
Reviewer 1 

 
This work presents a surrogate-assisted framework for calibrating runoff relevant parameters in 

global-scale Earth System Models (ESMs). The large computation burden arisen from repeated 
simulations in calibration is alleviated by building fast-to-run PCE-based surrogate models of ESMs. 

It is concluded that the calibrated model obtains an improved performance compared to the one with 

default parameter values. In summary, the manuscript is generally well-written and may be 

eventually accepted after addressing the following comments: 

Response: We thank the reviewer for the constructive comments that have helped us improve the 

manuscript. Please find our point-by-point responses to the comments provided below, and the 

corresponding modifications in the revised manuscript.  

-The title should be revised. In my opinion, uncertain quantification is different from calibration. 

How can one use a UQ framework to calibrate models? How about “Using a surrogate-assisted 

Bayesian framework to ...”? 

Response: As suggested, we modified the title in the revised manuscript.  

-In table 1, the prior for q_{drai,max} is U(1e-6,1e-1). Why not use a logarithmic transformation for 

it? Otherwise, much more prior samples will be drawn from, e.g., (1e-2, 1e-1). 

Response: We appreciate the reviewer for bringing our attention to the sampling issue. The use 

of a uniform prior distribution does result in fewer samples of 𝑞𝑑𝑟𝑎𝑖,𝑚𝑎𝑥 near the lower bound of 

the prior distribution, and using a logarithmic transformed uniform distribution suggested by the 

reviewer results in samples that better represent the entire range of the prior distribution. 

However, additional tests show that use of a uniform distribution does not alter the finding of our 

study. Our framework consists of following three steps: (1) parameter sensitivity analysis using 

the surrogate model, (2) inference of optimal values for the most sensitive parameters identified 

in step 1, and (3) model calibration using the posteriors of the inferred parameters. In step 1, the 

runoff performance was found to be insensitive to 𝑞𝑑𝑟𝑎𝑖,𝑚𝑎𝑥 compared to other parameters 

(Figure S4), thus it was not used in steps 2 and 3.  

We have now tested the impacts of different prior distributions on the sensitivity of 𝑞𝑑𝑟𝑎𝑖,𝑚𝑎𝑥 , 

which is used to calculate subsurface runoff, 𝑅𝑑𝑟𝑎𝑖 , using the following equation: 

𝑅𝑑𝑟𝑎𝑖 = 𝑞𝑑𝑟𝑎𝑖,𝑚𝑎𝑥 exp(−𝑓𝑑𝑟𝑎𝑖𝑧∇) 

where 𝑞𝑑𝑟𝑎𝑖,𝑚𝑎𝑥 is the maximum drainage rate, 𝑓𝑑𝑟𝑎𝑖 is the decay factor, and 𝑧∇ is the water table 

depth. We tested the differences of variation of 𝑅𝑑𝑟𝑎𝑖 caused by using two different sampling 

methods for 𝑞𝑑𝑟𝑎𝑖,𝑚𝑎𝑥: uniform distribution (used in the main text), and log-transformed uniform 

distribution (suggested by the reviewer).  

Using 200 samples (number of training and validation simulations for surrogate construction), 

the standard deviation of 𝑅𝑑𝑟𝑎𝑖is always larger for uniform distribution compared to log-

transformed uniform distributions for different 𝑓𝑑𝑟𝑎𝑖𝑛 (different subplots in Figure 1) and water 

table depth (X-Axis of subplots in Figure 1). The global sensitivity analysis in this study used 



Sobol index (variance based), therefore, using the log-transformed uniform distribution will lead 

to smaller Sobol index. Since 𝑞𝑑𝑟𝑎𝑖,𝑚𝑎𝑥 remains an insensitive parameter even with log-

transformed uniform distribution, the conclusion of our study remains unchanged.  

 

Although we think our results will not be affected by using another prior, we think this is a good 

point to highlight in the main text because we agree the selection of prior distribution can be 

important in other applications (line 528-line534). 

  

 
Figure 1. Comparison of standard deviation (𝜎) of subsurface runoff (𝑅𝑑𝑟𝑎𝑖) with samples from 

uniform distribution (blue solid line), and samples from log-transformed uniform distribution 

(red dashed line). Note, the Y-Axis is log transformed.  

 

 
-Line 193 and Eq. (17), the authors should clearly present how they determine the values of sigma. 

Response: The objective of this study is to identify ELM parameters that minimize the RMSE 

between the ELM-simulated runoff and the GRUN runoff observation. Thus, the sigma is 

estimated as the standard deviation of the RMSE computed from all the training simulations and 



the reference runoff (i.e., GRUN). We have clarified the methodology for computing sigma in 

line 227-line228. 

-In section 3.3, which criterion (e.g., the Gelman-Rubin R statistic [Gelman et al., 1995]) is used here 

to check the convergence of MCMC sampling? From Fig. 6 it can be seen that the posterior ranges 

are still relatively large, which gives the feeling that the MCMC chain has not totally converged. 

Response: Thanks for providing the reference for assessing the convergence of MCMC chain. 

We evaluated the Gelman-Rubin R statistic for five MCMC chains using 10,000 samples for the 

posterior distributions of 𝑓𝑑𝑟𝑎𝑖𝑛, 𝑓𝑜𝑣𝑒𝑟 , and 𝜓𝑠 (Figure 6 (a-c)). The Gelman-Rubin R statistic for 

𝑓𝑑𝑟𝑎𝑖𝑛, 𝑓𝑜𝑣𝑒𝑟 , and 𝜓𝑠 are 1.002, 1.004, 1.003, respectively. The MCMC chain did converge as the 

statistic for all three parameters is close to 1.0. We have added a discussion about the Gelman-

Rubin R statistic in the revised manuscript on line 365 - line367.  

-In section 5.2, the poor performance of PCE surrogate models in arid regions probably because of 

PCE’s inability to approximate highly nonlinear functions (a well-known limitation of PCE) or/and 

the low signal-to-noise ratio in these regions. The authors should elaborate these to provide more 

informative results to readers. An alternative surrogate method for approximating highly nonlinear 

function is the deep neural networks. 

Response: We have now added a discussion about the inability of PCE to capture the model 

behavior in extremely dry regions due to the high nonlinearity and non-smooth behaviors of 

simulated runoff as a limitation of our study. We added discussions of alternative options as the 

reviewer mentioned, such as deep neural networks, or other machine learning methods (line 535-

line539).  

-In Figs. 10a and 11, the simulated runoff time series with default parameter values could be even 

closer to the reference GRUN time series than the calibrated ones, giving the feeling that the 

calibration is not that satisfactory. Please further explain. 

Response: In the original submission (line 440 – line 446), we discussed the potential reasons for 

a higher bias in ELM simulation at the annual scale using optimal parameters. The objective of 

our model calibration is to improve the model performance at monthly scale, therefore the bias at 

annual scale with the optimized parameters may not be smaller as compared to the bias with the 

default parameters. We have now added text on line 460 – line 463 and a figure in supplementary 

material (Figure S9b) to acknowledge that the default parameters lead to a lower bias compared 

to optimized parameters at annual scales, which yield lower RMSE and higher NSE at monthly 

scale. 

-Line 533, ‘are estimated’, Line 534, ‘are run’? 

 Response: Thanks! We corrected this typo.   

 

 



Reviewer 2 

The manuscript performed a per-grid calibration of the E3SM ELM model against a global monthly runoff dataset. 

The calibration was enabled by developing surrogate models for each grid of the ELM using Polynomial Chaos 

Expansion to mimic the response surface, which was chosen to be the root mean square error of monthly runoff for 

each grid. Subsequent analyses examined the spatial distribution of calibrated parameters with higher sensitivity and 

parametric uncertainty effects on simulated runoff. The paper is well organized, clearly written, and deals with an 

important topic of calibrating ELM and similar models. However, I have some concerns regarding the accuracy of 

surrogate and its effect on calibration, as detailed below.  

Response: We thank the reviewer for the constructive comments that have helped us improve the 

manuscript. Please find our point-by-point responses to the comments provided below, and the 

corresponding modifications in the revised manuscript.  

Line 15: “The main methodological advance in this work is the construction of surrogates for the error metric 

between the ELM and the benchmark data”. But this is not entirely new as using surrogate in this manner has been 

done previously, e.g. Wang et al. (2014); Razavi et al. (2012) and references therein. 

Response: Thank you for providing the references that leverage surrogate modelling in model 

calibration. We agree with the reviewer that calibration and uncertainty quantification using 

surrogate model method have been applied in hydrology previously. We provided a few 

references in the original manuscript in line 82-line 85 and have now included additional 

references provided here in the revised manuscript to provide the broader context for our work.  

The advance of our work is the selection of Quantity of Interest (QoI), rather than applying 

surrogate model for calibration. A typical study with monthly runoff as the QoI that uses 20 

years of data requires constructing 240 (= 20 years x 12 months) surrogates for each grid cell 

using the PCE method.  It is not computationally tractable to construct PCE surrogates for a 

global domain containing 70,302 grid cells, which result in 70,302 × 240=16,872,480 

surrogates. The computational cost of parameter inference will be even higher as it requires tens 

of thousands of simulations with all the surrogates to generate MCMC chains. Therefore, in this 

study we selected ELM-simulated runoff RMSE as the QoI, which results in the construction of 

only one PCE-based surrogate model for each grid cell to represent the ELM performance of 

simulating monthly runoff time series. RMSE is commonly used as objective function for 

parameter inference process. The novelty of our study is the construction of surrogate for RMSE 

instead of runoff, which can be directly used in later MCMC simulation (see Eq 21, which is 

equivalent to Eq 18). The selection of RMSE as QoI has been discussed in Sec 3.4, we further 

clarify the selection of RMSE as QoI as the novelty of our work in the abstract (line 15 – line 16) 

and on line 213 – line 214, and line 564 – line 566 of the revised manuscript. 

 

Line 111: what’s the difference between surface runoff and surface water runoff?  

Response: Surface runoff represents the saturation excess runoff (i.e., Dunne runoff), and surface 

water runoff is the water drainage from the wetland. We have clarified the definition of these two 

types of runoffs in line 114 – line 115.  



Line 195 - to reduce the log likelihood to least-squares regression, further assumption is needed, which might 

include constant and known sigma. Please verify.  

Response: The assumption of least-squares regression is that the error between the model 

simulations and reference data follows the normal distribution with a vanishing mean (line 196). 

The corresponding 𝜎 is estimated from the data, such as the standard deviation of all the RMSE 

between the training simulations and GRUN runoff data at each grid cell. We have added text to 

clarify the estimation of sigma on line 227 – line 228 of the revised manuscript. 

Line 197 - I am not sure whether 1,000 samples are sufficient for burn-in, since MCMC often requires a large 

number (e.g., tens of thousands) of samples to converge. Including some convergence check statistics or plots in 

supplementary material would be helpful. Also, what is the MCMC algorithm being used here? Please include a 

reference for reproducibility.  

Response: As also pointed out by reviewer 1, we have added an evaluation of the metric of 

Gelman-Rubin R statistic with five MCMC chains using 10,000 samples from the posterior 

distributions of 𝑓𝑑𝑟𝑎𝑖𝑛, 𝑓𝑜𝑣𝑒𝑟 , and 𝜓𝑠 (Figure 6 (a-c)). The Gelman-Rubin R statistic for 𝑓𝑑𝑟𝑎𝑖𝑛, 

𝑓𝑜𝑣𝑒𝑟 , and 𝜓𝑠 are 1.002, 1.004, 1.003, respectively. The MCMC chain did converge as the 

statistic for all three parameters is close to 1.0. We have added a discussion about the Gelman-

Rubin R statistic in the revised manuscript on line 365 – line 367.  

We used adaptive MCMC algorithm which updates proposal covariance on-the-fly, according to 

the current chain history. We included the reference (Haario et al., 2001) of this particular flavor 

of MCMC algorithm in the revised manuscript on line 204 – line 205.  

 

Fig. 1& 2 - there’s some discrepancy between RMSE given by the surrogate and by ELM. Studies have shown that 

even small surrogate error can lead to large deviation of the inferred parameter posterior from the “true” posterior 

(Laloy and Jacques, 2019). I realize that it is not possible to calibrate ELM at global scale, but it seems possible to 

perform some quick test to validate the surrogate modeling approach. For example: for a few grids compare the 

posterior obtained using PCE and using ELM; In Section 3.5, step #4, compare the RMSE of ELM simulation with 

that of PCE. 

Response: The optimal parameters inferred from the surrogate models may not yield minimum 

RMSE for ELM-simulated runoff at monthly scale. Thus, the surrogate model was first used to 

find the most sensitive parameters and the corresponding posterior distributions, which were 

more significantly constrained than the priors. Next, we perform additional 100 ELM simulations 

to find the optimal ELM parameters and the runoff uncertainties. So, the surrogate models were 

used to identify the most sensitive parameter and estimate the corresponding posterior of the 

sensitive parameter. Finally, the optimal parameter and runoff posterior were estimated based on 

ELM simulations instead of surrogate models.  

We cited (Laloy and Jacques, 2019) in line 239 to highlight the issue of surrogate error. 

We have now clarified that the additional 100 ELM simulations were used to find the optimal 

parameters and construct runoff uncertainty on line 240 and line 243of the revised manuscript. 



 

 

Line 355: If I understand correctly, 10,000 is the number of runs of the surrogate. It is not necessarily the case if 

ELM is run, because the convergence rate may be different given the surrogate error (Razavi et al., 2012).  

Response: The PDFs of RMSE (Figure 6) are indeed generated using 10,000 runs with surrogate 

models. This figure is to show that fewer samples on parameter posterior are needed to find the 

optimal parameter corresponding to the minimum RMSE than sampling on the priors. The 

sensitivity analysis identifies the most sensitive parameters in each grid cell, and the MCMC 

simulation is used to obtain the posterior of the most sensitive parameters with a significantly 

constrained range. Then, a set of 100 ELM calibration simulations were performed with 

parameter sampled from the posteriors of the three most sensitive parameters to find the optimal 

parameters and construct the runoff parametric uncertainty. 

We have now clarified the description of the surrogate simulations on line 368 and line 370 in 

the revised manuscript.   

 

Fig. 11 - it seems that the same period of 1997-2010 is used to calibrate the model and validate the optimal 

parameters. Is data available after 2010 for validation, so that validation data is independent from calibration data?  

Response: Yes, the GSWP3 forcing is available after 2010, such as 2011-2014. We extend our 

simulation to 2013 (unfortunately, the GSWP3 forcing of 2014 is problematic in our system), 

and evaluation of the simulation with calibrated parameter and default parameter. The result is 

added in the supplementary materials (Figure S8) and discussed in line 414 – line 416 in the 

revised manuscript.  

 

Some paragraphs are indented, some are not.  

Response: We have fixed the indentation in the revised manuscript.  
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