
Dear Editor and Reviewers: 
 
Thank you very much for your careful reading, insightful comments, and constructive suggestions 
concerning our manuscript “Simulation, Precursor Analysis and Targeted Observation Sensitive 
Area Identification for Two Types of ENSO using ENSO-MC v1.0” (ID: gmd-2021-396), which 
have helped us improve both the content and the presentation of our work. We have carefully 
considered all comments from the reviewers and revised our manuscript accordingly. The 
manuscript has also been double-checked and modified, including the typos and grammar errors. 
The point-by-point responses are as follows for two reviewers respectively. Each comment from the 
reviewers has been put in grey and is followed by our response and action taken into consideration. 
 
 

The Reply on Referee #1 

 
Major Comments 
Comment 1 
Comment 1.1: There are three parts of this manuscript, including ENSO prediction model named 
ENSO-MC, precursor analysis, and targeted observation sensitive area identification based on 
ENSO-MC. Accurately, the latter two parts are the application of ENSO-MC, and the conclusions 
are almost consistent with previous studies, such as Kumar et al. 2014, Duan and Hu 2016. Certainly, 
the method of precursor analysis and targeted observation sensitive area identification based on the 
deep neural network is an innovation, but I think the key point of this manuscript should be focusing 
on the ENSO-MC as the model description article. However, the description of ENSO-MC is 
inadequate, including the value of the weight in Loss function, discussions about the effects of the 
depth, structure, data for the neural network. I recommend authors add the discussion section.  
 
Response: We gratefully thank you for the precious time the reviewer spent making constructive 
comments and suggestions on our manuscript. We also realize that the description of the model in 
the original manuscript is too brief. It only included a brief introduction of the neural network, data 
and loss function we used, and ignored the description of the idea of building the model for ENSO 
forecasting, the specific configuration and the effect of each component on the model performance.  

As suggested by the reviewer, we have supplemented detailed descriptions of the ENSO-MC 
model structure, including its composition and hyperparameters. Specifically, the ENSO-MC model 
consists of an encoder, which is used to extract related features of ENSO, and a decoder, which is 
used to infer the development of SST anomalies in the equatorial Pacific in the future. And 
considering the important role of spatiotemporal interaction between atmosphere and ocean on 
ENSO, we use ConvLSTM as the main neural network architecture of encoder and decoder. In the 
encoder, each ConvLSTM layer followed by a 3D max-pooling layer is used to extract features at 
different spatial scales. Symmetric to the encoder structure, the decoder has upsampling layers 
followed by each ConvLSTM to restore the SST field. In addition, skip-layer connection and states 
connection, which make full use of the features extracted at each spatial scale of the encoder, are 
used to help the decoder recover the details of the forecast field. And the attention mechanism is 
designed to make the model automatically learn the temporal weights in the skip-layer connection. 



We also supplemented a figure (Fig 3(i)) in Section 3.3 to illustrate the skip-layer connection and 
its attention mechanism structure. For the hyperparameters in the model structure, the kernel size of 
ConvLSTM is 3×3, and the size of upsampling and downsampling is 2, which determines the field 
of feature extraction on the spatial scale. Besides, the depth of the model is 3, and the number of 
output filters of each layer is 8, 16, 32, which determines the degree of nonlinearity of the model. 

Meanwhile, according to the variables, structure and loss function described in Section 2 of the 
manuscript, we also added a section to comprenhensively discuss the impact of these three factors 
on model performace, including the effects of the input sequence length, different predictors, each 
component of the model and different loss functions. Firstly, the input length represents the time 
dimension of ocean and atmosphere features that can be extracted by the model and plays an 
important role in ENSO forecast. In order to select the most suitable input length for ENSO-MC, 
we used the data of the past 3, 6, 9, 12 and 15 months as the input respectively, and compared the 
correlation skills and root mean square errors of their prediction results. Secondly, we designed an 
ablation experiment to verify the effectiveness of the multi-channel structure and examine the effect 
of each physical variable on the development of ENSO. Thirdly, we also supplemented experiments 
to prove the effectiveness of the skip-layer connection, states connection and attention mechanism 
structures for ENSO prediction, which are important components of model structure. Finally, for 
the combined loss functions, we detected the effect of each loss function by ablation experiment and 
determined the weight value of each function. 

The detailed introduction about model structure and configurations have been supplemented in 
the Section 2.1 from the start of line 105 as the blue text below: 
 
  

 
Figure 1 The encoder-decoder architecture of ENSO-MC for SST pattern sequence prediction. The encoder contains 

three ConvLSTM layers and each layer is followed by a pooling layer, and the last layer is a convolutional layer, 

which allows extracting spatial and temporal features. And the decoder comprises one deconvolutional layer, three 

ConvLSTM layers and three upsampling layer that restores the features to the same size as the initial spatial 



dimension (80×160). The model uses skip-connection with attention mechanism and state-connection between the 

encoder and the decoder to improve forecasting skills. The input variables are the SST, heat content, zonal wind and 

meridional wind for 𝑇!" consecutive months over 40⁰N-40⁰S, 120⁰E-80⁰W (80×160, 1⁰×1⁰ resolution) and each type 

of variable is input to the model as a channel. The output of the model is SST pattern sequence for the next 𝑇#$% 

months. 

 
“Here we develop a spatiotemporal model of multichannel structure named ENSO-MC to 

generate SST pattern sequence for ENSO forecasts. As shown in Fig. 1, the ENSO-MC is constructed 
based on the encoder-decoder architecture (Sutskever et al., 2014), whose encoder extracts the 
feature representations associated with ENSO over the past period and decoder generates the sea 
surface temperature pattern in the future. Due to the diversity of ENSO in amplitude, spatial pattern 
and temporal evolution, several convolutional long short-term memory (ConvLSTM) layers 
(Xingjian et al., 2015) form the skeleton in the encoder-decoder architecture to learn its multiple 
spatial and temporal representations. The encoder is the first half of the architecture (Fig. 1). A 
ConvLSTM layer with kernel size 3×3 followed by a 3D max-pooling layer constitutes an encoding 
module. The max-pooling layer downsamples the input along the spatial dimensions to extract 
multi-scale spatial connections. We use three encoding modules to construct the encoder, which is 
the network depth that perform best in ENSO forecasting problem here. To balance model 
performance and computational cost, the output channels of ConvLSTM in the three modules are 8, 
16, 32 in order. After three encoding modules, we use a convolution layer with kernel size 5×5 and 
stride 5×5, and the number of output channels is 64. The dimension of feature map output by each 
layer is shown in Fig. 1, and the final feature dimension of the encoder is 2×4×64. The structure of 
the decoder is symmetrical with the encoder. After a transposed convolution layer, there are three 
decoding modules. Each module consists of an upsampling layer with size 2 followed by a 
ConvLSTM layer to restore the original resolution of SST pattern, where the kernel size of the 
network and the number of output channels are the same as those in the encoder. And the final layer 
in the ENSO-MC model is an additional 3×3 ConvLSTM that generates a single feature map 
representing the SST pattern sequence predicted by the model.” 
 

And the model evaluation for the input sequence length, different predictors, each model 
component and different loss functions have also been discussed in the Section 3. This new section 
has been added from the start of line 205 as the blue text below: 
 
3 Model Performance evaluation 
3.1 Influence of the input sequence length 
Table 1: Correlation skill (Corr) and Root Mean Square Error (RMSE) of lead times with different input 

sequence lengths 

Sequence length 3 6 9 12 15 

Corr/RMSE Corr/RMSE Corr/RMSE Corr/RMSE Corr/RMSE 

3-month 0.78 / 0.67 0.59 / 1.02 0.58 / 1.24 0.81 / 0.54 0.68 / 1.10 

6-month 0.52 / 0.96 0.46 / 1.15 0.47 / 1.16 0.64 / 0.81 0.48 / 1.72 

12-month 0.29 / 1.00 0.36 / 1.39 0.28 / 1.14 0.53 / 0.84 0.31 / 2.06 

18-month 0.17 / 1.06 0.25 / 1.72 0.15 / 1.17 0.44 / 0.91 0.30 / 2.15 



 
Appropriate input sequence length is critical for ENSO prediction of the multichannel model. 

We use data from the past 3, 6, 9, 12 and 15 months as inputs to predict the development of ENSO 
in the next 18 months to examine the effects of different input sequence lengths on ENSO 
predictions. Table 1 shows the comparison of correlation skill and RMSE of lead times. For the 
correlation coefficient, the higher the value is, the higher the forecasting skill is. And the smaller 
RMSE represents the higher skill. The results show that the ENSO-MC model performs best with 
data from the past 12 months as input. This may be because the variables we select have long-term 
memory for the development of ENSO, such as oceanic heat content. A longer input sequence 
contains more information that is helpful to ENSO prediction, but also contains more noise that 
interferes with the prediction, so the improvement of forecasting skill is not positively correlated 
with the increase of input sequence length. But for different models and forecasting horizons, the 
most appropriate input sequence lengths may not be the same.  
 
3.2 Physical variable sensitivity for the multichannel structure 

 
Figure 2. The correlation skill of Nino 3.4 index of ENSO-MC model with different predictors. 

 
With the physical variables we selected in the Section 2, we construct multichannel input that 

takes into account the complicated spatiotemporal interactions in the ocean and atmosphere 
underpinning the onset and development of ENSO events. For the grid observations of monthly SST, 
heat content, zonal wind and meridional wind, we treat each type of the input variable as a channel 
in the first ConvLSTM layer and thus there are four channels. The number of channels is the depth 
of the matrices involved in the convolutions, so that the cross-correlation and transmission between 
these ocean-atmosphere data can be calculated in the convolution operation. We design an ablation 
experiment to examine the contribution of predictors and the effectiveness of the multichannel 
structure. In addition to SST, the most important predictor, we remove heat content (t300) and wind 
from the inputs respectively to detect their effects on the correlation skill of the Nino3.4 index. As 
shown in Fig. 2, the model using the three key ingredients of Bjerknes feedback (SST, heat content, 
wind) as input produces more favorable forecast skill than the ones that remove one of them, which 
indicates that the multichannel structure can help to learn the ocean-atmosphere coupling between 
several important predictors. For the models with two predictors, the model containing wind 
predictor shows slightly higher forecasting skill in the first few months, while the one containing 
heat content predictor performs more stable skill at lead times of more than eight months. It suggests 
that the memory of subsurface heat plays an important role in ENSO prediction on seasonal to 
interannual time scales, which is consistent with previous research.  
 



3.3 Effectiveness of the model components 

 
Figure 3. (i) The detailed structure of the skip-layer connection and attention mechanism between encoder and 

decoder at the 𝑛%& layer in ENSO-MC. (ii) The correlation skill of Nino 3.4 index of the forecast lead month in 

models with different structures: (a) ENSO-MC model of skip-layer connection with attention mechanism and states 

connection, (b) ENSO-MC model without attention mechanism, (c) ENSO-MC model without states connection, (d) 

ENSO-MC model without skip-layer connection. 

 

The ENSO-MC model learns the feature of ENSO at different spatial scales with the 
convolution and max-pooling layers in the encoder, and gradually restores the spatial dimensionality 
of the original SST field in the decoder. With symmetrical structure design of the encoder and 
decoder as shown in Fig. 1, skip-layer connection is used to transfer features form the encoder to 
the decoder to recover spatial information lost during downsampling (yellow line in Fig. 1). Rather 
than transferring the original features of all time steps obtained from the encoder, we design an 
attention mechanism to enable the skip-layer to automatically learn the attention weights 
𝛽!, 𝛽", … , 𝛽# on the temporal sequence because these air-sea features may have different effects on 
ENSO development at different time scales. As shown in Fig. 3(i), the encoder obtains the features 
𝑓$ ∈ ℝ%!"×'"×("×)" after max-pooling and convolution calculation at the 𝑛#' layer. Using a two-
layer densely-connected neural network, we obtain the attention weight 𝛽 ∈ ℝ%!"  of each time 
step’s features according to Eq. (1), where 𝑓$* ∈ ℝ%!"×('"×("×)") are reshaped from 𝑓$:  

 
𝛽 = 	softmax1𝐖-. tanh1𝐖./𝑓$* + 𝐛./7 + 𝐛-.7,                                     (1) 

 
where 𝐖./, 𝐖-. are weight matrices created by the layer, and 𝐛./, 𝐛-. are the bias vectors. 𝛽 
represents the contribution of each time step to prediction. According to Eq. (2), the feature maps 
of each time step are multiplied by the corresponding weights, and the fused maps 𝑓$8 ∈ ℝ'"×("×)" 
are obtained by adding them along the time dimension. 

 
𝑓$8 = 	∑ (𝛽 ∘%!" 𝑓$),                                                             (2) 

 
where 𝑓$8  are the feature maps to be transmitted in the skip-layer connection, which are connected 
to the features of the corresponding layer in the decoder. Besides, we also add states connection 
between the encoder and the decoder (grey line in Fig. 1), where the hidden states output by the 
ConvLSTM layers in the encoder are reserved for the corresponding layer when the decoder is 
initialized. With the methods of skip-layer connection and states connection, the model can make 
full use of the information extracted from the encoder before ENSO events, which help stabilize 
training and convergence. 

We remove the attention mechanism (model b), states connection structure (model c) and skip-



layer connection structure (model d) respectively from the constructed ENSO-MC model (model a) 
to analyze their effects on model performance. As shown in Fig. 3(ii), the two connection structures, 
especially the skip-layer connection structure, have a great influence on the prediction results. In 
model b, we use average weights to replace the attention mechanism. Compared with model a, self-
attention mechanism can play a greater role in long-term ENSO prediction.  
 
3.4 Effects of different loss functions 

 
Figure 4. The performances of the ENSO-MC with different loss functions. 

 
In order to balance the optimization speed of each loss in the training process, we set 𝜆012=7, 

𝜆1130 = 9	and 𝜆456=1. The effectiveness of combined loss function is validated. As shown in Fig. 
4(a), although SSIM and GDL do not significantly improve the model performance when combined 
with MSE alone, the combination of MSE, SSIM and GDL loss functions achieve the best 
performance on the correlation skill. Besides, since GDL loss function tends to retain extreme values 
and MSE loss function tends to smooth all values, the presence of GDL inhibits the decrease of 
MSE, so the MSE errors of the models with GDL loss function are higher than the ones without 
GDL (Fig. 4(b)). And comparing the results of correlation skill and RMSE in Fig. 4(a) and (b), low 
RMSE values do not represent high correlation skills. Therefore, it is necessary to explore loss 
functions suitable for ENSO prediction other than MSE to balance the training of the model. 
 
Comment 1.2: Moreover, it only showed the several cases and correlation results, but the more 
cases and RMSE also needed. 
 
Response: Thank you for the above comments. In the original manuscript, we only selected three 
individual events of 2015/2016 EP El Niño, 2009/2010 CP El Niño and 1988/1989 La Niña to 
validate the forecast skills in spatial patterns and Niño 3.4 index time series. The simulation ability 
of ENSO-MC model for different types of events is not fully explained in the manuscript. As 
suggested by the reviewer, we have added the simulation results of three more cases in recent years 
for each type of event, namely, EP El Niño events of 1991/1992, 1997/1998 and 2006/2007, CP El 
Niño events of 1994/1995, 2002/2003 and 2018/2019, and La Niña events of 1984/1985, 1998/1999 
and 2000/2001. We compare the predicted spatial patterns and observations of SST anomalies from 
the onset to the mature phase for these events. The simulation results show that ENSO-MC model 
can generally simulate the development and characteristics of SSTA for different types of events. 
We also summarized the classification results of the model for the two types of El Niño events 



occurring from 1984 to 2019, and calculated the RMSE of Niño3, Niño3.4 and Niño4 index for 
different lead months. The results show that ENSO-MC model has a higher classification accuracy 
for EP events, and smaller prediction errors for CP events in amplitude.  

The related results and statements have been supplemented in the Section 4 from the start of 
line 304 as the blue text below: 
 

“In addition to the above three typical events in recent years, the prediction results of other 
events that occurred between 1984 and 2019 are also detected. For each event, we compare the 
spatial development of predicted and observed SST anomalies in the equatorial Pacific from the 
onset to the maturity stage.  

 

 
Figure 5. SSTAs of three EP El Niño events in (a) 1991/1992, (b) 1997/1998 and (c) 2006/2007 from the onset to 

the maturity stage, with observations in the first row and predictions in the second row for each event. The mature 

phases here are the months when the El Niño events peak. And “0” and “1” next to the calendar month denote the 

year when the El Niño event occurred and the following year, respectively. 

 
Fig. 5 shows the simulation results of the ENSO-MC model for three EP El Niño events of 

1991/1992, 1997/1998 and 2006/2007, with observations in the first row and predictions in the 



second row for each group. The results show that the model can simulate the occurrence and 
development of SSTA for each event. However, for some events with less significant EP type 
characteristics (for example, that of 1991/1992), the SSTA center of predictions is closer to the 
central Pacific than observed. In addition, for some super strong events (for example, that of 
1997/1998) and weak events (for example, that of 2006-2007), the amplitude of the predicted results 
at mature phase may be lower or higher than the observed. 
 

 
Figure 6. As in Fig. 5, but for the three CP El Niño events in (a) 1994/1995, (b) 2002/2003 and (c) 2018/2019. 

 
The prediction results for three CP El Niño events in 1994/1995, 2002/2003 and 2018/2019 are 

displayed in Fig. 6. For the events of 1994/1995 and 2018/2019, the model can simulate the process 
that the SST anomalies in the northeast Pacific propagate to the southwest and finally contribute to 
the occurrence of CP events. The amplitude and center location of the predicted anomalies are also 
in agreement with the observations. However, the meridional distribution of predicted SSTA is not 
as broad as observed in the mature stage. The observed SSTA extends eastward to 80⁰W, while the 
predicted value extends roughly between 100⁰W and 120⁰W.  
 



 
Figure 7. As in Fig. 5, but for the three La Niña events in (a) 1984/1985, (b) 1998/1999 and (c) 2000/2001. 
 

And Fig. 7 shows the predictions of three La Niña events in 1984/1985, 1998/1999 and 
2000/2001. These three events occurred under different conditions. The events of 1984/1985 and 
1998/1999 were preceded by strong El Niño events, and the 1998/1999 event occurring more rapidly. 
The 2000/2001 La Niña was another weaker event after the previous La Niña event ended. 
Compared with observations, the model can simulate the occurrence, development and phase 
transition or persistence of La Niña events.  
 

 

Figure 8. Scatterplots in Nino3-Nino4 index plane of 12-month-lead predictions for all (a) EP El Niño events and 



(b) CP El Niño events during peak phase from 1984 to 2019. (c) Root Mean Square Error (RMSE) of the Nino3.4, 

Nino3 and Nino4 indexes between the forecast results of the ENSO-MC model and observations during validation 

period. 

 
Table 2: Root Mean Square Error (RMSE) of Nino3/4 index for all EP/CP El Niño events during peak phase 

from 1984 to 2019. 

Lead time 3-month 6-month 9-month 12-month 

EP (Nino3) 1.18 1.23 1.04 1.07 

CP(Nino4) 0.45 0.99 0.91 0.93 

 
In addition to comparing the detailed spatial distribution of SSTA, the related indices and 

metrics are calculated to further evaluate the simulation performance of the ENSO-MC model. The 
Niño 3 index (average SST anomalies over 5⁰N-5⁰S, 150⁰W-90⁰W) and the Niño 4 index (average 
SST anomalies over 5⁰N-5⁰S, 160⁰E-150⁰W) are commonly used to define two types of El Niño 
events. Events with Niño 4 index greater than Niño 3 are regarded as CP El Niños, and events with 
Niño 3 index greater than Niño 4 are classified as EP El Niños. Figure 8a, b shows the distribution 
for Niño 3 and Niño 4 indexes calculated from the model's one-year-lead predictions of the peak 
periods for all EP events (Fig. 8a) and CP events (Fig. 8b) from 1984 to 2019. The results show that 
the model can correctly classify five EP events (1987/1988, 1991/1992, 1997/1998, 2006/2007, 
2015/2016) and three CP events (1994/1995, 2002/2003, 2018/2019) in the past 30 years, but 
misjudge the event of 2009/2010 as EP type and no El Niño event occurred in 2004 (Niño 3=0, Niño 
4=0). The CP event of 2004/2005 is much weaker than other CP ones, making it more difficult for 
the model to capture its development. We also make statistics on the RMSE between the predictions 
and official records of Nino3/4 index for all EP/CP El Niño events at mature phase (Table 2) and 
for the whole validation period (Fig. 8c), and find that although the model has a higher classification 
accuracy for EP events, the index error of predictions for EP events is larger than that for CP. It may 
be because most of the strong El Niños are EP-type events, and the prediction skills of the model 
for such extreme events need to be improved. The SSTA distribution in Fig. 5 also shows that for 
some EP events, there is a difference in amplitude between predictions and observations for the 
maturity stage of the event, while that of the CP events is consistent with the observations (Fig. 6).”  
 
 
Minor Comments 
Comment 1: Usually we use the years covering the ENSO process, such as 1985-1986 defining the 
ENSO year, rather than the ENSO peak occurring year. 
 
Response: Thank you so much for your professional comments. We have read through the full 
manuscript and corrected all the related statements in the text as well as in the legend of Figures in 
the revised version.  
 
Comment 2: Line 20: “periodically”, in fact, usually we called the ENSO is an irregular signal with 
2-7 years period. 
 



Response: Thank you so much for your professional attitude and helping us find a mistake. We 
have updated the corresponding statements at line 20 as the blue text below: 
 

“El Niño-Southern Oscillation (ENSO) is an irregular climate signal with a period of 2-7 
years in the tropical Pacific Ocean and often grows up to be exceptionally strong under unstable 
air-sea interactions, causing large global climatic anomalies and hence affecting many regions even 
far from the tropical area.” 
 
Comment 3: Why did author select the combination of SODA and GODAS/ERA-Interim data? I’m 
very interested that whether the results keep consist if use other data, e.g., SODA and GODAS/ERA-
5 (ERA-5 is better than ERA-Interim), or just using one datasets CERA-20C from 1901 to 2010 
with almost same resolutions to SODA. 
 
Response: We thank the reviewer for pointing out this issue. This is indeed a valuable question for 
investigating the effects of data from different sources on the ENSO-MC forecast model. In the 
manuscript, we chose the data based on Ham's article (Ham et al., 2019), in which SODA and 
GODAS/ERA-Interim data were used. As suggested by the reviewer, we have investigated the 
forecasting skills of ENSO-MC model for other data. Figure 9 shows the correlation skill of Nino 
3.4 index of ENSO-MC model with data from different sources. The red line represents the skills 
using data from the original manuscript, namely SODA and GODAS/ERA-Interim data, the blue 
line is the result of ERA-Interim data being replaced by ERA-5, and the yellow line is the result 
with CERA-20C data.  
 

 
Figure 9. The correlation skill of Nino 3.4 index of ENSO-MC model with data from different sources: (a) SODA 

and GODAS/ERA-Interim, (b) SODA and GODAS/ERA-5 and (c) CERA-20C. 

 
The results show that replacing ERA-Interim data with ERA-5 data has little effect on forecast 

skills. However, only using CERA data will reduce correlation skills. We think the possible reason 
is that the data volume of CERA data is less than that of SODA, and the resolution is not as high as 
SODA. The CERA data is from 1901 to 2010, which is nearly a quarter less than the soda data. The 
resolution of the SODA data is 0.5, which is twice that of the CERA data. Therefore, the amount 
and resolution of data can affect the training process of deep learning models and thus the 
forecasting skills of ENSO-MC. 
References 

Ham, Y.-G., Kim, J.-H., and Luo, J.-J.: Deep learning for multi-year ENSO forecasts, Nature, 573, 568–572, 2019. 

 



Comment 4: Line 176: “although there are stronger anomalies in the eastern tropical Pacific during 
the growth phase”, please double check it. I did not see stronger anomalies. 
 
Response: We thank the reviewer for pointing out this issue. This is a mistake in our expression. 
What we originally intended to express was that, in the growth phase, the predicted SST anomalies 
distributed in the central Pacific were smaller in amplitude and scope than the observations, which 
made the anomalies distributed in the eastern tropical Pacific appear more pronounced in the 
prediction results, and the CP characteristics of ENSO were not obvious. We feel sorry for our poor 
expression. The modified statements have been updated at line 291 as the blue text below: 
 

“The model captures most of these features, although the anomalies distributed over the 
central equatorial Pacific are smaller in amplitude and scope than observed during the growth 
and mature phase, and the CP characteristics of ENSO are not as pronounced as the actual 
ones.” 
 
Comment 5: Lines 195-196: please clarify what is the one- and multi-step strategy. 
 
Response: Thank you for spotting our crucial neglects in description of forecasting strategies. Since 
managing policy responses requires robust long-term forecasting results of ENSO, multiple time 
steps must be predicted. In general, there are two main strategies for the multi-step time series 
forecasting problem, direct multi-step forecast strategy and recursive multi-step forecast strategy. 
In our work, one-step strategy refers to the multiple use of a one-step model, in which the prediction 
of the previous time step is used as the input for the prediction of the next time step, i.e. recursive 
multi-step forecast. While multi-step strategy is to build a model that can forecast the entire 
prediction sequence in a one-shot manner, which belongs to a direct multi-step forecasting method.  

Considering the content and structure of each section of the manuscript, the figure and detailed 
descriptions of the one- and multi-step strategies have been additionally supplemented in the Section 
2 at line 134 as the blue text below:  
 

 

Figure 10. Two main strategies of multi-step forecasting for ENSO prediction, direct multi-step forecast strategy 

and one-step ahead forecast strategy. And direct multi-step forecast strategy has two methods, the second one is used 

in this paper. 

 

“In addition, ENSO prediction requires a multiple-step forecasting strategy to achieve long-
term prediction. There are two main strategies, direct multi-step forecast and one-step ahead forecast. 



As shown in Fig. 10, the inputs for direct multi-step forecast are fixed observations 𝑋%70, … , 𝑋%7!. 
To achieve multi-step prediction, one of the methods is to build a separate model 𝐺%89 for each 
prediction time step 𝑇 + 𝑥 . In the case of predicting SST for the next 𝑛  months, n models 
𝐺%8!, … , 𝐺%8$ need to be constructed. This is also the strategy used in Ham’s paper (Ham et al., 
2019), which produced skillful prediction results one and a half years in advance. Another approach 
is to build a model that can forecast the entire prediction sequence 𝑌%8!, … , 𝑌%8$ in a one-shot 
manner to achieve direct multi-step forecasting, which has the advantage of significantly reducing 
computational and maintenance costs. While one-step ahead forecast strategy refers to the multiple 
use of a one-step model, in which the prediction of the previous time step is used as the input for 
the prediction of the next time step, i.e., recursive multi-step forecast. In general, one-step ahead 
forecasting models are more stable and easier to train (Shi and Yeung, 2018). However, because 
predictions are used instead of observations, the one-step ahead strategy allows prediction errors to 
accumulate, resulting in a rapid decline in performance as the prediction time increases, while direct 
multi-step forecasting has more accurate results in long-term prediction (Taieb et al., 2012). In this 
paper, direct multi-step forecast strategy and one-step forecast strategy are both used for prediction 
and comparison. Considering the computational cost, we use the second direct forecast method 
instead of the first method of constructing several individual models.” 
References 

Ham, Y.-G., Kim, J.-H., and Luo, J.-J.: Deep learning for multi-year ENSO forecasts, Nature, 573, 568–572, 2019. 

Shi, X. and Yeung, D.-Y.: Machine learning for spatiotemporal sequence forecasting: A survey, arXiv [preprint], 

arXiv:1808.06865 2018. 

Taieb, S. B., Hyndman, R. J., et al.: Recursive and direct multi-step forecasting: the best of both worlds, vol. 19, 

Citeseer, 2012. 

 
Comment 6: Section 4 and 5, author should give the details of the initial perturbation distribution, 
at least the magnitude of the perturbation. 
 

Response: Special thanks to you for your professional comments. We have added the detailed 
description of the perturbation distribution in Section 5 at line 399 and Section 6 at line 453 as the 
blue text below: 
 

“The precursor maps from 12-month lead to 1-month lead of EP-type El Niño, CP-type El Niño 
and La Niña are shown in the Fig. 6, and we present results every few months for each type to see 
more clearly how precursors change over time. Since the composite maps are the sum of saliency 
maps of each event, here we focus on the distribution of perturbation without considering the 
intensity, and the saliency values in Fig. 6 are the standardized results of the scale between 0 and 1. 
For EP El Niño (Fig. 6(a)), the subsurface temperature component presents large anomalies in the 
equatorial Pacific, especially in the central and western Pacific, the subtropical northeast Pacific and 
the subtropical South Pacific. With the occurrence of El Niño, the anomalies weaken in the 
equatorial region and slightly intensify in the subtropical area. And the large anomalies of the 
precursory perturbation for CP El Niño (Fig. 6(b)) are concentrated in the subtropical northeast 
Pacific. As El Niño approaches, the disturbance tends to spread to the southeast. Regarding the 
subsurface disturbance for La Niña (Fig. 6(c)), their anomalies are concentrated in equatorial regions 
and propagates from the western Pacific to the eastern.” 



 
“Then all the saliency maps of SST are added up to obtain the composite saliency map of the 

surface (Fig. 7(a)), and that of the subsurface (Fig. 7(b)) is obtained in the same way. The saliency 
values in the figure are the standardized results of the scale between 0 and 1. The anomalies of 
surface disturbance are mainly distributed in the north central Pacific, the central Pacific and the 
western Pacific. The anomalies in the north Pacific are more intense than those in the south Pacific. 
For the subsurface temperature precursory, the perturbation possesses a wide range of anomalies in 
the equatorial Pacific and the North Pacific, and the anomaly values are more intense than that of 
surface disturbance.” 

 
 

The Reply on Referee #2 

 
Major Comments 
Comment 1: Based on deep neural network, an ENSO prediction model with multiple physical 
variables is constructed in this manuscript to simulate the changes of SSTA, analyze the precursors 
and identify the sensitive areas in the equatorial Pacific. It is a good attempt to broaden the 
application field of neural network in climate research. And the description of the prediction model 
should be complete enough to reproduce. However, in the second section of the paper, the 
description of ENSO-MC model is somewhat brief. I suggest the authors add descriptions of specific 
configurations through experiments, such as how to determine the model hyperparameters. 
 
Response: We gratefully appreciate your valuable suggestion. In the original manuscript, it only 
included a brief introduction of the neural network, data and loss function we used, which is indeed 
inadequate for the ENSO-MC model description.  

As suggested by the reviewer, we have supplemented detailed descriptions of the ENSO-MC 
model structure, including its composition and hyperparameters. Specifically, the ENSO-MC model 
consists of an encoder, which is used to extract related features of ENSO, and a decoder, which is 
used to infer the development of SST anomalies in the equatorial Pacific in the future. And 
considering the important role of spatiotemporal interaction between atmosphere and ocean on 
ENSO, we use ConvLSTM as the main neural network architecture of encoder and decoder. In the 
encoder, each ConvLSTM layer followed by a 3D max-pooling layer is used to extract features at 
different spatial scales. Symmetric to the encoder structure, the decoder has upsampling layers 
followed by each ConvLSTM to restore the SST field. In addition, skip-layer connection and states 
connection, which make full use of the features extracted at each spatial scale of the encoder, are 
used to help the decoder recover the details of the forecast field. And the attention mechanism is 
designed to make the model automatically learn the temporal weights in the skip-layer connection. 
We also supplemented a figure (Fig 3(i)) in Section 3.3 to illustrate the skip-layer connection and 
its attention mechanism structure. For the hyperparameters in the model structure, the kernel size of 
ConvLSTM is 3×3, and the size of upsampling and downsampling is 2, which determines the field 
of feature extraction on the spatial scale. Besides, the depth of the model is 3, and the number of 
output filters of each layer is 8, 16, 32, which determines the degree of nonlinearity of the model. 

Meanwhile, according to the variables, structure and loss function described in Section 2 of the 



manuscript, we also added a section to comprenhensively discuss the impact of these three factors 
on model performace, including the effects of the input sequence length, different predictors, each 
component of the model and different loss functions. Firstly, the input length represents the time 
dimension of ocean and atmosphere features that can be extracted by the model and plays an 
important role in ENSO forecast. In order to select the most suitable input length for ENSO-MC, 
we used the data of the past 3, 6, 9, 12 and 15 months as the input respectively, and compared the 
correlation skills and root mean square errors of their prediction results. Secondly, we designed an 
ablation experiment to verify the effectiveness of the multi-channel structure and examine the effect 
of each physical variable on the development of ENSO. Thirdly, we also supplemented experiments 
to prove the effectiveness of the skip-layer connection, states connection and attention mechanism 
structures for ENSO prediction, which are important components of model structure. Finally, for 
the combined loss functions, we detected the effect of each loss function by ablation experiment and 
determined the weight value of each function. 

The detailed introduction about model structure and configurations has been supplemented in 
the Section 2 from the start of line 105 as the blue text below: 
 
  

 
Figure 2 The encoder-decoder architecture of ENSO-MC for SST pattern sequence prediction. The encoder contains 

three ConvLSTM layers and each layer is followed by a pooling layer, and the last layer is a convolutional layer, 

which allows extracting spatial and temporal features. And the decoder comprises one deconvolutional layer, three 

ConvLSTM layers and three upsampling layer that restores the features to the same size as the initial spatial 

dimension (80×160). The model uses skip-connection with attention mechanism and state-connection between the 

encoder and the decoder to improve forecasting skills. The input variables are the SST, heat content, zonal wind and 

meridional wind for 𝑇!" consecutive months over 40⁰N-40⁰S, 120⁰E-80⁰W (80×160, 1⁰×1⁰ resolution) and each type 

of variable is input to the model as a channel. The output of the model is SST pattern sequence for the next 𝑇#$% 

months. 

 



“Here we develop a spatiotemporal model of multichannel structure named ENSO-MC to 
generate SST pattern sequence for ENSO forecasts. As shown in Fig. 1, the ENSO-MC is constructed 
based on the encoder-decoder architecture (Sutskever et al., 2014), whose encoder extracts the 
feature representations associated with ENSO over the past period and decoder generates the sea 
surface temperature pattern in the future. Due to the diversity of ENSO in amplitude, spatial pattern 
and temporal evolution, several convolutional long short-term memory (ConvLSTM) layers 
(Xingjian et al., 2015) form the skeleton in the encoder-decoder architecture to learn its multiple 
spatial and temporal representations. The encoder is the first half of the architecture (Fig. 1). A 
ConvLSTM layer with kernel size 3×3 followed by a 3D max-pooling layer constitutes an encoding 
module. The max-pooling layer downsamples the input along the spatial dimensions to extract 
multi-scale spatial connections. We use three encoding modules to construct the encoder, which is 
the network depth that perform best in ENSO forecasting problem here. To balance model 
performance and computational cost, the output channels of ConvLSTM in the three modules are 8, 
16, 32 in order. After three encoding modules, we use a convolution layer with kernel size 5×5 and 
stride 5×5, and the number of output channels is 64. The dimension of feature map output by each 
layer is shown in Fig. 1, and the final feature dimension of the encoder is 2×4×64. The structure of 
the decoder is symmetrical with the encoder. After a transposed convolution layer, there are three 
decoding modules. Each module consists of an upsampling layer with size 2 followed by a 
ConvLSTM layer to restore the original resolution of SST pattern, where the kernel size of the 
network and the number of output channels are the same as those in the encoder. And the final layer 
in the ENSO-MC model is an additional 3×3 ConvLSTM that generates a single feature map 
representing the SST pattern sequence predicted by the model.” 
 

And the model evaluation for the input sequence length, different predictors, each model 
component and different loss functions have also been discussed in the Section 3. This new section 
has been added from the start of line 205 as the blue text below: 
 
3 Model Performance evaluation 
3.1 Influence of the input sequence length 
Table 2: Correlation skill (Corr) and Root Mean Square Error (RMSE) of lead times with different input 

sequence lengths 

Sequence length 3 6 9 12 15 

Corr/RMSE Corr/RMSE Corr/RMSE Corr/RMSE Corr/RMSE 

3-month 0.78 / 0.67 0.59 / 1.02 0.58 / 1.24 0.81 / 0.54 0.68 / 1.10 

6-month 0.52 / 0.96 0.46 / 1.15 0.47 / 1.16 0.64 / 0.81 0.48 / 1.72 

12-month 0.29 / 1.00 0.36 / 1.39 0.28 / 1.14 0.53 / 0.84 0.31 / 2.06 

18-month 0.17 / 1.06 0.25 / 1.72 0.15 / 1.17 0.44 / 0.91 0.30 / 2.15 

 
Appropriate input sequence length is critical for ENSO prediction of the multichannel model. 

We use data from the past 3, 6, 9, 12 and 15 months as inputs to predict the development of ENSO 
in the next 18 months to examine the effects of different input sequence lengths on ENSO 
predictions. Table 1 shows the comparison of correlation skill and RMSE of lead times. For the 
correlation coefficient, the higher the value is, the higher the forecasting skill is. And the smaller 



RMSE represents the higher skill. The results show that the ENSO-MC model performs best with 
data from the past 12 months as input. This may be because the variables we select have long-term 
memory for the development of ENSO, such as oceanic heat content. A longer input sequence 
contains more information that is helpful to ENSO prediction, but also contains more noise that 
interferes with the prediction, so the improvement of forecasting skill is not positively correlated 
with the increase of input sequence length. But for different models and forecasting horizons, the 
most appropriate input sequence lengths may not be the same.  
 
3.2 Physical variable sensitivity for the multichannel structure 

 
Figure 2. The correlation skill of Nino 3.4 index of ENSO-MC model with different predictors. 

 
With the physical variables we selected in the Section 2, we construct multichannel input that 

takes into account the complicated spatiotemporal interactions in the ocean and atmosphere 
underpinning the onset and development of ENSO events. For the grid observations of monthly SST, 
heat content, zonal wind and meridional wind, we treat each type of the input variable as a channel 
in the first ConvLSTM layer and thus there are four channels. The number of channels is the depth 
of the matrices involved in the convolutions, so that the cross-correlation and transmission between 
these ocean-atmosphere data can be calculated in the convolution operation. We design an ablation 
experiment to examine the contribution of predictors and the effectiveness of the multichannel 
structure. In addition to SST, the most important predictor, we remove heat content (t300) and wind 
from the inputs respectively to detect their effects on the correlation skill of the Nino3.4 index. As 
shown in Fig. 2, the model using the three key ingredients of Bjerknes feedback (SST, heat content, 
wind) as input produces more favorable forecast skill than the ones that remove one of them, which 
indicates that the multichannel structure can help to learn the ocean-atmosphere coupling between 
several important predictors. For the models with two predictors, the model containing wind 
predictor shows slightly higher forecasting skill in the first few months, while the one containing 
heat content predictor performs more stable skill at lead times of more than eight months. It suggests 
that the memory of subsurface heat plays an important role in ENSO prediction on seasonal to 
interannual time scales, which is consistent with previous research.  
 
3.3 Effectiveness of the model components 



 
Figure 3. (i) The detailed structure of the skip-layer connection and attention mechanism between encoder and 

decoder at the 𝑛%& layer in ENSO-MC. (ii) The correlation skill of Nino 3.4 index of the forecast lead month in 

models with different structures: (a) ENSO-MC model of skip-layer connection with attention mechanism and states 

connection, (b) ENSO-MC model without attention mechanism, (c) ENSO-MC model without states connection, (d) 

ENSO-MC model without skip-layer connection. 

 

The ENSO-MC model learns the feature of ENSO at different spatial scales with the 
convolution and max-pooling layers in the encoder, and gradually restores the spatial dimensionality 
of the original SST field in the decoder. With symmetrical structure design of the encoder and 
decoder as shown in Fig. 1, skip-layer connection is used to transfer features form the encoder to 
the decoder to recover spatial information lost during downsampling (yellow line in Fig. 1). Rather 
than transferring the original features of all time steps obtained from the encoder, we design an 
attention mechanism to enable the skip-layer to automatically learn the attention weights 
𝛽!, 𝛽", … , 𝛽# on the temporal sequence because these air-sea features may have different effects on 
ENSO development at different time scales. As shown in Fig. 3(i), the encoder obtains the features 
𝑓$ ∈ ℝ%!"×'"×("×)" after max-pooling and convolution calculation at the 𝑛#' layer. Using a two-
layer densely-connected neural network, we obtain the attention weight 𝛽 ∈ ℝ%!"  of each time 
step’s features according to Eq. (1), where 𝑓$* ∈ ℝ%!"×('"×("×)") are reshaped from 𝑓$:  

 
𝛽 = 	softmax1𝐖-. tanh1𝐖./𝑓$* + 𝐛./7 + 𝐛-.7,                                     (1) 

 
where 𝐖./, 𝐖-. are weight matrices created by the layer, and 𝐛./, 𝐛-. are the bias vectors. 𝛽 
represents the contribution of each time step to prediction. According to Eq. 2, the feature maps of 
each time step are multiplied by the corresponding weights, and the fused maps 𝑓$8 ∈ ℝ'"×("×)" 
are obtained by adding them along the time dimension. 

 
𝑓$8 = 	∑ (𝛽 ∘%!" 𝑓$),                                                             (2) 

 
where 𝑓$8  are the feature maps to be transmitted in the skip-layer connection, which are connected 
to the features of the corresponding layer in the decoder. Besides, we also add states connection 
between the encoder and the decoder (grey line in Fig. 1), where the hidden states output by the 
ConvLSTM layers in the encoder are reserved for the corresponding layer when the decoder is 
initialized. With the methods of skip-layer connection and states connection, the model can make 
full use of the information extracted from the encoder before ENSO events, which help stabilize 
training and convergence. 

We remove the attention mechanism (model b), states connection structure (model c) and skip-
layer connection structure (model d) respectively from the constructed ENSO-MC model (model a) 



to analyze their effects on model performance. As shown in Fig. 3(ii), the two connection structures, 
especially the skip-layer connection structure, have a great influence on the prediction results. In 
model b, we use average weights to replace the attention mechanism. Compared with model a, self-
attention mechanism can play a greater role in long-term ENSO prediction.  
 
3.4 Effects of different loss functions 

 
Figure 4. The performances of the ENSO-MC with different loss functions. 

 
In order to balance the optimization speed of each loss in the training process, we set 𝜆012=7, 

𝜆1130 = 9	and 𝜆456=1. The effectiveness of combined loss function is validated. As shown in Fig. 
4(a), although SSIM and GDL do not significantly improve the model performance when combined 
with MSE alone, the combination of MSE, SSIM and GDL loss functions achieve the best 
performance on the correlation skill. Besides, since GDL loss function tends to retain extreme values 
and MSE loss function tends to smooth all values, the presence of GDL inhibits the decrease of 
MSE, so the MSE errors of the models with GDL loss function are higher than the ones without 
GDL (Fig. 4(b)). And comparing the results of correlation skill and RMSE in Fig. 4(a) and (b), low 
RMSE values do not represent high correlation skills. Therefore, it is necessary to explore loss 
functions suitable for ENSO prediction other than MSE to balance the training of the model. 
 
Comment 2: For the prediction results of EP, CP and La Nina events, the authors select one case to 
analyze respectively in the third section. It is suggested to add cases or discuss the overall 
forecasting performance of different types of ENSO, for example, the forecast results of different 
types of events in the validation set can be summarized into a table. 
 
Response: Thank you for your rigorous consideration and professional comments. In the original 
manuscript, we only selected three individual events of 2015/2016 EP El Niño, 2009/2010 CP El 
Niño and 1988/1989 La Niña to validate the forecast skills in spatial patterns and Niño 3.4 index 
time series. The simulation ability of ENSO-MC model for different types of events is not fully 
explained in the manuscript. As suggested by the reviewer, we have added the simulation results of 
three more cases in recent years for each type of event, namely, EP El Niño events of 1991/1992, 
1997/1998 and 2006/2007, CP El Niño events of 1994/1995, 2002/2003 and 2018/2019, and La 
Niña events of 1984/1985, 1998/1999 and 2000/2001. We compare the predicted spatial patterns 
and observations of SST anomalies from the onset to the mature phase for these events. The 
simulation results show that ENSO-MC model can generally simulate the development and 



characteristics of SSTA for different types of events. We also summarized the classification results 
of the model for the two types of El Niño events occurring from 1984 to 2019, and calculated the 
RMSE of Niño3, Niño3.4 and Niño4 index for different lead months. The results show that ENSO-
MC model has a higher classification accuracy for EP events, and smaller prediction errors for CP 
events in amplitude. 

The related results and statements have been supplemented in the Section 4 from the start of 
line 304 as the blue text below: 
 

“In addition to the above three typical events in recent years, the prediction results of other 
events that occurred between 1984 and 2019 are also detected. For each event, we compare the 
spatial development of predicted and observed SST anomalies in the equatorial Pacific from the 
onset to the maturity stage.  

 

 
Figure 5. SSTAs of three EP El Niño events in (a) 1991/1992, (b) 1997/1998 and (c) 2006/2007 from the onset to 

the maturity stage, with observations in the first row and predictions in the second row for each event. The mature 

phases here are the months when the El Niño events peak. And “0” and “1” next to the calendar month denote the 

year when the El Niño event occurred and the following year, respectively. 

 



Fig. 5 shows the simulation results of the ENSO-MC model for three EP El Niño events of 
1991/1992, 1997/1998 and 2006/2007, with observations in the first row and predictions in the 
second row for each group. The results show that the model can simulate the occurrence and 
development of SSTA for each event. However, for some events with less significant EP type 
characteristics (for example, that of 1991/1992), the SSTA center of predictions is closer to the 
central Pacific than observed. In addition, for some super strong events (for example, that of 
1997/1998) and weak events (for example, that of 2006-2007), the amplitude of the predicted results 
at mature phase may be lower or higher than the observed. 
 

 
Figure 6. As in Fig. 5, but for the three CP El Niño events in (a) 1994/1995, (b) 2002/2003 and (c) 2018/2019. 

 
The prediction results for three CP El Niño events in 1994/1995, 2002/2003 and 2018/2019 are 

displayed in Fig. 6. For the events of 1994/1995 and 2018/2019, the model can simulate the process 
that the SST anomalies in the northeast Pacific propagate to the southwest and finally contribute to 
the occurrence of CP events. The amplitude and center location of the predicted anomalies are also 
in agreement with the observations. However, the meridional distribution of predicted SSTA is not 
as broad as observed in the mature stage. The observed SSTA extends eastward to 80⁰W, while the 
predicted value extends roughly between 100⁰W and 120⁰W.  



 

 
Figure 7. As in Fig. 5, but for the three La Niña events in (a) 1984/1985, (b) 1998/1999 and (c) 2000/2001. 
 

And Fig. 7 shows the predictions of three La Niña events in 1984/1985, 1998/1999 and 
2000/2001. These three events occurred under different conditions. The events of 1984/1985 and 
1998/1999 were preceded by strong El Niño events, and the 1998/1999 event occurring more rapidly. 
The 2000/2001 La Niña was another weaker event after the previous La Niña event ended. 
Compared with observations, the model can simulate the occurrence, development and phase 
transition or persistence of La Niña events.  
 

 



Figure 8. Scatterplots in Nino3-Nino4 index plane of 12-month-lead predictions for all (a) EP El Niño events and 

(b) CP El Niño events during peak phase from 1984 to 2019. (c) Root Mean Square Error (RMSE) of the Nino3.4, 

Nino3 and Nino4 indexes between the forecast results of the ENSO-MC model and observations during validation 

period. 

 
Table 2: Root Mean Square Error (RMSE) of Nino3/4 index for all EP/CP El Niño events during peak phase 

from 1984 to 2019. 

Lead time 3-month 6-month 9-month 12-month 

EP (Nino3) 1.18 1.23 1.04 1.07 

CP(Nino4) 0.45 0.99 0.91 0.93 

 
In addition to comparing the detailed spatial distribution of SSTA, the related indices and 

metrics are calculated to further evaluate the simulation performance of the ENSO-MC model. The 
Niño 3 index (average SST anomalies over 5⁰N-5⁰S, 150⁰W-90⁰W) and the Niño 4 index (average 
SST anomalies over 5⁰N-5⁰S, 160⁰E-150⁰W) are commonly used to define two types of El Niño 
events. Events with Niño 4 index greater than Niño 3 are regarded as CP El Niños, and events with 
Niño 3 index greater than Niño 4 are classified as EP El Niños. Figure 8a, b shows the distribution 
for Niño 3 and Niño 4 indexes calculated from the model's one-year-lead predictions of the peak 
periods for all EP events (Fig. 8a) and CP events (Fig. 8b) from 1984 to 2019. The results show that 
the model can correctly classify five EP events (1987/1988, 1991/1992, 1997/1998, 2006/2007, 
2015/2016) and three CP events (1994/1995, 2002/2003, 2018/2019) in the past 30 years, but 
misjudge the event of 2009/2010 as EP type and no El Niño event occurred in 2004 (Niño 3=0, Niño 
4=0). The CP event of 2004/2005 is much weaker than other CP ones, making it more difficult for 
the model to capture its development. We also make statistics on the RMSE between the predictions 
and official records of Nino3/4 index for all EP/CP El Niño events at mature phase (Table 2) and 
for the whole validation period (Fig. 8c), and find that although the model has a higher classification 
accuracy for EP events, the index error of predictions for EP events is larger than that for CP. It may 
be because most of the strong El Niños are EP-type events, and the prediction skills of the model 
for such extreme events need to be improved. The SSTA distribution in Fig. 5 also shows that for 
some EP events, there is a difference in amplitude between predictions and observations for the 
maturity stage of the event, while that of the CP events is consistent with the observations (Fig. 6).”  
 
Comment 3: In the fourth section, based on the proposed ENSO-MC model, saliency map method 
is used to analyze the subsurface precursors. Since the changes of ENSO originate from the strong 
interactions between oceanic and atmospheric changes, it is recommended to analyze the changes 
of SST and wind field while analyzing the changes of precursors in heat content. For example, the 
process can be further elaborated according to the influence of ocean wave and Walker circulation 
on ENSO. 
 
Response: Thank you so much for your professional attitude and insightful suggestion. Compared 
with only mentioning the characteristics of the subsurface precursors in the original manuscript, it 
makes the analysis more complete that further analysis of the air-sea process affecting ENSO by 
combining SST and wind field changes. We chose the 1997-1998 EP El Niño as a case, and analyzed 



the influence of westerly wind events and thermocline dynamics on the occurrence and development 
of the event with longitude-time diagram. In addition, we selected two El Niño events of 1994-1995 
and 2015-2016 to analyze the impact of PMM on the event through Wind-Evaporation-SST (WES) 
feedback. The results show that EP events are mostly related to the subsurface dynamics of the 
equatorial Pacific, and PMM sometimes contributes to the development of El Nino events, both CP 
and EP events.  

The detailed analysis has been supplemented in the Section 5 from the start of line 413 as the 
blue text below: 
 

 
Figure 9 The composite evolution maps of initial perturbations in heat content before (a) EP-type El Niños, (b) 

CP-type El Niños and (c) La Niñas from 12-month lead to 1-month lead. 

 
“On the whole, the subsurface signals distributed in Fig. 9(a) are more intense and more 

extensive than those in Fig. 9(b), indicating that the occurrence of the EP-type El Niño is more 
related to the subsurface dynamics, while the CP events may be more affected by the atmospheric 
convection. Specifically, compared with Fig. 9(b) (CP-type El Niño), Fig. 9(a) (EP-type El Niño) 
shows a more pronounced signal, especially in the equatorial Pacific. It may be related to the 
stronger zonal tilt change of the equatorial thermocline and larger eastward movement of 
convection in tropical Pacific before the EP-type events.  
 



 
Fig. 10 Longitude-time diagram of monthly surface zonal wind anomalies (left), SST anomalies (middle), and heat 

content (t300) anomalies (right) across the equatorial Pacific (2°N-2°S, 120°E-80°W) from September 1996 to April 

1998. Data are based on NCEP Global Ocean Data Assimilation System and ERA-5.  

 

For example, as shown in Fig. 10, a series of westerly wind events along the equatorial Pacific 
led to an abrupt relaxation and reversal of trade winds in the western and central equatorial Pacific 
in early 1997. The westerly wind anomalies generated downwelling Kelvin waves, which 
propagated eastward and deepened the thermocline in the eastern Pacific in late 1997. The depressed 
thermocline limited the upwelling of subsurface cold water, prompting the development of warm 
surface temperatures. Meanwhile, westward-propagating Rossby waves shallowed the thermocline 
in the western Pacific. These processes led to significant changes in the equatorial thermocline (Fig. 
9(a)), a flattening of the thermocline and a decrease in the zonal SST gradient along the equator. 
The reduction of the SST gradient in turn further weakened the trade winds, leading to the rapid 
development of the 1997/1998 El Niño. La Niña events usually occur in the second year after a 
warm event. As shown in Fig. 9(c), there are precursor signals produced by wind forcing 
propagating eastward from the western tropical Pacific in the subsurface from 12-month lead to the 
occurrence. Combined with the mechanism of the La Niña event, the signal would shoal the 
thermocline in the eastern Pacific and enhance the upwelling of cold subsurface waters, thereby 
ending the El Niño event and triggering a subsequent cold event. 
 



 
Fig. 11 The SST and 10-m wind-vector anomalies for the different seasons before 1994/1995 CP Niño and 2015/2016 

EP Niño. 

 

While the equatorial subsurface signal is weak in Fig. 9(b), there is an obvious signal in the 
North Pacific. The results are consistent with the previous studies that the negative phase of the 
North Pacific Oscillation promotes the development of SST anomalies in the central Pacific (Yu and 
Kim, 2011). Besides, there are robust signals over the northeastern Pacific in both types of El Niño 
(Figs. 9(a), (b)). The distribution is similar to the spatial structure of the Pacific meridional mode 
(PMM). PMM is forced by mid-latitude atmospheric variability in the Northern Hemisphere and 
evolves equatorward subsequently, which can affect ENSO. As shown in Fig. 11, one year before 
the 1994/1995 CP El Niño, there were warm subtropical SST anomalies extending southwest from 
Baja California. The SST anomalies weakened the trade winds and reduced the surface evaporation 
over the region via Wind-Evaporation-SST (WES) feedback. The reduction in evaporation allowed 
warm waters to expand further southwestward, enhancing the PMM and eventually reaching the 
equator, which weakened equatorial trade winds and triggered an El Niño event in late 1994. PMM 
not only appeared before CP El Niño, for example, the emergence of PMM in late 2014 contributed 
to the development of 2015/2016 El Niño (Fig. 11). It indicates that signals outside the tropics play 
an important role in the prediction of El Niño and PMM can be regarded as a precursor to El Niño.” 
 
Minor Comments 
Comment 1: Lines 28-29: For the predictability study of two types of El Nino, Tian and Duan (2015) 
demonstrated that the spring predictability barrier is weaker in CP-El Nino than in EP-El Nino when 
model error effects can be negligible. Tao et al. (2020) used the nonlinear forcing singular vector 
(NFSV)-tendency assimilation approach to improve ENSO model and showed the ability of 
recognizing the types of El Nino at least six months in advance in predictions (also see Tao and 
Duan, 2019).   
l Ben Tian and Wansuo Duan, Comparison of the initial errors most likely to cause a spring 

predictability barrier for two types of El Nino events, Clim Dyn, 2015, DOI:10.1007/s00382-
015-2870-0 

l Tao Lingjiang, and Wansuo, Duan, Using a nonlinear forcing singular vector approach to 
reduce model error effects in ENSO forecasting. Weather and Forecasting. 2019. 1321-1342. 
DOI: 10.1175/WAF-D-19-0050.1 

l Tao Linjiang, Duan Wansuo, and Stephane Vannitsem, Improving forecasts of El Niño diversity: 
a nonlinear forcing singular vector approach. Climate Dynamics. 2020. 55: 739-754. doi: 



10.1007/s00382-020-05292-5 
 
Response: We sincerely appreciate the valuable comments. We have read the literature carefully 
and supplemented the related statements and references from the start of line 29 as the blue text 
below: 
 

“In recent decades, with the increased occurrence of CP El Niño relative to EP El Niño, the 
predictability of two ENSO types has attracted widespread attentions (Lee and McPhaden, 2010). 
Tao et al. (2020) used the nonlinear forcing singular vector (NFSV)-tendency assimilation 
approach to improve ENSO model and showed the ability of recognizing the types of El Niño 
at least six months in advance in predictions (Lingjiang and Wansuo, 2019). Tian and Duan 
(2016) demonstrated that the spring predictability barrier is weaker in CP-El Niño than in 
EP-El Niño when model error effects can be negligible. Improved forecasting and understanding 
of the two types of ENSO are therefore of great importance.” 
References 

Tao, L., Duan, W., and Vannitsem, S.: Improving forecasts of El Niño diversity: a nonlinear forcing singular 

vector approach, Climate Dynamics, 55, 739–754, 2020. 

Lingjiang, T. andWansuo, D.: Using a nonlinear forcing singular vector approach to reduce model error 

effects in ENSO forecasting, Weather and Forecasting, 34, 1321–1342, 2019. 

Tian, B. and Duan, W.: Comparison of the initial errors most likely to cause a spring predictability barrier 

for two types of El Niño events, Climate Dynamics, 47, 779–792, 2016. 

 
Comment 2: Lines 31-38: Using the NFSV-tendency assimilation approach, Duan and Tian (2013) 
revealed the dominant roles of zonal advection process in the development of CP-El Nino and the 
thermocline feedback process in the development of EP-El Nino events; then Duan et al. (2017) 
first demonstrated that the diversity of El Nino is closely related to changes in the nonlinear 
characteristics of the tropical Pacific. 
l Duan W., B. Tian, and H. Xu. Simulations of two types of El Niño events by an optimal forcing 

vector approach.Climate Dynamics: 2013 ,DOI: 10.1007/s00382-013-1993-4 
l Duan Wansuo, Chaoming Huang, Hui Xui, Nonlinearity modulating intensities and spatial 

structures of Central Pacific- and Eastern Pacific-El Niño events, Adv. Atmos. Sci., 2017. 
34,737-756. 

 
Response: Thank you for your introduction to these wonderful research work. According to your 
suggestion, we have supplemented the statements and cited these articles from the start of line 40 
as the blue text below: 
 

“Duan et al. (2013) proposed an optimal forcing vector (OFV) approach to optimize 
the Zebiak–Cane model and reproduced several observed EP and CP events, and revealed the 
dominant roles of zonal advection process in the development of CP-El Niño; then Duan et al. 
(2017) first demonstrated that the diversity of El Niño is closely related to changes in the 
nonlinear characteristics of the tropical Pacific. Accurate simulations and predictions of two 
types of ENSO are still of a great challenge, owing to the inherent uncertainty and diversity of ENSO 
(Chen and Cane, 2008; Trenberth and Stepaniak, 2001; Capotondi et al., 2015).” 



References 

Duan, W., Tian, B., and Xu, H.: Simulations of two types of El Niño events by an optimal forcing vector 

approach, Climate dynamics, 43, 1677–1692, 2014. 

Duan, W., Huang, C., and Xu, H.: Nonlinearity modulating intensities and spatial structures of central 

Pacific and eastern Pacific El Niño events, Advances in Atmospheric Sciences, 34, 737–756, 2017. 

 
Comment 3: Line 32: GFDL abbreviation error. 
 
Response: We are really sorry for our careless mistakes. Thank you for your reminder. We have 
reviewed the full manuscript and revised the abbreviation error at line 36. 
 
Comment 4: Lines 51-52: Duan et al. (2004) is one of the earliest papers that explored the 
precursory disturbance of ENSO events (also see Duan et al., 2013) 
l DuanW. , M. Mu, B. Conditional nonlinear optimal perturbation as the optimal precursors for 

El Nino-Southern Oscillation events. J. Geophy. Res.: 2004 ,109 ,D23105   
l Duan W., Y. Yu, H. Xu, and P. Zhao. Behaviors of nonlinearities modulating El Nino events 

induced by optimal precursory disturbance. Climate Dynamics: 2013 ,40 ,1399–1413 
 
Response: Thank you for your valuable suggestion. These references have been added and 
discussed at line 59 as the blue text below: 
 

“In order to better understand the mechanism of ENSO occurrence, one approach is to explore 
the precursor of ENSO, which is the initial perturbation distribution that is most likely to develop 
into a CP event or an EP event. Duan et al. (2004) is one of the earliest papers that explored the 
precursory disturbance of ENSO events (Duan et al., 2013). These precursors help us understand 
the dynamic process of ENSO and provide the potential to predict ENSO events and their types.” 
References 

Duan, W., Mu, M., and Wang, B.: Conditional nonlinear optimal perturbations as the optimal precursors 

for El Nino–Southern Oscillation events, Journal of Geophysical Research: Atmospheres, 109, 2004. 

Duan,W., Yu, Y., Xu, H., and Zhao, P.: Behaviors of nonlinearities modulating the El Niño events induced by 

optimal precursory disturbances, Climate Dynamics, 40, 1399–1413, 2013. 

 
Comment 5: Line 108: The descriptions of skip-layer connection structure and its attention 
mechanism are insufficient, and it is recommended to add implementation details. 
 
Response: Thank you for the above suggestion. We have added a figure to elaborate the 
implementation details of skip-layer connection and the attention mechanism. For the encoder-
decoder model architecture, skip-layer connection is used to transfer the multi-scale features 
extracted from the encoder layer to the decoder and help restore the fine spatial information. The 
time dimension of the original features obtained from the encoder is the input length of model input 
data 𝑇3$. In order to make the model automatically learn the influence of features of different lead 
months on prediction, we designed an attention mechanism to process the transferred features in the 
skip-layer connection. As shown in Fig. 12, a two-layer densely-connected neural network is used 
for original features to obtain the attention weight 𝛽. The original feature maps of each time step 



are multiplied by the corresponding weights to get the weighted features for the decoder.  
The detailed description and the related figure have been supplemented in the Section 3 from 

the start of line 232 as the blue text below: 
 

 
Figure 12. The detailed structure of the skip-layer connection and attention mechanism between encoder and decoder 

at the 𝑛%& layer in ENSO-MC. 

 
“The ENSO-MC model learns the feature of ENSO at different spatial scales with the 

convolution and pooling layers in the encoder, and gradually restores the spatial dimensionality of 
the original SST field in the decoder. With symmetrical structure design of the encoder and decoder 
as shown in Fig. 1, skip-layer connection is used to transfer features form the encoder to the decoder 
to recover spatial information lost during downsampling (yellow line in Fig. 1). Rather than 
transferring the original features of all time steps obtained from the encoder, we design an attention 
mechanism to enable the skip-layer to automatically learn the attention weights 𝛽!, 𝛽", … , 𝛽# on 
the temporal sequence because these air-sea features may have different effects on ENSO 
development at different time scales. As shown in Fig. 12, the encoder obtains the features 𝑓$ ∈
ℝ%!"×'"×("×)" after maxpooling and convolution calculation at the 𝑛#' layer. Using a two-layer 
densely-connected neural network, we obtain the attention weight 𝛽 ∈ ℝ%!" of each time step’s 
features according to Eq. (1), where 𝑓$* ∈ ℝ%!"×('"×("×)") are reshaped from 𝑓$:  

 
𝛽 = 	softmax1𝐖-. tanh1𝐖./𝑓$* + 𝐛./7 + 𝐛-.7,                                     (1) 

 
where 𝐖./, 𝐖-. are weight matrices created by the layer, and 𝐛./, 𝐛-. are the bias vectors. 𝛽 
represents the contribution of each time step to prediction. According to Eq. 2, the feature maps of 
each time step are multiplied by the corresponding weights, and the fused maps 𝑓$8 ∈ ℝ'"×("×)" 
are obtained by adding them along the time dimension. 

 
𝑓$8 = 	∑ (𝛽 ∘%!" 𝑓$),                                                             (2) 

 
where 𝑓$8  are the feature maps to be transmitted in the skip-layer connection, which are connected 
to the features of the corresponding layer in the decoder. Besides, we also add states connection 
between the encoder and the decoder (grey line in Fig. 1), where the hidden states output by the 
ConvLSTM layers in the encoder are reserved for the corresponding layer when the decoder is 
initialized. With the methods of skip-layer connection and states connection, the model can make 



full use of the information extracted from the encoder before ENSO events, which help stabilize 
training and convergence.” 
 
Comment 6: Line 140: Specific explanation should be given for the meaning represented by SSIM, 
and clarify why it should be used as a loss function in ENSO prediction. 
 
Response: Thank you very much for your kindly suggestions. We agree that we have neglected to 
elaborate on the meaning of the loss functions and the impact of their choices on the forecasts. SSIM 
loss function is used to reduce the global structural differences between prediction and observation 
fields. The main indicators are luminance, contrast and structure, namely the mean value and 
standard deviation of a field, and the covariance of the two fields. Since ENSO is closely related to 
the region of equatorial Pacific where the maximum variance of SST is located, and the mean of 
SST anomalies in some region is commonly used as an indicator of event occurrence, we use the 
loss function based on SSIM to measure the global difference. 

We have added the specific meaning of original SSIM metric and its implications for ENSO 
prediction, and discussed the effects of different loss functions on our training results. The detailed 
description has been supplemented in the Section 2 from the start of line 177 as the blue text below: 
 

“In addition to quantifying difference in each corresponding pixel value between the 
observations and predictions, we introduce a loss based on SSIM to measure the global structural 
differences. SSIM is widely used as a metric to measure the similarity of two images by extracting 
structural information. It takes into account three features: luminance (l), contrast (c) and structure 
(s), and its metric formula is the product of these three elements. 
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I
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=:#&8:$&8;%>=<#&8<$&8;&>
,              (5) 

 
where 𝜇 is the mean value of a field (luminance), 𝜎 is the standard deviation (contrast) and 𝜎9? 
is the covariance of the two fields (structure). 𝐶! , 𝐶" , 𝐶@  are constants used to maintain the 
calculations stable. ENSO is associated with the interannual variations of SST anomalies in the 
tropical Pacific. And the Nino3.4 index is one of the most commonly used ENSO indicators, which 
is the average SST anomalies in the equatorial Pacific sub-region where the maximum variance of 
SST is located. Therefore, SSIM metric can help evaluate important signals embedded in the SST 
patterns for ENSO prediction (Mo el al., 2014). The range of SSIM is from 0 to 1, and when two 
fields are the same, the value of SSIM is 1. Therefore, we construct the SSIM-based loss function 
as  

ℒ11301𝑌, 𝑌O7 =
!7%((∑ BBCD(E),E)G )(

)*% )

"
.                                                 (6)” 

References 

Mo, R., Ye, C., and Whitfield, P. H.: Application potential of four nontraditional similarity metrics in 

hydrometeorology, Journal of Hydrometeorology, 15, 1862–1880, 2014. 

 
The effects of different loss functions on the training results are also additional supplemented 

at the end of Section 3 at the line 258 as the blue text below: 



 

 
Figure 13. The performances of the ENSO-MC with different loss functions. 

 
“We validate the effectiveness of combined loss function. As shown in Fig. 13(a), although 

SSIM and GDL do not significantly improve the model performance when combined with MSE 
alone, the combination of MSE, SSIM and GDL loss functions achieve the best performance on the 
correlation skill. Besides, since GDL loss function tends to retain extreme values and MSE loss 
function tends to smooth all values, the presence of GDL inhibits the decrease of MSE, so the MSE 
errors of the models with GDL loss function are higher than the ones without GDL (Fig. 13(b)). And 
comparing the results of correlation skill and RMSE in Fig. 13(a) and (b), low RMSE values do not 
represent high correlation skills. Therefore, it is necessary to explore loss functions suitable for 
ENSO prediction other than MSE to balance the training of the model.”  
 
Comment 7: Line 147: For “gradient information of gridded variables is important for the model 
to understand changes in the sea temperature”, how does this conclusion come? Please explain why 
gradient information is necessary. 
 
Response: Thank you for pointing out this problem in manuscript. We are very sorry for our 
ambiguous statements of GDL loss. The SST gradient represents the difference in the sea 
temperature across the adjacent area. MSE loss function tends to average the values of all points in 
the whole prediction field to minimize the MSE error (Opera et al., 2020), which is not conductive 
to the prediction of ENSO extreme values, while considering the gradient difference value can 
alleviate this problem. Besides, the SST gradient also plays a role in the atmospheric circulation. 
The region with a large SST gradient will generate stronger winds, which in turn promote the further 
increase of the SST gradient (Bjerknes, 1969). As ENSO approaches maturity, the SST gradient 
increases gradually. Here we only consider the gradient difference in neighboring regions. In future 
studies, we will consider the gradient difference at a larger spatial scale according to the 
characteristics of ENSO, such as the difference in SST between the Western Pacific and the Central 
Pacific during ENSO (Zinke et al., 2021).  

Following your suggestion, we have supplemented a more detailed description of GDL loss 
and the related results of training performance in the Section 2 from the start of line 192 as the blue 
text below: 
 

“We also consider gradient information in the loss functions. The SST gradient represents the 



difference in the sea temperature across the adjacent area. Previous studies have shown that MSE 
loss function tends to average the values of all points in the whole prediction field to minimize the 
MSE error, while considering the gradient difference value can alleviate this problem (Opera et al., 
2020). Besides, the SST gradient also plays a role in the atmospheric circulation. The region with a 
large SST gradient will generate stronger winds, which in turn promote the further increase of the 
SST gradient (Bjerknes, 1969). As ENSO approaches maturity, the SST gradient increases gradually. 
Therefore, we use the GDL to measure the gradient difference of the surface sea temperature field: 

ℒ4561𝑌, 𝑌O7 =
!
%
∑ ∑ QR𝑌3,H# − 𝑌37!,H# R − R𝑌O3,H# − 𝑌O37!,H# RQ
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"
3,H

%
#I! 			(7)	

where 𝑖, 𝑗  denote the pixel position on the sea surface temperature field. Here we only 
consider the gradient difference in neighboring regions. In future studies, we will consider the 
gradient difference at a larger spatial scale according to the characteristics of ENSO, such as the 
difference in SST between the Western Pacific and the Central Pacific during ENSO (Zinke et al., 
2021).  
 

 
Figure 13. The performances of the ENSO-MC with different loss functions. 

 
We validate the effectiveness of combined loss function. As shown in Fig. 13(a), although 

SSIM and GDL do not significantly improve the model performance when combined with MSE 
alone, the combination of MSE, SSIM and GDL loss functions achieve the best performance on the 
correlation skill. Besides, since GDL loss function tends to retain extreme values and MSE loss 
function tends to smooth all values, the presence of GDL inhibits the decrease of MSE, so the MSE 
errors of the models with GDL loss function are higher than the ones without GDL (Fig. 13(b)). And 
comparing the results of correlation skill and RMSE in Fig. 13(a) and (b), low RMSE values do not 
represent high correlation skills. Therefore, it is necessary to explore loss functions suitable for 
ENSO prediction other than MSE to balance the training of the model.” 
References 

Oprea, S., Martinez-Gonzalez, P., Garcia-Garcia, A., Castro-Vargas, J. A., Orts-Escolano, S., Garcia-Rodriguez, J., 

and Argyros, A.: A review on deep learning techniques for video prediction, IEEE Transactions on Pattern Analysis 

and Machine Intelligence, 2020. 

Bjerknes, J.: Atmospheric teleconnections from the equatorial Pacific, Monthly weather review, 97, 163–172, 1969. 

Zinke, J., Browning, S., Hoell, A., and Goodwin, I.: The West Pacific Gradient tracks ENSO and zonal Pacific sea 

surface temperature gradient during the last Millennium, Scientific reports, 11, 1–16, 2021. 

 



Comment 8: Line 225: It is suggested to clarify whether the precursor analysis is based on a multi-
step forecast strategy model or a one-step model. 
 
Response: Thank you for spotting our crucial neglects in precursor analysis. Since the ENSO-MC 
model performs better using the multi-step forecast strategy, we calculate the saliency maps for 
precursor analysis and sensitive area identification based on the multi-step forecasting model. The 
related statements have been supplemented at the line 370 as the blue text below: 
 

“Based on the ENSO-MC model that successfully simulates different types of ENSO events, we 
can further explore the ENSO dynamics learned by the ENSO-MC model and observe the signals 
before the onset of events. And since the ENSO-MC model using the multi-step forecast strategy 
achieves better performance than using one-step strategy, here we calculate the saliency maps 
based on the multi-step forecasting model for precursor analysis and sensitive area 
identification.” 
 
Comment 9: Line 273-274: Here the first two areas with the highest sensitivity are selected as 
sensitive areas. If the first three or more are selected, will the benefit be higher? 
 
Response: Thanks for bringing up this issue that we didn’t illustrate in the previous manuscript. Fig. 
20(b) shows the sensitivity of six given regions we calculated through sensitivity experiments.  

 
Figure 14. Sensitive areas identification results for ENSO with the saliency map method.  

 
In our manuscript, the first two areas with the highest sensitivity of surface as well as subsurface 
are selected as the sensitive areas of targeted observation for ENSO. Due to the diversity of sensitive 
areas for ENSO, and the fact that we want to explore the distribution of sensitive areas in the tropical 
Pacific as well as the subtropical Pacific, the number of sensitive areas we identify is greater than 
1. Following your suggestion, we select the first three most sensitive areas to evaluate the benefit 
of the identification, that is, the area_0, area_1 and area_2 for surface and the area_1, area_3 and 
area_4 for subsurface as shown in Fig. 14(b).  



 
Figure 15. The benefit for removing the random perturbations in the sensitive areas (blue) and removing the random 

perturbations outside the sensitive areas (orange) for the eight El Niño events and three La Niña events. (a) uses the 

first two areas with the highest sensitivity. (b) uses the first three areas. 

 

The results are illustrated in Fig. 15(b). Compared with the benefit of two sensitive areas (Fig. 14(a)), 
the benefits for most ENSO events do not increase significantly after adding one more sensitive 
area, except that the events in 2002 and 2010 each increase by about 7%. Therefore, we think it is 
appropriate and reasonable to choose the first two areas here.  
 
Comment 10: Figure 5: How can we know that the forecasting skills of this model decline fastest 
in the late boreal spring? please provide a clear analysis. In Fig. 5(d), the forecasting skills improve 
slightly after 12 months in the one-step strategy model. Why does this happen? 
 
Response: Thank you for pointing out this problem in manuscript. We have marked the original Fig. 
5 and supplemented Fig. 16 to present the decline of forecasting skills in each target month 
compared with the previous month in multi-step time series forecasting. The prediction skills of the 
model decline most from April to May, regardless of whether the multi-step or one-step ahead 
forecast strategy is used. It makes the forecasting skills of the model for ENSO are reduced to the 
lowest in May and June, as marked by the black numbers in Fig. 5. Besides, Fig. 16 shows that the 
performance of the model is slightly improved in winter, which leads to the improvement of skills 
after 12 months in Fig. 5. Since the seasonal variation of SST anomaly variance is weaker in spring, 
it is difficult for the model to capture useful information, which leads to the spring predictability 
barrier, while the strong signals of ENSO during winter are more easily learned by the model.  

The analysis and the related figures have been modified and supplemented from the start of 
line 350 as the blue text below: 
 



 
Figure 5. The correlation skills of the Nino3.4 index forecasts started from each calendar month in ENSO-MC using 

multi-step forecast strategy (a) and one-step ahead forecast strategy (b) for the GODAS data from 1982 to 2019. (c) 

is the same as (a), except for the GODAS data from 2010 to 2019. (b) is the same as (d), except for the GODAS data 

from 2010 to 2019. Hatches represent the forecasts with correlation skill exceeding 0.5, and the black numbers mean 

the target forecast months. 

 

 
Figure 16. The decline of forecasting skills for ENSO in each target month using multi-step forecast strategy and 

one-step ahead forecast strategy. 

 
“Figures 5(a) and 5(c) are the results of multi-step prediction, while Figures 5(b) (1982-2019) 

and 5(d) (2010-2019) are the results of one-step prediction. It shows that regardless of the season 
from which the forecast is started, the skills would be reduced for predictions targeting the late 
boreal spring (April-May–June, AMJ), as indicated by the black numbers in Fig. 5. We also calculate 
the overall decline of forecasting skills in each target month compared with the previous month and 
the results are presented in Fig. 16. The prediction skills of the model decline most from April to 
May, regardless of whether the multi-step or one-step ahead forecast strategy is used. Besides, Fig. 
16 shows that the performance of the model is slightly improved in winter, which leads to the 
improvement of skills after 12 months in Fig. 5. Since the seasonal variation of SST anomaly 



variance is weaker in spring, it is difficult for the model to capture useful information, which leads 
to the spring predictability barrier (SPB), while the strong signals of ENSO during winter are more 
easily learned by the model. In addition, the one-step ahead strategy has a larger decline after the 
boreal spring (Fig. 16), and the subsequent forecasts are more susceptible to the SPB due to its 
cumulative error (Figs. 5(b), (d)), while the method of the multi-step strategy can reduce the 
influence (Figs. 5(a), (c)). We can conclude that the ENSO-MC model using multi-step forecast 
strategy is less affected by spring predictability barriers. 
 
Comment 11: Figure 7, 8: It is suggested to further clarify whether the saliency value in the figure 
is the result after standardization or the original perturbation amplitude of SST and heat content. 
 
Response: Thank you so much for your professional attitude and spotting our neglects in figures. 
The saliency values in the figures are standardization results of scaling between 0 and 1. We have 
supplemented the related statements at line 453 as the blue text below: 
 

“Then all the saliency maps of SST are added up to obtain the composite saliency map of the 
surface (Fig. 7(a)), and that of the subsurface (Fig. 7(b)) is obtained in the same way. The saliency 
values in the figure are the standardized results of the scale between 0 and 1.” 
 
 
Thank you again for your positive comments and valuable suggestions to improve the quality of our 
manuscript. 
 
On behalf of all the co-authors, best regards, 
Yuehan Cui 


