
Overview 
This work presents two generalized hybrid methods for atmospheric inversion modeling 
schemes, one involving a fixed prior mean and another with an unknown prior mean. These 
methods offer greater computational efficiency during the inversion process and approximate 
posterior covariance matrices that may otherwise be unfeasible to calculate. Results were 
presented in the context of a continental inversion scheme using synthetic CO2 observations 
from the OCO-2 instrument. Although this manuscript is mathematically dense, it is well written 
and informative. The given detail of the Bayesian inversion scheme may narrow the readership 
of this article to those specializing in this type of mathematics while being more challenging to 
implement by those who have only an operational knowledge of inversions. Nonetheless, this 
work provides a timely improvement to the atmospheric inversion modeling process as the 
number of space-based CO2 observing platforms is set to increase. I recommend that this article 
be published once the following comments have been addressed. 
 
General Comments 
The introduction is clear and well written; however, additional motivation would strengthen this 
work. Currently, the introduction poses the content as an “interesting math problem” but fails to 
answer the question of why are inversions so important that they need to be done faster? Since 
this publication was submitted to GMD, the physical implications of this work should also be 
mentioned. Observation systems are increasing in number, allowing scientists to better constrain 
anthropogenic influences on the climate. To mitigate these influences, rapid monitoring, 
reporting, and verification of emissions (anthropogenic and otherwise) is needed to ensure cities, 
regions, and nations are working to reduce them. Ultimately, the work presented in this 
manuscript will assist with this challenge, making it more than just “interesting math”. These 
points should be reiterated in the conclusion. 
 
In line 22, it is stated that “the number of greenhouse gases and air pollution measurements has 
greatly expanded in the past decade, enabling investigations of surface fluxes across larger 
regions, longer time periods, and/or at finer spatial and temporal detail.” However, the only 
example of a ground-based network given was NOAA’s GML. Several other local/regional 
ground-based monitoring systems exist and could be offered to readers as additional examples. 
Salt Lake City’s UUCON, Indianapolis INFLUX, UC Berkeley’s BEACON. (Some of these 
networks may provide data to NOAA’s GML data archive but their local/regional focus is worth 
noting.) 
 
Approximate posterior covariance matrices, 𝑸"!"#$ and 𝚪$!"#$ are given in line 264 and Equation 
B6 respectively. For the effectiveness of these approximation methods, the reader is referred to a 
citation: Saibaba et al., 2020. A few sentences within this manuscript describing results from 
Saibaba et al., the effectiveness of the approximations, limitations, etc. would benefit the curious 
reader. 
 
The two case studies reported in this work made use of pseudo-observations from NASA’s 
OCO-2 instrument to estimate CO2 fluxes at 3-hour intervals and 1º x 1º spatial resolution. It is 
unclear from the text alone how OCO-2 soundings were incorporated into the inversion scheme. 
Generally, OCO-2 soundings are densely spaced (~2-3km apart) and demonstrate varying spatial 
correlation in error. How is the assumption of spatially independent errors (𝑅 = 𝜎%𝑰) justified? 



How/if soundings were spatiotemporally aggregated for this study is not clear. These details 
should be briefly included in the text while referring readers to other sources for more detail. 
 
Figures 4 and 7 present the results of this work in a concise way; however, it is difficult to 
compare the effectiveness of so many different methods. Consider plotting the differences 
between the estimated and true fluxes. Obviously, the goal is to get as close to the true flux as 
possible. So, using a blue (-) to red (+) color gradient will easily show where the inversion is 
overestimating, underestimating, and effectively reproducing true emissions. Comparing 
gradients associated with relative differences may be easier across the various model outputs. 
 
Technical Specifics 
Moving the citations in line 28 to immediately follow its associated observing system instead of 
listing them at the end of the statement would be helpful for readers. 
 
In line 82, it may be worth pointing out, for readers unfamiliar with this technique, that flux 
values from spatially explicit 2D arrays (x,y) are represented as a vector in this technique. Thus, 
n is the number of cells in the domain of interest. i.e. – enforce how 𝑠 is constructed. 
 
Minor point: In lines 52, 139, 150, 157, 247, 254, 265, 370, papers are referenced directly in the 
text but they still have parentheses around them. Typically, parentheses are only included if a 
statement is cited without direct reference in the text. (Is this GMD formatting?) 
 
On line 247, the sentence beginning with “Instead, we follow the approach described in…” the 
word ‘using’ is included twice, making the sentence awkward to read. 
 
In line 291, p appears to be “filler” dimensions in the matrix to ensure that matrix multiplications 
work out. Although this can be intuited from the mathematics, it would be beneficial to point it 
out in the text. 
 
In line 343, 𝜎 = 2. It is suggested in the text that this corresponds to nlevel 100%. So, how can 
nlevel 50% be 0.5648 as in Table 1? Isn’t the percentage of nlevel relative to this value from 
Miller et al., 2020? This is unclear in the text. 
 
What are the units of θ& and 𝜃' in line 370? 
 
Apparent typo in line 373: “… sparse can…” should be “… sparse and can…” 
 
Figure #3 needs some work. The axes and title texts need to be made smaller to better fit the in-
plot labels of 𝜆𝜎. Smaller text will allow for bigger plot areas. 
 


