravuri et al. (2021) to clarify our intentions. 

 

L74: “The aim of the present study was to develop an advanced precipitation nowcasting model for 

multiple dam basins that can be applied as an early warning system. The decision-making process at 

upstream dams with regard to flood control, which is directly related to urban and rural water 

management, influences flood risk considerably. From such a dam management perspective, water 

level and precipitation prediction at dam sites are major factors to be considered, suggesting that 

increasing rainfall prediction accuracy at the dam site is essential for effective flood management. 



 

 

To develop an advanced precipitation nowcasting model with good prediction performance for dam 

sites and basins in general, we designed a model based on the cGAN approach (Rad-cGAN) for 

multiple dam domains of the Soyang-gang, Andong, and Chungju dam basins in South Korea.” 

 

L127: “In this study, we developed a radar-based precipitation nowcasting model using a cGAN 

framework. Recently, research on weather prediction using cGAN, an advanced machine learning 

approach, has been conducted extensively (e.g., Rüttgers et al., 2019; Ravuri et al., 2021). For 

example, Ravuri et al. (2021) proposed a generator consisting of two modules; conditioning stack 

(using CNN to extract representation of input); and sampler (using ConvGRU to generate 

prediction). The model, which used ConvGRU, could observe spatiotemporal changes of inputs such 

as ConvLSTM, and attempted to improve performance by extracting features from different spatial 

dimensions and deriving the results. Whereas the generator used to predict future radar map, the 

discriminator used a dual architecture that distinguishes the real and generated frames, to ensure 

both temporal and spatial consistency. Unlike the model proposed by Ravuri et al. (2021), our model 

adopts a U-net architecture that uses a CNN layer in image generation based on the underlying 

Pix2Pix model; the architecture exhibits outstanding performance in image-to-image translation 

tasks (Isola et al., 2017).  Also, we considered only spatial consistency in the PatchGAN 

discriminator, which distinguishes images for each N × N patch (N can be smaller than the full size 

of the image). U-net-based precipitation nowcasting model has previously demonstrated 

performance superior to that of a traditional radar-based precipitation nowcasting model that uses 

optical flow (Ayzel et al., 2020). Therefore, here, we apply the basic cGAN methodology to the U-net 

structure to improve performance and confirm the applicability of the transfer learning methodology 

to multiple domains.” 

 

2. One of the main claims of the paper is to outperform other baselines on a new dataset. To support 

that claim, the authors need to provide stronger evidences in the form of extensive evaluation: 

1. Higher thresholds: The case made for nowcasting is to help with risk management. However, 

CSI is computed based on the 0.1mm/h threshold, which is pretty low to have any practical impact 

on risk management. Could the authors add evaluation at higher thresholds. For instance, I suggest 

adding the thresholds used in Ravuri et. al. 2021. While predicting intense events is more 

challenging, it is a more informative measure of progress for the field of nowcasting. 

 

2. Additional metrics: Previous studies have also established a set of relevant metrics that should 



 

 

be included in this study. For instance, PSD plots at various lead-times as a proxy for blurriness of 

the prediction, and skill scores over aggregated regions (e.g. 2x2, 4x4, 8x8 pixels). Note that these 

metrics are likely to pick up on positive characteristics of GAN predictions (e.g. sharp predictions 

and spatial consistency). 

 

è As per reviewer’s suggestion, we have added the CSI for higher rainfall intensity thresholds. 

Also, we had added fraction skill score (FSS) and power spectral density (PSD) to evaluate model 

result in the revised manuscript. When calculating CSI and FSS, we use intensity thresholds of 0.1, 

1.0, 4.0, and 8.0 mm/h, and when calculating FSS, we use neighborhood sizes of 1, 5, 15, and 25 km. 

 

L298: “We used the CSI (Eq. (8)), which is a measure of categorical forecast performance, to verify 

the model accuracy for precipitation event detection.  

𝐶𝐶𝐶𝐶𝐶𝐶 = !"#$
!"#$%&'($)	'('+,$%,"$$)$

         

 (8) 

 

where ℎ𝑖𝑖𝑖𝑖𝑖𝑖  (correct event forecasts), 𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓	𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑖𝑖  (incorrect event forecasts), and 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖 

(missed events) are defined by a contingency table (Table 2). Also, FSS can spatially verify model 

performance by comparing fraction of grid points of prediction and ground truth, which exceed certain 

rainfall intensity thresholds within the neighborhood (Eq. (9)).  

𝐹𝐹𝐶𝐶𝐶𝐶 = 1 −
∑ (/!0/")#$
%&'

∑ /!#$
%&' %∑ (/")#$

%&'
        

 (9) 

 

where 𝑃𝑃2 and 𝑃𝑃3 are the fractions of prediction and observation, respectively, calculated by specific 

thresholds in neighborhood size. For calculating CSI and FSS, we selected several intensity thresholds, 

including 0.1, 1.0, and 5.0 mm h-1, and for FSS, we used neighborhood sizes of 1, 5, and 15 km. 

Additionally, we calculated the radially averaged power spectral density (PSD) of predictions and 

observations to assess blurring effect of predicted image by models.” 

 

L405: “The results can also be confirmed through the FSS of each model (Fig. 6). When comparing 

Rad-cGAN and U-net, as lead time and rainfall intensity increase, both models decrease FSS; however, 

Rad-cGAN model exhibited superior performance. However, ConvLSTM had a relatively high FSS 

value under high rainfall intensity compared to those of the other two models.” 



 

 

  

L423: “Figure 8 shows the PSD for each result in Fig. 7. Based on Fig. 7, all models exhibited a 

blurring effect compared to the ground truth. However, when comparing U-net and Rad-cGAN, Rad-

cGAN has slightly lower blurring effect. This is because a sharper image can be generated when cGAN 

is applied to the U-net structure (Isola et al. (2017)), which shows that our model successfully applied 

the cGAN technique” 

 

Figure 6: Fraction Skill Scores (FSS) of model predictions at lead time of 10, 30, and 60 min at 

Soyang-gang Dam Basin. Panels from left to right express FSS of Rad-cGAN, U-net, ConvLSTM. 

 



 

 

 

 

Figure 8: Radially averaged power spectral density (PSD) at forecasting time t = 23 August 2018, 

17:50 UTC, for model predictions and observation 

 

3. Probabilistic evaluation: One of the main advantages of training a generative model, such as a 

GAN, is the ability to generate multiple predictions and conduct probabilistic evaluation on 

forecast ensembles. This leads to the following questions: 

1. Does Rad-cGAN generate multiple samples? 

 

è The output of model depends on input data size. Therefore, if input data are multiple samples 

(i.e., input data size = (No. of sample, 128, 128, 4)), the output are also multiple samples (i.e., 

output data size = (No. of sample, 128, 128, 1)). This has been added in the revised manuscript. 

 

L265: “The model was trained using data from the summers (June–August) of 2014–2017 and its 

precipitation nowcasting capacity assessed using data from the summer of 2018. To predict 

radar reflectivity data 10 min ahead, four latest radar reflectivity data (t-30, t-20, t-10 min, and t 

min; t being the forecast time) were used as input data. The model can generate multiple 

samples (No. of samples, 128, 128, 1) corresponding to the number of samples of the past four 

consecutive input data (No. of samples, 128, 128, 4).” 

 

2. If so, how are deterministic metrics such as CSI computed? Are the multiple samples 

aggregated into an average before computing the metrics? Is a single sample used for evaluation? 

 

3. If not, why? Given that the motivation for this work is risk management which relies on 

assessing risks integrated over the full distribution of possible events, this would seem to be of 

critical importance. 



 

 

 

è As the input samples are generated continuously over time, the order of the output samples is 

the same as the data period. To evaluate model for dam site, we calculated all metrics of one 

pixel (dam site location) and then averaged them over the data period (No. of samples). Also, to 

evaluate the model for dam basin, all metrics were calculated for each pixel of a dam basin and 

averaged down to the total number of pixels. Then, the calculated metrics of each sample are 

averaged over the data period (No. of samples). We have added this information about 

calculation of metrics in the revised manuscript. 

 

L309: “To calculate each verification metric, in the case of the evaluating for dam sites, we 

calculated all metrics for one pixel (dam site location) in the dam basins and averaged them 

over the data period (No. of samples). Also, in the case of evaluating dam domain, all metrics for 

each pixel in the dam basins were calculated and averaged over the data period (No. of 

samples).” 

 

4. Baselines: Please include PySTEPS (publicly available) as a baseline for your evaluation. Note 

that to make PySTEPS a competitive baseline, it might need to be fed more context than 128x128, 

as this is an advection method which is going to be more penalized at the boundaries of the 

prediction than DL methods. 

 

è As per reviewer’s suggestion, we are currently using PySTEPS to predict future precipitation 

based on our test dataset (summer of 2018), and the results will be added as a benchmark model to 

evaluate model performance. 

 

L211: “2.3.1 PySTEPS 

PySTEPS (Pulkkinen et al., 2019) is the open-source and community-driven python framework for 

radar-based probabilistic precipitation nowcasting that is considered a strong baseline model 

(Imhoff et al., 2019; Ravuri et al., 2021). In the present study, STEPS (Short-Term Ensemble 

Prediction System) (Bowler et al., 2006) nowcast ensemble from the pySTEPS library was used as 

the benchmark model.  

To generate precipitation predictions, we first provided input precipitation images (unit: dBR) that 

were transformed from four consecutive radar reflectivity images (from t-30 to t) based on a Z-R 

relationship (Eq. (1)). The transformed precipitation was also used to estimate motion field, and 



 

 

the motion field and precipitation were used as input data in the STEPS model. Future 

precipitation at a lead time of up to 90 min for the test period (JJA of 2018) was generated based 

on the average across 20 ensemble members from the results of STEPS nowcasts. The source code 

of pySTPES is available in GitHub (https://pysteps.github.io, last accessed: 5 April 2022).” 

 

 

5. Data leakage and meta-optimization: The split between the different datasets needs to be 

clarified. It is now common practice to divide the available data between training set (for 

optimization), validation set (for hyper-parameter tuning and best checkpoint selection) and test set 

(for final evaluation). While the training set and test set are clearly defined, I did not find any 

reference to the validation set. This begs the questions: 

1. On which dataset were the various hyper-parameters tuning done? 

 

è For hyperparameter tuning, we used 2014–2016 (June–August) radar data and 2017 (June–

July) data to train the model of each combination. Then, 2017 (August) data were used to 

calculate mean absolute error (MAE) and CSI (at an intensity threshold of 0.1 mm/h) to obtain 

the optimal combination of hyperparameters. We have added this information in the revised 

manuscript. 

 

L173: “Before proceeding with training to optimize the model for the input data, hyperparameter 

tuning is required to determine the most optimal model structure and training settings. We 

selected the following hyperparameters: number of layers, number of hidden nodes, convolution 

filter size, patch size, batch size, and learning rate. To select the appropriate hyperparameter 

combination, the model for each combination was trained using radar data from 2014 to 2016 

(June to August) and data from 2017 (June to July). Subsequently, using data from 2017 

(August), the mean absolute error (MAE) and critical success index (CSI) (at an intensity 

threshold of 0.1 mm/h) were calculated to obtain the optimal combination of hyperparameters. 

Based on the tuning results, the MAE range was 0.45–47.66 and the CSI range was 0.0–0.83, 

and the results confirmed that hyperparameters influence model performance considerably. 

Based on the combinations that performed optimally, we determined the model structure and 

training settings.” 

 

2. Was the early stopping metric defined on the training set or the test set? 



 

 

 

è The early stopping metric was defined as the generator loss based on 100 validation samples 

(not participating in training) randomly sampled from the training dataset. We have added this 

information in the revised manuscript. 

  

L195: “To achieve the optimal model, an early stopping technique that stops the training model 

when the loss stops improving was applied. The loss metric was defined as the generator loss 

based on 100 validation samples randomly sampled from the training dataset that was not used 

to train the model.” 

 

3. How have the baselines been tuned? 

 

è U-net has hyperparameters (No. of layers, No. of hidden nodes, convolution filter size) 

similar to those of Rad-cGAN, and are tuned based on the following hyperparameters: batch size 

and learning rate. Also, in the case of ConvLSTM, the number of layers, nodes, batch size, 

learning rate is tuned. The data splitting procedures for model tuning and evaluation was are the 

same as those for Rad-cGAN. We have added this information in the revised manuscript. 

  

L235: “The hyperparameters of the ConvLSTM model (i.e., number of layers, number of nodes, 

convolution filter size, batch size, and learning rate) were tuned using a procedure similar to 

that applied in Rad-cGAN (Sect. 2.2.4).” 

 

L257: “As the reference model, hyperparameters for the U-net structure (number of layers, 

number of nodes, and convolution filter size) were set to be equivalent to those of Rad-cGAN 

(Sect. 2.2.2), and hyperparameters related to training settings (batch size and learning rate) 

were tuned using procedures similar to those of Rad-cGAN (Sect. 2.2.4). To optimize the model, 

𝐿𝐿1 loss and ADAM optimizers were used as in the case of ConvLSTM (Sect. 2.3.2). The model 

was trained using 600 epochs with early stopping and the batch size set to 8.” 

 

3. The second claim of the paper is to successfully employ transfer learning techniques to generalize 

to different regions. In the machine learning context, transfer learning is often used to transfer 

knowledge acquired on a large dataset to a similar but smaller dataset. While reducing the 

computational cost of training the model is definitely of interest, it is the limited availability of data 



 

 

for the new task (here the new region) that usually justifies doing transfer learning rather than 

training from scratch. In the context of this paper, it is not clear why transfer learning is useful: there 

is the same amount of data for the new regions, and most of the data is disregarded at train time (not 

included in the crop). Several alternative strategies should be included as baselines: 

1. Pre-trained model on first region, without fine-tuning (effectively case 2, since optimizing the 

discriminator without fine-tuning the generator is like using the pretrained prediction model 

without modification) 

2. Pre-trained model on first region, with fine-tuning (generator+discriminator) on the new region 

(close to case 3) 

3. Pre-trained model on random crops from all the data available (the 11 radars), without fine-

tuning 

4. Pre-trained model on random crops from all the data available (the 11 radars), with fine-tuning 

on the new region 

5. Training model on new region from scratch (case 1) 

 

Additionally, as a methodological demonstration, the authors should also consider running 

experiment 3b) with varying amount of data from the new region (for instance, using the equivalent 

of 1, 2 or 3 summers). This would be an informative experiment (and more realistic use case) on the 

amount of data required to do transfer learning. 

 

è As per reviewer’s suggestion, we have revised our transfer learning plan, as shown in the table 

below. 

 

L333: “We used transfer learning to train our model for different dam basins, i.e., Andong and 

Chungju, with a pre-trained model that was completely trained by data from the Soyang-gang Dam 

Basin. In addition, in existing papers that have successfully applied the transfer learning strategies, 

it was used to develop a model for a new domain using a pre-trained model based on vast data. 

Consequently, we used the pre-trained model with Daecheong Dam, Juam Dam, and Yongdam Dam 

basin data, in addition to Soyang-gang Dam data, to assess the amount of data required to develop a 

model for a new dam domain. The selected strategies were inspired by a previous approach of 

transferring GAN (Wang et al., 2018; Mo et al., 2020). We formulated two strategies for each pre-

trained model. First, the weights of the pre-trained generator were frozen and used directly in new 

dam domain (Case 2, 4). Next, to the weights of the pre-trained generator were fine-tuned (1/10th of 



 

 

the original learning rate) and the discriminator trained (Case 3, 5). In addition, the entire model 

was trained for the new domain (Case 1) (Table 3a). The model was trained for the Chungju and 

Andong Dam domains, separately, using the five strategies (Table 3b).” 

 

Table 3: Experimental design for transfer learning strategies to train model with different domain. (a) 

Detailed training procedure of each strategy, (b) data used to train the model according to each 

strategy. 

(a) Training strategies 

No. Generator Discriminator 

Case 1 Train from the scratch Train from the scratch 

Case 2 Use pre-trained parameters for one domain - 

Case 3 Fine tuning pre-trained parameters for one domain* Train from the scratch 

Case 4 Use pre-trained parameters for multiple domains - 

Case 5 Fine tuning pre-trained parameters for multiple domains*  Train from the scratch 

(b) Training dataset  

 Pre-trained domain Andong Dam domain Chungju Dam domain 

Case 1 - 2014–2017 (JJA) at Andong 
Dam domain 

2014–2017 (JJA) at Chungju 
Dam domain 

Case 2 
2014-2017 (JJA) at Soyang-gang Dam 

domain - - 

Case 3 
2014-2017 (JJA) at Soyang-gang Dam 

domain 
2014–2017 (JJA) at Andong 

Dam domain 
2014–2017 (JJA) at Chungju 

Dam domain 

Case 4 
2014-2017 (JJA) at Soyang-

gang/Daecheong/Juam/Yongdam Dam 
domain 

- - 

Case 5 
2014-2017 (JJA) at Soyang-

gang/Daecheong/Juam/Yongdam Dam 
domain 

2014–2017 (JJA) at Andong 
Dam domain 

2014–2017 (JJA) at Chungju 
Dam domain 

* Use 1/10th of original learning rate 

 

Minor comments: 

� Why not work with the precipitation itself, rather than reflectivity? The non-linearity may 



 

 

translate in different error amplifications for different precipitation amounts. 

 

è We trained models using raw radar data to generate radar reflectance maps and converted them 

into rainfall using empirical equations (Z-R relationships). This is because well-converted radar-

based rainfall data could not be obtained from the data source (KMA). In addition, we decided that it 

would be better to predict radar reflectivity itself, considering the uncertainty of rainfall converted 

into an empirical formula, and the possibility of using an advanced conversion formula in the future. 

 

� Please provide more information about the datasets, this includes (per data split): 

§ Distribution of precipitation amount 

§ Number of examples 

 

è As per reviewer’s comment, we have added detailed information about datasets in Table 1 as 

follows: 

 

Table 1: Distribution of precipitation amount and number of examples of (a) train dataset, and (b) 

test dataset of each dam domains and sites. 

(a) Train dataset 

Interval in mm h-1 Soyang-gang  
Dam Basin 

Soyang-gang 
Dam site 

Andong 
Dam Basin 

Andong 
Dam site 

Chungju 
Dam Basin 

Chungju 
Dam site 

0 ≤ R < 0.1 84.63 85.00 83.04 83.57 84.81 85.03 

0.1 ≤ R < 1.0 10.23 10.19 11.56 11.02 10.75 10.61 

1.0 ≤ R < 4.0 3.78 3.35 3.91 3.89 3.43 3.30 

4.0 ≤ R < 8.0 0.92 1.03 0.94 0.98 0.68 0.69 

8.0 ≤ R < 10.0 0.18 0.21 0.20 0.23 0.13 0.16 

10.0 ≤ R  0.27 0.23 0.35 0.32 0.20 0.21 

No. of examples 27,905 examples 29,136 examples 29,691 examples 

(b) Test dataset  

Interval in mm h-1 
Soyang-gang  
Dam Basin 

Soyang-gang 
Dam site 

Andong 
Dam Basin 

Andong 
Dam site 

Chungju 
Dam Basin 

Chungju 
Dam site 

0 ≤ R < 0.1 90.77 91.92 87.41 87.73 86.54 87.61 



 

 

0.1 ≤ R < 1.0 5.77 5.16 7.59 7.48 8.63 8.06 

1.0 ≤ R < 4.0 2.65 2.26 3.77 3.92 3.80 3.58 

4.0 ≤ R < 8.0 0.58 0.42 0.87 0.54 0.76 0.51 

8.0 ≤ R < 10.0 0.10 0.06 0.15 0.09 0.12 0.13 

10.0 ≤ R  0.14 0.17 0.21 0.24 0.14 0.11 

No. of examples 9,753 examples 6,598 examples 6,137 examples 

 

This is particularly important to verify if there is enough data to make any assessment about certain 

events (e.g. high intensity precipitation) 

� Why just consider the summer? Is there more precipitation during those months?  

 

è The reason lies in the characteristics of Korea's research area that we selected. Since Korea has a 

seasonality in precipitation, most of the precipitation is concentrated in summer. Therefore, to reduce 

the tendency of underestimation due to data imbalance in machine learning, we used only summer 

rainfall, where high intensity rainfall occurs frequently. This has been added in the revised 

manuscript. 

 

L105: “We selected the available radar reflectivity data in summer (June–August, JJA) from 2014 to 

2018 considering high intensity rainfall occurs in summer due to rainfall seasonality, a 

characteristic of our study domain.” 

 

� How was the test set normalized? Using min max of training set? Or the test set? This is 

important to make sure there is no data leakage, and the predictions are not using information 

from the future. 

 

è We used min max of training dataset to normalize both the training and test datasets. We have 

added the relevant information in the manuscript, as follows: 

 

L107: “For rapid and effective training, the raw radar reflectivity data (dBZ) were converted to 

grayscale (0–255), and the data range was scaled to 0–1 using the Min-Max scaler method (min-max 

values from training dataset).” 

 



 

 

� The transfer learning part is missing a case, fine-tuning both generator and discriminator. 

 

è As we wrote in the conclusion, in addition to the methods used, there are various transfer learning 

techniques that can be applied to the GAN methodology. The methods are expected to be added 

through future research. 

 

� Please provide all the plots and figures at higher resolution. 

 

è We have revised and improved the quality of images in the revised manuscript. 

 

� For transfer learning case 2, what is the use of training a discriminator if the generator is pre-

trained and frozen? The predictions will be unaffected by the fine-tuning. It seems to me that 

Case 2 is equivalent to just applying the model trained on the first region to a new one. 

 

è There was a mistake in the original manuscript about the explanation of case 2 strategies. Case 2 

had weights similar to those of the pre-trained model. This has been corrected in the revised 

manuscript. 

 

� For evaluation, please include tables at 90 min lead-time rather than 10 min. Could you also 

include mean quantities. If you keep reporting the median (which is more computationally 

intensive as you need to keep track of the whole distribution), please include other percentiles 

(95%, 99%) to give a sense of the uncertainty. 

 

è We selected 10-min predictions at dam site because we thought it is necessary to show quantitative 

indicators of the results after 10 min when evaluating the model's performance, since the model was 

trained to generate 10 min prediction images. Therefore, we have showed performance at higher lead 

times in Fig. 4, separately. 

 

As per the reviewer’s suggestion, we have revised the results and used boxplots for evaluation.  

 



 

 

 
Figure 5: Box plot of verification metrics of model predictions at the lead time up to 90 min over all 

grid cells from the Soyang-gang Dam region. Left panels from top to bottom represent R, RMSE, 

NSE, and right panels from top to bottom represent CSI at intensity threshold of 0.1, 1.0, 5.0 mm h-1. 

 

� Line 69. Please clarify what is proposed on top of the cited paper. If using the technique as is, 

please state “we apply the transfer learning [...]”. 

 

è We have corrected it. 

 

 L83: “We applied the transfer learning technique (Pan and Yang, 2009) […]” 

 

� Line 78. Typo. 

 

è We have corrected it. 

 

 L91: “[...] Andong Dam Basin (D3) areas [...]” 

 

� Paragraph 2.2.1. This paragraph is hard to read. Could you please rewrite it in a more precise 

way. 



 

 

 

è We have rewritten the paragraph in the revised manuscript. 

 

� I would suggest using “discriminator” and “generator” for the two submodels of the GAN rather 

than “discriminative model”, and “generative model” which have a broader meaning. 

 

è We have corrected it. 

 

� Line 95. Do you mean “It consists of a generator (G) that produces the distribution [...]”? 

 

è We have corrected it. 

 

L112: “It consists of a generative model (G) that produces the distribution of real data from random 

noise, […]” 

 

� Line 122. Do you mean “To prevent overfitting”? 

 

è We have corrected it. 

 

L148: “To prevent overfitting, a dropout layer with a rate of 0.5 […]” 

 

� Paragraph 2.2.3. This paragraph is hard to read, in part because the word input is used to refer to 

two different quantities. Could you please rewrite it in a more precise way. 

 

è We have rewritten the paragraph in the revised manuscript. 

 

� Line 136. What does the following mean? “The size of the patch (N) was determined by the 

structure of the entire discriminative model, and it increased as the model became deeper. We 

constructed a discriminator model through optimization with a 34 × 34 patch size.” How was N 

decided? Using hyper-parameter optimization? By “constructing a discriminator through 

optimization”, do you mean training the weights of the model or optimizing the architecture? 

 



 

 

è Since the patch size is defined by structure of discriminator, we tuned the following 

hyperparameters: No. of layers, size of convolution filter, strides, paddings.  

 

To avoid any confusion, we have added following sentence. 

 

 L159: “This patch represents the receptive field, which is the region in the input image that is used 

to measure the associated feature of the output layer. Consequently, the size of the patch (N) was 

determined based on the structure of the entire discriminator (e.g., number of layers, nodes, filter 

size, paddings, and strides), and it increased as the model became deeper. We constructed a 

discriminator model with a 34 × 34 patch size through hyperparameter tuning.” 

  

� Line 257. This statement is a bit misleading. Fine-tuning is not defined by changing the learning 

rate to 1/10 of the original setup. It typically uses a smaller learning rate to make small 

adjustments to the weights. The computational savings come from the lower number of training 

steps for the fine-tuning rather than the lower learning rate. 

 

è We have corrected it as follows: 

 

 L325: “Fine-tuning uses a smaller learning rate (e.g., ~1/10th of the original learning rate) and is 

one of the most effective ways to transfer knowledge.” 

 

� Line 314. I am not sure how this shows that baselines are properly tuned and trained. 

 

è We stated that our results had CSI similar or greater than those of previous works. This is to show 

that we did not put less effort on the basic model compared to the Rad-cGAN model we developed.  

 

� Line 342. How come case 2 (generator trained on region 1 and not fine-tuned on new region) 

performs better than case 1 which trains (from scratch) on the new region with the same amount 

of data as the pretraining on region 1? This is a very surprising result. Or am I misunderstanding 

what case 2 is doing? 

 

è As pointed out in the previous comment, as the reviewer said, it is right to directly use the previous 

model for the new domain in case 2. In our previous manuscript, we mistakenly discussed that the 



 

 

additional training process of the discriminator affects the performance of case 2, which is superior to 

case 1. As a result of a new discussion on this, we suggest that the cause of the result may be the 

influence of hyperparameter tuning.  

In case 1, we did not tune the hyperparameters for the new domain. The pre-training model, in which 

hyperparameter tuning was completed for the Soyang-gang Dam Basin (D1), was confirmed to 

perform well if other domains had similar types of data, because the model was optimized and 

generalized through the validation dataset. However, even if the new data is similar to the pre-trained 

data, the generalization and optimization of the model (Case1) were less comprehensive compared 

when compared with that of the pre-trained model, resulting in relatively poor performance. 

 

We have added more discussion on this comment after applying the revised transfer learning strategy 

to the revised manuscript. 

 

L442: “Hyperparameter tuning would have had a significant impact on the results where Case 2 

performs better than Case 1. Unlike the pre-training model, which confirmed that model 

optimization and generalization were completed through the hyperparameter tuning process, in case 

1, we did not proceed with hyperparameter tuning for the new domain. Although the new domain has 

properties similar to those of the previous domain, minor changes in hyperparameters also result in 

differences in performance, so that optimization and generalization of the model (Case 1) were less 

comprehensive than in the pre-training model, resulting in relatively poor performance.” 

 

� Please include a reference to a quantitative metric (plot or table) for any statement about 

performance. 

 

è We have corrected it. 

 

� Fig 6. Please also include samples of predictions (not just the error) for different lead-time for all 

the models/baselines. 

 



 

 

è We have corrected Fig. 6, as follows: 

Figure 7: Precipitation observation example at forecasting time t = 23 August 2018, 17:50 UTC, for 

model predictions and (a) ground truth (OBS). Panels from top to bottom express ground truth: (b) 

prediction of Rad-cGAN model, (c) prediction of U-net based model, (d) prediction of ConvLSTM, 

and € prediction of pySTEPS 

 

  


