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Abstract. The global impact of an El Niño-Southern Oscillation (ENSO) event can differ greatly depending on whether it

is an Eastern-Pacific-type (EP-type) event or a Central-Pacific-type (CP-type) event. Reliable predictions of the two types of

ENSO are therefore of critical importance. Here we construct a deep neural network with multichannel structure for ENSO

(named ENSO-MC) to simulate the spatial evolution of sea surface temperature (SST) anomalies for the two types of events.

We select SST, heat content, and wind stress (i.e., three key ingredients of Bjerknes feedback) to represent coupled ocean-5

atmosphere dynamics that underpins ENSO, achieving skillful forecasts for the spatial patterns of SST anomalies out to one

year ahead. Furthermore, it is of great significance to analyze the precursors of EP-type or CP-type events and identify targeted

observation sensitive area for the understanding and prediction of ENSO. Precursors analysis is to determine what type of

initial perturbations will develop into EP-type or CP-type events. Sensitive area identification is to determine the regions where

initial states tend to have greatest impacts on evolution of ENSO. We use saliency map method to investigate the subsurface10

precursors and identify the sensitive areas of ENSO. The results show that there are pronounced signals in the equatorial

subsurface before EP events, while the precursory signals of CP events are located in the North Pacific. It indicates that the

subtropical precursors seem to favor the generation of the CP-type El Niño and the EP-type El Niño is more related to the

tropical thermocline dynamics. And the saliency maps show that the sensitive areas of the surface and the subsurface are

located in the equatorial central Pacific and the equatorial western Pacific, respectively. The sensitivity experiments imply that15

additional observations in the identified sensitive areas can improve forecasting skills. Our results of precursors and sensitive

areas are consistent with the previous theories of ENSO, demonstrating the potential usage and advantages of the ENSO-MC

model in improving the simulation, understanding and observations of two ENSO types.

1 Introduction

El Niño-Southern Oscillation (ENSO) is an irregular climate signal with a period of 2-7 years in the tropical Pacific Ocean20

and often grows up to be exceptionally strong under unstable air-sea interactions (Bjerknes, 1969; Philander, 1983), causing

large global climatic anomalies and hence affecting many regions even far from the tropical area (Yu et al., 2012). Studies

suggested that each ENSO event may differ in spatial structure, temporal evolution, amplitude and trigger (Capotondi et al.,

2015; Timmermann et al., 2018). One view is that there may be two different types of ENSO, referred to as the Eastern-
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Pacific-type (EP-type) event and the Central-Pacific-type (CP-type) event (Yu and Kao, 2007; Kao and Yu, 2009). And the25

differences in the details of sea surface temperature (SST) anomaly patterns between EP and CP events will lead to different

remote teleconnection patterns and effects on the global climate (An et al., 2007; Ashok et al., 2007; Timmermann et al.,

2018). In recent decades, with the increased occurrence of CP El Niño relative to EP El Niño, the predictability of two ENSO

types has attracted widespread attentions (Lee and McPhaden, 2010). Tao et al. (2020) used the nonlinear forcing singular

vector (NFSV)-tendency assimilation approach to improve ENSO model and showed the ability of recognizing the types of El30

Niño at least six months in advance in predictions (Lingjiang and Wansuo, 2019). Tian and Duan (2016) demonstrated that the

spring predictability barrier is weaker in CP-El Niño than in EP-El Niño when model error effects can be negligible. Improved

forecasting and understanding of the two types of ENSO are therefore of great importance.

Most studies on the simulations of two types of ENSO are based on the climate numerical models. Kug et al. (2010) used

Geophysical Fluid Dynamics Laboratory Coupled Model (GFDL) to simulate the CP-type El Niño, which shows distinct spatial35

characteristics and dynamic processes from the EP-type El Niño. More comprehensively, Kug et al. used the climate models

from the Coupled Model Intercomparison Project phase-3 (CMIP3) (Ham and Kug, 2012) and phase-5 (Kug et al., 2012) to

validate the fidelity in simulating the two types of events. The results showed that a few models can simulate the two types of El

Niño, and most of models tend to simulate a single type. Duan et al. (2014) proposed an optimal forcing vector (OFV) approach

to optimize the Zebiak–Cane model and reproduced several observed EP and CP events, and revealed the dominant roles of40

zonal advection process in the development of CP-El Niño; then Duan et al. (2017) first demonstrated that the diversity of El

Niño is closely related to changes in the nonlinear characteristics of the tropical Pacific. Accurate simulations and predictions

of two types of ENSO are still of a great challenge, owing to the inherent uncertainty and diversity of ENSO (Chen and Cane,

2008; Trenberth and Stepaniak, 2001; Capotondi et al., 2015).

In the past two years, deep learning methods have paved a new and profound way to making accurate ENSO forecasts for45

long lead times (Huang et al., 2019; Ham et al., 2019). For example, Ham et al. (2019) used convolutional neural network

(CNN) together with transfer learning method to produce higher skills in predicting the Niño 3.4 index than current dynamical

and statistical models at lead times of up to one and a half years. Yan et al. (2020) used the temporal convolutional network

and empirical mode decomposition to predict each subcomponents of Niño3.4 index that were then reconstructed to improve

the forecasting skills of total values. In addition to the Nino index forecasting that most models are currently focused on, deep50

neural networks also show great potential for a wide range of application for the pattern predictions (Mu et al., 2019, 2021).

Here we develop a spatiotemporal model of multichannel structure for ENSO (named ENSO-MC) to simulate the spatial

diversity and evolution of SST anomalies patterns in the equatorial Pacific. The multichannel structure containing the complex

ocean-atmosphere interactions is built to achieve skillful predictions of two types of ENSO one year in advance.

In addition to developing forecast models, understandings and observations of ENSO are also of great significance for55

prediction improvement, which are two basic issues in the predictability of ENSO. In order to better understand the mechanism

of ENSO occurrence, one approach is to explore the precursor of ENSO, which is the initial perturbation distribution that is

most likely to develop into a CP event or an EP event. Duan et al. (2004) is one of the earliest papers that explored the precursory

disturbance of ENSO events (Duan et al., 2013). These precursors help us understand the dynamic process of ENSO and provide
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the potential to predict ENSO events and their types. In terms of observations, owing to the limited sampling frequency in time60

and sampling density in space of the current observation systems, especially ocean observation systems, intensive observations

are usually prioritized in sensitive areas. Such a strategy is called targeted observation method. The key issue in targeted

observation is the identification of the sensitive areas. The initial conditions in these sensitive areas may be more important

than those in other regions when predicting ENSO (Mu et al., 2015). Due to the high cost of observation over the ocean, it is a

cost-effective method which can help reduce initial errors, thereby reducing prediction errors and improving prediction skills.65

Precursor investigation and sensitive area identification based on numerical models and optimal perturbations, such as the

linear singular vector (LSV) approach (Moore and Kleeman, 1996), the linear inverse modeling (LIM) approach (Newman

et al., 2011; Vimont et al., 2014) and the conditional nonlinear optimal perturbation (CNOP) technique (Mu et al., 2003), have

been applied extensively and produced meaningful results. For example, Capotondi and Sardeshmukh (2015) suggested that

the initial subsurface conditions play an important distinguishing role in the generation of different ENSO types. And recent70

research has also recognized the critical role of some climate patterns outside the tropical Pacific (Vimont et al., 2003; Ham

et al., 2013; Chikamoto et al., 2015) that precede ENSO. Based on the method of finding the optimal initial perturbation,

several studies have linked the precursor analysis with the targeted observation of ENSO events (Mu et al., 2014; Hu and Duan,

2016). Hu and Duan (2016) identified the western equatorial Pacific of the subsurface and the eastern equatorial Pacific of

the surface as sensitive areas using CNOP method based on the Community Earth System Model (CESM). And it showed75

that eliminating the initial errors in these sensitive areas can greatly improve ENSO prediction. Despite numerous attempts for

precursory signals investigation and sensitive areas identification of ENSO, the results may vary owing to the complexity of the

models. The research on improved observation, understanding and forecasting of ENSO has therefore always received critical

attention.

In this paper, based on the model ENSO-MC we proposed above that can simulate spatial patterns of SST anomalies, we80

further analyze the subsurface precursors of different types of events and identify the sensitive areas with the help of saliency

map interpretability method (Simonyan et al., 2013; Zeiler and Fergus, 2014). The obtained saliency map answers the question

"which input pixels should be changed to yield a maximal increase in the considered output value with minimal change?"

(Ebert-Uphoff and Hilburn, 2020). It indicates the sensitivity of the predicted results to the perturbations in each region of

the input field and can be used to discover the initial perturbation distribution that would develop into an ENSO event, which85

reveals the signals prior to the events captured by the ENSO-MC. Besides, the sensitive areas are the regions in which the

small perturbations would have the greatest influence on the forecasts. Therefore, saliency map method can also help identify

the sensitive areas. Since the original saliency map method is prone to noise, the smoothGrad method (Smilkov et al., 2017)

is used here to help sharpen the saliency maps. Sensitivity experiments are then performed to verify the effectiveness of the

identified sensitive area. The results are consistent with the previous understanding of ENSO mechanism. Our results suggest90

that the ENSO-MC model may provide a powerful and promising method for simulating the seasonal-to-interannual variations

of ENSO and analyzing the inherent predictability of ENSO.

The remainder of the paper is structured as follows. Section 2 describes the ENSO-MC model for simulating two types of

ENSO, including the multichannel spatiotemporal prediction neural network, detailed descriptions of the predictor selection
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and combined loss function. And we discuss the effect of each component on the model performance in Section 3. Section 495

provides the assessment of the ENSO pattern simulation performance based on the ENSO-MC model. Then we analyze the

precursors in heat content for two types El Niño events and La Niña events in Section 5, and identify the sensitive areas of

targeted observation for ENSO in Section 6. Summary and discussion are presented in Section 7.

2 ENSO-MC: Simulation model for two types of ENSO

2.1 Multichannel spatiotemporal structure100

Here we develop a spatiotemporal model of multichannel structure named ENSO-MC to generate SST pattern sequence for

ENSO forecasts. As shown in Fig. 1, the ENSO-MC is constructed based on the encoder-decoder architecture (Sutskever et al.,

2014), whose encoder extracts the feature representations associated with ENSO over the past period and decoder generates the

sea surface temperature pattern in the future. Due to the diversity of ENSO in amplitude, spatial pattern and temporal evolution,

several convolutional long short-term memory (ConvLSTM) layers (Xingjian et al., 2015) form the skeleton in the encoder-105

decoder architecture to learn its multiple spatial and temporal representations. The encoder is the first half of the architecture

(Fig. 1). A ConvLSTM layer with kernel size 3×3 followed by a 3D max-pooling layer constitutes an encoding module. The

max-pooling layer downsamples the input along the spatial dimensions to extract multi-scale spatial connections. We use three

encoding modules to construct the encoder, which is the network depth that perform best in ENSO forecasting problem here.

To balance model performance and computational cost, the output channels of ConvLSTM in the three modules are 8, 16, 32110

in order. After three encoding modules, we use a convolution layer with kernel size 5×5 and stride 5×5, and the number of

output channels is 64. The dimension of feature map output by each layer is shown in Fig. 1, and the final feature dimension

of the encoder is 2×4×64. The structure of the decoder is symmetrical with the encoder. After a transposed convolution layer,

there are three decoding modules. Each module consists of an upsampling layer with size 2 followed by a ConvLSTM layer

to restore the original resolution of SST pattern, where the kernel size of the network and the number of output channels are115

the same as those in the encoder. And the final layer in the ENSO-MC model is an additional 3×3 ConvLSTM that generates a

single feature map representing the SST pattern sequence predicted by the model.

In order to preserve oceanic processes information for a long time for ENSO forecast, we add skip-layer connection and

states connection between the encoder and the decoder on different spatial scales. For each ConvLSTM layer in the encoder,

the feature maps of all time steps are fused into one feature map and the weight of each time step is automatically determined120

through the attention mechanism. These fused feature maps are attached to the corresponding ConvLSTM layers in the decoder

to achieve skip-layer connection. And in the states connection, the hidden states output by the ConvLSTM layers in the encoder

are reserved for the corresponding layer when the decoder is initialized.

In addition, ENSO prediction requires a multiple-step forecasting strategy to achieve long-term prediction. There are two

main strategies, direct multi-step forecast and one-step ahead forecast. As shown in Fig. 2, the inputs for direct multi-step fore-125

cast are fixed observations XT−m, . . . ,XT−1. To achieve multi-step prediction, one of the methods is to build a separate model

GT+x for each prediction time step T +x. In the case of predicting SST for the next n months, n models GT+1, . . . ,GT+n
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Figure 1. The encoder-decoder architecture of ENSO-MC for SST pattern sequence prediction. The encoder contains three ConvLSTM

layers and each layer is followed by a pooling layer, and the last layer is a convolutional layer, which allows extracting spatial and temporal

features. And the decoder comprises one deconvolutional layer, three ConvLSTM layers and three upsampling layer that restores the features

to the same size as the initial spatial dimension (80×160). The model uses skip-connection with attention mechanism and state-connection

between the encoder and the decoder to improve forecasting skills. The input variables are the SST, heat content, zonal wind and meridional

wind for Tin consecutive months over 40◦N −40◦S, 120◦E−80◦W (80×160, 1◦×1◦ resolution) and each type of variable is input to the

model as a channel. The output of the model is SST pattern sequence for the next Tout months.

need to be constructed. This is also the strategy used in Ham’s paper (Ham et al., 2019), which produced skillful prediction

results one and a half years in advance. Another approach is to build a model that can forecast the entire prediction sequence

YT+1, . . . ,YT+n in a one-shot manner to achieve direct multi-step forecasting, which has the advantage of significantly re-130

ducing computational and maintenance costs. While one-step ahead forecast strategy refers to the multiple use of a one-step

model, in which the prediction of the previous time step is used as the input for the prediction of the next time step, i.e.,

recursive multi-step forecast. In general, one-step ahead forecasting models are more stable and easier to train (Shi and Yeung,

2018). However, because predictions are used instead of observations, the one-step ahead strategy allows prediction errors to

accumulate, resulting in a rapid decline in performance as the prediction time increases, while direct multi-step forecasting has135

more accurate results in long-term prediction (Taieb et al., 2012). In this paper, direct multi-step forecast strategy and one-step
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Figure 2. Two main strategies of multi-step forecasting for ENSO prediction, direct multi-step forecast strategy and one-step ahead forecast

strategy. And direct multi-step forecast strategy has two methods, the second one is used in this paper.

forecast strategy are both used for prediction and comparison. Considering the computational cost, we use the second direct

forecast method instead of the first method of constructing several individual models.

2.2 Selection of physical variables

Using deep neural networks for ENSO simulation is essentially a data-driven method (Reichstein et al., 2019) that is good at140

mining complicated relations hidden in multidimensional observations of the climate system. Therefore, in addition to building

a suitable network to well fit the data, it is also important to choose appropriate predictors that well represent ENSO physical

processes to train the model (Reichstein et al., 2019).

First, SST is selected as one of the predictors since it is a source of ENSO predictability and a direct reflection of the

occurrence of ENSO event. As the slow-evolving thermal anomaly in the subsurface ocean that provides a key long-lasting145

memory for ENSO prediction (e.g., Zhang and Levitus, 1997; Tang et al., 2018), we then choose heat content (vertically

averaged oceanic temperature in the upper 300 m) as the second attribute , which is closely related to the recharge-discharge

oscillator point of view (Jin, 1997a, b; Meinen and McPhaden, 2000; McPhaden, 2003). Third, the westerly wind burst is

believed to be an important trigger for El Niño events (Gebbie et al., 2007; Hu et al., 2014; Menkes et al., 2014; Chen et al.,

2015; Fedorov et al., 2015) and the atmospheric noise from the wind can be a limit for ENSO predictability (Latif et al., 1988;150

Moore and Kleeman, 1999). We therefore select SST, heat content, and wind stress, in accordance with Bjerknes feedback, to

simulate the air-sea interactions responsible for ENSO.

We utilize Simple Ocean Data Assimilation (SODA) reanalysis data set consisting of sea surface temperature, heat content

and wind stress gridded variables from 1871 to 2008 to train the ENSO-MC model, with the resolution 1◦×1◦. The domain over

40◦N−40◦S, 120◦E−80◦W is utilized. To avoid possible overfitting, the data set is divided into training set and validation set155

according to the ratio of 4 to 1. Then we test the performance of model using NCEP Global Ocean Data Assimilation System

(GODAS) and ERA-Interim data (2010-2019), where remove the data that is already in the training set (1981-2008), and there

is a one-year gap between training set and test set to reduce the possible influence of oceanic memory.
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2.3 Loss function

In our experiments, we combine the losses based on Mean Squared Error (MSE), Structural Similarity Index (SSIM) (Wang160

et al., 2002) and Gradient Difference Loss (GDL) (Mathieu et al., 2015):

L= λmseLmse(Y, Ŷ )+λssimLssim(Y, Ŷ )+λgdlLgdl(Y, Ŷ ). (1)

Y (Ŷ ) denotes the observed (predicted) SST pattern sequence. λ represents the weight of each loss. Specifically, MSE measures

the discrepancy of each pixel in the sea surface temperature field:

Lmse(Y, Ŷ ) =
1

T

T∑
t=1

||Yt− Ŷt||2, (2)165

where T represents the length of the prediction sequence. In addition to quantifying difference in each corresponding pixel

value between the observations and predictions, we introduce a loss based on SSIM to measure the global structural differences.

SSIM is widely used as a metric to measure the similarity of two images by extracting structural information. It takes into

account three features: luminance (l), contrast (c) and structure (s), and its metric formula is the product of these three elements.

170

SSIM(x,y) = (
2µxµy +C1

µ2
x+µ2

y +C1
)l · (

2σxσy +C2

σ2
x+σ2

y +C2
)c · (

σxy +C3

σxσy +C3
)s =

(2µxµy +C1)(2σxy +C2)

(µ2
x+µ2

y +C1)(σ2
x+σ2

y +C2)
, (3)

where µ is the mean value of a field (luminance), σ is the standard deviation (contrast) and σxy is the covariance of the two fields

(structure).C1,C2,C3 are constants used to maintain the calculations stable. ENSO is associated with the interannual variations

of SST anomalies in the tropical Pacific. And the Nino3.4 index is one of the most commonly used ENSO indicators, which

is the average SST anomalies in the equatorial Pacific sub-region where the maximum variance of SST is located. Therefore,175

SSIM metric can help evaluate important signals embedded in the SST patterns for ENSO prediction (Mo et al., 2014). The

range of SSIM is from 0 to 1, and when two fields are the same, the value of SSIM is 1. Therefore, we construct the SSIM-based

loss function as

Lssim(Y, Ŷ ) =
1− 1

T (
∑T
t=1SSIM(Yt, Ŷt))

2
. (4)

We also consider gradient information in the loss functions. The SST gradient represents the difference in the sea temper-180

ature across the adjacent area. Previous studies have shown that MSE loss function tends to average the values of all points

in the whole prediction field to minimize the MSE error, while considering the gradient difference value can alleviate this

problem(Oprea et al., 2020). Besides, the SST gradient also plays a role in the atmospheric circulation. The region with a large

SST gradient will generate stronger winds, which in turn promote the further increase of the SST gradient (Bjerknes, 1969).

As ENSO approaches maturity, the SST gradient increases gradually. Therefore, we use the GDL to measure the gradient185

difference of the surface sea temperature field:

Lgdl(Y, Ŷ ) =
1

T

T∑
t=1

∑
i,j

∣∣∣|Y ti,j −Y ti−1,j | − |Ŷ ti,j − Ŷ ti−1,j |
∣∣∣2 + ∣∣∣|Y ti,j−1−Y ti,j | − |Ŷ ti,j−1− Ŷ ti,j |

∣∣∣2 , (5)
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Table 1. Correlation skill (Corr) and Root Mean Square Error (RMSE) of lead times with different input sequence lengths

Sequence length 3 6 9 12 15

Corr/RMSE Corr/RMSE Corr/RMSE Corr/RMSE Corr/RMSE

3-month 0.78 / 0.67 0.59 / 1.02 0.58 / 1.24 0.81 / 0.54 0.68 / 1.10

6-month 0.52 / 0.96 0.46 / 1.15 0.47 / 1.16 0.64 / 0.81 0.48 / 1.72

12-month 0.29 / 1.00 0.36 / 1.39 0.28 / 1.14 0.53 / 0.84 0.31 / 2.06

18-month 0.17 / 1.06 0.25 / 1.72 0.15 / 1.17 0.44 / 0.91 0.30 / 2.15

where i, j denote the pixel position on the sea surface temperature field. Here we only consider the gradient difference in

neighboring regions. In future studies, we will consider the gradient difference at a larger spatial scale according to the char-

acteristics of ENSO, such as the difference in SST between the Western Pacific and the Central Pacific during ENSO (Zinke190

et al., 2021).

3 Model Performance evaluation

3.1 Influence of the input sequence length

Appropriate input sequence length is critical for ENSO prediction of the multichannel model. We use data from the past 3, 6,

9, 12 and 15 months as inputs to predict the development of ENSO in the next 18 months to examine the effects of different195

input sequence lengths on ENSO predictions. Table 1 shows the comparison of correlation skill and RMSE of lead times. For

the correlation coefficient, the higher the value is, the higher the forecasting skill is. And the smaller RMSE represents the

higher skill. The results show that the ENSO-MC model performs best with data from the past 12 months as input. This may be

because the variables we select have long-term memory for the development of ENSO, such as oceanic heat content. A longer

input sequence contains more information that is helpful to ENSO prediction, but also contains more noise that interferes with200

the prediction, so the improvement of forecasting skill is not positively correlated with the increase of input sequence length.

But for different models and forecasting horizons, the most appropriate input sequence lengths may not be the same.

3.2 Physical variable sensitivity for the multichannel structure

With the physical variables we selected in the Section 2, we construct multichannel input that takes into account the complicated

spatiotemporal interactions in the ocean and atmosphere underpinning the onset and development of ENSO events. For the grid205

observations of monthly SST, heat content, zonal wind and meridional wind, we treat each type of the input variable as a channel

in the first ConvLSTM layer and thus there are four channels. The number of channels is the depth of the matrices involved

in the convolutions, so that the cross-correlation and transmission between these ocean-atmosphere data can be calculated in

the convolution operation. We design an ablation experiment to examine the contribution of predictors and the effectiveness

of the multichannel structure. In addition to SST, the most important predictor, we remove heat content (t300) and wind from210
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Figure 3. The correlation skill of Nino 3.4 index of ENSO-MC model with different predictors.

Figure 4. (i) The detailed structure of the skip-layer connection and attention mechanism between encoder and decoder at the nth layer in

ENSO-MC. (ii) The correlation skill of Nino 3.4 index of the forecast lead month in models with different structures: (a) ENSO-MC model

of skip-layer connection with attention mechanism and states connection, (b) ENSO-MC model without attention mechanism, (c) ENSO-MC

model without states connection, (d) ENSO-MC model without skip-layer connection.

the inputs respectively to detect their effects on the correlation skill of the Nino3.4 index. As shown in Fig. 3, the model using

the three key ingredients of Bjerknes feedback (SST, heat content, wind) as input produces more favorable forecast skill than

the ones that remove one of them, which indicates that the multichannel structure can help to learn the ocean-atmosphere

coupling between several important predictors. For the models with two predictors, the model containing wind predictor shows

slightly higher forecasting skill in the first few months, while the one containing heat content predictor performs more stable215

skill at lead times of more than eight months. It suggests that the memory of subsurface heat plays an important role in ENSO

prediction on seasonal to interannual time scales, which is consistent with previous research.

3.3 Effectiveness of the model components

The ENSO-MC model learns the feature of ENSO at different spatial scales with the convolution and max-pooling layers in the

encoder, and gradually restores the spatial dimensionality of the original SST field in the decoder. With symmetrical structure220

design of the encoder and decoder as shown in Fig. 1, skip-layer connection is used to transfer features form the encoder to the
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decoder to recover spatial information lost during downsampling (yellow line in Fig. 1). Rather than transferring the original

features of all time steps obtained from the encoder, we design an attention mechanism to enable the skip-layer to automatically

learn the attention weights β1,β2, . . . ,βt on the temporal sequence because these air-sea features may have different effects on

ENSO development at different time scales. As shown in Fig. 4(i), the encoder obtains the features fn ∈ RTin×hn×wn×cn after225

max-pooling and convolution calculation at the nth layer. Using a two-layer densely-connected neural network, we obtain the

attention weight β ∈ RTin of each time step’s features according to Eq. (6), where fn
′
∈ RTin×(hn×wn×cn) are reshaped from

fn:

β = softmax(Wβαtanh(Wαffn
′
+bαf )+bβα), (6)

where Wαf , Wβα are weight matrices created by the layer, and bαf , bβα are the bias vectors. β represents the contribution230

of each time step to prediction. According to Eq. (7), the feature maps of each time step are multiplied by the corresponding

weights, and the fused maps f̃n ∈ Rhn×wn×cn are obtained by adding them along the time dimension.

f̃n =
∑
Tin

(β ◦ fn), (7)

where f̃n are the feature maps to be transmitted in the skip-layer connection, which are connected to the features of the

corresponding layer in the decoder. Besides, we also add states connection between the encoder and the decoder (grey line in235

Fig. 1), where the hidden states output by the ConvLSTM layers in the encoder are reserved for the corresponding layer when

the decoder is initialized. With the methods of skip-layer connection and states connection, the model can make full use of the

information extracted from the encoder before ENSO events, which help stabilize training and convergence.

We remove the attention mechanism (model b), states connection structure (model c) and skip-layer connection structure

(model d) respectively from the constructed ENSO-MC model (model a) to analyze their effects on model performance. As240

shown in Fig. 4(ii), the two connection structures, especially the skip-layer connection structure, have a great influence on

the prediction results. In model b, we use average weights to replace the attention mechanism. Compared with model a, self-

attention mechanism can play a greater role in long-term ENSO prediction.

3.4 Effects of different loss functions

In order to balance the optimization speed of each loss in the training process, we set λmse=7, λssim=9 and λgdl=1. The245

effectiveness of combined loss function is validated. As shown in Fig. 5(a), although SSIM and GDL do not significantly

improve the model performance when combined with MSE alone, the combination of MSE, SSIM and GDL loss functions

achieve the best performance on the correlation skill. Besides, since GDL loss function tends to retain extreme values and MSE

loss function tends to smooth all values, the presence of GDL inhibits the decrease of MSE, so the MSE errors of the models

with GDL loss function are higher than the ones without GDL (Fig. 5(b)). And comparing the results of correlation skill and250

RMSE in Fig. 5(a) and (b), low RMSE values do not represent high correlation skills. Therefore, it is necessary to explore loss

functions suitable for ENSO prediction other than MSE to balance the training of the model.
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Figure 5. The performances of the ENSO-MC with different loss functions.

4 Analysis of ENSO forecast skill

4.1 Simulation of two types of ENSO

The simulation ability of ENSO-MC for different types of events is evaluated in this section. We first select the typical EP El255

Niño, CP El Niño and La Niña events in recent years to validate the forecast skills on individual events in detail. The forecasts

of spatial patterns and Niño 3.4 index time series are compared with observations. Besides, the correlation skills for all targeted

seasons of the model are further validated.

We validate the performance of ENSO-MC for simulating the latest extreme El Niño event in 2015/16. It can be classified

as an EP-type event, and some studies suggested that the 2015/16 El Niño appears a mixed EP and CP patterns (Santoso et al.,260

2017). Figure 6(a) compares the predicted spatial evolution of SST anomalies for 2015/16 event (the first row) ahead of one

year and the corresponding observed patterns (the second row). The four months shown in the Fig. 6(a) (June, September,

December and April) represent the main states involved in the phases of ENSO evolution. The temperature anomalies emerge

in the eastern equatorial Pacific (June. 2015), which are then amplified and spread to the central equatorial Pacific (Sept.

2015). When the event reaches the mature stage (Dec. 2015), the center of the anomalies tends to move toward the central265

equatorial Pacific, eventually decaying in spring 2016 (April. 2016). The prediction of SST anomalies development in the

equatorial Pacific is reasonable agreement with the observation results. But in the subtropics, there is a strong warm bias in

the northeastern Pacific during the mature and decay stages. And in the South Pacific, there is more cooling in the model than

observed. According to the predicted SST anomalies patterns, the time series of Nino3.4 index is further calculated (Figs.

6(b), (c)). The amplitude and temporal evolution of the 2015/16 El Niño for the one-year-lead forecast of ENSO-MC are270

almost consistent with observations, although with weaker amplitude compared to observed Nino3.4 index. And the forecasts

initiated during the May-June-July (MJJ) season (Fig. 6(c)) agree a bit more favorably with the observations than initiated

during February-March-April (FMA) 2015 (Fig. 6(b)).
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Figure 6. The SSTA patterns and index prediction results for 2015/16 El Niño using ENSO-MC. (a). Spatial development of SST anomalies

predicted (the first row) ahead of one year compared with the real observations (the second row) for the onset, growth, mature and decay

phase. (b). Nino3.4 index time series forecast initiated in the FMA season using ENSO-MC (red) and the observed Nino3.4 index (black).

(c). Nino3.4 index time series forecast initiated in the MJJ season using ENSO-MC (red) and the observed Nino3.4 index (black).

By contrast, the prediction results of 2009/2010 event, which is known as a CP El Niño, are shown in Fig. 7. The spatial

patterns of SST anomalies predicted (the first row) and observed (the second row) are shown in Fig. 7(a). The observations275

show a pronounced central Pacific warming. Specifically, the SST anomalies appear (June. 2009), grow (Dec. 2009) and reach

the maturity (Jan. 2010) in the central Pacific, whose meridional shift on the equator is less obvious. The model captures most

of these features, although the anomalies distributed over the central equatorial Pacific are smaller in amplitude and scope than

observed during the growth and mature phase, and the CP characteristics of ENSO are not as pronounced as the actual ones.

And there is also some evident bias in the midlatitudes. For the Nino3.4 index results (Figs 7(b), (c)), the ENSO-MC model280

exhibits the similar trend but weaker amplitude compared with the observed values. Especially when initiated in FMA 2009

(Fig 7(b)), the model tends to underestimate the strength during the growth phase.

Given the different mechanisms and periods of warm El Niño and cold La Niña events, we also evaluate the simulation

ability of the model for a La Nina event. Figure 8 shows the prediction results for 1988/1989 strong La Niña. The simulated

evolution of SST anomalies spatial structure along the equator are in reasonable agreement with observations (Fig. 8(a)). The285
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Figure 7. The SSTA patterns and index prediction results for 2009/10 El Niño using ENSO-MC. (a). Spatial development of SST anomalies

predicted (the first row) ahead of one year compared with the real observations (the second row) for the onset, growth, mature and decay

phase. (b). Nino3.4 index time series forecast initiated in the FMA season using ENSO-MC (red) and the observed Nino3.4 index (black).

(c). Nino3.4 index time series forecast initiated in the MJJ season using ENSO-MC (red) and the observed Nino3.4 index (black).

Table 2. Correlation skill (Corr) and Root Mean Square Error (RMSE) of lead times with different input sequence lengths

Lead time 3-month 6-month 9-month 12-month

EP (Niño3) 1.18 1.23 1.04 1.07

CP (Niño4) 0.45 0.99 0.91 0.93

cold temperature anomalies occur in the eastern Pacific, then spread to the central Pacific and reach maturity. However, the

predicted cold anomalies are weaker in amplitude, and do not extend as broad area as observed. It is evident in the Nino3.4

index time series results, where the amplitudes of the predictions are weaker than the observed values regardless of whether

the initialization is performed before the event (Fig. 8(b)) or in the early stage of its development (Fig. 8(c)).

In addition to the above three typical events in recent years, the prediction results of other events that occurred between 1984290

and 2019 are also detected. For each event, we compare the spatial development of predicted and observed SST anomalies in

the equatorial Pacific from the onset to the maturity stage. Fig. 9 shows the simulation results of the ENSO-MC model for
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Figure 8. The SSTA patterns and index prediction results for 1988/89 La Niña using ENSO-MC. (a). Spatial development of SST anomalies

predicted (the first row) ahead of one year compared with the real observations (the second row) for the transition, onset, growth, mature

phase. (b). Nino3.4 index time series forecast initiated in the DJF season using ENSO-MC (red) and the observed Nino3.4 index (black). (c).

Nino3.4 index time series forecast initiated in the FMA season using ENSO-MC (red) and the observed Nino3.4 index (black).

three EP El Niño events of 1991/1992, 1997/1998 and 2006/2007, with observations in the first row and predictions in the

second row for each group. The results show that the model can simulate the occurrence and development of SSTA for each

event. However, for some events with less significant EP type characteristics (for example, that of 1991/1992), the SSTA center295

of predictions is closer to the central Pacific than observed. In addition, for some super strong events (for example, that of

1997/1998) and weak events (for example, that of 2006-2007), the amplitude of the predicted results at mature phase may be

lower or higher than the observed.

The prediction results for three CP El Niño events in 1994/1995, 2002/2003 and 2018/2019 are displayed in Fig. 10. For

the events of 1994/1995 and 2018/2019, the model can simulate the process that the SST anomalies in the northeast Pacific300

propagate to the southwest and finally contribute to the occurrence of CP events. The amplitude and center location of the

predicted anomalies are also in agreement with the observations. However, the meridional distribution of predicted SSTA is

not as broad as observed in the mature stage. The observed SSTA extends eastward to 80◦W , while the predicted value extends

roughly between 100◦W and 120◦W .
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Figure 9. SSTAs of three EP El Niño events in (a) 1991/1992, (b) 1997/1998 and (c) 2006/2007 from the onset to the maturity stage, with

observations in the first row and predictions in the second row for each event. The mature phases here are the months when the El Niño events

peak. And “0” and “1” next to the calendar month denote the year when the El Niño event occurred and the following year, respectively.

And Fig. 11 shows the predictions of three La Niña events in 1984/1985, 1998/1999 and 2000/2001. These three events305

occurred under different conditions. The events of 1984/1985 and 1998/1999 were preceded by strong El Niño events, and the

1998/1999 event occurring more rapidly. The 2000/2001 La Niña was another weaker event after the previous La Niña event
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Figure 10. As in Fig. 9, but for the three CP El Niño events in (a) 1994/1995, (b) 2002/2003 and (c) 2018/2019.

ended. Compared with observations, the model can simulate the occurrence, development and phase transition or persistence

of La Niña events.

In addition to comparing the detailed spatial distribution of SSTA, the related indices and metrics are calculated to further310

evaluate the simulation performance of the ENSO-MC model. The Niño 3 index (average SST anomalies over 5◦N − 5◦S,

150◦W − 90◦W ) and the Niño 4 index (average SST anomalies over 5◦N − 5◦S, 160◦E− 150◦W ) are commonly used to

define two types of El Niño events. Events with Niño 4 index greater than Niño 3 are regarded as CP El Niños, and events with
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Figure 11. As in Fig. 9, but for the three CP El Niño events in (a) 1994/1995, (b) 2002/2003 and (c) 2018/2019.

Niño 3 index greater than Niño 4 are classified as EP El Niños. Figure 12a, b shows the distribution for Niño 3 and Niño 4

indexes calculated from the model’s one-year-lead predictions of the peak periods for all EP events (Fig. 12a) and CP events315

(Fig. 12b) from 1984 to 2019. The results show that the model can correctly classify five EP events (1987/1988, 1991/1992,

1997/1998, 2006/2007, 2015/2016) and three CP events (1994/1995, 2002/2003, 2018/2019) in the past 30 years, but misjudge

the event of 2009/2010 as EP type and no El Niño event occurred in 2004 (Niño 3=0, Niño 4=0). The CP event of 2004/2005 is

much weaker than other CP ones, making it more difficult for the model to capture its development. We also make statistics on
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Figure 12. Scatterplots in Nino3-Nino4 index plane of 12-month-lead predictions for all (a) EP El Niño events and (b) CP El Niño events

during peak phase from 1984 to 2019. (c) Root Mean Square Error (RMSE) of the Nino3.4, Nino3 and Nino4 indexes between the forecast

results of the ENSO-MC model and observations during validation period.

the RMSE between the predictions and official records of Nino3/4 index for all EP/CP El Niño events at mature phase (Table320

2) and for the whole validation period (Fig. 12c), and find that although the model has a higher classification accuracy for EP

events, the index error of predictions for EP events is larger than that for CP. It may be because most of the strong El Niños

are EP-type events, and the prediction skills of the model for such extreme events need to be improved. The SSTA distribution

in Fig. 9 also shows that for some EP events, there is a difference in amplitude between predictions and observations for the

maturity stage of the event, while that of the CP events is consistent with the observations (Fig. 10).325

4.2 Correlation skills for different calendar months

The model also shows a reasonable forecast of ENSO ahead of one year for all targeted seasons (Fig. 13). Figure 13(a) shows

the correlation skill of Nino3.4 index forecasts for the GODAS validation data from 1982 to 2019, which are initiated in each

calendar month and predicted for a lead of up to 18 months. The correlation skill in the model is above 0.5 for a lead of 11

months. And Figure 13(c) shows the results for the last decade whose validating period is from 2010 to 2019. The results in Fig.330

13(c) perform only slightly skillful than those in Fig. 13(a), indicating the robustness of the model in terms of validation time.

We also compare the two forecast strategies in deep learning, that is, the one-step ahead forecast strategy and the multi-step

forecast strategy. Figures 13(a) and 13(c) are the results of multi-step prediction, while Figures 13(b) (1982-2019) and 5(d)

(2010-2019) are the results of one-step prediction. It shows that regardless of the season from which the forecast is started,

the skills would be reduced for predictions targeting the late boreal spring (April-May–June, AMJ), as indicated by the black335

numbers in Fig. 13. We also calculate the overall decline of forecasting skills in each target month compared with the previous

month and the results are presented in Fig. 14. The prediction skills of the model decline most from April to May, regardless of

whether the multi-step or one-step ahead forecast strategy is used. Besides, Fig. 14 shows that the performance of the model is

slightly improved in winter, which leads to the improvement of skills after 12 months in Fig. 13. Since the seasonal variation

of SST anomaly variance is weaker in spring, it is difficult for the model to capture useful information, which leads to the340

spring predictability barrier (SPB), while the strong signals of ENSO during winter are more easily learned by the model. In
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Figure 13. The correlation skills of the Nino3.4 index forecasts started from each calendar month in ENSO-MC using multi-step forecast

strategy (a) and one-step ahead forecast strategy (b) for the GODAS data from 1982 to 2019. (c) is the same as (a), except for the GODAS

data from 2010 to 2019. (b) is the same as (d), except for the GODAS data from 2010 to 2019. Hatches represent the forecasts with correlation

skill exceeding 0.5, and the black numbers mean the target forecast months.

addition, the one-step ahead strategy has a larger decline after the boreal spring (Fig. 14), and the subsequent forecasts are more

susceptible to the SPB due to its cumulative error (Figs. 13(b), (d)), while the method of the multi-step strategy can reduce the

influence (Figs. 13(a), (c)). We can conclude that the ENSO-MC model using multi-step forecast strategy is less affected by

spring predictability barriers.345

It should be noted that the correlation coefficient skills of Nino3.4 index obtained by simulating the SST anomalies spatial

distribution are not as high as that obtained by using deep neural network to predict the Nino3.4 index directly, such as the

results of Ham et al. (2019). This is because the former has a higher prediction target dimension, and the cumulative error of

each point of the spatial field is larger than the error of direct prediction of a single index. This is also one of the key issues to

be solved in the future development of the ENSO-MC model.350
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Figure 14. The decline of forecasting skills for ENSO in each target month using multi-step forecast strategy and one-step ahead forecast

strategy.

5 Precursor analysis of two types of ENSO

Based on the ENSO-MC model that successfully simulates different types of ENSO events, we can further explore the ENSO

dynamics learned by the ENSO-MC model and observe the signals before the onset of events. And since the ENSO-MC

model using the multi-step forecast strategy achieves better performance than using one-step strategy, here we calculate the

saliency maps based on the multi-step forecasting model for precursor analysis and sensitive area identification. Considering the355

important role of subsurface thermal memories in ENSO prediction, the precursory characteristics in heat content of different

types of events are discussed here. We select five EP El Niño events (1987/88, 1991/92, 1997/98, 2006/07 and 2015/16), three

CP El Niño events (1994/95, 2002/03 and 2009/10) and three La Niña events (1988/89, 2007/08 and 2010/11) occurred in the

past 30 years, and calculate the precursor maps of heat content anomaly in the year prior to each event.

Specifically, the precursor maps of each event are obtained by computing the gradient of the regressed output with respect360

to the input with saliency map method. The maps tell us how the output value will change when the pixel at this position in the

input image changes slightly, that is, the sensitivity of the predicted results to the perturbations in each region. In this way, we

can get the initial perturbation distribution that would develop into an ENSO event. The gradient calculation is equivalent to

the process of seeking the gradient of the errors with respect to the weights during training a machine learning model, which

represents the contribution of each weight to the total loss. We calculate the deviations between the output Ŷ and the real365

situation Y , fix the weights of the ENSO-MC model and perform back propagation for each pixel (x,y) in the input H at each

moment τ .

loss= L(Y, Ŷ ) (8)
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Mτ =
∂loss

∂Hτ
x,y

(9)370

Then we obtain a series of heat maps M :M1, . . . ,Mt over the heat content predictors H1, . . . ,Ht. Each Mτ indicates the

perturbation sensitivity distribution in heat content Hτ for τ -lead time. For each event, twelve heat maps M1, . . . ,M12 are

obtained, which describe the precursor development in the year preceding the event. We add up the maps of τ -lead time of

each event for one type to obtain the composite evolution maps M comp
1 , . . . ,M comp

12 for each type. For example, the composite

precursor map of τ -month lead for EP-type El Niño is obtained by adding up the precursor maps of τ -lead time for all five375

EP events. The composite maps of CP-type El Niño and La Niña are obtained in the same way. The precursor maps from

12-month lead to 1-month lead of EP-type El Niño, CP-type El Niño and La Niña are shown in the Fig. 15, and we present

results every few months for each type to see more clearly how precursors change over time. Since the composite maps are the

sum of saliency maps of each event, here we focus on the distribution of perturbation without considering the intensity, and the

saliency values in Fig. 15 are the standardized results of the scale between 0 and 1. For EP El Niño (Fig. 15(a)), the subsurface380

temperature component presents large anomalies in the equatorial Pacific, especially in the central and western Pacific, the

subtropical northeast Pacific and the subtropical South Pacific. With the occurrence of El Niño, the anomalies weaken in the

equatorial region and slightly intensify in the subtropical area. And the large anomalies of the precursory perturbation for CP El

Niño (Fig. 15(b)) are concentrated in the subtropical northeast Pacific. As El Niño approaches, the disturbance tends to spread

to the southeast. Regarding the subsurface disturbance for La Niña (Fig. 15(c)), their anomalies are concentrated in equatorial385

regions and propagates from the western Pacific to the eastern.

On the whole, the subsurface signals distributed in Fig. 15(a) are more intense and more extensive than those in Fig. 15(b),

indicating that the occurrence of the EP-type El Niño is more related to the subsurface dynamics, while the CP events may be

more affected by the atmospheric convection. Specifically, compared with Fig. 15(b) (CP-type El Niño), Fig. 15(a) (EP-type El

Niño) shows a more pronounced signal, especially in the equatorial Pacific. It may be related to the stronger zonal tilt change390

of the equatorial thermocline and larger eastward movement of convection in tropical Pacific before the EP-type events. For

example, as shown in Fig. 16, a series of westerly wind events along the equatorial Pacific led to an abrupt relaxation and

reversal of trade winds in the western and central equatorial Pacific in early 1997. The westerly wind anomalies generated

downwelling Kelvin waves, which propagated eastward and deepened the thermocline in the eastern Pacific in late 1997. The

depressed thermocline limited the upwelling of subsurface cold water, prompting the development of warm surface tempera-395

tures. Meanwhile, westward-propagating Rossby waves shallowed the thermocline in the western Pacific. These processes led

to significant changes in the equatorial thermocline (Fig. 15(a)), a flattening of the thermocline and a decrease in the zonal

SST gradient along the equator. The reduction of the SST gradient in turn further weakened the trade winds, leading to the

rapid development of the 1997/1998 El Niño. La Niña events usually occur in the second year after a warm event. As shown in

Fig. 15(c), there are precursor signals produced by wind forcing propagating eastward from the western tropical Pacific in the400

subsurface from 12-month lead to the occurrence. Combined with the mechanism of the La Niña event, the signal would shoal
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Figure 15. The composite evolution maps of initial perturbations in heat content before (a) EP-type El Niños, (b) CP-type El Niños and (c)

La Niñas from 12-month lead to 1-month lead.

the thermocline in the eastern Pacific and enhance the upwelling of cold subsurface waters, thereby ending the El Niño event

and triggering a subsequent cold event.

While the equatorial subsurface signal is weak in Fig. 15(b), but there is an obvious signal in the North Pacific. The results

are consistent with the previous studies that the negative phase of the North Pacific Oscillation promotes the development of405

SST anomalies in the central Pacific (Yu and Kim, 2011). Besides, there are robust signals over the northeastern Pacific in both

types of El Niño (Figs. 15(a), (b)). The distribution is similar to the spatial structure of the Pacific meridional mode (PMM).

PMM is forced by mid-latitude atmospheric variability in the Northern Hemisphere and evolves equatorward subsequently,

which can affect ENSO. As shown in Fig. 17, one year before the 1994/1995 CP El Niño, there were warm subtropical SST

anomalies extending southwest from Baja California. The SST anomalies weakened the trade winds and reduced the surface410

evaporation over the region via Wind-Evaporation-SST (WES) feedback. The reduction in evaporation allowed warm waters

to expand further southwestward, enhancing the PMM and eventually reaching the equator, which weakened equatorial trade

winds and triggered an El Niño event in late 1994. PMM not only appeared before CP El Niño, for example, the emergence of

PMM in late 2014 contributed to the development of 2015/2016 El Niño (Fig. 17). It indicates that signals outside the tropics

play an important role in the prediction of El Niño and PMM can be regarded as a precursor to El Niño.415
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Figure 16. Longitude-time diagram of monthly surface zonal wind anomalies (left), SST anomalies (middle), and heat content (t300) anoma-

lies (right) across the equatorial Pacific (2◦N−2◦S, 120◦E−80◦W ) from September 1996 to April 1998. Data are based on NCEP Global

Ocean Data Assimilation System and ERA-5.

Figure 17. The SST and 10-m wind-vector anomalies for the different seasons before 1994/1995 CP Niño and 2015/2016 EP Niño.
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Figure 18. The composite saliency maps of surface (a) and subsurface (b) over 40◦N−40◦S, 120◦E−80◦W . The higher the saliency value,

the more sensitive the area. Since the saliency map results obtained from the surface layer and the subsurface layer may affect each other,

we first select six common areas with large values as candidates to perform sensitivity experiments. The six areas are the central equatorial

Pacific (0), the western equatorial Pacific (1), the northern Central Pacific (2), the northeastern Pacific (3), the southwestern Pacific (4) and

the southern Central Pacific (5).

6 Targeted observation sensitive area identification of ENSO

A saliency map shows which input pixels produce the largest increase in output values with minimal change. The idea is

similar to the targeted observation strategy, that is, prioritizing the deployment of observations in the sensitive areas where

small perturbations tend to have the greatest impacts on the forecasts. The saliency map method is therefore appropriate

to identify the sensitive areas of targeted observation for ENSO. The areas with large values in the saliency map indicate420

that improving the accuracy of observations in these sensitive areas is the most efficient way to correct the output. Here we

explore the sensitive areas of the surface and the subsurface layer respectively, so in addition to heat content, the saliency

maps of SST are also calculated. Since the sensitive area is a common attribute, it should be universal to all ENSO events

and different types of ENSO are not considered here. We select eight El Niño events (1987/88, 1991/92, 1994/95, 1997/98,

2002/03, 2006/07, 2009/10 and 2015/16) and three La Niña events (1988/89, 2007/08 and 2010/11) that occurred in the past425

30 years, and calculate the saliency maps of SST and heat content for each event according to the method described in Sect. 4.

Then all the saliency maps of SST are added up to obtain the composite saliency map of the surface (Fig. 18(a)), and that of the

subsurface (Fig. 18(b)) is obtained in the same way. The saliency values in the figure are the standardized results of the scale

between 0 and 1. The anomalies of surface disturbance are mainly distributed in the north central Pacific, the central Pacific

and the western Pacific. The anomalies in the north Pacific are more intense than those in the south Pacific. For the subsurface430

temperature precursory, the perturbation possesses a wide range of anomalies in the equatorial Pacific and the North Pacific,

and the anomaly values are more intense than that of surface disturbance. Since ENSO-MC regards multi-variable fields as

multiple channels, the saliency regions obtained from surface layer and subsurface layer may affect each other. As shown

in Fig. 18, the large-value region of surface (a) overlaps with that of subsurface (b). Therefore, we first artificially define six

common regions with large values (black boxes in the Fig. 18), and perform sensitive experiments on the surface and subsurface435

respectively. Since the error is random in real observations, we use random perturbations for sensitivity experiments. For each
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Figure 19. Sensitive areas identification results for ENSO with the saliency map method. (b) compares the sensitivity of the six candidate

areas (0-5) for surface (red) and subsurface (blue). The first two most sensitive areas are selected as the sensitive areas of targeted observation

for ENSO, that is, the area_0 and area_2 for surface and the area_1 and area_4 for subsurface. Specifically, the hatching areas in (a) (surface)

and (c) (subsurface). In order to evaluate the effectiveness of the above identified sensitive areas, (d) compares the benefit for removing the

random perturbations in the sensitive areas (blue) and removing the random perturbations outside the sensitive areas (orange, that is, retaining

the random perturbations in the sensitive areas) for the eight El Niño events and three La Niña events occurred in the past 30 years.

of the 11 selected ENSO events, 30 sets of random perturbations are superimposed to the original input field. The experiment

that superimposes whole-field perturbations is called "all_rand", and the experiment that removes perturbations in the target

area based on the whole-field perturbations is called "remove_rand". For the six regions shown in Fig. 18, the sensitivity of each

region is measured according to Eq. (10), that is, the reduction of prediction error caused by removing random perturbations in440

each region.

Sensitivity =

∑
i[LRMSE(Yi, Ŷ

all
i )−LRMSE(Yi, Ŷ

remove
i )]∑

iLRMSE(Yi, Ŷ alli )
. (10)

For each event i, Ŷ alli represents the prediction results of experiment "all_rand", Ŷ removei represents the prediction results of

experiment "remove_rand", and Yi represents the real observation. The results are shown in Fig. 19(b). The surface areas with

the highest sensitivity for ENSO are No.0 and No.2 areas, that is, the central equatorial Pacific and the northern Central Pacific445

shown in Figure 19a, while the subsurface areas with the highest sensitivity are No.1 and No.4 areas, namely the western

equatorial Pacific and the southwestern Pacific shown in the Fig. 19(c).
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Furthermore, we perform two sets of experiments to measure the benefit of effective observations in the identified sensitive

areas for improving forecast results. The first set calculates the reduction of the prediction error after removing the random

perturbations in the identified sensitive areas ("remove"), and the second calculates the reduction after removing the pertur-450

bations outside the sensitive areas, that is, there are perturbations in the hatching areas in Figs. 19(a), (c) ("retain"). For each

ENSO event, we superimpose 30 groups of random perturbations on the original input field, select the random perturbations

k whose errors are larger than the mean error of all groups, and then conduct experiment "remove" and experiment "retain"

respectively. Then we calculate the benefitBremove andBretain, where Vin is the volume of the identified sensitive areas, Vout

is the volume outside the sensitive areas.455

Bremove =

∑
k[LRMSE(Yk, Ŷ

all
k )−LRMSE(Yk, Ŷ

remove
k )]

Vin
∑
kLRMSE(Yk, Ŷ allk )

(11)

Bretain =

∑
k[LRMSE(Yk, Ŷ

all
k )−LRMSE(Yk, Ŷ

retain
k )]

Vout
∑
kLRMSE(Yk, Ŷ allk )

(12)

Bremove represents the degree of reduction of prediction errors after implementing target observation in per volume of

identified sensitive areas shown in Figs. 19(a), (c), and Bretain represents the reduction after implementing target observation460

in per volume of non-sensitive areas (here is the outside areas of hatching regions in Figs. 19(a), (c)). After removing the

perturbations inside or outside the sensitive areas, the prediction errors are both reduced. However, due to the small size of

sensitive areas, the benefit obtained by removing random perturbations in the sensitive areas is relatively high (Fig. 19(d)),

except for the super strong El Niño event in 1997. Therefore, it is reasonable to give priority to effective observations in these

identified sensitive areas, which are located in the central equatorial Pacific and the northern Central Pacific surface region,465

and western equatorial Pacific and the southwestern Pacific subsurface region. The results for the equatorial region support the

conclusions of Kumar et al. (2014) and Duan and Hu (2016) in previous studies. Kumar et al. suggested that the observations

in the central Pacific are more crucial than those in the eastern Pacific because of their role in preserving the memory of ENSO

evolution. Duan and Hu emphasized the importance of subsurface signals in the western Pacific for ENSO predictions, which

can influence the surface through equatorial waves and thermodynamic effects. However, due to the complexity of different470

models has a great impact on the identification of sensitive areas, there is no consistent conclusion about the sensitive areas

of ENSO at present. For example, based on the outputs of CMIP5 model, Zhang et al. (2015) identified the central-eastern

equatorial surface region and eastern subsurface region as the sensitive areas. Therefore, determining the most appropriate

regions for target observation remains to be a long-standing challenge. Nevertheless, such studies based on interpretability can

improve our understanding of how the ENSO-MC model works in ENSO prediction. The results of sensitive area identification475

support the theoretical understanding that oceanic thermal anomaly in the central and western Pacific provides a key long-term

memory for SST predictions. In addition, the results show that processes outside the tropical Pacific also have an impact on

ENSO prediction, such as surface temperature variations in the northern Central Pacific and subsurface thermal changes in the

southwestern Pacific.
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7 Conclusions480

With the successful application of deep learning algorithms in ENSO forecasts, this paper attempts to expand the application

scope of deep neural networks from prediction to a broader field, including the pattern simulation, understanding and observa-

tion of ENSO. For reliable forecasts of the two types of ENSO, a multichannel data-driven model ENSO-MC is proposed to

simulate the diversity of spatial patterns during ENSO events. Based on the ENSO-MC model, we then provide a new promis-

ing approach to investigate the early signals of different types of ENSO events and identify the sensitive areas with the help of485

saliency map interpretability method.

Specifically, the model ENSO-MC driven with oceanic and atmospheric predictors is proposed to simulate the ocean-

atmosphere coupling process and predict the changes in spatial distribution of sea surface temperature anomalies. The sim-

ulation results show that the model can predict the development of SST anomalies in the equatorial Pacific during the onset,

growth, maturity and decay of the El Niño and La Niña events one year in advance. In particular, we simulate the changes in490

the SST anomalies field of typical EP-type El Niños and CP-type El Niños at lead time beyond one year. With the SST pattern

forecasts, the all-season correlation skill of the Nino3.4 index in the ENSO-MC model is also evaluated, which is above 0.5

for a lead of 11 months. The precursor maps reveal the different pronounced characteristics of the subsurface signals before

EP-type El Niño, CP-type El Niño and La Niña events. The results indicate that the EP-type El Niño is more related to the

tropical thermocline dynamics, and the subtropical precursors seem to favor the generation of the CP-type El Niño. Both types495

of events have pronounced precursory signals in the northeastern Pacific whose distribution is similar to PMM. Before the La

Niña events, there is an obvious subsurface signal propagating eastward from the equatorial western Pacific, which would shoal

the thermocline in the eastern Pacific and trigger a cold event. In addition, we present an attempt of the saliency method based

on the ENSO-MC model for sensitive area identification of ENSO. The identification results show that the surface sensitive

areas are located in the central equatorial Pacific and the northern Central Pacific, and the subsurface sensitive areas are con-500

centrated in the western equatorial Pacific and the southwestern Pacific. Additional observations in these areas are expected to

better predict an event in the future. It indicates that in equatorial regions, the central surface area and the western subsurface

area play an important role in the occurrence of future ENSO events, which are essential for preserving the memory of ENSO

evolution. Besides, the processes in the extratropical Pacific also contribute to ENSO prediction, such as changes in the surface

layer of the northern Central Pacific and the subsurface layer of the southwestern Pacific.505

Since the cumulative error of the Nino3.4 index calculated by predicting SST anomalies patterns is larger, the correlation

skill is not as high as that obtained by predicting the index directly. Further research should be undertaken to explore how to

ensure high correlation skills of Nino3.4 index while correctly simulating the spatial distribution of SST anomalous. In addition

to the existing components in the ENSO-MC model, how effectively use our existing domain knowledge, such as conservation

of mass, conservation of salinity and other physical laws, to build physics-informed ENSO-MC model that may help reduce510

uncertainty and increase the credibility of predictions. For the precursor investigation, this paper focuses on verifying the

known ENSO mechanisms, and the unknown inherent characteristics exploration will be considered in the future. Combining

structural causal model would help to extract the unknown causality relationship among factors and phenomena in ENSO
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complex interaction on this matter. This would help further explore the precursors of ENSO and improve our understanding of

its predictability.515
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