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Abstract: Some studies show that significant uncertainties affect emission inventories, which may impeach 

conclusions based on air quality model results. These uncertainties result from the need to compile a wide variety of 15 
information to estimate an emission inventory. In this work, we propose and discus a screening method to compare 

two emission inventories, with the overall goal of improving the quality of emission inventories by feeding back the 

results of the screening to inventory compilers who can check the inconsistencies found and where applicable 

resolve errors. The method targets three different aspects: 1) the total emissions assigned to a series of large 

geographical area, countries in our application; 2) the way these country total emissions are shared in terms of sector 20 
of activity and 3) the way inventories spatially distribute emissions from countries to smaller areas, cities in our 

application. The first step of the screening approach consists in sorting the data and keep only emission 

contributions that are relevant enough. In a second step, the method identifies, among those significant differences, 

the most important ones that are evidence of methodological divergence and/or errors that can be found and resolved 

in at least one of the inventories. The approach has been used to compare two versions of the CAMS-REG European 25 
scale inventory over 150 cities in Europe for selected activity sectors. Among the 4500 screened pollutant-sectors, 

about 450 were kept as relevant among which 46 showed inconsistencies. The analysis indicated that these 

inconsistencies were almost equally arising from large scale reporting and spatial distribution differences. They 

mostly affect SO2 and PM coarse emissions from the industrial and residential sectors. The screening approach is 

general and can be used for other types of applications related to emission inventories.   30 
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1. Introduction 

Air pollution remains a critical issue, as it is one of the main causes of human health damage worldwide. In the 35 
EU28 alone, exposure to a pollutant such as fine particulate matter (PM25) is estimated to be responsible for 

approximately 390 000 premature deaths per year (EEA, 2020). Reducing pollution levels requires appropriate 

regulatory decisions leading to the implementation of effective abatement strategies. Such decisions are not easy to 

support because they may involve several pollution sources interacting through complex and non-linear atmospheric 

phenomena. As only air quality models can simulate the impacts of emission reductions considering the complexity 40 
of the atmosphere, they are potentially the only tools able to support the planning of reduction strategies. The 

accuracy of their results however strongly depends on the quality of a wide range of input data (meteorological 

fields, boundary conditions, land use data and pollutant emissions) (Im et al., 2018, Zhu et al., 2019, Dufour et a., 

2021, de Meij et al., 2009, de Meij et al. 2018, Cuvelier et al., 2010, Thunis et al., 2007). Many previous studies 

have shown that emissions are the input that has one of the most critical influences on the results of air quality 45 
modeling and, in particular, on the urban-scale source apportionment used to design air quality plans (Kryza et al., 

2015, Zhang et al., 2015). More alarmingly, some studies have shown that significant uncertainties affect emission 

inventories, which may impeach conclusions based on air quality model results (Trombetti et al., 2018, Markakis et 

al., 2015). These uncertainties result from the need to compile a wide variety of information to develop an emission 

inventory. Indeed, these inventories are prepared for many pollutants (NOx, PM, VOC, SO2, CO, CO2...) and for 50 
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many activity sectors (transport, industry, residential, agriculture, natural sources...) that entail different emission 

processes. The spatial and temporal distribution of emissions is typically based on proxies that can be estimated by 

very different methods. For example, top-down approaches start from emission estimates at large scale (e.g. national 

inventory) and disaggregate spatially and temporally the emissions with finer scale proxies. Bottom-up approaches 

compute directly the emissions starting from local spatial and temporal proxies based on accurate locations or high-55 
resolution shape patterns (road, ship routes, high-resolution land use, vehicle counting, etc...). Various sources of 

proxies are reported to create very high resolution inventories at the urban scale (Zheng et al, 2021, Geng et al., 

2017, Ramacher et al., 2021). One of the most important challenges in compiling local scale emission inventories is 

to remain consistent with data provided by national inventory while providing satisfactory accuracy at all locations 

and times. 60 
 

For all these reasons, compiling emission inventories can lead to different results depending on the methods and data 

used. In this paper, we propose a screening method, based on a comparison between two inventories, to identify 

possible errors and inconsistencies. These two inventories can either be two versions or two different years of a 

given inventory, two inventories based on distinct sources of information, e.g. CAMS-REG (Kuenen et al. 2021) and 65 
EDGAR (Crippa et al. 2018), top-down vs. bottom-up approaches, regional vs Europe wide…. Here, we illustrate 

the use of the proposed method by focusing on comparisons between two versions of the same inventory and apply 

the screening methodology to a continental scale inventory used to compile air quality modelling at the urban scale: 

the CAMS-REG inventory (Kuenen et al. 2021). In a follow-up paper, we extend and apply the approach to the 

comparison of different inventories. 70 
 

The paper starts with a description of the screening approach that includes its required input data, the methodology 

itself and its output. An application with the EU-wide CAMS-REG inventory is then presented in Section 3 while 

further considerations are addressed in Section 4. 

2. The screening approach 75 
The approach presented in this article aims at comparing two emission inventories over a series of geographical 

areas within the domain they spatially cover. These geographical areas include two groups characterised by different 

scales: large (e.g. country) and focus (e.g. cities) areas. For each pollutant, the method screens the consistency of the 

inventories around three aspects: (1) the total pollutant emissions assigned at large scale; (2) the way these total 

pollutant emissions are shared in terms of sector of activity and 3) the way large scale emissions are distributed to 80 
the focus areas.  

 

In other words, the screening approach intend to answer the following questions: 

 

 Are there inconsistencies in total pollutant emissions at large scale level? 85 
 Are there inconsistencies in the sectoral contributions to the emissions at large scale level? 

 Are there inconsistencies in the way inventories distribute large-scale emissions spatially?   

2.1 Input data 

Based on a gridded emission inventory detailed in terms of emitted pollutants (denoted as “p”) and sectors of 

activity (denoted as “s”), the data required for each pollutant and sector (denoted as a [p,s] couple) are twofold and 90 
consist of:  

 

 Emission totals aggregated over specific areas of interest (e.g., urban areas, industrial areas…). These 

areas, referred to as focus areas, can be freely selected and represent locations where we wish to assess the 

consistency of the inventory. The associated emissions are denoted by a lowercase notation 𝑒𝑝,𝑠.   95 
 

 Emission totals aggregated over larger areas (e.g., country, regions, modelling domains…). In general, 

these areas correspond to the larger scale at which data are reported. For example, country is the scale of 

interest for EU wide inventories as this is the scale at which national emission totals are typically reported 

or estimated. These areas are referred to as larger scale areas and its emissions denoted by an uppercase 100 
notation 𝐸𝑝,𝑠.  
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The number of focus areas is denoted by N. We will also denote sectorial emission totals by an overbar (�̅�𝑝 =

∑ 𝐸𝑝,𝑠𝑠 ). 

2.2 Methodology 

The number of [p,s] points under screening is equal to the product of the number of pollutants by the number of 105 
sectors itself multiplied by the number of focus areas (i.e. 𝑁 × 𝑁𝑝 × 𝑁𝑠). Because this number may become 

overwhelming, we proceed with a number of steps that help focusing the screening on priority aspects. To this end, 

threshold parameters are set to restrict the screening to relevant emissions (i.e., emissions that are large enough), and 

priority is a second step given to the detection of the largest differences between inventories among those relevant 

data. These steps, schematically represented in the flowchart of Figure 1, are discussed in the next sub-sections. 110 
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 115 
Figure 1: Flow chart of the steps to screen emission inventories. See details in the text. 

2.2.1 Exclusion of non-relevant emissions 

Not all emission data (E and e for all pollutant and sector) are kept for the analysis because large differences on 

small numbers are not relevant. For the exclusion, we proceed as follows. For each [p,s] and each inventory, we 

calculate the ratio between the focus area emission (𝑒𝑝,𝑠) and its respective larger scale pollutant total, i.e.  𝐸𝑝̅̅ ̅. 120 
 

 𝑋𝑝,𝑠 = max
{𝑖𝑛𝑣}

𝑒𝑝,𝑠

𝐸𝑝̅̅ ̅
 (1) 

 

For each [p,s] couple, the maximum values of the two inventories is then normalized by the maximum obtained over 

all [p,s] and over the two inventories for a given focus area. 

 125 
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 𝛾𝑝,𝑠 =
𝑋𝑝,𝑠

max
𝑝,𝑠
{𝑋𝑝,𝑠} 

 (2) 

 

This final ratio informs on the relative importance of each [p,s] couple. Then, [p,s] couples are excluded from the 

analysis when this ratio is below a given threshold value 𝛾𝑡 (arbitrary input). The purpose of this scaling is to avoid 

flagging issues for emissions that are proportionally less relevant. Rewriting (1) as 𝑋𝑝,𝑠 = max
{𝑖𝑛𝑣}

𝑒𝑝,𝑠

𝑒𝑝̅̅̅̅

𝑒𝑝̅̅̅̅

𝐸𝑝̅̅ ̅̅
, we see that we 

exclude from the analysis: 130 
 

1. sectorial activities that have a low share over ‘focus areas’ (low 
𝑒𝑝,𝑠

𝑒𝑝̅̅̅̅
) e.g., NMVOC emissions in the power 

plants sector, and/or 

2. emissions for pollutants that have a low urban share (low 
𝑒𝑝̅̅̅̅

𝐸𝑝̅̅ ̅̅
), e.g., agriculture. 

As we will see in the application (Section 3), this exclusion step leads to eliminating a large majority of the [p,s] 135 
couples from the screening process (between 80 and 90%). 

2.2.2 Decomposition into key components 

The objective of the decomposition is to isolate emission characteristics that are associated to the inventory 

compilation process, in order to facilitate the resolution of the detected inconsistencies.  The three main 

characteristics are (1) the Pollutant Totals over Large areas (LPT), the Sectorial Shares over Large areas (LSS) and 140 
the Activity Share over the Focus areas (FAS). To isolate these components, we decompose the ratio of the known 

pollutant-sector emissions for each focus areas as follows: 

 

 
𝑒𝑝,𝑠
1

𝑒𝑝,𝑠
2
=

𝑒𝑝,𝑠
1

𝐸𝑝,𝑠
1

𝑒𝑝,𝑠
2

𝐸𝑝,𝑠
2

∗

𝐸𝑝,𝑠
1

�̅�𝑝
1

𝐸𝑝,𝑠
2

�̅�𝑝
2

∗
�̅�𝑝
1

�̅�𝑝
2
 (3) 

 

where �̅�𝑝 represents the larger scale emissions summed over all sector for a given pollutant. Superscripts refer to the 145 
two inventories used for the screening. Equation (3) is an identity where all terms are known from input quantities, 

i.e. the focus and larger scale emissions detailed in terms of pollutants and sectors. The three terms on the right-hand 

side of the identity provide information on the FAS, LSS and LPT, respectively. 

 

For convenience, we rewrite equation (3) in logarithm form as: 150 
 

 𝑙𝑜𝑔 (
𝑒𝑝,𝑠
1

𝑒𝑝,𝑠
2
) = 𝑙𝑜𝑔

(

 
 

𝑒𝑝,𝑠
1

𝐸𝑝,𝑠
1

𝑒𝑝,𝑠
2

𝐸𝑝,𝑠
2

)

 
 
+ 𝑙𝑜𝑔

(

 
 

𝐸𝑝,𝑠
1

�̅�𝑝
1

𝐸𝑝,𝑠
2

�̅�𝑝
2
)

 
 
+ 𝑙𝑜𝑔 (

�̅�𝑝
1

�̅�𝑝
2
) (4) 

 

Which can be rewritten as equation (5) with simplified notations: 

 

 �̂� = 𝐹𝐴�̂� + 𝐿𝑆�̂� + 𝐿𝑃�̂� (5) 

 155 
where the hat symbol indicates that quantities are expressed as logarithmic ratios. These three quantities are at the 

basis of the screening methodology and serve as input for the graphical representation as well. 

2.2.3 Identification of inconsistencies 

One of the main steps of the methodology consists in keeping only the largest differences among the relevant 

emissions identified in Section 2.2.1. The comparison of two emission inventories always leads to different 160 
estimates, as inventories can be calculated by different methods (e.g. different activity data, emission factors and 

spatial disaggregation to the grid).  
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Differences originate from methodological choices but also from errors generated during the inventory compilation 

process. When differences are small, it is not possible to tell whether they originate from methodological choices or 165 
from errors. Moreover, it is not possible to assess whether one methodological choice leads to an improvement as 

compared to the other, because true emissions remain unknown (Kryza et al., 2015). We will refer to these small 

differences as “uncertainty”.  

 

Although very large differences may result from methodological choices as well (e.g.  inclusion or not of 170 
condensable emissions for the residential sector), they are more likely to be associated to errors. Given the 

magnitude of the differences, it will in most cases be possible to identify one best value out of the two inventory 

estimates, even though the truth is unknown. These large differences therefore point to a list of potential issues for 

inventory compilers to check and fix where applicable, opening the way to potential improvement. In this work, 

these large differences are named “inconsistencies” and are intended as differences that are large enough to ensure 175 
that one of the two inventory values is tenable (i.e. justifiable) whereas the other is not. 

 

In the proposed screening methodology, a threshold is introduced to distinguish inconsistencies from uncertainties.  

This arbitrary level is denoted as 𝛽𝑡 and is a free input data in this screening process. 

 180 
The detection of inconsistencies is performed as follows. For each [p,s] we check that any of the two input data: |�̂�| 

and |�̂�| do not exceed the threshold but also that any of the three main components: |𝐹𝐴�̂�|, |𝐿𝑆�̂�| and |𝐿𝑃�̂�| do not 

either. This is to flag potential compensating effects between 𝐹𝐴�̂� and �̂� since �̂� = 𝐹𝐴�̂� + �̂�, and between 𝐿𝑃�̂� and 

𝐿𝑆�̂� since �̂� = 𝐿𝑃�̂� + 𝐿𝑆�̂�. To achieve this, the following indicator is defined. 

 185 

 
𝑙𝑜𝑔(𝛽𝑝,𝑠) = 𝑚𝑎𝑥 {|�̂�|𝑝,𝑠,  |𝐹𝐴�̂�|𝑝,𝑠,  |�̂�|𝑝,𝑠,  |𝐿S�̂�|𝑝,𝑠,  |𝐿𝑃�̂�|𝑝,𝑠} 

 
(6) 

Differences beyond the threshold (𝛽𝑝,𝑠 ≥ 𝛽𝑡)are then flagged as inconsistencies.  

2.2.4 Calculation of an emission consistency indicator (ECI) 

As a follow-up step, all [p,s] couples that remain after the relevance (𝛾𝑝,𝑠 > 𝛾𝑡)and inconsistency detection steps 

(𝛽𝑝,𝑠 > 𝛽𝑡), are used to calculate an “Emission Consistency Indicator (ECI)” as follows: 

 190 

 
𝐸𝐶𝐼 = max

{𝛾𝑝,𝑠>𝛾𝑡}

log(𝛽𝑝,𝑠) 

log(𝛽𝑡)
 

 

(7) 

The ECI quantifies the maximum difference among all relevant [p,s], normalized by the inconsistency level (𝛽𝑡). It 
therefore quantifies the ratio between the maximum inconsistency and the assumed level of uncertainty. A value of 

ECI less than one means that all differences are considered as uncertainty (in other words none of the inventory can 

be identified as best performing). Together with the ECI, which quantifies this maximum difference, we associate 

the percentage of inconsistent [p,s] with respect to the total number of relevant data, to provide information on the 195 
number of detected inconsistencies. To facilitate the screening process, these concepts are displayed graphically. 

This is discussed in the next Section. 

2.3 Graphical display 

2.3.1 Diamond diagram 

For the graphical representation, we use an aggregated form of equation (5), recalling that the two last terms on the 200 
right hand side combine into the ratio of the larger scale [p,s] emissions, i.e.: 

 �̂� = 𝐹𝐴�̂� + �̂� (8) 

where FAS is related to the large scale-to-focus scale emission share and E is related to the large scale emissions. 

Relation (8) is the basis of the “diamond” diagram (Figure 2) that provides an overview of all inconsistencies 

detected during the screening process. In this diagram, each inconsistent emission [p,s] is represented by a point that 

has larger scale emissions (�̂�)as abscissa and focus activity share as ordinate (𝐹𝐴�̂�). The sum of these two terms (�̂�) 205 
is equal for points that lie on “−1” slope diagonals. At this stage it is important to note that positive differences in 

terms of larger scale emissions and focus area shares will characterize points lying on the right and top parts of the 
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diagram, respectively. In addition, the upper right and lower left diagram areas indicate summing-up effects whereas 

the lower right and top left areas highlight compensating effects. 

 210 
The diamond shape (in the middle of the diagram) derives from equation (8) where the 𝛽𝑡 threshold is used to draw 

the inconsistency limit for each of its three terms. Each [p,s] point lying outside this shape is therefore characterized 

by an inconsistency in terms of either E, FAS or/and e,  small or large according to its relative position in the 

diagram. The calculation of the inconsistency limit (equation 6) however considers LPT and LSS as two additional 

criteria.  Because of their link (𝐸 =̂ 𝐿𝑃�̂� + 𝐿𝑆�̂�), a point within the diamond represents therefore an inconsistency in 215 
terms of LPT and LSS that compensate each other, since their sum remains lower than the threshold (�̂� ≤ log(𝛽𝑡), 
otherwise, the point would lie outside the diamond). We recall that LPT is related to the total of the large scale 

emissions whereas LSS provides information on their sectoral share.  

 

 220 
Figure 2: Diamond diagram and representation of the codification. LPT provides information on the total of the 

large scale emissions, LSS on their sectoral share, FAS on the large-to-focus scale share and E on the large scale 

emissions 
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In this diamond diagram, shapes are used to differentiate activity sectors while colours differentiate pollutants. The 

size of the symbol is proportional to the relevance of the emission contribution (γ). Finally, we use symbol filling to 225 
distinguish priorities among inconsistencies related to the three components: LPT, LSS and FAS. The priority is set 

as follows: 1 − 𝐿𝑃𝑇, 2 − 𝐿𝑆𝑆 and 3 − 𝐹𝐴𝑆. This is motivated by the fact that larger scale inconsistencies are easier 

to tackle and might correct for many focus area inconsistencies at the same time (i.e. for all focus area belonging to a 

given larger area). The priority is then set by checking in this order if the component exceed the threshold or is 

larger than the remaining components. In practice, this is implemented as follows:  230 
 

1. If 𝐿𝑃�̂� ≥ log(𝛽𝑡) or 𝐿𝑃�̂� ≥ 𝑚𝑎𝑥[𝐹𝐴�̂�, 𝐿𝑆�̂�], then priority is set to the larger scale pollutant total (LPT).  

2. If step 1 is not fulfilled and if 𝐶𝑆�̂� ≥ log(𝛽𝑡) or 𝐶𝑆�̂� ≥ 𝑈𝐴�̂� then priority is set to the larger scale sectorial 

share (CSS) 

3. If neither steps 1 and 2 are fulfilled, priority is set to the focus area activity share (FAS)   235 

Note that compared to the emission diagram proposed by Thunis et al. (2016) and Clappier and Thunis (2020), the 

diagram proposed here does not distinguishes between acceptable (within the diamond) and non-acceptable data 

(outside the diamond) but displays only inconsistencies (i.e. data to be checked for which some explanation must be 

found). Moreover, the current formulation does not rely on probabilistic assumptions and directly relates to emission 

characteristics that are readily available to emission developers. 240 

2.3.2 Supporting diagrams 

In addition to the diamond diagram, other diagrams are proposed to support the interpretation of the screening. 

These diagrams are designed to provide additional information by detailing further some aspects (e.g. geographical) 

at the expenses of aggregation or simplification (e.g. limitation to top inconsistencies) on other aspects. These 

diagrams are: 245 
 

 Overview map: Data are displayed on a geographical map to easily identify the inconsistencies for each 

focus area. However, only the maximum inconsistency (max
𝑝,𝑠
{𝛽})for each focus area is shown. While the 

size is here proportional to the magnitude of the inconsistency, the symbol shapes, colours and filling 

remain similar to the overview diamond. 250 
 

 Barplot: For a given pollutant and focus area, this diagram allows visualizing inventory differences 

directly in terms of FAS, LSS and LPT components. This diagram is used here as validation means (with 

respect to the diamond results).  

We discuss further these visualizations in the application section, showing a graphical example and comments for 255 
each type of plot.  

3. Application 

3.1 Input 

In this section, we apply our screening methodology to the CAMS-REG regional anthropogenic emission inventory 

that covers emissions for UNECE-Europe for the main air pollutants and greenhouse gases (Kuenen et al., 2021). 260 
The method starts from the reported emissions by European countries to UNFCCC (for greenhouse gases) and to 

EMEP/CEIP (for air pollutants) and have been aggregated into 246 different combinations of sectors and fuels. 

Reported data are analysed by sector and completed with alternative emission estimates where the completeness, 

consistency and/or quality of the reported data was not sufficiently accurate. In practice, reported data were found fit 

for purpose for EU Member States and the UK, Norway, Iceland and Switzerland, while for other countries 265 
alternative emission estimates were used. In addition, some further modifications were made to the dataset for which 

we refer to Kuenen et al. (2021). This results in a complete emission inventory for all countries, which is then 

spatially distributed at high resolution using a consistent methodology over the whole domain. 

For the comparison presented in this paper, we use two versions of the CAMS-REG inventory for the same year 

2015: 270 
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 CAMS-REG v2.2.1: a version covering the years 2000-2015, based on the official reported data of air 

pollutants and greenhouse gases in the year 2017; 

 CAMS-REG v4.2:  this version covers the years 2000-2017, based on the official reported data of air 

pollutants and greenhouse gases in the year 2019. 275 

In comparison to version 2.2.1, the methodology for the total emissions by country, pollutant, sector and year in 

CAMS-REG-v4.2 is largely similar, however the difference in reporting year of emissions may introduce substantial 

differences in sectoral or country total emissions in specific cases. This happens since official country emission data 

are reported on an annual basis for all historical years, which implies that emissions for the year 2015 have been 

reported annually starting from 2017. Inventories are continuously improved by means of updating methodologies 280 
(new activity data, new emission factors, etc.) which implies that historical emissions from a single year (2015 in 

this case) are different in each reporting year. On the other hand, some of the changes are the result of 

methodological changes in the CAMS-REG inventory, which are mainly related to the spatial distribution, where 

CAMS-REG-v4.2 contains among others an improved split in road transport emissions between urban, rural and 

highway shares, agriculture (new proxies for manure spreading, fertilizer application based on JRC CAPRI model 285 
(Britz et al. 2015)). It also uses a new approach for Agricultural Waste Burning, improves the point source database, 

and uses updated harmonized inland and sea shipping based on the FMI STEAM model (Jalkanen et al., 2009). 

Further details on these changes are provided in Kuenen et al. (2021). 

 

It is important to stress that the proposed screening methodology assesses the overall consistency of the two 290 
inventory versions, i.e. it covers the consistency of the inventory compilation itself but also the consistency of its 

input data (in this case: country reported emissions).  

 

Focus areas are defined as the functional urban areas (FUA, OECD 2012) for which emissions (𝑒𝑝,𝑠) are obtained by 

aggregating grid cell values. The FUA is composed of a core city plus their wider commuting zone, consisting of the 295 
surrounding travel-to-work areas. 150 FUAs across Europe, depicted with blue contours in Figure 3 are selected for 

this screening. Details on these cities are provided in Thunis et al. (2018). The larger scale emissions (𝐸𝑝,𝑠) are 

defined at country level, level at which CAMS-REG takes the official reported data as input.  

 

 300 
Figure 3: Map of the Functional Urban Areas (FUA) considered for the emission screening. 

https://doi.org/10.5194/gmd-2021-390
Preprint. Discussion started: 16 December 2021
c© Author(s) 2021. CC BY 4.0 License.



10 

 

In terms of pollutants, 𝐸𝑝,𝑠 and 𝑒𝑝,𝑠 include the following: NOx, NMVOC, PM2.5, PMco (coarse PM, calculated as the 

difference between PM10 and PM2.5 emissions from CAMS-REG), SO2 and NH3, whereas sectors are based on the 

Gridded Nomenclature For Reporting (GNFR) classification. The original GNFR sectors have been aggregated in 5 

categories: road transport (F), residential (C), power plants (A), industry (B) and others (D-E-I-J). The latter 305 
category includes waste, fugitive emissions, solvents and off-road transport. As we focus on urban areas, agriculture 

emissions (K-L) are not relevant and therefore not included as part of the analysis. Shipping (G) and air transport 

(H) are also not part of the analysis. 

For this inventory, LPT concerns the country level total emissions, LSS the sectoral total emissions at country level 

and FAS the sectoral emissions at the local level (city of interest). Note that the selection of the larger scale and 310 
focus areas, as well as of the sectors to consider is a free user choice. 

 

Finally, the relevance and inconsistency threshold are set in this work to 𝛾𝑡 = 0.5 and 𝛽𝑡 = 2.  Although the choice 

of these threshold is arbitrary and may seem challenging, this is not the case in practice and identifying the 

inconsistencies is a robust process. A too low threshold will lead to detecting too many differences among which the 315 
smallest (at uncertainty level) do not allow assessing what is best. However, the largest differences (inconsistencies) 

are yet identified and can be taken care of to improve one or both inventories. A too low threshold will therefore 

lead to confusing information by mixing uncertainties and inconsistencies. On the other hand, a too high threshold 

will lead to detecting too few inconsistencies and therefore to missing errors that could potentially be corrected. In 

practice, it is recommended to start with a high threshold and lower it progressively until differences cannot be 320 
justified anymore. The values for the relevance and inconsistency threshold (𝛾𝑡 and 𝛽𝑡) presented here reflect these 

considerations.     

3.2 Results 

The diamond diagram (Figure 4) displays the inconsistencies between the CAMS-REG-v2.2.1 and v4.2 inventories 

over the entire emission domain, i.e., Europe. Among the 4500 screened [p,s] points, corresponding to the product of 325 
150 cities per 6 pollutants and 5 sectors, only about 450 are kept after application of the relevance threshold (𝛾 ≥
0.5). Among the remaining 450 points, 46 show inconsistencies (β > 2) as indicated by the lower right number (NI). 

In other terms, about 9% of the relevant [p,s] show inconsistent values (number associated in brackets) aside the 

ECI. In our application, the ECI is about a factor 70, meaning that the maximum inconsistency is about 70 times 

larger than the assumed level of uncertainty.  330 
 

The summary table at the bottom of the diagram supports the interpretation by ranking inconsistencies in terms of 

pollutant, sector and type (FAS vs. LSS vs. LPT). Most of the inconsistencies arise for SO2 (13) and PMco (16), 

primarily from the industrial and residential sectors, and originate both from the country (LPT+LSS=2+22) and local 

scales (FAS=22). It is worth noting that few inconsistencies are within the diamond, pointing to a limited number of 335 
compensations between LPT and LSS large scale inconsistencies (i.e., overestimation in terms of pollutant total 

compensated by an underestimation in terms of sectorial share, and vice versa). This information is graphically 

detailed by representing the [p,s] points with varying colours and symbols. PMco inconsistencies are important in 

magnitude and are mainly related to lower estimates (points are below the X axis) by v4.2 of the urban share (points 

are distributed along a vertical line). It is interesting to note that points are mostly distributed either on a vertical or 340 
horizontal line indicating the absence of compensation (top right and bottom left part of the diagram) or summing-up 

effects (top right and bottom left part of the diagram).  
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Figure 4: Overview diamond. Symbols and colours are used to distinguish pollutants and sectors, respectively. The 345 
X- and Y-axis indicate inconsistencies in country emissions (�̂�) and urban share (𝐹𝐴�̂�), respectively while the 

overview table provides information on the origin of the inconsistencies in terms of sector, pollutant and 

country/city scale (FAS, LSS, LPT). The ECI indicator indicates the ratio between the magnitude of the maximum 

inconsistency and the assumed level of uncertainty (β). The percentage number indicates the fraction of 

inconsistencies (𝛽 ≥ 𝛽𝑡) among the relevant emissions (𝛾 ≥ 𝛾𝑡). See additional explanations in the text. 350 

The European map presented in Figure 5 flags out the inconsistency that dominates in each city. It is interesting to 

note that while the total number of inconsistency (46) might seem large, the map shows that in some countries, the 

same type of inconsistency is widespread. This is the case of the PMco industrial emissions in the UK, the SO2 

industrial emissions in France, or for the NMVOC residential emissions in the Czech Republic. As the size of the 

symbol is here proportional to the magnitude of the inconsistency, the PMco emissions from the industrial sector 355 
might need a priority check in some UK cities. Even though these inconsistencies appear in different countries, their 

type is similar and resolving one might bring useful information to resolve the others.     
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Figure 5: EU (overview) map. Only cities where at least one [p,s] couple ratio with relevant emissions (𝛾 ≥ 𝛾𝑡) is 360 
above the inconsistency threshold (𝛽 ≥ 𝛽𝑡) are shown by a symbol. If more than one [p,s] fulfils these two 

conditions, only the largest is shown. For all others, cities are represented by a black dot.  

We focus now on some of these inconsistencies and try to understand their origin. For this purpose, we select 

inconsistencies of different types (Figure 6). 

  365 
Vilnius: inconsistent country totals for PM2.5: In Vilnius (Lithuania), the ECI is about 2 (see diamond plot in Figure 

6 top row), indicating inconsistencies that are about twice larger than the level of uncertainty. The flagged 

inconsistency is aligned along the x-axis indicating issues in terms of country PM2.5 values, in particular pollutant 

levels (LPT). The associated bar-plot highlights a factor 2 to 3 difference between the CAMS-REG-v2.2.1 and -v4.2 

estimates (Figure 6). Note that the country sectorial shares are also diverging for the industrial but also transport 370 
sectors. This is however seen by the screening tool as a second priority.  

The changes can be explained by the changes in the emission reporting that is used as input to the CAMS-REG 

inventories. Significant updates were made in the 2019 submission compared to the 2017 submission for Lithuania. 

For example, PM2.5 emissions from residential sector decreased by nearly a factor 4, whereas road transport 

emissions increased by ~70%.  National total PM2.5 emissions reported by Lithuania for 2015 were reduced by 375 
more than 50% between submissions in 2017 and 2019. 

 

Dublin: inconsistent industry country share for PM2.5: In Dublin, the ECI is about 50, indicating inconsistencies that 

are about 50 times larger than the level of uncertainty. The flagged inconsistency (PMco from industry) lies on the 

right indicating a much larger value attributed to this pollutant/sector in the CAMS-REG-v4.2 version. This is 380 
confirmed in the associated bar-plot (Figure 6 second row) that highlights a totally different industrial share in the 

two inventories. This country scale issue is partly echoed in the urban share, but this is seen by the screening tool as 

a second priority. Similar to the Vilnius case above, this can be explained by changes in country reporting. Whereas 

total emissions in the 2017 submission for Industry were 1.5 kt PM2.5 and 1.6 kt PM10, in the 2019 submission the 

PM2.5 emissions amounted to 1.9 kt and PM10 emissions were 7.7 kt. Hence PMco emissions from industrial 385 
sources were increased by more than a factor 50, from 0.1 to 5.8 kt, between both versions. 

 

Newcastle: inconsistent industry urban share for PMCO: In Newcastle (UK), the ECI is 68 (Figure 6 third row), 

indicating inconsistencies that are about 70 times larger than the level of uncertainty. The flagged inconsistency 

(PMco from industry) is mostly driven by the urban share but country values differ largely as well (factor 2). Note 390 
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that large differences of the same type also occur for PM2.5. While this is not flagged as a major inconsistency by the 

screening approach (because the relative importance of the emissions (γ) is too small), this might become the case 

when the PMco inconsistency has been resolved. The associated bar-plot highlights differences in country totals and 

country sectorial shares but these are not sufficient (in terms of γ or β) to trigger the flagging. On the contrary, the 

very large difference in the urban share, with CAMS-REG-v4.2 exceeding -v2.2 emissions by almost a factor 100 395 
are flagged. As mentioned above, this inconsistency is present in many UK cities. The inconsistency can be 

explained partly by changes in reporting between 2017 and 2019 submissions, as the PMco from industry increased 

from 15.8 to 35.2 kt. For the distribution in the country, E-PRTR is used for distributing emissions to point source 

installations. When checking in detail for this location, a factor 1000 error in E-PRTR reporting was found, which 

lead to an over-allocation of PM emissions from the industrial sector to this specific industrial site located within the 400 
Newcastle urban area. This makes that in CAMS-REG-v4.2 emissions in this particular location are overestimated, 

which is compensated for by underestimated emissions elsewhere in the UK. 

 

London: inconsistent “other” urban share for NH3: 

In London (UK), the ECI is 2.5, indicating inconsistencies that are about 2.5 times larger than the level of 405 
uncertainty (Figure 6 bottom row). The flagged inconsistency (NH3 from the “other” sector) results from both urban 

and country differences that add up but the dominating factor is the urban share. The associated bar-plot confirms 

this issue while differences in country totals and country sectorial shares appear moderate in comparison to the 

urban share issue. In contrast to Newcastle, this issue is only appearing for London.  

In this specific case, it was found that a relatively large part of NH3 emissions was reported in the category “other 410 
waste” for the United Kingdom as a whole. Given the relatively low importance of the sector “other waste” and the 

absence of point source information for NH3 for this particular sector, these emissions were allocated using a 

surrogate point source distribution where all emissions ended up in the same point source in London, thus 

significantly over-allocating emissions in this location. This therefore points to an inconsistency in the CAMS-REG 

methodology. 415 
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Figure 6: Barplots and city diamond for the cities inconsistencies. The bar-plots show the values reached for the 

FAS, LSS and LPT by the two inventories, based on input emission values. Data are graphically scaled relatively to 

the maximum reached for each of the three factors (FAS, LSS and LPT).  420 
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Half of the inconsistencies between the two versions of CAMS-REG considered in this study can be attributed to 

changes in country reporting. All European countries annually revise and report their historical annual emissions 

back to 1990, hence the emission of e.g., 2015 are reported every year again. The differences between both versions 

may be the result of a correction of an error and/or the implementation of a different methodology to estimate the 

emissions. This may be checked in the reports (IIRs) that are submitted annually along with the reported emissions, 425 
but likely not all changes are documented in detail. This makes that only in a selection of cases it will be possible to 

define an error in one of the inventories as such, and hence define the better inventory. 

An important driver for inventory improvement in recent years has been the annual review of air pollutant inventory 

data under the NEC Directive organised by the European Commission1, which has led to substantial revisions or 

nationally reported data since 2017 for all pollutants and sectors. 430 

4. Further considerations 

The approach presented in this work is intended as a screening to flag inconsistencies. Only differences that are 

above a user-defined threshold (βt) are detected and smaller differences are disregarded. This threshold reflects the 

limit between relatively small differences for which no emission inventory can be estimated to be the best (because 

true emissions are unknown) and differences that are so large that they are likely associated with a large error in one 435 
of the two (or both) inventories (hence called inconsistencies) for which it should be possible to identify a best 

performing inventory.  

 

While solving a few inconsistencies will generally lower the overall number of inconsistencies, this is however not 

always the case. Indeed a very large inconsistency can potentially lead to a γ factor that is so large that all other [p,s] 440 
for that city would be disregarded in proportion. Once the inconsistency is solved, the new γ estimates might lead to 

one or more new inconsistencies to be flagged. This is therefore a step-wise approach. 

      

The settings used in this work, i.e., the choice of 150 urban areas and the country level as larger scale have been 

arbitrarily fixed. The methods allow for flexible choices and could be applied to other areas than urban (e.g., high 445 
emission industrial or intensive agriculture areas) to assess the consistency with respect to other types of emissions. 

Similarly, the larger scale can be adapted to the specific inventory and focus on regions rather than countries or have 

it defined as the entire modelling domain. 

 

The proposed application focuses on the comparison of two versions of a specific inventory (here CAMS-REG). 450 
Although more challenging, the screening method can be applied to the comparison of two different inventories. 

Obviously, additional challenges will appear, in particular (1) differences in terms of spatial resolution that might 

result in sources being excluded from some grid cell for one inventory and included in the other, resulting in 

artificial differences or (2) the need of harmonization of the emissions in terms of sectorial categories as a first step 

before the comparison. This inter-comparison of inventories is the subject of a follow-up paper, where these specific 455 
issues are discussed.      

 

Given its flexible settings, the screening method also applies to bottom-up inventories. These can then be compared 

with themselves (e.g. 2 versions) or with other inventories. As mentioned earlier, the smaller areas of interests can 

be designed at own convenience and this is also the case for the larger scale that in the extreme case can be set to the 460 
total domain area. 

 

Finally, the screening tool also provides text information that summarizes the inconsistencies by detailing the city, 

sector, pollutant, type and amplitude for each of them. A comment line is associated to each of them in order to keep 

track of steps taken to resolve them (or not).     465 

5. Conclusions 

In this work, we proposed and discussed a screening method to compare two emission inventories. The overall goal 

is to improve the quality of emission inventories by feeding back the results of the screening to inventory compilers 

who can check the inconsistencies found and where applicable resolve errors. The method targets three different 

aspects: 1) the total emissions assigned to a series of large geographical area, countries in our application; 2) the way 470 
these country total emissions are shared in terms of sector of activity and 3) the way inventories spatially distribute 

                                                 
1 https://ec.europa.eu/environment/air/reduction/implementation.htm 
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emissions from countries to smaller areas, cities in our application. The method provides a way to quantify the level 

of consistency (intended here as a whole, i.e. emission compilation plus all input relevant data) between two 

inventories.  

 475 
Given the large and possibly overwhelming amount of data to analyze (many pollutants, activity macro sector and 

cities), the first step of the screening approach consists in sorting the data for the comparison and keep only emission 

contributions that are relevant enough. In a second step the method identifies, among those significant differences, 

the most important ones that are evidence of methodological divergence and/or errors that can be found and resolved 

in at least one of the inventories. 480 
 

The approach has been used to compare two versions of the CAMS-REG European scale inventory over 150 cities 

in Europe for selected activity sectors. The versions 2.2.1 and 4.2 of this inventory differ both in terms of reporting 

year (new activity data, new emission factors, etc.) and in terms of spatial distribution (e.g. split in road transport 

emissions between urban, rural and highway shares, new proxies for agriculture…). Among the 4500 screened 485 
pollutant-sectors, about 450 were kept as relevant among which 46 showed inconsistencies. The analysis indicated 

that these inconsistencies were almost equally arising from reporting by countries and methodological issues in 

CAMS-REG (e.g. spatial distribution). They mostly affect SO2 and PM coarse emissions, from the industrial and 

residential sectors. Differences in terms of reporting may be the result of a correction of an error and/or the 

implementation of a different methodology to estimate the emissions. But the fact that about half of the 490 
inconsistencies can be attributed to changes in country reporting stresses the necessity to further checking the 

informative inventory reports (IIRs) that are submitted annually along with the reported emissions. For 

inconsistencies related to the CAMS-REG methodology and in particular the spatial distribution therein, the analysis 

presented here showed that for specific cities, screened errors could be explained, and some of them resolved, 

leading to improved inventories.  495 
 

Although only a particular example has been discussed here, the screening approach is general and can be used for 

other types of applications related to emission inventories. Comparison between temporal series of emissions, 

between inventories based on different source of information or even between inventories based on different 

methodologies (e.g. comparison of top-down and bottom up) are possible. The latter are the subject of a follow-up 500 
paper. 

 

Code and data availability. The IDL code and associated input data are archived on Zenodo 
(https://zenodo.org/record/5654911) 

 505 

Author contributions. PT developed the screening approach and wrote most of the text. EP prepared and 
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