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Abstract. Models of atmospheric phenomena provide insight into climate, air quality, and meteorology, and provide a 

mechanism for understanding the effect of future emissions scenarios. To accurately represent atmospheric phenomena, 

these models consume vast quantities of computational resources. Machine learning (ML) techniques such as neural 10 

networks have the potential to emulate compute-intensive components of these models to reduce their computational burden. 

However, such ML surrogate models may lead to nonphysical predictions that are difficult to uncover. Here we present a 

neural network architecture that enforces conservation laws. Instead of simply predicting properties of interest, a physically 

interpretable hidden layer within the network predicts fluxes between properties which are subsequently related to the 

properties of interest. As an example, we design a physics-constrained neural network surrogate model of photochemistry 15 

using this approach and find that it conserves atoms as they flow between molecules to machine precision, while 

outperforming a naïve neural network in terms of accuracy and non-negativity of concentrations. 

1 Introduction 

Machine learning approaches for surrogate models of phenomena in the atmospheric sciences emerged in the 1990s (Gardner 20 

and Dorling, 1998; Potukuchi and Wexler, 1997). However, these surrogate models might not necessarily (1) be faster than 

the reference model (Keller and Evans, 2019), (2) behave in a numerically stable way (Kelp et al., 2018; Brenowitz and 

Bretherton, 2018), or (3) make physical sense, for example by respecting deterministic constraints such as conservation laws 

(Keller and Evans, 2019).  Recent efforts have taken steps towards the first two points, notably Kelp et al. (2020), who 

demonstrate stability in recurrent, long-term predictions of gas-phase chemistry with a recurrent neural network architecture. 25 

Their recurrent neural network is orders of magnitude faster than the reference model MOSAIC/CBM-Z (Zaveri et al., 

2008).  

Point 3 is an active area of research and the focus of this work. Complex machine learning (ML) tools, including neural 

networks, can be criticized as being “black box” methods that have opaque inner workings: this criticism motivates the 30 
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development of interpretable ML methods, or in the physical sciences, more physically interpretable ML (McGovern et al., 

2019). Physics-informed neural networks exploiting automatic differentiation can reproduce numerical solutions to partial 

differential equations (Raissi et al., 2019). In the atmospheric sciences, physical information has been incorporated into 

machine learning models via balancing approaches after prediction (Krasnopolsky et al., 2010), a cost function penalizing 

nonphysical behavior (Beucler et al., 2021; Zhao et al., 2019), including additional physically relevant information as input 35 

(Silva et al., 2021b), or incorporating hard constraints on a subset of the output in the neural network architecture (Beucler et 

al., 2021). 

Recent efforts in machine learning methods for atmospheric chemistry have indicated physically informed ML as a future 

research direction (Keller and Evans, 2019; Kelp et al., 2020). Kelp et. al (2020) motivate exploring ML architectures that 40 

are customized with information about the systems they aim to model, and the potential for this to improve predictions of the 

large concentration changes that frequently occur at the start of atmospheric chemistry simulations. Keller and Evans (2019) 

point out that incorporating physical information in ML, such as conservation laws, can help ensure point 2, numerical 

stability of ML, by keeping predictions within the solution space of the reference model.  Keller and Evans (2019) also 

provide the example of atom conservation and propose inclusion of stoichiometric information as a possible solution and a 45 

future direction to explore. In this work, we focus on this latter goal: conserving atoms, much in line with the suggestions 

outlined in Keller and Evans (2019), as well as the framework introduced by our prior work (Sturm and Wexler, 2020). More 

specifically, we utilize the weight matrix multiplication structure of a neural network (NN) to incorporate stoichiometric 

information in its architecture. This architecture ensures conservation of atoms by including a constraint layer that has non-

optimizable weights representing the stoichiometry of reactions.  A related result of this approach is increased physical 50 

interpretability of the neural network: the hidden layer before these constraints can be interpreted as the net flux of atoms 

between molecules, or in chemical kinetics terminology, the extent of reaction.  
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2 Derivation and model configuration 55 

One approach for increasing the computational efficiency of air quality and climate models is to replace the physical and 

chemical representation of atmospheric processes with machine learning surrogate models. Incorporating fundamental 

knowledge into ML algorithms will ensure adherence to the physical and chemical laws underpinning these representations 

and likely improve the accuracy and stability of these algorithms. Atom conservation is fundamental to atmospheric 

photochemistry and photochemistry is a computationally intensive component of these models so this work employs as an 60 

example inherently conserving atoms in a neural network model of atmospheric photochemistry. 

2.1 Physical constraints in the neural network architecture 

Our prior work (Sturm and Wexler, 2020) introduced a framework that could be used with any machine learning algorithm 

to introduce conservation laws. In the case of atmospheric chemistry, most ML surrogate model approaches have estimated 65 

future concentrations 𝑪(𝑡 + ∆𝑡)  from current concentrations 𝑪(𝑡) and other parameters 𝑴(𝑡) , which can include 

meteorological conditions such as zenith angle, temperature, and humidity. 

𝑪(𝑡 + ∆𝑡) = 𝑪(𝑪(𝑡),𝑴(𝑡))	 , (1) 

70 

Rather than estimate the future value for the concentration (or more generally, the property of interest), we proposed training 

a machine learning algorithm to estimate fluxes between the properties of interest: for the photochemistry example, this is 

atom fluxes between molecules in a stoichiometrically balanced way.  These fluxes are also interpretable as rates of reaction, 

or when integrated over a certain timestep, extents of reaction. The fluxes are related to the tendencies, or change of 

concentrations of species	∆𝑪, in a way that is stoichiometrically balanced. The stoichiometric information is contained in a 75 

matrix 𝐀 that relates fluxes, 𝑺, to change in concentrations, such that ∆𝑪 = 𝐀𝑺. This framework leads to prediction of these 

fluxes using an ML algorithm that emulates 

𝑺(𝑡 + ∆𝑡) = 𝑺(𝑪(𝑡),𝑴(𝑡)) , (2) 

wherein 𝑺  is a vector of the time-integrated flux of atoms between model species due to photochemistry. Future 

concentrations can then be calculated via  80 

𝑪(𝑡 + ∆𝑡) = 𝑪(𝑡) + 	𝐀𝑺, (3) 

Typically, the reference model is used to generate training and test data sets to be used to develop the ML algorithm. 

Unfortunately 𝑺 values cannot be readily gleaned from the reference model for training a machine learning tool, especially 

when more sophisticated integrators are used. Our prior work focused on a way to invert 𝐀 in order to calculate the target 
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values 𝑺	(Sturm and Wexler, 2020). For the example of a surrogate model of condensation/evaporation in a sectional aerosol 85 

model, 𝐀 is overdetermined and a left pseudoinverse exists (see Appendix A1). However, where there are more reactions 

than species of interest, such as in a photochemical system, or more generally when there are many different phenomena 

contributing to fewer quantities of interest, 𝐀  will be underdetermined. This looks like 𝐀  ∈ ℝ!,#  where 𝑚 < 𝑛 . For 

underdetermined systems, we applied a generalized inverse, restricted to lie in the space of all possible 𝑺 ∈ ℝ#, that would 

calculate	𝑺 from ∆𝑪 ∈ ℝ!.  This approach does not guarantee that 𝑺 values would be realistic: sometimes predicted extents 90 

of reaction were erroneously negative in a photochemistry application. 

This work explores the effects of implementing the ∆𝑪 = 𝐀𝑺 step directly in the last layer of neural network as shown by 

Figure 1. Each node in a layer has an inner product between its weight and input vectors, 𝒘$𝒙.  For the penultimate layer, 

the weight vector 𝒘$ of each node corresponds to rows of 𝐀.  This can be thought of as the “constraint layer”. The constraint 

layer has a zero bias vector and the linear activation function 𝑓(𝑥) = 𝑥 such that the layer is simply a matrix operation 95 

equivalent to the 𝐀𝑺 product in equation 3. With this architecture, the inputs to this constraint layer are the time-integrated 

fluxes 𝑺 providing insight into the inner workings of the network as a side benefit. The activation function of the layer before 

should be chosen based on application. A rectified linear unit application that only outputs non-negative terms is appropriate 

for a photochemistry application, where integrated fluxes only have positive sign. 

100 

Including the 𝐀 matrix representing the chemical system in the last layer of a neural network has some similarities to a 

physics-informed neural network as introduced by Raissi et al. (2019), but also captures the coupling and interdependence of 

the different chemical species with custom, non-optimizable weights. Our approach also resembles the Beucler et al. (2021) 

approach in that hard constraints are built into a neural network, but there are several key differences.  

1. Our entire output is calculated under the constraints, rather than only a portion of the output.105 

2. This approach maintains our flux-based balance embodied in equation 3 (Sturm and Wexler, 2020).

3. This last layer does not require relating all elements in the input to the output. Only those elements that are

conserved require representation.

Training the NN with 𝐀 built into the last layer ultimately skips the compute-intensive and input-sensitive strategy of 110 

calculating the restricted inverse when the 𝐀 matrix is underdetermined or rank deficient (Sturm and Wexler, 2020).  This 

results in a neural network that conserves atoms in every prediction while also predicting the fluxes in the penultimate layer. 

This architecture adds physical interpretability to the last hidden layer of the neural network. 

115 
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2.2 Physically informed input to the neural network 

Physical information can be given as input to machine learning tools to improve predictions, for example when estimating 

aerosol activation fraction (Silva et al., 2021b). For our application, the complexity of the chemical system arises from the 

coupling of species, which interact with each other through chemical reactions.  Bimolecular reactions (or generally 

reactions that involve two species) are often represented with rate laws of the form  120 

𝑟	 = 	𝑘𝐶%𝐶& (4) 

where 𝑟 is the reaction rate for compounds 𝐶% and 𝐶&  (the case 𝑖 = 𝑗 is allowed) and 𝑘 is an often empirically determined 

reaction rate constant. In addition to the concentrations themselves, 𝐶%𝐶& can be calculated from the input concentrations and 125 

given as additional input to the neural network. Inclusion of this physics-informed input, along with the methods described in 

section 2.1, lead to our physics-constrained neural network model shown in Figure 1.  

What follows is an assessment of the accuracy of the physics-constrained neural network compared to a neural network with 

a “naïve” structure: neither a constraint layer nor physically informed input layer. Both are feedforward neural networks, 130 

implemented in Python with the Keras library (Chollet et al., 2015) and with a TensorFlow backend (Abadi et al., 2015). 

Figure 1: The two neural network model architectures.  The naïve neural network (left) takes as input concentrations for each of 
the eleven species C, as well as additional parameters M: in the photochemical surrogate model, M is the cosine of the zenith angle 
and change in cosine of the zenith angle. This input layer is fed to a hidden layer H, comprised of 40 nodes, each with weights, 135 
biases, and a rectified linear unit (ReLU) activation function. This is fed to a final output layer with a linear activation function 
and target values ∆C for the 11 species tracked in the reference photochemical model. The physics-constrained neural network 
(right) includes physically informed input: 5 products of concentrations which resemble the rate law form of 5 bimolecular 
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reactions.  This is fed to a hidden layer the same size as that of the naïve NN: 40 nodes. The hidden layer is then fed to another 
layer S, which is chosen to have as many nodes as reactions in the chemical system (10), and ReLU activation functions to enforce 140 
non-negative output.  This is subsequently fed via non-optimizable weights A and a linear activation function to the output vector 
∆C. 

2.3 Reference photochemical model 

To demonstrate the methods developed above, we used a simplified model for production of ozone, used by Dr. Michael 145 

Kleeman at the University of California, Davis for the course ECI 241 Air Quality Modeling. We ported the reference model 

over from Fortran to Julia and adapted the model for use in this work, include varying cosine of zenith angle and other 

parameters, discussed further in section 2.4. The source code is available on Zenodo: 

https://doi.org/10.5281/zenodo.3733503. Julia was designed for its flexibility and ease of use, which is comparable to 

dynamic programming languages like Python, while allowing for computational performance approaching that of compiled 150 

languages like C or Fortran (Julia Documentation: https://julia-doc.readthedocs.io/en/latest/manual/introduction). These 

aspects of the Julia programming language have also motivated the recent development of JlBox, an atmospheric 0D box 

model written fully in Julia with gas-phase chemistry and aerosol microphysics (Huang and Topping, 2021).  

Our reference model focuses solely on gas-phase chemistry, including 10 reactions and 11 species. Table 1 includes the full 155 

list of reactions.  Table 2 includes the full list of species, including whether they are active (reactants that influence reaction 

rates), steady-state, or build-up species. This simplified model still represents important features of ozone photochemical 

production, including NOX chemistry, VOC chemistry, peroxy radical, and hydroxyl radical. The limitations of this simple 

model mean that the subsequent neural networks will at best maintain these limitations. However, this simple example 

demonstrates conservation properties readily generalizable to larger, more sophisticated models of gas phase chemistry, such 160 

as CBM-Z (Zaveri and Peters, 1999), CBM-IV (Gery et al., 1989) and SAPRC (Carter, 1990; Carter and Heo, 2013). 
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Table 1: Reactions 

Reaction 
Reaction 

Number 

NO2 + hv -> NO + O R1 

O + O2 -> O3 R2 

O3 + NO -> NO2 + O2 R3 

HCHO + hv -> 2 HO2. + CO R4 

HCHO + hv -> H2 + CO R5 

HCHO + HO. -> HO2. + CO + H2O R6 

HO2. + NO -> OH. + NO2 R7 

OH. + NO2 -> HNO3 R8 

HO2H + hv -> 2 OH. R9 

HO2H + OH. -> H2O + HO2. R10 

165 

Table 2. Species 

Name Symbol Species role 

Ozone O3 Active 

Nitric oxide NO Active 

Nitrogen dioxide NO2 Active 

Formaldehyde HCHO Active 

Hydroperoxyl radical HO2. Active 

Hydrogen peroxide HO2H Active 

Hydroxyl radical OH. Pseudo steady-state 

Atomic oxygen O Pseudo steady-state 

Nitric acid HNO3 Build-up 

Carbon monoxide CO Build-up 

Hydrogen H2 Build-up 

To fully represent the atom balance, the multitarget vector of tendencies ∆𝑪 for both the naïve NN and physics constrained 

NN includes species that are not defined as “active species” in the reference model, including quickly reacting species that 

7

https://doi.org/10.5194/gmd-2021-402
Preprint. Discussion started: 16 December 2021
c© Author(s) 2021. CC BY 4.0 License.



are modeled as pseudo-steady state and species that are only produced, called build-up species.  These are summarized in 170 

Table 2. Active species are defined in the original reference model as species that contribute to reaction rates, but have 

nonzero net rates of formation. Both NNs as depicted by Fig. 1 take concentrations of all 11 species as inputs, as well as 

cosine of zenith angle and change in cosine of zenith angle. The physics-constrained NN additionally takes 5 products of 

concentrations corresponding to the bimolecular reactions: R3 (𝐶'!𝐶('), R6 (𝐶)*)'𝐶')),  R7 (𝐶)'"𝐶('),  R8 (𝐶('"𝐶')), 

and R10 (𝐶)'")𝐶')). Though R2 is also a bimolecular reaction, concentration of diatomic oxygen is assumed constant at 175 

2.09 ppm, so this concentration product is proportional to the concentration of atomic oxygen.  In both neural networks, the 

input layer is fed to a hidden layer of 40 nodes. While the naïve NN feeds this hidden layer to the output vector, the physics-

constrained NN contains a subsequent layer of 10 nodes corresponding to the fluxes of the 10 reactions: this penultimate 

layer is then connected to the output layer with non-optimizable weights corresponding to the 𝐀 matrix, to properly emulate 

the system of reactions. Within the framework outlined in section 2.1 and in Sturm and Wexler (2020), this system of 180 

reactions can be modeled by an 11 by 10 𝐀 matrix: 

𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑅1 𝑅2 𝑅3 𝑅4 𝑅5 𝑅6 𝑅7 𝑅8 𝑅9 𝑅10
𝑂+ 0 1 −1 0 0 0 0 0 0 0
𝑁𝑂 1 0 −1 0 0 0 −1 0 0 0
𝑁𝑂, −1 0 1 0 0 0 1 −1 0 0
𝐻𝐶𝐻𝑂 0 0 0 −1 −1 −1 0 0 0 0
𝐻𝑂, 0 0 0 2 0 1 −1 0 0 1
𝐻𝑂,𝐻 0 0 0 0 0 0 0 0 −1 −1
𝑂𝐻 0 0 0 0 0 −1 1 −1 2 −1
𝑂 1 −1 0 0 0 0 0 0 0 0

𝐻𝑁𝑂+ 0 0 0 0 0 0 0 1 0 0
𝐶𝑂 0 0 0 1 1 1 0 0 0 0
𝐻, 0 0 0 0 1 0 0 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

This rectangular matrix is rank deficient and obtaining extents of reactions 𝑺 from 𝐀 and ∆𝑪 is a nontrivial inverse problem 185 

(Sturm and Wexler, 2020).  𝐀 matrices of larger models, such as the version of CBM-Z implemented in the box model 

version of MOSAIC (Zaveri et al., 2008), are also rank deficient. Our simplified reference model shares this property with 

more sophisticated models, making it a good contender for a proof-of-concept implementation within a neural network. 

Within modeling of chemical mechanisms, 𝐀  is sometimes called the stoichiometry matrix.  However, it can also be 190 

interpreted as the weighted, directed incidence matrix of the species-reaction graph of the chemical system.  The species-

reaction graph is a type of directed bipartite network that can give insight into a chemical system (Silva et al, 2021a). The 

species-reaction graph has two distinct sets of vertices corresponding to the reactions in Table 1 and species in Table 2: these 

vertices are connected by directed edges, corresponding to the values in the 𝐀 matrix. Edges leaving a species vertex and 

going to a reaction vertex show that the species is a reactant and correspond to negative values in the 𝐀 matrix. Similarly, 195 
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edges leaving a reaction vertex and going to a species vertex show that the species is produced by that reaction: these edges 

correspond to positive values in the 𝐀 matrix. 

One metric of bipartite networks is the number of edges leaving nodes, called out-degree centrality. The out-degree 

centrality of a species vertex represents how many reactions the reactant participates in, and its value is the opposite sign of 200 

row sums of negative entries in the 𝐀 matrix. The two species vertices with the highest out degree, 3, are formaldehyde (the 

sole reactive organic compound) and hydroxyl radical. Silva et al. (2021a) found that hydroxyl radical had the highest out-

degree centrality in species-reaction graphs of 3 other chemical mechanisms.  As in the other mechanisms, the out-degree 

centrality for the reactive nitrogen species, NO and NO2, is higher than for other species. This indicates that, though simple, 

the reference model is a relevant case study and the methods developed in this work show potential to be extended to other 205 

more sophisticated models of atmospheric chemistry. 

2.4 Training, validation, and test data 

Often, box model chemistry is an operator within a larger 3D transport model, which includes other operators modeling 

processes such as advection, emissions, and deposition. A good surrogate model should be able to emulate the input-output 210 

relationship of the reference model. If the context of machine learning surrogate modeling is operator replacement in larger 

chemical transport models (CTMs) or earth system models (ESMs), accurate short-term predictions on the order of the 

operator splitting timestep are required.  This context informs the strategy of emulating short-term behavior. We set up the 

reference model to write concentrations of the species every 6 minutes and train the neural network surrogate models to 

predict ∆𝐶 after this timestep.  The timestep of 6 minutes is on the order of a common operator splitting timestep in a 3D 215 

chemical transport model: for example, the sectional aerosol model MOSAIC has a default timestep of 5 minutes (Zaveri et 

al., 2008). The operator splitting timestep in the 3D chemical transport model LOTOS-EUROS is chosen dynamically based 

on wind conditions to satisfy the Courant-Friedrichs-Lewy criterion, but ranges between 1 and 10 minutes (Manders et al, 

2017).   

220 

We used the reference model to generate 5,000 independent days of output, with concentrations of the 11 species reported 

every hour: 1.2 million 11-dimensional samples. For each day, concentrations were randomly initialized for active species, 

documented in Table C1.  The reference model was also adjusted to vary sunlight intensity, as measured by cosine of the 

zenith angle multiplied by a random factor associated with a full day simulation.  This variable, as well as its change from 

the previous timestep, were chosen to be the additional parameters 𝑴 supplied to the neural network. 225 

Of the 5,000 days, 4,800 were selected to be used as training and validation data for optimizing the neural network weights. 

A portion of this data (10%) was designated as validation data: rather than optimizing the neural network parameters on this 
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data, the model was evaluated on the validation data during training, with early stopping if no improvement was measured 

on this set. As in previous work (Kelp et al., 2020) we remove all samples from the training and validation data where ozone 230 

concentration exceeds 200 ppb.  We additionally remove all days from the test data where ozone exceeds 200 ppb at any 

point, resulting in 126 days with continuous observations used to evaluate the accuracy of the neural networks. 

For supervised machine learning, the inputs 𝑋 (𝐶 and 𝑀 concatenated, as well as concentration products for the second 

neural network) are different from the targets ∆𝐶.  With a similar transformation, the inputs can be normalized on a scale 235 

from 0 to 1.  This can be done by scaling each input feature 𝑥 in 𝑋 by its corresponding maximum and minimum in the 

training data:  

𝑥 = -	/	-#$%
-#&'	/	-#$%

                          (5)

This information can be put into a diagonal matrix 𝐍𝐗,𝐦𝐚𝐱𝐦𝐢𝐧  whose elements are 𝑥!6- 	−	𝑥!%#  for each input. 

Representing the input minimums for each element as a Svector 𝑋!%#, the normalized feature space in this case looks like  240 

𝑋#78! =	𝑁9,!6-!%#/: (𝑋	 −	𝑋!%#)                               (6)

This is implemented in Python using the sci-kit learn preprocessing tool MinMaxScaler (Pedregosa et al., 2011). 

245 

10

https://doi.org/10.5194/gmd-2021-402
Preprint. Discussion started: 16 December 2021
c© Author(s) 2021. CC BY 4.0 License.



3 Results 

3.1 Comparing neural networks with and without physical constraints 

We find that the physics-constrained neural network shows more accurate ∆𝑪 predictions. Figure 2 shows predictions of ∆𝑪 250 

compared to the reference model for the first four species by the naïve NN (orange, top) and the physics constrained NN 

(green, bottom).  These tendencies were more accurately predicted when incorporating physical information into the neural 

network, showing 𝑅, values of 0.95 or higher when evaluated on the test data. 

Figure 2: Scatter plots of target values to predicted values, for naïve NN (orange, top) and the physics-constrained NN (green, 255 
bottom), on 126 test days, data the NNs were not optimized to predict. The diagonal dashed line in red is the 1:1 line. 

The scatter plots of tendencies for the other active species and the buildup species are shown in Fig. B1 and Fig. B2 in 

Appendix C.  Both NN architectures show poor accuracy (negative 𝑅,	values) in predictions of ∆𝑪 for hydrogen peroxide. 

This can be attributed partially to the tendency range for hydrogen peroxide, which is 2 orders of magnitude smaller than that 

for other compounds. Error for species with smaller changes in concentration might be improved with choice of a different 260 

loss function than mean squared error (MSE) between predictions and targets, but a normalized MSE loss function heavily 

biased towards zero values for the tendency vector ∆𝑪 led the neural network to only predict zero values for all species: this 

approach was ruled out early on.  The physics-constrained NN demonstrates improved predictions of tendency for 

hydroperoxyl radical, increasing the 𝑅, value from 0.42 to 0.86. 

265 
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Of the buildup species, only hydrogen predictions do not improve with the physics-constrained architecture, going from an 

𝑅, value of 0.87 to 0.86.  The other two build-up species, nitric acid and carbon monoxide are better predicted by the 

physics-constrained NN, two compounds necessary for the balance of nitrogen and carbon in the overall system.  

The naïve NN demonstrated ∆𝑪 predictions outside of the solution space of the reference model.  Figure 2 shows that some 270 

of the predictions for formaldehyde tendency using the naïve NN are positive, despite there being no source for 

formaldehyde: all reactions including formaldehyde are sinks, where it either reacts with another species or undergoes 

photolysis.  The physics-constrained NN restricts all predictions of formaldehyde tendency to be at most zero, which is in 

line with it being only a reactant.  Similarly, some naïve NN predictions of ∆𝑪 for the build-up species (species that are only 

products) are negative: this can be seen in Figure B2 in Appendix B.  The reference model has no sinks for these build-up 275 

species, which are strictly products of reactions, hence the term “build-up”. The physics-constrained NN restricts ∆𝑪 of the 

set of build-up species to its positive half-space. 

The maximum absolute error of ∆𝑪 in the test data set for the naïve NN and physics-constrained NN is 10.7 ppb and 10.6 

ppb, respectively, both corresponding to observations with large changes in concentration.  For all species, the naïve NN 280 

predicted ∆𝑪 within 1.31 ppb and the physics-constrained NN predicted ∆𝑪 within 0.76 ppb for 99% of cases. Error metrics 

evaluated with all active and build-up species for the 126 independent test days are given in Table 3. 

Table 3. Comparison of 

NN models 

Neural Network Mean 

absolute 

error [ppb] 

RMSE 

[ppb] 

Normalized 

mean absolute 

error  

Maximum 

absolute error 

[ppb] 

99th percentile 

absolute error 

[ppb] 

Naïve NN 0.18 0.33 0.868 10.7 1.32 

Physics NN 0.07 0.20 0.337 10.6 0.76 

3.2 Performance over varying concentration scales 285 

At the beginning of simulations, steep changes in concentration occur when the chemical system is initialized in a state far 

from pseudo equilibrium.  Chemical operators within larger models approach this pseudo equilibrium, but in each operator 

splitting time step other operators such as advection and emission perturb these concentrations back away from the pseudo 

equilibrium state.  This informs the focus on short-term accuracy, and the target vector of tendencies ∆𝑪 after timesteps of 6 

minutes. 290 
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Kelp et al. (2020) found that the most long-term stable models came at the price of diminished accuracy in predictions of the 

extreme ∆𝑪 at the beginning of simulations, and motivated further research of ML models with specialized architectures. 

Our physics-constrained neural network is only used for short term predictions.  However, it shows an ability to predict the 

∆𝑪 at the beginning of each full-day simulation, while also remaining accurate relative to the naïve neural network in 295 

conditions that have smaller changes in concentration; those that occur after the initial transient return to the pseudo 

equilibrium condition. 

The large ∆𝑪 values resulting from randomly initialized states far from equilibrium are well modeled by the physics-

constrained NN: this can be seen, for example, by ozone in Figure 2. Figure 3 shows scatter plots of ∆𝑪 as predicted by the 300 

two NN models, when only evaluated on 23-hour runs after the first hour of simulation that includes the transient return to 

pseudo equilibrium. For instance, when the first hour is removed from the test data, the changes in ozone concentration 

shrink by a factor of ~4.  While the naïve NN shows a substantial drop in accuracy of ∆𝑪 for reactive nitrogen species, the 

physics-constrained NN shows a smaller change in its 𝑅, metric. 

305 
Figure 3: Scatter plots of target values to predicted values, for naïve NN (orange, top) and the physics-constrained NN (green, 
bottom), on 126 test days, for 23 hour runs excluding the first hour of simulation. 

Silva et al. (2021b) found that a physically regularized NN emulator of aerosol activation fraction outperformed its naïve 

counterpart, especially in the edge case of prediction values falling within the lower 10% of the possible range.  Similarly, 
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we find that our physics-constrained NN is much more accurate for ∆𝑪 of NO and NO2 than the naïve NN when only 310 

evaluated on cases falling within the lower ~25% of the range of test data: Fig. 3 illustrates this improvement.  The physics-

constrained NN better predicts tendencies of the species than the naïve NN, an improvement that is magnified when 

disregarding large concentration changes that occur at the beginning of simulations.  The physics-constrained NN better 

represents the system under all conditions, including regimes closer to pseudo equilibrium. 

315 

3.3 Steady-state species 

Under the pseudo-steady state assumption that certain species have near-zero net rates of change in concentration, their 

concentrations become algebraic expressions of the concentrations of other species in the system.  In our reference model, 

these steady state species are hydroxyl radical OH and atomic oxygen O.  Approximating the rates of change for each steady 

state species to be zero and isolating their concentrations as expressions of other concentrations and rate constants, we obtain 320 

the following equations for 𝐶') and 𝐶': 

𝐶') 	= 	
	;(*)*"*+*	<	,;,*)*")	∗>?	

	(	;-*).)*		<	;/*+*" 		<;01*)*")	)
(10) 

and 325 

𝐶' 	= 	
	;0*+*"	∗	>?	
	(	;"**" 		)

 (11) 

where the 	𝑘& correspond to rate constants for reactions j = 1, 2,…, 10, and 𝐶'"  is assumed constant at 2.09 × 10B ppm. 

Information on ℎ𝑣 is included in 𝑀(𝑡).  330 

The physics-constrained NN predicts ∆𝐶 , which is added to 𝐶(𝑡)  to calculate 𝐶(𝑡 + ∆𝑡) . Then the steady-state 

concentrations at time 𝑡 + ∆𝑡 are determined by the concentrations of active species using Eqs. (10) and (11). Figure 4 shows 

the scatter plots of concentrations using predictions from the physics-constrained NN versus the reference model.   
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335 
Figure 4: Predictions of steady-state species using NN predictions for all other species concentrations. 

The concentration of atomic oxygen is a function of only one variable influenced by NN predictions, NO2 concentration, and 

is nearly perfectly predicted.  The concentration of the hydroxyl radical is dependent on concentrations of 5 other species, 

and is very sensitive to small errors in some of the species: HO2, NO, and to some extent formaldehyde. The limitation of the 340 

physics-constrained NN to predict OH indicates a that additional physical information might need to be included in order to 

optimize the physics-constrained NN to predict OH accurately, e.g. including Eq.(10) in the objective function when 

optimizing NN parameters. 

345 

3.4 Atom conservation in the physics-constrained neural network 

The balance imposed on species by the physics-constrained neural network results in conservation of the total carbon and 

nitrogen.  The atom balance for carbon and nitrogen can be demonstrated by summing up the mixing ratios of species these 

atoms occur in, multiplied by the number of atoms within that species. Figure 6 shows that there is a net zero change in total 

carbon and nitrogen in the system when using the physics-constrained NN. Balances of oxygen and hydrogen are not shown: 350 

oxygen is not conserved, because of the treatment within the reference model of diatomic oxygen as an infinite source and 

sink. Hydrogen is not conserved because H2O is not explicitly tracked.  
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Figure 5: Net tendency of carbon-containing species on the left and nitrogen-containing species on the right, as predicted by the 355 
naïve NN (orange, squiggly line) and the physics-constrained NN (green, flat line).  While the naïve neural network predictions 

lead to fluctuations in the overall carbon and nitrogen budget of the system, the physics-constrained neural network conserves the 

total amount of both. 

With every prediction, the naïve NN removes or adds some carbon and nitrogen to the system. Though errors are small in the 360 

representative day shown in Figure 5, this error occurs every 6 minutes.  Summed up over the day, the naïve neural network 

predictions lead to a net increase of ~0.4 ppb of carbon-containing species and net addition of ~147 ppb of nitrogen-

containing species.  

3.5 Preventing negative concentrations 365 

Though the physics-constrained neural network inherently balances mass, there is no built-in constraint to ensure nonzero 

concentrations: predicted tendencies might exceed the magnitude of their corresponding concentrations in the previous 

timestep. However, the number of negative concentrations was reduced by a factor of more than 17 when using the physics-

constrained neural network architecture, from 44,017 negative concentrations to 2,489 negative concentrations in the test 

dataset containing 272,160 values (including active and build-up species but excluding pseudo steady-state species whose 370 

concentrations are not calculated by adding their corresponding tendencies). Put another way, the naïve neural network led to 

16.1% of the values becoming negative, with the most negative concentration at -7.5 ppb.  The physics-constrained neural 

network led to approximately 0.9% of concentrations becoming negative, with the most negative concentration at -3.7 ppb.  

The naïve NN architecture also led to negative values for some of the buildup compounds, which is outside of the output 

space of the the reference model: build-up species are initialized at zero concentration and are only products of reactions. 375 

The architecture of the physics-constrained NN enforces non-negativity of the penultimate layer corresponding to fluxes and 
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positive coefficients in the stoichiometric weight matrix 𝐴  corresponding to build-up species: this ensures that all ∆𝑪 

predictions for build-up species are positive and therefore all concentrations.  

4 Conclusions 380 

Machine learning algorithms have potential to efficiently emulate complex models of atmospheric processes, but purely 

data-driven methods may not respect important physical symmetries that are built into the classical models, such as 

conservation of mass or energy. Prior efforts (Sturm and Wexler, 2020) developed a framework for building in conservation 

laws to machine learning algorithms: by using the relationship between fluxes and tendencies in systems, the fluxes can be 

posed as learning targets for the ML algorithms, and then tendencies can be predicted in a balanced manner.  This work 385 

builds on that framework and proposes implementing the flux-tendency relationship directly into the architecture of a neural 

network, so that the neural network will inherently respect the conservation laws, much like the reference model it emulates. 

Building physical information into the neural network architecture improves accuracy. We design a physics-constrained 

neural network surrogate model of photochemistry with input resembling bimolecular reaction rates, and a penultimate 390 

hidden layer enforcing an atom balance.  The weights for the penultimate layer are hard constraints and can be obtained via 

the approach in Sturm and Wexler (2020) relating tendencies of molecular species to atom fluxes between them.  Moreover, 

the physics-constrained NN predicts ∆𝑪 more accurately than a naïve NN with similar hyperparameters and identical targets. 

Like previous work (Silva et al, 2021b) the physics-constrained NN more accurately predicts edge cases than the naïve NN: 

in our case, lower ∆𝑪 conditions after the first hour of simulation approaching pseudo equilibrium. This shows promise for 395 

hybrid models that combine our knowledge of physical processes with data-driven machine learning approaches, and 

motivates future exploration of other physically interpretable machine learning techniques that can incorporate additional 

prior information such as pseudo steady-state approximations. 

The reference model used in this work shares important chemical properties with more sophisticated models, making this 400 

approach readily extendable to detailed chemical mechanisms.  In extension to larger models, the effect of varying 

hyperparameters, including input and output dimensionality, network depth (number of layers) and layer width (number of 

nodes in the layers), will have to be assessed. Such a study may be better suited for application to a more sophisticated 

reference model that has a higher dimensionality and more realistic inputs, such as varying temperature. This approach also 

has potential to be integrated into work studying the speedup potential of neural networks versus their reference models, also 405 

better suited for studies of larger, more sophisticated and computationally intensive reference models. The primary purpose 

of this work is to illustrate the atom balance enforced by the architecture of the physics-constrained neural network.  We 

observe a secondary effect: that by including built-in information about the chemical system, both the atom balance and the 

input proportional to the instantaneous reaction rates of the bimolecular reactions, accuracy of the neural network is 

improved. 410 
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Appendix A: Calculating a left pseudoinverse for condensation/evaporation in a sectional aerosol model 

This framework has been demonstrated for photochemistry but can be generalized to other applications, such as change of 
concentrations of condensable species in a sectional aerosol model, for example MOSAIC (Zaveri et al., 2008).  Studying the 
system of equations modeling evaporation and condensation, we see that a left pseudoinverse of the 𝑨 matrix can be used to 415 
obtain fluxes 𝑺  from concentrations (typical model output), unlike the rank-deficient 𝑨  matrix in the photochemical 
application focused on in this work and Sturm and Wexler (2020). 

Both mass transfer and thermodynamics play a role in the transport of material between the gas and aerosol phases (Wexler 
and Seinfeld, 1991). This idea can be represented by a system of equations taken directly from equations 3 and 4 in Zaveri et 
al. (2008), relating change in concentration to flux between the gas and particle phases: 420 

C*&,$,#
CD

=	𝑘%,!Y𝐶E,% −	𝐶6,%,!∗ Z (A1) 

C*3,$
CD

=	−∑ 𝑘%,!Y𝐶E,% −	𝐶6,%,!∗ Z!  (A2) 

425 

where 𝐶E,% is the gas-phase bulk concentration of species 𝑖, 𝐶6,%,! is the aerosol-phase concentration of species 𝑖 in size bin 
𝑚, 𝐶6,%,!∗  is the partial pressure of species 𝑖  in bin 𝑚 in equilibrium with 𝐶6,%,! , and 𝑘%,!  is a first order mass transfer 
coefficient for species 𝑖 in bin 𝑚. This system of equations can be put in matrix form, with change in concentration as a 
vector on the left-hand side, and column coefficients multiplying the flux values  𝑆%,! =	𝑘%,!Y𝐶E,% −	𝐶6,%,!∗ Z	on the right-
hand side of the equation. 430 

Below is an illustrative example of what the 𝐀 matrix for evaporation/condensation could look like for a single species (𝑖 =
{1}) example with one gas phase and by 8 size bins, which is a standard bin amount used in WRF-Chem.  The rates of 
change of concentration are related to their fluxes by a matrix 𝐀𝟏, 

435 

⎝

⎜⎜
⎛

𝑑D𝐶E
𝑑D𝐶6,:,:
𝑑D𝐶6,:,,

⋮
𝑑D𝐶6,:,G⎠

⎟⎟
⎞
= 𝐀𝟏g

𝑆:,:
𝑆:,,
⋮
𝑆:,G

h (A3) 

Where 
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𝐀𝟏 	= 	

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−1 −1 −1 −1 −1 −1 −1 −1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (A4) 440 

This overdetermined 9 by 8 matrix accounts for fluxes from the gas phase to each different bin. With more species, say, 23 
species, the system resembles a block matrix: 

 𝐀 =	i

𝐀𝟏 0
0 𝐀𝟐

⋯ 0
0

⋮ ⋱ ⋮
0 0 ⋯ 𝐀𝟐𝟑

l  (A5) 445 

With the assumption that all species have the same number of bins, 𝐀𝟏 = 𝐀𝟐 = ⋯ =	𝑨𝟐𝟑. 𝐀 is overdetermined and has full 
column rank, meaning that there are more equations than unknowns.  This makes calculating a unique left inverse possible:  

𝐀𝐋 = (𝐀𝐓𝐀)/𝟏𝐀𝐓 (A6) 450 

The existence of a unique 𝐀𝐋 is useful because concentration values (and therefore ∆𝑪) might be more easily obtainable from 
reference models than the right-hand-side integrated flux values 𝑺.  From ∆𝑪, 𝐀𝐋 can be used to obtain 𝑺 values: 

𝑺 = 𝐀𝐋	∆𝑪 (A7) 455 

which a supervised machine learning algorithm can be trained to predict from concentration, temperature, and other 
parameters.  
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Appendix B: Scatter plots of active and buildup species 460 

Figure B1. Scatter plots of ∆𝑪 for active species 5 and 6, as predicted by the naïve NN and physics-constrained NN. 

465 
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Figure B2. Scatter plots of ∆𝑪 for buildup species as predicted by the naïve NN and physics constrained NN. 

470 
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Appendix C: Reference model initialization 

The 5000 independent days include randomly initialized values for active species concentrations at the beginning of each 

day of simulation.  Cosine of zenith angle is also multiplied by a random factor between 0 and 1 for the day, to vary intensity 

of photolysis reactions.  Steady-state concentrations are a direct function of active species concentrations, so are initialized 475 

accordingly.  Build-up species concentrations are initialized at zero. 

Table C1. Initialization of 

active species concentrations 

Name Symbol Range Distribution 

Ozone O3 0.001 - 0.1 ppm logarithmic 

Nitric oxide NO 0.0015 - 0.15 ppm logarithmic 
Nitrogen dioxide NO2 0.0015 - 0.15 ppm logarithmic 
Formaldehyde HCHO 0.02 - 2 ppm logarithmic 
Hydroperoxyl radical HO2. 0 - 0.00001 ppm linear 
Hydrogen peroxide HO2H 0 - 0.01 ppm linear 

480 

22

https://doi.org/10.5194/gmd-2021-402
Preprint. Discussion started: 16 December 2021
c© Author(s) 2021. CC BY 4.0 License.



Code and data availability 

The exact version of the Julia reference model used to generate model output for the neural networks is archived on Zenodo 

at https://doi.org/10.5281/zenodo.5736487.  To maximize accessibility, the model output as text files is available for 

download without needing to run the reference model (as S.txt, C.txt and J.txt).  These text files are used in a Python script 485 

with the exact version used to construct, train, and evaluate the neural networks available at 

https://doi.org/10.5281/zenodo.5745184.  At this DOI, the neural networks can be downloaded as JSON files: their 

converged weights generated by the Python script are available for download in hierarchical data format (.h5). 
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