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Abstract. The reduction of the computational effort is desirable for the simulation of marine ecosystem models. Using a

marine ecosystem model, the assessment and the validation of annual periodic solutions (i.e., steady annual cycles) against

observational data are crucial to identify biogeochemical processes, which, for example, influence the global carbon cycle.

For marine ecosystem models, the transport matrix method (TMM) already lowers the runtime of the simulation significantly

and enables the application of larger time steps straightforwardly. However, the selection of an appropriate time step is a5

challenging compromise between accuracy and shortening the runtime. Using an automatic time step adjustment during the

computation of a steady annual cycle with the TMM, we present in this paper different algorithms applying either an adaptive

step size control or decreasing time steps in order to use the time step always as large as possible without any manual selection.

For these methods and a variety of marine ecosystem models of different complexity, the accuracy of the computed steady

annual cycle achieved the same accuracy as solutions obtained with a fixed time step. Depending on the complexity of the10

marine ecosystem model, the application of the methods shortened the runtime significantly. Due to the certain overhead of the

adaptive method, the computational effort may be higher in special cases using the adaptive step size control. The presented

methods represent computational efficient methods for the simulation of marine ecosystem models using the TMM but without

any manual selection of the time step.

1 Introduction15

In climate research, marine ecosystem models are important for the assessment of the role of the marine ecosystem in climate

change. Diverse biogeochemical processes influence the changes of the marine ecosystem. As part of the global carbon cycle,

one aim, for example, is to identify biogeochemical processes that affect the CO2 uptake and storage of the ocean. Marine

ecosystem models take the interplay of the ocean circulation and the biogeochemical processes into account and, therefore,

consists of a global circulation model coupled to a biogeochemical model (cf. Fasham, 2003; Sarmiento and Gruber, 2006). The20

equations and variables describing the ocean dynamics (i.e., the physical processes) are well known. In contrast, many different

biogeochemical models exist differing in the complexity by the number of state variables and parametrizations, because there is,

in general, no set of equations and variables to describe the biogeochemical processes (see e.g., Kriest et al., 2010). Accordingly,
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a validation of the different biogeochemical models is necessary including the assessment of the ability of the model output to

reproduce observational data (cf. Fennel et al., 2001; Schartau and Oschlies, 2003). This assessment involves both a parameter25

optimization and a discussion of the simulation results.

Simulation runs with marine ecosystem models are computationally expensive. In three spatial dimensions, the simultaneous

computation of the ocean circulation and the biogeochemical model already results in a high computational effort for a single

evaluation of a marine ecosystem model (Oschlies, 2006). Thus, the computational effort of the computation of a steady annual

cycle is enormous because it requires a long-time integration over several millennia (cf. Bernsen et al., 2008; Bryan, 1984;30

Danabasoglu et al., 1996; Wunsch and Heimbach, 2008; Siberlin and Wunsch, 2011). For applications requiring a high number

of model evaluations (such as parameter sensitivity, uncertainty or identification studies (e.g. Kriest, 2017; Kriest et al., 2017)),

the high computational effort becomes even more obstructive.

Several strategies focus on the reduction of the computational effort to compute a steady annual cycle of a marine ecosys-

tem model (e.g., Bryan, 1984; Danabasoglu et al., 1996; Wang, 2001; Khatiwala et al., 2005). Using domain decomposition35

methods, parallelization, firstly, lowers the computational effort. Instead of using a fully coupled simulation (also called on-

line simulation), the offline model, secondly, reduces the computational effort. More specifically, an offline model considers

only the one-way coupling of the influence of the ocean circulation on the biogeochemical model. Due to the neglect of the

impact of the biogeochemical model on the circulation, an offline model can use pre-computed data of the ocean circulation.

Khatiwala et al. (2005), thirdly, introduced with the transport matrix method (TMM) a method reducing the computational40

effort with a tolerable loss of accuracy (see also Khatiwala, 2007). The TMM approximates the computation of the global

ocean circulation by matrix-vector multiplications and, hence, decouples the evaluation of the biogeochemical model from the

ocean circulation. Moreover, Khatiwala (2008) replaced the long-time integration in the TMM by the use of Newton’s method.

Lastly, the computation of steady annual cycles using graphics processing units shortens the computational time (Siewertsen

et al., 2013). These methods are only four examples of the strategies to reduce the computational effort.45

The used time step affects both the computational effort and the accuracy of the steady annual cycle computation. The

application of larger time steps obviously reduces the computational effort whereas the accuracy of the steady annual cycle

approximation decreases with a larger time step. In many cases and, specifically, for less complex models, approximations of

the same steady annual cycles as the ones obtained with the standard time step can be computed with bigger ones (Pfeil and

Slawig, 2021a). The obtained steady annual cycles were the same as for small time steps, but achieved with slightly reduced50

accuracy. In fact, some studies using the TMM for parameter optimization, where the runtime is a crucial point, have already

used larger time steps (e.g., Prieß et al., 2013; Kriest et al., 2017). However, the selection of a suitable time step is a challenging

task, also in the TMM. The time step should be chosen as large as possible to keep the computational effort low, but the accuracy

of the approximation cannot be neglected. In this paper, we present methods adjusting automatically the time steps during the

computation of the steady annual cycle. One approach is an adaptive step size control that, depending on an error estimation,55

adjusts the time step during the simulation. Here, we studied two methods ignoring and avoiding negative tracer concentrations

during the step size control, respectively. The third method starts with a possible large time step and uses it as long as possible

before the time step is decreased. For this purpose, the method checks the progress of the steady annual cycle computation
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using the current time step. In particular, all methods use the largest possible time step to shorten the runtime of the simulation

of marine ecosystem models.60

This paper is structured as follows: Sect. 2 contains a description of marine ecosystem models including the computation

of steady annual cycles. In Sects. 3 and 4, we introduce the three methods used to compute a steady annual cycle with an

automatic time step adjustment. Numerical results for the steady annual cycle computation are presented in Sect. 5. The paper

closes with a summary and conclusions (Sect. 6).

2 Model description65

A marine ecosystem model represents the interaction between the ocean circulation, the ocean biota and marine biogeochemi-

cal cycles. This involves modeling the marine ecosystem by a given number of ecosystem species (or biogeochemical tracers),

which are substances in the ocean water and subject to chemical or biochemical reactions. Due to the fully coupling of the

ocean circulation with the tracers, in which the circulation influences the tracer concentrations and, vice versa, the tracer con-

centrations affect the circulation, the simulation of a fully coupled model (online model) is computationally expensive and70

limited to single model evaluations. Restricting this coupling to the influence of the ocean circulation on the tracer concentra-

tions (i.e., an offline model using passive tracers that do not affect the ocean circulation) reduces the computational effort. In

particular, this one-way coupling enables the application of a pre-computed ocean circulation for the simulation.

2.1 Model equations for marine ecosystems

A system of partial differential equations describes the marine ecosystem model. The number of modeled tracers defines the75

complexity of the marine ecosystem model and, hence, the size of the system of differential equations. For ny ∈ N tracers

on a spatial domain Ω⊂ R3 (i.e., the ocean) and a time interval [0,1] (i.e., one model year), we consider, hereinafter, marine

ecosystem models using an offline model. With the function yi : Ω× [0,1]→ R, i ∈ {1, . . . ,ny}, of the tracer concentrations

for the single tracer yi and the vector y := (yi)
ny

i=1 of all tracers, the system of parabolic partial differential equations

∂yi

∂t
(x,t) + (D(x,t) +A(x,t))yi(x,t) = qi (x,t,y,u) , x ∈ Ω, t ∈ [0,1], (1)80

∂yi

∂n
(x,t) = 0, x ∈ ∂Ω, t ∈ [0,1], (2)

i ∈ {1, . . . ,ny}, represents the tracer transport of a marine ecosystem model. The homogeneous Neumann boundary conditions

(2) including the normal derivative models no fluxes on the boundary.

The advection and diffusion, coming from the ocean circulation, determines the tracer transport in marine water. For a given

velocity field v : Ω× [0,1]→ R3, the linear operator A : Ω× [0,1]→ R models the advection as85

A(x,t)yi(x,t) := div(v(x,t)yi(x,t)) , x ∈ Ω, t ∈ [0,1], (3)

for i ∈ {1, . . . ,ny}. The diffusion D : Ω× [0,1]→ R used as model of the turbulent effects of the ocean circulation neglects

the molecular diffusion of the tracers themselves since this is known to be much smaller in relation to the diffusion caused by
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turbulence. As a result of the quite different scales in horizontal and vertical direction, the diffusion operator is split into a sum

D =Dh +Dv of a horizontal and vertical part in order to treat the vertical part in the time integration implicitly. The diffusion90

is split into horizontal and vertical part as

Dh(x,t)yi(x,t) :=−divh (κh(x,t)∇hyi(x,t)) , x ∈ Ω, t ∈ [0,1], (4)

Dv(x,t)yi(x,t) :=− ∂

∂z

(
κv(x,t)

∂yi

∂z
(x,t)

)
, x ∈ Ω, t ∈ [0,1], (5)

for i ∈ {1, . . . ,ny}. Here, divh and∇h denote the horizontal divergence and gradient, respectively, and z the vertical coordinate.

The diffusion coefficient fields κh,κv : Ω× [0,1]→ R are the same for all tracers due to the fact that the molecular diffusion is95

generally assumed to be smaller than the diffusion induced by the turbulence of the ocean circulation.

The biogeochemical model contains the biogeochemical processes within the marine ecosystem. The interplay of the biogeo-

chemical model with the effects of the ocean circulation (i.e., the whole system (1) to (6)), on the other hand, is called marine

ecosystem model. For the tracer yi, i ∈ {1, . . . ,ny}, the, in general, nonlinear function qi : Ω×[0,1]→ R,(x,t) 7→ qi (x,t,y,u)

describes the biogeochemical processes for this tracer. In particular, this nonlinear function qi includes firstly the influence of100

the variability of the solar radiation at space and time, secondly the coupling of this tracer to the other species and thirdly

nu ∈ N model parameters u ∈ Rnu controlling, for example, growth, loss and mortality rates or sinking speed of this tracer.

Altogether, the biogeochemical model q = (qi)
ny

i=1 summarizes the biogeochemical processes of all tracers.

An annual periodic solution of the marine ecosystem (i.e., a steady annual cycle) satisfies in addition to (1) and (2)

yi(x,0) = yi(x,1), x ∈ Ω, (6)105

for i ∈ {1, . . . ,ny}. For this purpose, we assume that the operators D,A and the functions qi are also annually periodic in time.

2.2 Semi-discrete setting

For the adaptive step-size control, we used a semi-discrete setting where the computational domain is already discretized in

space, but time is kept continuous. Then the above equations read

∂yi

∂t
(t) + (D(t) + A(t))yi(t) = qi(t,y(t),u), t ∈ [0,1],110

with initial value yi(0) = y0
i .

2.3 Biogeochemical models

The biogeochemical models, used in this paper, differed in the number of ecosystem species. Kriest et al. (2010) introduced

a hierarchy of five biogeochemical models with an increasing complexity starting with a simple model including only one

tracer up to a model with five tracers. In addition to this hierarchy, we applied the biogeochemical model of Dutkiewicz et al.115

(2005). In the following, we briefly describe the biogeochemical models and refer to Kriest et al. (2010); Piwonski and Slawig

(2016a); Dutkiewicz et al. (2005) for a detailed description of the modeled processes and model equations. Table 1 summarizes

the model parameters of the different biogeochemical models.
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Table 1. Model parameters of the biogeochemical models.

Parameter Description Unit

kw Attenuation coefficient of water m−1

kc Attenuation coefficient of phytoplankton (mmol P m−3)−1m−1

µP Maximum growth rate d−1

µZ Maximum grazing rate d−1

KN Half saturation constant for PO4 uptake mmol P m−3

KP Half saturation constant for grazing mmol P m−3

KI Light intensity compensation W m−2

σZ Fraction of production remaining in Z 1

σDOP Fraction of phytoplankton and zooplankton losses assigned to DOP 1

λP Linear phytoplankton loss rate d−1

κP Quadratic phytoplankton loss rate (mmol P m−3)−1d−1

λZ Linear zooplankton loss rate d−1

κZ Quadratic zooplankton loss rate (mmol P m−3)−1d−1

kc Attenuation coefficient of phytoplankton (mmol P m−3)−1d−1

λ′P Phytoplankton mortality rate d−1

λ′Z Zooplankton mortality rate d−1

λ′D Degradation rate d−1

λ′DOP Decay rate yr−1

b Implicit representation of sinking speed 1

aD Increase of sinking speed with depth d−1

bD Initial sinking speed m d−1

Especially, the biological production depends on the available light. The light intensity decreases with the depth wherefore

the ocean is divided into two layers, a euphotic (sun lit) layer of about 100m and an aphotic zone below. Depending on the120

insolation based on the astronomical formula of Paltridge and Platt (1976), the light limitation function I : Ω× [0,1]→ R≥0

models the available light taking the ice cover and the exponential attenuation of water into account. Since the main part of the

biological production occurs in the euphotic layer, particulate matter sinks from the euphotic layer to depth and remineralizes

there according to the empirical power-law relationship (Martin et al., 1987).

The N model is the simplest biogeochemical model of the hierarchy and represents only phosphate (PO4) as inorganic125

nutrients (cf. Bacastow and Maier-Reimer, 1990; Kriest et al., 2010). The available nutrients and light restrict the phytoplankton

production (or biological uptake). The phytoplankton production

fP : Ω× [0,1]→ R,fP (x,t) = µP y
∗
P

I(x,t)
KI + I(x,t)

yN (x,t)
KN + yN (x,t)

(7)
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Table 2. Reference parameter values of the biogeochemical models taken from Kriest et al. (2010) as well as lower (b`) and upper (bu)

bounds for the parameter values used to generate the Latin hypercube sample.

Parameter N N-DOP NP-DOP NPZ-DOP NPZD-DOP b` bu

kw 0.02 0.02 0.02 0.02 0.02 0.01 0.05

kc 0.48 0.48 0.48 0.24 0.72

µP 2.0 2.0 2.0 2.0 2.0 1.0 4.0

µZ 2.0 2.0 2.0 1.0 4.0

KN 0.5 0.5 0.5 0.5 0.5 0.25 1.0

KP 0.088 0.088 0.088 0.044 0.176

KI 30.0 30.0 30.0 30.0 30.0 15.0 60.0

σZ 0.75 0.75 0.05 0.95

σDOP 0.67 0.67 0.67 0.67 0.05 0.95

λP 0.04 0.04 0.04 0.02 0.08

κP 4.0 2.0 6.0

λZ 0.03 0.03 0.015 0.045

κZ 3.2 3.2 1.6 4.8

λ′P 0.01 0.01 0.01 0.005 0.015

λ′Z 0.01 0.01 0.005 0.015

λ′D 0.05 0.025 0.1

λ′DOP 0.5 0.5 0.5 0.5 0.25 1.0

b 0.858 0.858 0.858 0.858 0.7 1.5

aD 0.058 0.029 0.087

bD 0.0 0.0 0.0

depends on the maximum production rate µP and applies an implicitly prescribed concentration of phytoplankton y∗P =

0.0028 mmol P m−3. Altogether, nu = 5 model parameters listed in Table 2 control the biogeochemical processes of the130

nutrient tracer y = (yN).

The N-DOP model includes dissolved organic phosphorus (DOP) in addition to nutrients (N), i.e., y = (yN,yDOP) (cf.

Bacastow and Maier-Reimer, 1991; Parekh et al., 2005; Kriest et al., 2010). This model computes the phytoplankton production

also with (7) and introduces nu = 7 model parameters (Table 2).

The NP-DOP model contains phytoplankton (P) in addition to nutrients (N) and dissolved organic phosphorus (DOP), i.e.,135

y = (yN,yP,yDOP) (cf. Kriest et al., 2010). As a result of the explicit treatment of phytoplankton, the NP-DOP model computes

the phytoplankton production again with (7) but using the explicit phytoplankton concentration yP instead of y∗P . A quadratic
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loss term for phytoplankton, moreover, models the zooplankton grazing

fZ : Ω× [0,1]→ R,fZ(x,t) = µZy
∗
Z

yP (x,t)2

K2
P + yP (x,t)2

(8)

with the implicitly prescribed zooplankton concentration y∗Z = 0.01 mmol P m−3. The nu = 13 model parameters listed in140

Table 2 control the biogeochemical processes of the NP-DOP model.

The NPZ-DOP model consists of four tracers, nutrients (N), phytoplankton (P), zooplankton (Z) and dissolved organic

phosphorus (DOP), i.e., y = (yN,yP,yZ,yDOP) (cf. Kriest et al., 2010). While the phytoplankton production (7) is the same

as for the NP-DOP model, the zooplankton grazing (8) explicitly contains the zooplankton concentration yZ instead of the

implicitly prescribed concentration y∗Z . The model introduces nu = 16 model parameters summarized in Table 2.145

The NPZD-DOP model, the most complex model of the hierarchy, finally, contains detritus (D) in addition to nutrients (N),

phytoplankton (P), zooplankton (Z) and dissolved organic phosphorus (DOP), i.e., y = (yN,yP,yZ,yD,yDOP) (cf. Schmittner

et al., 2005; Kriest et al., 2010). Both the phytoplankton production (7) and the zooplankton grazing (8) are identical to the

NPZ-DOP model. Table 2 lists the nu = 18 model parameters of the NPZD-DOP model.

The MITgcm-PO4-DOP model contains phosphate (PO4) and dissolved organic phosphorus (DOP). This model introduced150

by Dutkiewicz et al. (2005) for the biogeochemistry tutorial that uses the MIT general circulation model (cf. Marshall et al.,

1997) resembles the N-DOP model. As the N-DOP model, the MITgcm-PO4-DOP introduces nu = 7 model parameters which

we identified with the models parameters of the N-DOP model (Table 2).

2.4 Transport matrix method

The transport matrix method (TMM) reduces the simulation of the tracer transport of an offline model to matrix-vector mul-155

tiplications. Khatiwala et al. (2005) applied a linear matrix equation instead of directly implementing a discretization scheme

for the advection-diffusion equation (1) because the application of the operators A and D for the advection and diffusion on a

spatially discretized tracer vector is linear (see also Khatiwala, 2007). Consequently, the TMM approximates the ocean circu-

lation by matrices which include the influence of all parameterized processes represented in the underlying ocean circulation

model on the transport.160

Each time step of the simulation with the TMM requires only two matrix-vector multiplications and an evaluation of the

biogeochemical model. For the discretization of the advection-diffusion equation, let (xk)nx

k=1 a spatial discretization with

nx ∈ N grid points of the domain Ω (i.e., the ocean) and the time steps t0, . . . , tnt
∈ [0,1], nt ∈ N, specified by

tj := j∆t, j = 0, . . . ,nt, ∆t :=
1
nt
,

an equidistant grid of the time interval [0,1] (i.e., one model year). For a time instant tj , j ∈ {0, . . . ,nt− 1}, the vector yji ≈165

(yi (tj ,xk))nx

k=1 ∈ Rnx is a spatial discretization of the tracer yi, i ∈ {1, . . . ,ny}, and qji ≈ (qi (xk, tj ,yj ,u))nx

k=1 ∈ Rnx the

spatially discretized biogeochemical term qi for the tracer yi. Besides, yj := (yji)
ny

i=1 ∈ Rnynx and qj := (qji)
ny

i=1 ∈ Rnynx

summarize the tracer discretization as well as the biogeochemical terms for all tracers using a reasonable concatenation.
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Discretizing the advection and horizontal diffusion explicitly and the vertical diffusion implicitly, the application of a semi-

discrete Euler scheme for (1) yields a time-stepping170

yj+1 =
(
I + ∆tAj + ∆tDh

j

)
yj + ∆tDv

j yj+1 + ∆tqj (yj ,u) , j = 0, . . . ,nt− 1,

with the identity matrix I ∈ Rnx×nx and the spatially discretized counterparts Aj ,Dh
j and Dv

j of the operators A,Dh and

Dv at time instant tj , j ∈ {0, . . . ,nt− 1}. The matrices Dv
j are block-diagonal since they involve only the vertical part of the

diffusion. Thus, each water column is separated from the others. We denote the explicit and implicit transport matrices by

Texp
j := I + ∆tAj + ∆tDh

j ∈ Rnx×nx ,175

Timp
j :=

(
I−∆tDv

j

)−1 ∈ Rnx×nx

for each time instant tj , j ∈ {0, . . . ,nt−1}. The implicit matrices Timp
j , j ∈ {0, . . . ,nt−1}, are block-diagonal again since the

inversion of a matrix keeps this structure. Finally, a time step of the marine ecosystem model using the TMM is given by

yj+1 = Timp
j

(
Texp

j yj + ∆tqj (yj ,u)
)

=: ϕj (yj ,u) , j = 0, . . . ,nt− 1. (9)

Due to the grid-point based ocean circulation model, both the explicit and the implicit transport matrices are sparse. For the180

implicit ones, this is given by their block-diagonal structure.

In practical computations, the TMM computed and stored monthly averaged matrices and interpolated those linearly for any

time instant tj , j = 0, . . . ,nt− 1. In this paper, we applied transport matrices computed with the MIT ocean model (Marshall

et al., 1997) used a global configuration with a latitudinal and longitudinal resolution of 2.8125◦ and 15 vertical layers.

2.5 Computation of steady annual cycles185

For a marine ecosystem model, the steady annual cycle is a fixed-point of the spin-up. Applying the above iteration (9) over

one model year, the steady annual cycle (i.e., an annual periodic solution) in a fully discrete setting fulfills

ynt
= y0.

The steady annual cycle is a fixed-point of the nonlinear mapping

Φ := ϕnt−1 ◦ . . . ◦ϕ0,190

with ϕj defined in (9), describing the time integration of (9) over one model year. A classical fixed-point iteration takes the

form

y`+1 = Φ
(
y`,u

)
, `= 0,1, . . . , (10)

using an arbitrary start vector y0 ∈ Rnynx and model parameters u ∈ Rnu . Interpreting the fixed-point iteration as pseudo-time

stepping or spin-up, the vector y` ∈ Rnynx contains the tracer concentrations at the first time instant of the model year ` ∈ N.195
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We tested the numerical convergence of the spin-up (i.e,. of the iteration (10)) with the difference between two consecutive

iterates determined by

ε` :=
∥∥y`−y`−1

∥∥ (11)

for iteration (model year) ` ∈ N0. For this purpose, we quantified this difference with various norms. Namely, we defined a

weighted Euclidean norm200

‖z‖2,w :=

(
ny∑

i=1

nx∑

k=1

wkz
2
ik

) 1
2

with weights wk ∈ R>0 for k ∈ {1, . . . ,nx} and z ∈ Rnynx indexed as z = ((zik)nx

k=1)ny

i=1
. If all weights are equal to 1 (i.e.,

wk = 1 for k = 1, . . . ,nx), the norm ‖·‖2,w corresponds to the Euclidean norm ‖·‖2. We denoted by ‖·‖2,V the discretized

counterpart of the L2(Ω)ny norm using the weights wk = |Vk|, k = 1, . . . ,nx, with the box volume |Vk| corresponding to the

grid point xk. In order to consider not only the difference at first time instant but for the whole trajectory over one model year,205

we, moreover, defined the weighted Euclidean norm ‖·‖2,w,T by

‖z‖2,w,T :=




ny∑

i=1

nt−1∑

j=0

∆t
nx∑

k=1

wkz
2
jik




1
2

for a weight vector w ∈ Rnx
>0 and z ∈ Rntnynx indexed as z =

((
(zjik)nx

k=1

)ny

i=1

)nt−1

j=0
. Analogous to the weighted Euclidean

norm ‖·‖2,w, we denoted by ‖·‖2,T the Euclidean norm and by ‖·‖2,V,T the weighted Euclidean norm ‖·‖2,w,T using weights

wk = |Vk| for k ∈ {1, . . . ,nx}. In addition to the norms including all grid points of the discretization (xk)nx

k=1, we restricted210

norms to horizontal layers of the ocean discretization, such as to the upper layer describing the ocean surface. We identified

with ‖·‖ |L for L⊂ {1, . . . ,15} the restriction of norm ‖·‖ to the layers selected in the set L. For example, ‖·‖ |L with L := {1}
restricted the norm to the grid points of the ocean surface.

2.6 Temporal coarsening of transport matrices

Using simple matrix operations, transport matrices computed with a given time step can be used to generate matrices corre-215

sponding to a bigger time step. The procedure has been described in Khatiwala (2007). Following his approach, we used the

transport matrices Texp
j and Timp

j , j ∈ {0, . . . ,nt− 1}, to generate transport matrices

Texp
j,m := I +m

(
Texp

j − I
)
,

Timp
j,m :=

(
Timp

j

)m

corresponding to a time step with coarsening factor m ∈ N. Consequently, these matrices represent larger time steps than the220

ones in the underlying ocean circulation model which were used to generate the transport matrices Texp
j and Timp

j . The explicit

transport matrix Texp
j,m is the exact representation of the larger time step, i.e.,

Texp
j,m = I +m

(
Texp

j − I
)

= I +m
(
I + ∆tAj + ∆tDh

j − I
)

= I +m∆tAj +m∆tDh
j .
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The implicit transport matrix Timp
j,m is an approximation with a loss of accuracy of order ∆t2 since (using the binomial theorem)

Timp
j,m =

(
Timp

j

)m

=
((

I−∆tDv
j

)−1
)m

=
((

I−∆tDv
j

)m)−1
=

(
m∑

k=0

(
m

k

)
Im−k

(
−∆tDv

j

)k
)−1

225

=

((
m

0

)
Im
(
−∆tDv

j

)0 +
(
m

1

)
Im−1

(
−∆tDv

j

)1 +
m∑

k=2

(
m

k

)
Im−k

(
−∆tDv

j

)k
)−1

=

(
I−m∆tDv

j +
m∑

k=2

(
m

k

)
Im−k

(
−∆tDv

j

)k
)−1

=
((

I−m∆tDv
j

)
+O(∆t)2

)−1

(cf. Piwonski and Slawig, 2016b; Khatiwala, 2007). These transport matrices are still sparse (Khatiwala, 2007).

The time step of the ocean circulation model used for the computation of the transport matrices Texp
j and Timp

j , j ∈
{0, . . . ,nt− 1}, corresponds to 3 h (Marshall et al., 1997). Assuming 360 days per model year, the number of time steps230

per model year is nt = 2880. We, hereinafter, denoted this time step with 1 ∆t using ∆t= 1
2880 . More specifically, time step

2 ∆t corresponds to the coarsening factor 2, i.e., a doubling of the effective time step, with nt = 1440. In order to identify the

time step used to run the spin-up (10), we denoted by

y`+1,m = Φm
(
y`,u

)
, `= 0,1, . . . ,

the time-integration of one model year using the time step m∆t with the factor m ∈ N for y` ∈ Rnynx and u ∈ Rnu . More235

importantly, the transport matrices Texp
j,m and Timp

j,m, j ∈ {0, . . . ,nt− 1}, enter (9) for the application of the time step m∆t

instead of the transport matrices Texp
j and Timp

j .

Any choice m ∈ N is possible in the above computations. For every value of m to be used, twelve pairs of explicit and

implicit transport matrices, however, have to be supplied. Since we wanted to check a rather wide variability of the time steps,

we have chosen the possible coarsening factors240

m ∈M := {1,2,4,8,16,32,64} (12)

in this study. The upper limit of m= 64 was motivated by our observation that the spin-up for most of the models did not

converge anymore for larger time steps.

2.7 Negative tracer concentrations

A time step that is too large can cause negative tracer concentrations. Given a non-negative tracer distribution yj in all grid245

points at a time instant tj , j ∈ {0, . . . ,nt−1}, the multiplication with the explicit transport matrix Texp
j in (9) will always result

in a non-negative distribution. In contrast, the source term qj (yj ,u) may give negative values for some tracers at some points

even though the input variable yj is non-negative. In many models, the latter is enforced by a simple setting of negative values

to zero before the evaluation of the source term. Such a setting obviously increases the total mass in the ecosystem. Hence,

a frequent occurrence of big negative values and their correction to zero will result in a changed steady solution obtained in250

the spin-up. Despite of such a correction before the source term step, the sum in the bracket in (9) might be negative at some
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points, depending on the used time step. Thus, after applying the implicit matrix, the result of the time step yj+1 might contain

negative values as well.

Small negative values in some points do not necessarily change the convergence of a spin-up to a steady annual cycle.

Therefore, a main criterion for algorithms that use bigger time steps (as the ones presented here) is if the spin-up converges,255

and if it converges to the same solution as for the standard setting. We also investigated an algorithm that enforces non-negative

tracer concentrations and how this effects the solution and the cost saving.

3 Step size control algorithms

Methods for automatic step size control automatically adapt the time step during the calculation of a transient computation.

They may, therefore, also be used for the steady annual cycle computation via a spin-up. A step size control method estimates260

the local discretization error by computing two approximations, either with different time steps (in the method used here) or

by using two different time integration methods. The approach used here is based on the Richardson extrapolation (Richardson

and Glazebrook, 1911; Richardson and Gaunt, 1927). For the estimate of the local discretization error, the step size control

computes two approximations with two different time step sizes in every step. Depending on the error estimate and a desired

accuracy, the step size control accepts or rejects the approximation calculated with the smaller time step (the approximation265

computed with the larger time step always serves the error estimation only). Then, it adapts the step size to a value that, using

the estimation of the error, would result in the desired accuracy. Thus, in this step, an increase or a decrease of the step size

is possible. Using the adapted step size, the method, afterwards, either starts the calculation of the next step or reruns the

calculation of the current step. In summary, the step size control finally uses always the largest time step that keeps the error

below the given tolerance.270

Step size control methods are based on the existence of an asymptotic expansion of the discretization error (Stoer and

Bulirsch, 2002, Sect. 7.2.3). To obtain this result, the unknown solution is assumed to be three times continuously differentiable

in time. The question whether this regularity is satisfied for the models investigated in this work is not discussed here. We just

note that all models have continuous right-hand sides (i.e., source-minus-sink terms). Furthermore, it is quite usual to apply a

step size control even though some assumptions of the underlying mathematical theory may not be given or shown for an actual275

application. Since we compared our results obtained with the step size control to those with constant time steps, an assessment

of the method is possible.

Algorithm 1 depicts the step size control for the calculation of a steady annual cycle. It is based on Deuflhard and Bornemann

(2013, Algorithm 5.2). Since we are aiming at a steady annual cycle obtained in a spin-up, we do not check for the local

discretization error after every single time step, but only after an adjustable number of model years. This number (ns ∈ N) is280

one of the input parameters of the algorithm. The loop over the ns years is realized in lines 10 to 13. Another important feature

is the set of possible or desired multiplication factors m. Here, the m= maxM value is inadmissible because the step size

control estimates the local error using two approximations calculated with the selected time step m∆t and a larger time step.

Thus, the set M \maxM defines the admissible time steps of Algorithm 1.
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Algorithm 1 Step size control.

Input: Initial concentration: y0 ∈ Rnynx ,

Parameter vector: u ∈ Rnu ,

Number of model years: T ∈ N,

Coarsening factor of the initial time step: minit ∈M \maxM ,

Number of model years for the error estimation: ns ∈ N,

Tolerance: τ0 ∈ R>0

Output: yT ∈ Rnynx (superscript referring to `= T here, not meaning transposed vector)

1: `= 0

2: ∆t= 1
2880

3: mmin = minM

4: mmax = max{m̄ ∈M : ∃p ∈M : m̄ < p}
5: m=minit

6: while `≤ T do // Spin-up over (at least) T model years

7: m̃= max{m̄ ∈M : m̄≤ 2 ·m}
8: y`,m = y`

9: y`,m̃ = y`

10: for i= 1 to ns do // Compute approximations to estimate the error

11: y`+i,m = Φm
(
y`+i−1,m,u

)
12: y`+i,m̃ = Φm̃

(
y`+i−1,m̃,u

)
13: end for

14: ε= 2 ·
∥∥y`+ns,m−y`+ns,m̃

∥∥
15: if ε

m∆t
≤ τ0 or m=mmin then // Accept approximation and increase time step m

16: y`+ns = y`+ns,m

17: mopt = max
{
m̄ ∈M : m̄≤

⌊
τ0
ε
· (m∆t)2⌋}

18: mscale = max{m̄ ∈M : m̄≤ 2 ·m}
19: m= max{mmin,min{mmax,mscale,mopt}}
20: `= `+ns

21: else // Reject approximation and decrease time step m

22: m= max
{
m̄ ∈M : m̄≤

⌊
m
2

⌋
∨ m̄=mmin

}
23: end if

24: end while

We designed the step size control algorithm having various options. The user may select, firstly, the initial time step minit∆t285

of the step size control with minit ∈M \maxM . The second option is the number ns ∈ N of model years after which the

error is estimated. The step size control computes the two approximations with time steps m∆t and m̃∆t for the model year

`+ns, ` ∈ N0, and m,m̃ ∈M with m< m̃ and estimates the local discretization error
∥∥y`+ns,m−y`+ns,m̃

∥∥. The choice of
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Algorithm 2 Step size control avoiding negative concentrations. Shown are only differences to Algorithm 1.

Input: Initial concentration: y0 ∈ Rnynx ,

Parameter vector: u ∈ Rnu ,

Number of model years: T ∈ N,

Coarsening factor of the initial time step: minit ∈M ,

Number of model years for the error estimation: ns ∈ N,

Tolerance: τ0 ∈ R>0

Output: yT ∈ Rnynx

// Lines 1 to 14 identical as in Algorithm 1

15: if ε
m∆t

≤ τ0 and
(
∀j ∈ {1, . . . ,ny}∀i ∈ {1, . . . ,nx} : y`+ns,m

ji ≥ 0
)

or m=mmin then

16: // Lines 16 to 24 identical as in Algorithm 1

23: end if

the next time step depends on this error (line 15 or 21 and following). Thirdly, it is possible to choose the norm that may have

an influence on the error estimation. Another setting of the step size control, fourthly, is the tolerance τ0 ∈ R>0 which controls290

the acceptance of the approximation. By default, the step size control applies the coarsening factor minit = 1 for the initial time

step minit∆t, ns = 1, the volume-weighted Euclidean norm ‖·‖2,V and the tolerance τ0 = 1.

A variant of Algorithm 1 includes an additional avoidance of negative concentrations (see Algorithm 2). If enabled, the step

size control accepts an approximation – as additional criterion to the local discretization error – if and only if the concentration

of this approximation is non-negative at all grid points xk,k ∈ {1, . . . ,nx}, or if the approximation was calculated with the295

smallest possible time step. Otherwise, the step size control reruns this step with a decreased time step.

4 Decreasing time steps algorithm

The step size control algorithms described above require an increased computational effort to automatically adjust the time step.

They both try to find the optimal step size in the sense that it should be as big as possible but still keeps the local discretization

error below the given tolerance. Therefore, the algorithms are automatically able to both increase and decrease the time step300

during the spin-up. This optimality comes with the additional effort of computing always two approximations to estimate this

error.

The decreasing time steps algorithm presented in this section, in contrast, exclusively decreases the time step during the

spin-up. The motivation is the same, namely to reduce the computational costs. The algorithm assumes that in its beginning

bigger time steps are sufficient. The procedure is shown in Algorithm 3. Starting from an initial time step minit∆t with a305

coarsening factor minit ∈M , the algorithm uses the same time step until the norm
∥∥y`−y`+ns

∥∥, ` ∈ N0, fell below a given

tolerance ε ∈ R>0. In other words, the spin-up calculation with this time step already reached almost a steady annual cycle. If

the norm fell below the tolerance, the algorithm decreases the time step. The assessment whether a significant reduction was
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Algorithm 3 Decreasing time steps.

Input: Initial concentration: y0 ∈ Rnynx ,

Parameter vector: u ∈ Rnu ,

Number of model years: T ∈ N,

Coarsening factor of the initial time step: minit ∈M ,

Number of model years for the error estimation: ns ∈ N,

Tolerance: ε ∈ R>0

Output: yT ∈ Rnynx

1: `= 0

2: mmin = minM

3: m=minit

4: while `≤ T do // Spin-up over (at least) T model years

5: for i= 1 to ns do // Spin-up over ns model years

6: y`+i = Φm
(
y`+i−1,u

)
7: end for

8: if
∥∥y`−y`+ns

∥∥< ε and mmin <m then // Check reduction and decrease time step m

9: m= max{m̄ ∈M : m̄ <m}
10: end if

11: `= `+ns

12: end while

still achieved with the current time step takes place after a fixed number of ns ∈ N model years. By default, the decreasing time

steps algorithm uses the initial time step minit∆t with the coarsening factor minit = 64, ns = 50 and the tolerance ε= 0.001.310

5 Results

The automatic adjustment of the time step used for the spin-up computation influenced both the computational effort and the

accuracy of the approximation of the steady annual cycle. In this section, we present the numerical results using the adaptive

step size control (see Sect. 3) and the decreasing time steps algorithm (Sect. 4) to shorten the runtime of the computation of

the steady annual cycle. We assessed the accuracy and cost saving of the calculated approximations.315

5.1 Experimental setup

For each part of the spin-up calculation (i.e., ns ∈ N model years), we used the marine ecosystem toolkit for optimization

and simulation in 3D (Metos3D, Piwonski and Slawig, 2016a, b). Overall, we computed all spin-ups over 10000 model years.

We started the spin-up always with a constant global mean tracer concentration of 2.17 mmol P m−3 for PO4 and, if present,

0.0001 mmol P m−3 for the tracers DOP, P, Z and D.320
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Using different parameter vectors, we calculated the steady annual cycles for the various biogeochemical models. We used,

on the one hand, the reference parameter vectors listed in Table 2 and, on the other hand, 100 parameter vectors generated by

a Latin hypercube sample within the bounds defined in Table 2 for each biogeochemical model (cf. McKay et al., 1979). We

created these parameter vectors by the lhs routine of Lee (2014).

For the assessment of the calculated approximations of the steady annual cycle, we compared them with reference solutions.325

These were chosen as the result obtained by a spin-up using Metos3D with constant time step m∆t,m ∈M , also over 10000

model years. These solutions are denoted by y10000,m and described in more detail in Pfeil and Slawig (2021a). In most

cases, we considered the case m= 1 only. The reference solutions were also used to measure, in particular, the accuracy of an

approximation x ∈ Rnynx obtained by one of the algorithms (i.e., the step size control or the decreasing time steps algorithm)

by the relative difference330
∥∥x−y10000,1

∥∥
2

‖y10000,1‖2
. (13)

We call this quantity (13) the (relative) error of the respective result x. Furthermore, we quantified the saving of the computa-

tional costs by

cref− calgo

cref
, (14)

where cref ∈ N denotes the number of model evaluations used to compute the reference solution (i.e., cref = 10000 · 2880,335

according to the nt = 2880 time steps for each of the 10000 model years) and calgo ∈ N denotes the number of model evaluations

of the respective algorithm.

5.2 Step size control algorithms

In this section, we present the results using the step size control to compute a steady annual cycle (Algorithms 1 and 2). The

step size control applies different time steps to adapt the step size using an estimation of the local discretization error. Starting340

with a default setting for Algorithm 1 (Sect. 5.2.1), we also analyzed the behavior using the avoidance of negative tracer

concentrations using Algorithm 2 (Sect. 5.2.2) and, briefly, other configuration settings (Sect. 5.2.3) defined in Sect. 3.

5.2.1 Algorithm 1 with default step size control setting

For the reference parameter vectors of Table 2, the step size control algorithm with default setting computed approximations

of the steady annual cycle that were almost identical to the ones obtained with a constant step size. For the N, N-DOP and345

MITgcm-PO4-DOP models, the step size control utilized the largest possible time step by increasing the time step in the first

steps to 32 ∆t. Accordingly, the algorithm lowered the computational costs by 95%. In contrast, the step size control used

always time step 1 ∆t (i.e., no increase of the time step occurred) for the other three biogeochemical models NP-DOP, NPZ-

DOP and NPZD-DOP. Therefore, the computational effort for these three models was greater than for the solution y10000,1.

The value computed with formula (14) was -0.5. Obviously, the obtained solution was the same as the one using constantly350

1 ∆t. As an example, Fig. 1 indicates the similar convergence behavior towards a steady annual cycle using the step size control
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Figure 1. Results of spin-up computations for the reference parameter vector (see Table 2) and the N model using the step size control with

default setting (Algorithm 1) and with avoidance of negative concentrations (Algorithm 2). Shown are the convergence of the spin-up (left),

i.e., the norms of the difference (11) between consecutive iterations, and the relative error (13) (right). On the left, the curves for the reference

run and the one with step size control avoiding negative concentrations overlap.

and the constant step size 1 ∆t, both for the N model. The convergence behavior using the step size control concurred with the

one of the spin-up with constant time step 32 ∆t, i.e. y10000,32. In this case, the step size control doubled the time step five

times up to the maximal time step 32 ∆t in the first five model years. Afterwards, the time step remained unchanged for the

entire spin-up (cf. Pfeil and Slawig, 2021a, Figs. 1 and 4). Consequently, the accuracy of this approximation resembled that355

of y10000,32 (Fig. 1, right). The step size control resulted in a cost saving of 95% compared to the solution y10000,1. Indeed,

the cost saving was even 97% using directly the spin-up with time step 32 ∆t because the step size control necessitated two

approximations calculated with different time steps to estimate the local error for every model year. Looking at the reduction,

it would be possible to terminate the step size control even after a much lower number of model years to lower further the

computational effort (Fig. 1). For the N-DOP and MITgcm-PO4-DOP model, the results were similar.360

Also for the 100 parameter vectors of the Latin hypercube sample, Algorithm 1 yielded solutions that showed the same

accuracy as solutions obtained with a fixed step size. For the N, N-DOP and MITgcm-PO4-DOP models, the results were

consistent with those for the reference parameter vectors above, i.e., the accuracy of the approximations coincided with that

for the spin-up calculated with constant time step 32 ∆t (Figs. 2 and 3). The algorithm increased the time step up to the

maximum of 32 ∆t and, afterwards, used only this time step. For a few parameter vectors, the step size control, however, did365

not increase the time step directly, but computed several model years before increasing the time step. For these three models,

the step size control resulted in a tremendous cost saving (Fig. 4). For the NP-DOP, NPZ-DOP and NPZD-DOP models and

more than 85 parameter vectors, the algorithm did not increase the time step. Thus, the approximations corresponded to the

reference solution y10000,1 (Fig. 2) in these cases. For the remaining parameter vectors, at least one increase and, possibly, some

decreases of the time step took place. This resulted in a larger relative error but still a reasonable accuracy of the calculated370

approximation. Except for a few parameter vectors where the step size control increased the time step, the step size control
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Figure 2. Norm of difference (11) and relative error (13) for `= 10000 using the step size control with the default setting and with avoidance

of negative concentrations. Shown are the results for the different biogeochemical models and all parameter vectors of the Latin hypercube

sample (top left: N model, top right: N-DOP model, middle left: NP-DOP model, middle right: NPZ-DOP model, bottom left: NPZD-DOP

model, bottom right: MITgcm-PO4-DOP model). Some points of the results using the avoidance of negative concentrations obscured the

points of the step size control results.

caused a larger computational effort than using 1 ∆t constantly because the algorithm needs two approximations to estimate

the local discretization error (Fig. 4).
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Figure 3. Norm of difference (11) and relative error (13) for `= 10000 using different time steps for the spin-up. Shown are the results using

a constant time step over the whole spin-up for the different biogeochemical models and all parameter vectors of the Latin hypercube sample

(top left: N model, top right: N-DOP model, middle left: NP-DOP model, middle right: NPZ-DOP model, bottom left: NPZD-DOP model,

bottom right: MITgcm-PO4-DOP model).

5.2.2 Algorithm 2: Avoiding negative concentrations

Strictly avoiding negative concentrations prevented a usage of larger time steps in most of the considered cases when calculating375

a steady annual cycle with the step size control. Except for the N model, Algorithm 2 used time step 1 ∆t for the entire spin-
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Figure 4. Saving of computational costs (14) using the step size control with the default setting and the avoidance of negative concentrations.

Shown are the results for the different biogeochemical models and all parameter vectors of the Latin hypercube sample (top left: N model, top

right: N-DOP model, middle left: NP-DOP model, middle right: NPZ-DOP model, bottom left: NPZD-DOP model, bottom right: MITgcm-

PO4-DOP model). Some points of the results using the avoidance of negative concentrations obscured the points of the step size control

results. For the N model, all points of the results using the step size control (orange points) are present in the upper right corner.

up with the reference parameter vectors of Table 2 because negative concentrations appeared for at least one tracer in all

approximations calculated with larger time steps. For the N model, the algorithm increased the time step up the maximum

at the beginning of the simulation, but accepted only time step 1 ∆t after 120 model years because negative concentrations
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Table 3. Relative error (13) for `= 10000 obtained by the step size control algorithm (Algorithm 1) using different values of ns ∈
{1,2,5,10,25,50}.

ns N N-DOP NP-DOP NPZ-DOP NPZD-DOP MITgcm-PO4-DOP

1 2.258e-03 2.775e-03 3.439e-12 1.744e-12 1.845e-12 2.462e-03

2 2.258e-03 2.775e-03 7.978e-13 7.399e-13 5.247e-13 2.462e-03

5 2.258e-03 2.775e-03 5.265e-12 3.068e-12 2.521e-12 2.462e-03

10 2.258e-03 2.775e-03 5.763e-13 4.402e-13 3.411e-13 2.462e-03

25 2.258e-03 2.775e-03 5.756e-12 3.421e-12 3.565e-12 2.462e-03

50 2.258e-03 2.775e-03 4.369e-12 2.318e-12 2.752e-12 2.462e-03

arose. Accordingly, the approximation resembled the reference solution while the computational effort was huge (cost increase380

of 73%, Fig. 1). For the NP-DOP, NPZ-DOP and NPZD-DOP models, the computations using the step size control with and

without avoidance of negative concentrations were identical. For the N-DOP and MITgcm-PO4-DOP models, in contrast, the

computational effort was quite big (an increase of about 75%). Here, a bigger time step would be possible without considering

negative values due to the error estimation. With our implementation of the step size control avoiding negative concentrations,

three instead of two approximations, hence, were computed for each model year because the step size control accepted in every385

step the approximation calculated with the minimal time step 1 ∆t (independent of negative concentrations) and increased

based on the error estimation the time step for the next step. In the next step, the algorithm discarded the approximation

calculated with the larger time step due to negative concentrations, and reran the approximation with the minimal time step

1 ∆t again. With an adjustment of our implementation (firstly, the calculation of an approximation using the small time step to

check it for negative concentrations and, secondly, the computation of the second approximation using the larger time step to390

estimate the local error), the computational effort could slightly be reduced to an increase to about 50%.

For the Latin hypercube sample, the same qualitative results were obtained. For the N model, the results mostly coincided

with the results of the step size control using default settings (Fig. 2). Only for a few parameter vectors, the step size control

reduced the time step. This was again a result of negative concentrations during the simulation. As a consequence, the accuracy

improved but at the expense of the cost saving (Fig. 4). For the other biogeochemical models, the accuracy of the approxima-395

tions in Fig. 2 indicates that the Algorithm 2 computed the reference solution except for some outliers because the step size

control did not increased the time step during the simulation. Thus, the computational effort was larger than for the spin-up

computation of the reference solution with 1 ∆t (Fig. 4).

5.2.3 Step size control settings

We investigated the influence of different settings for the step size control. For that purpose, we used only the reference400

parameter vectors listed in Table 2.
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Table 4. Relative error (13) for `= 10000 obtained by the step size control algorithm (Algorithm 1) using different norms for the local error

estimation.

Norm N N-DOP NP-DOP NPZ-DOP NPZD-DOP MITgcm-PO4-DOP

‖·‖2 2.258e-03 1.214e-03 3.439e-12 1.744e-12 1.845e-12 2.462e-03

‖·‖2,V 2.258e-03 2.775e-03 3.439e-12 1.744e-12 1.845e-12 2.462e-03

‖·‖2,T 2.258e-03 2.775e-03 5.597e-12 5.537e-04 4.738e-12 2.462e-03

‖·‖2,V,T 2.258e-03 2.775e-03 6.213e-03 1.383e-03 1.398e-03 2.462e-03

‖·‖2,V |{1} 1.215e-12 1.885e-12 1.849e-12 6.879e-13 1.005e-12 2.195e-12

‖·‖2,V |{1,2,3} 5.021e-04 1.885e-12 1.849e-12 6.879e-13 1.005e-12 2.195e-12

‖·‖2,V |{11} 2.258e-03 2.775e-03 1.355e-02 1.804e-02 1.911e-02 2.462e-03

The number of model years ns ∈ N, after which the error estimation was computed, had no influence on the accuracy of the

steady annual cycle approximation using the step size control (Table 3). For the N, N-DOP and MITgcm-PO4-DOP models, the

step size control increased the time step as quickly as possible to the maximal time step regardless of the number of model years

ns and, afterwards, applied only this maximal time step. As a consequence, the approximations for the different model years405

ns were almost identical. Similar to the results above for the NP-DOP, NPZ-DOP and NPZD-DOP models, the approximation

corresponded to the reference solution for the different model years ns since the step size control used always time step 1 ∆t.

The norm used to estimate the local discretization error affected the approximation calculated with the step size control

(Table 4) in some cases. Firstly, the application of the Euclidean norm ‖·‖2 instead of the norm ‖·‖2,V influenced the step size

control for the N-DOP model only. For this model, the step size control, occasionally, did not increase the time step directly to410

the maximal time step and finished the simulation with time step 16 ∆t. This led to a smaller relative error. The use of the norms

‖·‖2,T and ‖·‖2,V,T , secondly, resulted in at least one increase of the time step for the NP-DOP, NPZ-DOP and NPZD-DOP

models and, therefore, in a reduction of the computational costs. However, these norms had no influence for the N, N-DOP and

MITgcm-PO4-DOP models. Lastly, the restriction of the norm ‖·‖2,V to different layers had an impact on the error estimation

because the annual variability exclusively affects concentrations in the upper ocean, while the concentrations in the deeper415

ocean change very slowly. Besides, the box volumes in the upper ocean are small in comparison to the box volumes in the

deeper ocean, but big boxes have a greater effect on the norm as small ones for a volume weighted norm. However, the local

discretization error was high in the upper ocean due to the variability, and small in the deeper ocean. Thus, the step size control

increased more frequently the step size using the restricted norms including deeper layers or including more layers (Table 4).

The choice of the initial time step especially affected the three most complex biogeochemical models. Due to the directly420

increasing time step up to the maximum, no differences were visible for the N, N-DOP and MITgcm-PO4-DOP models (Table

5). In contrast, the relative errors in Table 5 indicate the use of larger time steps for at least one model year for the other

biogeochemical models. In particular, the step size control utilized time step 2 ∆t over the entire simulation for initialization

with larger time steps for the NPZ-DOP model.

21

https://doi.org/10.5194/gmd-2021-392
Preprint. Discussion started: 7 January 2022
c© Author(s) 2022. CC BY 4.0 License.



Table 5. Relative error (13) for `= 10000 obtained by the step size control algorithm (Algorithm 1) using different initial time steps.

minit N N-DOP NP-DOP NPZ-DOP NPZD-DOP MITgcm-PO4-DOP

1 2.258e-03 2.775e-03 3.439e-12 1.744e-12 1.845e-12 2.462e-03

2, 4, 8, 16, 32 2.258e-03 2.775e-03 1.848e-12 5.537e-04 7.119e-10 2.462e-03

Table 6. Relative error (13) for `= 10000 obtained by the step size control algorithm (Algorithm 1) using different tolerances τ0 ∈
{0.1,0.2, . . . ,1.0}.

τ0 N N-DOP NP-DOP NPZ-DOP NPZD-DOP MITgcm-PO4-DOP

1.0, 0.9, . . . , 0.5 2.258e-03 2.775e-03 3.439e-12 1.744e-12 1.845e-12 2.462e-03

0.4 2.258e-03 5.106e-04 3.439e-12 1.744e-12 1.845e-12 2.462e-03

0.3 2.258e-03 3.794e-12 3.439e-12 1.744e-12 1.845e-12 4.872e-04

0.2, 0.1 2.171e-12 3.794e-12 3.439e-12 1.744e-12 1.845e-12 3.277e-12

The tolerance τ0 ∈ R>0 influenced only the time step’s increase for the N, N-DOP and MITgcm-PO4-DOP models. Using425

smaller tolerances, the possible increase to the maximal time step required more model years for the N, N-DOP and MITgcm-

PO4-DOP models. The use of the smallest tolerance always resulted in time step 1 ∆t for the entire spin-up. For the N-DOP

and MITgcm-PO4-DOP models, there existed a tolerance for which the step size control increased the time step only up to

8 ∆t (Table 6). For the NP-DOP, NPZ-DOP and NPZD-DOP models, the algorithm did not increase the step when tolerance

τ0 = 1.0 was used. Consequently, the choice of a smaller tolerance had no effect (Table 6).430

5.3 Algorithm 3: Decreasing time steps

The decreasing time steps algorithm computed a reasonable approximation of the steady annual cycle with the automatic

stepwise reduction of the time step and, thus, reduced the computational effort. For the N model with the parameter vector

listed in Table 2, Fig. 5 demonstrates the similar convergence behavior towards a steady annual cycle using the decreasing

time steps algorithm as well as the spin-up calculation of the reference solution. Using the decreasing time steps algorithm,435

the six peaks in the norm of differences (11) pertained to the six reductions of the time step. As a result of the decreased time

step, a large concentration change took place in one model year similar to the large changes at the beginning of each spin-up.

In particular, the reduction of the relative error resulting from the decrease of the time step is evident in Fig. 5 (right) using

the tolerance 0.0001. Although the algorithm applied time step 1 ∆t at the end of the spin-up computation, the spin-up did

not perfectly converge against the reference solution. Nevertheless, the algorithm shortened the runtime of the simulation, and440

finished with an approximation of the steady annual cycle that was much better than the one of the spin-up with constant time

step 64 ∆t, i.e., y10000,64 (cf. Fig. 3). The used tolerance affected only slightly the accuracy of the approximation, but the use of

a smaller tolerance resulted in a cost saving because the decreasing time steps algorithm used each time step longer before the
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Figure 5. Results of spin-up computations for the reference parameter vector (see Table 2) and the N model using the decreasing time steps

algorithm (Algorithm 3). Shown are the convergence of the spin-up (left), i.e., the norms of difference (11) between consecutive iterations,

and the relative error (13) (right) using different tolerances ε ∈ {0.001,0.0001}. Furthermore, the figure of the norm of difference (left)

contains the convergence towards a steady annual cycle for the reference solution. In this figure, it is mostly covered by that of the decreasing

time steps algorithm with tolerance ε= 0.001.

time step was reduced. Namely, the application of the decreasing time steps algorithm with tolerance 0.001 resulted in a cost

saving of 23% compared to the spin-up computation of the reference solution and in a cost saving of 38% using the tolerance445

0.0001. The results for the other biogeochemical models using the reference parameter vectors are parallel to the results shown

for the N model.

The decreasing time steps algorithm avoided a divergent spin-up calculation but did not decrease the time step to the mini-

mum for each simulation. We analyzed the decreasing time steps algorithm using the parameter vectors of the Latin hypcercube

sample for the different biogeochemical models. For the N, N-DOP and MITgcm-PO4-DOP models, the decreasing time steps450

algorithm computed an appropriate approximation of the steady annual cycle for the different configurations of the tolerance

ε ∈ {0.001,0.0001} and the number of model years ns ∈ {50,100,500} as detailed in Fig. 6 (cf. Fig. 3). More specifically, the

accuracy decreased slightly, on the one hand, with a smaller tolerance and, on the other hand, with a larger number of model

years ns because in both cases larger time steps were used over a longer period of model years. Figure 7 reflected this behavior

in the cost saving. The computational effort increased as a result of a more frequent check of the time step reduction or with455

a smaller tolerance range because the time step tended to be reduced earlier. For the NP-DOP, NPZ-DOP and NPZD-DOP

models, the approximations calculated with the decreasing time steps algorithm were often identical for the different configu-

rations. Only in half of the simulation runs decreased the algorithm the time step to 1 ∆t while this occurred in more than 90%

of the simulations using the other three biogeochemical models. In fact, the criterion checking the decrease of the time step

was inappropriate if the norm of differences (11) oscillated (cf. Pfeil and Slawig, 2021a). The algorithm, therefore, applied the460

entire spin-up large time steps wherefore the relative error was high (Figs. 6 and 3). Although the algorithm depending on the

configuration decreased partially the time step in these cases, the simulation using this smaller time step hardly improved the

accuracy of the approximation (Fig. 7). However, the decreasing time steps algorithm automatically reduced the time step if
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Figure 6. Norm of difference (11) and relative error (13) for `= 10000 using different configurations (i.e., tolerance ε ∈ {0.001,0.0001} and

number of model years ns ∈ {50,100,500}) of the decreasing time steps algorithm. Shown are the results for the different biogeochemical

models and all parameter vectors of the Latin hypercube sample (top left: N model, top right: N-DOP model, middle left: NP-DOP model,

middle right: NPZ-DOP model, bottom left: NPZD-DOP model, bottom right: MITgcm-PO4-DOP model).

the simulation diverged due to a too large time step. In contrast to the simulations with a low accuracy of the approximation

using the NP-DOP, NPZ-DOP and NPZD-DOP models, there were also parameter vectors for which the decreasing time steps465

algorithm calculated an reasonable approximation with reduced computational costs (Fig. 7).
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Figure 7. Saving of computational costs (14) using the decreasing time steps algorithm with different configurations (i.e., tolerance ε ∈
{0.001,0.0001} and number of model years ns ∈ {50,100,500}). Shown are the results for the different biogeochemical models and all

parameter vectors of the Latin hypercube sample (top left: N model, top right: N-DOP model, middle left: NP-DOP model, middle right:

NPZ-DOP model, bottom left: NPZD-DOP model, bottom right: MITgcm-PO4-DOP model).

6 Conclusions

A reduction of the computational effort for the spin-up of marine ecosystem models is essential for the validation of these

models since these computations usually require a long-time integration over several millennia (cf. Bernsen et al., 2008; Bryan,
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1984; Danabasoglu et al., 1996; Wunsch and Heimbach, 2008; Siberlin and Wunsch, 2011). Although several strategies already470

reduce this effort, a further reduction is desirable, such as using larger time steps based on the TMM (cf. Khatiwala et al., 2005;

Khatiwala, 2007; Pfeil and Slawig, 2021a). However, the selection of an appropriate time step is a challenging compromise

between accuracy and cost saving. For a classical spin-up, Pfeil and Slawig (2021a) showed the difficultly to find a bigger

time step with which the spin-up provides a reasonable approximation because divergence is possible. In the current work, we

introduced three algorithms that adaptively adjust the time step in the spin-up. The step size control automatically increases or475

decreases the time step, based on an estimate of the local discretization error (Algorithms 1 and 2). Algorithm 2 additionally

avoids strictly negative tracer concentrations that might occur in the spin-up. The decreasing time steps algorithm (Algorithm

3) starts with a big time step and automatically decreases them, based on the convergence of the spin-up. In particular, these

algorithms eliminated the manual selection of a suitable time step (cf. Pfeil and Slawig, 2021a).

For all three algorithms, the spin-up calculation yielded approximations of the steady annual cycle which were in exception-480

ally good agreement with the respective reference solution obtained with the standard time step. This holds for the considered

hierarchy of six biogeochemical models and, for each model, for a reference parameter vector as well as for a Latin hypercube

sample of 100 parameter vectors. As a result of an oscillating norm of differences, the computations with the decreasing time

steps algorithm achieved only a low accuracy of the approximation for the most complex biogeochemical models. Additionally,

the algorithms avoided divergent simulations that can occur when the (constant) time step in a classical spin-up is too large485

(Pfeil and Slawig, 2021a).

The automatic time step adjustment shortened the runtime of the steady annual cycle computation for many of the executed

simulations. Firstly, the step size control without avoiding negative concentrations (Algorithm 1) dramatically reduced the

runtime of the spin-up for some (less complex) models and the complete Latin hypercube sample of parameter vectors (cost

saving of up to 95%). For the more complex models, the algorithm, in contrast, did not achieve significant cost saving since the490

algorithm stayed at small time steps. In these cases, the computational effort for this algorithm, actually, was expensive because

the estimation of the local error always needed two evaluations of the same time interval. Secondly, the cost saving was lost for

nearly all considered configurations if negative tracer concentrations were strictly avoided as in Algorithm 2. Due to negative

concentrations in the approximations, the algorithm then used nearly always the smallest time step. Therefore, the mentioned

overhead for the error estimation led to a big loss in performance (cost increase of about 75%). Thirdly, the decreasing time495

steps algorithm (Algorithm 3) reached the best results with respect to the performance, and lowered the computational effort up

to 97%. It avoided an error estimate which is why it had no significant overhead. More importantly, the computational effort of

the decreasing time steps algorithm was in any case lower than for the respective reference solution. Obviously, the reduction

of the computational costs is greater using a classical spin-up with a constant large time step, but the selection of a reasonable

time step is difficultly (Pfeil and Slawig, 2021a).500

Negative concentrations prevented a performance gain of the step size control algorithm avoiding negative concentrations

(Algorithm 2). Apart from some exceptions for the N model, negative concentrations occurred in all simulations, especially

using a time step larger than 1 ∆t. As a consequence, the algorithm computed the reference solution, but with a significant

performance loss due to the performed estimation of the local discretization error with two approximations. However, negative
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concentrations often have already occurred in the calculation of the reference solutions and of the approximations of the steady505

annual cycle using the other algorithms.

The advantage of the step size control algorithms and the decreasing time steps algorithm was the automatic adaptation of

the time step including the selection of a reasonable time step. Although the cost saving was greater when the decreasing time

steps algorithm was used compared to the step size control algorithms, the step size control algorithms, however, computed

usually approximations with a higher accuracy. For the decreasing time steps algorithm, the condition to decrease the time step510

was in some cases unsuitable, for example for an oscillating spin-up. Future work should, therefore, include the optimization

of this condition to decrease the time step in these cases or when negative concentrations occur and to improve the accuracy of

the approximation. In addition, future work should analyze the occurrence of negative concentrations, especially when using

the time step 1 ∆t.

In summary, the main points of this paper are the following:515

– Automatic adjustment of the time step in the spin-up and, thus, automatic application of the largest possible time step

without manually selecting an appropriate time step.

– Computation of an appropriate approximation of the steady annual cycle using both the step size control algorithms and

the decreasing time steps algorithm.

– Reduction of the computational effort: always a reduction using the decreasing time steps algorithm (up to 97% cost520

saving) and a reduction using the step size control algorithm without avoidance of negative concentrations for less

complex models (up to 95% cost saving).

– No performance gain using the step size control avoiding negative concentrations due to negative concentrations in nearly

all approximations.

Code and data availability. The code used to generate the data in this publication is available at https://github.com/slawig/bgc-timesteps,525
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