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Abstract 1 

Atmospheric chemistry transport models are important tools to investigate the local, regional and 2 

global controls on atmospheric composition and air quality.  To ensure that these models 3 

represent the atmosphere adequately it is important to compare their outputs with measurements.  4 

However, ground based measurements of atmospheric composition are typically sparsely 5 

distributed and representative of much smaller spatial scales than those resolved in models, and 6 

thus direct comparison incurs uncertainty.  In this study, we investigate the feasibility of using 7 

observations of one or more atmospheric constituents to estimate parameters in chemistry 8 

transport models and to explore how these estimates and their uncertainties depend upon 9 

representation errors and the level of spatial coverage of the measurements.  We apply Gaussian 10 

process emulation to explore the model parameter space and use monthly averaged ground-level 11 

concentrations of ozone (O3) and carbon monoxide (CO) from across Europe and the US. Using 12 

synthetic observations we find that the estimates of parameters with greatest influence on O3 and 13 

CO are unbiased, and the associated parameter uncertainties are low even at low spatial coverage 14 

or with high representation error.  Using reanalysis data, we find that estimates of the most 15 

influential parameter - corresponding to the dry deposition process - are closer to its expected 16 

value using both O3 and CO data than using O3 alone.  This is remarkable because it shows that 17 

while CO is largely unaffected by dry deposition, the additional constraints it provides are 18 

valuable for achieving unbiased estimates of the dry deposition parameter.  In summary, these 19 

findings identify the level of spatial representation error and coverage needed to achieve good 20 

parameter estimates and highlight the benefits of using multiple constraints to calibrate 21 

atmospheric chemistry models. 22 

 23 
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Introduction 1 

Changes in atmospheric composition due to human activities make an important contribution to 2 

Earth’s changing climate (Stocker et al., 2013) and to outdoor air pollution, which is currently 3 

responsible for about 4.2 million deaths worldwide each year (Cohen et al., 2017), with 365,000 4 

deaths due to surface ozone (DeLang et al., 2021).  Chemistry transport models (CTMs) simulate 5 

the production, transport, and removal of key atmospheric constituents, and are important tools 6 

for understanding variations in atmospheric composition across space and time.  They permit 7 

investigation of future climate and emission scenarios that fully account for the interactions and 8 

feedbacks that characterise physical, chemical and dynamical processes in the atmosphere.  For 9 

practical application, CTMs need to reproduce the magnitude and variation in pollutant 10 

concentrations observed at a wide range of measurement locations. Where biases occur, these 11 

can often be reduced by improving process representation through adjusting model parameters so 12 

that the CTM matches the measurements to a sufficient level of accuracy (e.g. Menut et al., 13 

2014).  While estimation of model parameters is common in many fields of science, and has 14 

successfully been applied to climate models (e.g. Chang and Guillas, 2019; Couvreux et al., 15 

2021), it is rarely attempted with atmospheric chemistry models because they are 16 

computationally expensive to run and it is thus burdensome to perform the large number of 17 

model runs required to explore model parameter space.  Instead, data assimilation has become a 18 

standard method for ensuring that model states are consistent with measurements, usually 19 

treating model parameters as fixed (Khattatov et al., 2000, Bocquet et al., 2015, van Loon et al., 20 

2000, Emili et al., 2014).   21 

In this study, we explore computationally efficient ways of estimating parameters in 22 

chemistry transport models, focusing on two important tropospheric constituents, ozone (O3) and 23 
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carbon monoxide (CO). Ozone is a major pollutant that is produced in the troposphere by 1 

oxidation of precursors such as CO and hydrocarbons, which are emitted during combustion 2 

processes from vehicular, industrial and residential sources.  Ozone is harmful to human health 3 

and has been shown to damage vegetation and reduce crop yields (Goldsmith and Landaw, 1968, 4 

Kampa and Castanas, 2008, Van Dingenen et al., 2009, van Zelm et al., 2008).  A recent 5 

assessment of surface O3 was carried out for the Tropospheric Ozone Assessment Report 6 

(TOAR) based on measurements from an extensive network of 10,000 sites around the world 7 

(Schultz et al., 2017).  A simple statistical model of changes in surface O3 between 2000 and 8 

2014 showed that significant decreases of 28% and 6% have occurred in Eastern North America 9 

and Europe, respectively, but increases of 20% and 45% in south-east and east Asia (Chang et 10 

al., 2017).   In recent decades, a similar pattern of decreases in CO in Europe and North America 11 

and increases over parts of Asia has also been observed (Granier et al., 2011). To fully explain 12 

and attribute these changes, a thorough understanding of the processes controlling these 13 

pollutants is needed. 14 

To assess the performance of CTMs, it is essential to compare simulations of 15 

tropospheric chemical composition with measurements.  A comprehensive evaluation of 15 16 

global models found that they broadly matched measured O3, but that modelled O3 was biased 17 

high in the northern hemisphere and biased low in the southern hemisphere (Young et al., 2018).  18 

The models were unable to capture the long-term trends in tropospheric O3 observed at different 19 

altitudes. Similar biases were found in an independent study of long-term trends involving three 20 

chemistry climate models (Parrish et al., 2014).  While identification of these model biases is 21 

informative, correcting the deficiencies is challenging because it is often unclear why different 22 

models perform well at certain times and for certain places, but poorly elsewhere (Young et al., 23 
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2018).  A practical solution is to perform global sensitivity analysis to identify the parameters or 1 

processes that influence the model results most and then to calibrate the model to estimate these 2 

parameters and their uncertainties by comparing model predictions with measurements in a 3 

statistically rigorous way. This provides insight into the physical processes causing model biases 4 

that is typically unavailable from simpler approaches.     5 

The principal challenge with performing global sensitivity analysis and model calibration 6 

is that they may require thousands of model runs, and this is infeasible for a typical global CTM 7 

that may require 12-24 hours to simulate a year on high performance computing facilities.  This 8 

can be overcome by replacing the model with a surrogate function such as a Gaussian process 9 

emulator that is computationally much faster to run (Johnson et al., 2018, Ryan et al., 2018, Lee 10 

et al., 2013).  Sensitivity analysis and model calibration can then be performed based on 11 

thousands of runs with the emulator rather than the CTM.  Since the first application of 12 

emulation methods for model calibration (Kennedy and O'Hagan, 2001), these approaches have 13 

been extended to models with highly multivariate output (Higdon et al., 2008).  Examples 14 

include an earth system model (Wilkinson, 2010), an aerosol model (Johnson et al., 2015), an ice 15 

sheet model (Chang et al., 2016) and a climate model (Salter et al., 2018).  In this study, we 16 

apply these approaches to models of tropospheric ozone for the first time to demonstrate the 17 

feasibility of parameter estimation.   18 

We identify three issues that need to be addressed for successful atmospheric model 19 

calibration. Firstly, global chemistry transport models typically have grid scales of the order of 20 

100 km which is insufficient to resolve spatial variability in many atmospheric constituents. 21 

Surface measurements made at a single location may not be representative of the spatial scales 22 

resolved in the model.   These errors associated with spatial representativeness may be important 23 
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even for satellite measurements which provide information at a 10 km scale (Boersma et al., 1 

2016, Schultz et al., 2017).  This representation error is distinct from instrument error, which is 2 

often relatively narrow and better understood.   The effect of representation errors was explored 3 

in simple terrestrial Carbon model by Hill et al. (2012), who found that as these errors decreased, 4 

the accuracy of parameter estimates improved.   5 

 Secondly, the spatial coverage of atmospheric composition measurements is typically 6 

relatively poor, and this limits our ability to estimate parameters accurately.  Thus, it is important 7 

to explore how the spatial coverage of measurements affects estimates of model parameters and 8 

their associated uncertainties.   9 

 Thirdly, evaluation of atmospheric chemistry models is typically performed for different 10 

variables independently (e.g., Stevenson et al., 2006, Fiore et al., 2009).  However, atmospheric 11 

constituents such as O3, CO, NOx, and VOC are often closely coupled through interrelated 12 

chemical, physical and dynamical processes.   Evaluation of a model with measurements of a 13 

single species neglects the additional process information available from accounting for species 14 

relationships.  Lee et al. (2016) highlight the limitation of using a single observational constraint 15 

on modelled aerosol concentrations, finding that this resulted in reduced uncertainty in 16 

concentrations but not in the associated radiative forcing.   The benefits of using multiple 17 

constraints have been highlighted previously.  For example Miyazaki et al. (2012)  used the 18 

Ensemble Kalman Filter and satellite measurements of NO2, O3, CO and HNO3 to constrain a 19 

CTM, resulting in a significant reduction in model bias in NO2 column, O3 and CO 20 

concentrations simultaneously.   Nicely et al. (2016) used aircraft measurements of O3, H2O and 21 

NO to constrain a photochemical box model, and found estimates of column OH that were 12-22 

40% higher than those from unconstrained CTMs.  They also found that although the CTMs 23 
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simulated O3 well, they underestimated NOx by a factor of two, explaining the discrepancy in 1 

column OH.   2 

 To address these gaps in knowledge, we estimate the probability distributions of eight 3 

parameters from a CTM, given surface O3 and CO concentrations from the USA and Europe.  4 

We focus on model calibration with a limited number of parameters as a proof of concept, but 5 

show how this could be expanded to a much wider range of parameters in future.  To overcome 6 

the excessive computational burden of running the model a large number of times, we replace the 7 

model with a fast surrogate using Gaussian process emulation.  After evaluation of the emulator 8 

to ensure that it is an accurate representation of the input-output relationship of the CTM, we 9 

investigate how well model parameters can be estimated from chemical measurement data. We 10 

quantify the impacts of measurement representation error and spatial coverage on the bias and 11 

uncertainty in the estimated model parameters and highlight the extent to which parameter 12 

estimates can be improved using measurements of different variables simultaneously. 13 

2. Materials and methods 14 

2.1 Atmospheric Chemical Transport Model 15 

Chemistry transport models simulate the changes in concentration of a range of atmospheric 16 

constituents (e.g. O3, CO, NOx, CH4) with time over a specified three-dimensional domain.  They 17 

represent many of the physical and chemical processes involved, usually in a simplified form, 18 

but a detailed understanding is often incomplete.  Key processes include the emission of trace 19 

gases into the atmosphere, photochemical reactions that result in chemical transformations, 20 

transport by the winds, convection and turbulence, and removal of trace gases from the 21 

atmosphere through deposition processes.  In this study, we apply the Frontier Research System 22 

for Global Change version of the University of California, Irvine chemical transport model, the 23 
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FRSGC/UCI CTM (Wild and Prather, 2000; Wild et al, 2004).  We focus on eight important 1 

processes affecting tropospheric oxidants that were chosen based on one-at-a-time sensitivity 2 

studies with the model (Wild, 2007) and that have been used in previous global sensitivity 3 

analyses of tropospheric ozone burden and methane lifetime (Ryan et al., 2018; Wild et al., 4 

2020). These processes include the surface emissions of nitrogen oxides (NOx), lightning 5 

emissions of NO, biogenic emissions of isoprene, wet and dry deposition of atmospheric 6 

constituents, atmospheric humidity, cloud optical depth and the efficiency of turbulent mixing in 7 

the boundary layer, see Table 1. These do not encompass all sources of uncertainty in the model, 8 

but are broadly representative of major uncertainties across a range of different processes. To 9 

provide a simple and easily interpretable approach to calibration, we define a global scaling 10 

factor for each process that spans the range of uncertainty in the process and that is applied 11 

uniformly in space and time.  These scaling factors form the parameters that we aim to calibrate. 12 

The choice of parameters and uncertainty ranges are described in more detail in Wild et al. (2020).  13 

For this study, we focus on monthly-mean surface O3 and CO distributions at the model native 14 

grid resolution of 2.8°×2.8° and compare with observations over North America and Europe for 15 

model calibration (Fig. 1). The model uses meteorological driving data for 2001, a relatively 16 

typical meteorological year without strong climate phenomena such as El Nino (Fiore et al. 17 

2009). 18 

2.2  Surface O3 and CO data 19 

Ground-based observations of O3 are relatively abundant in Europe and North America, where 20 

there are ~1800 individual sites that have continuous long-term measurements of O3 (Chang et 21 

al., 2017, Schultz et al., 2017). Measurements of CO are made at fewer locations, but reliable 22 

long-term data are available from 57 sites that are part of the Global Atmospheric Watch 23 
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network (Schultz et al., 2015).  To allow more thorough testing of the effects of spatial coverage 1 

over these regions, we use CAMS interim reanalysis data of surface O3 and CO from the 2 

European Centre for Medium-Range Weather Forecasts (ECMWF) which has been tuned to 3 

match measurements using 4D-Var data assimilation (Flemming et al. 2017).   This reanalysis 4 

reproduces observed O3 and CO distributions relatively well, and biases at surface measurement 5 

stations are generally small (Huijnen et al., 2020).  The dataset also has the benefit of complete 6 

global coverage, allowing us to test the importance of measurement coverage directly.  7 

Reanalysis data for O3 and CO are available for 2003‒2015, and we average the data by 8 

month across this period to provide a climatological comparison.  The control run of the 9 

FRSGC/UCI model matches CO from the reanalysis data reasonably well (Fig. 2), but 10 

overestimates surface O3. Overestimation of O3 in continental regions has been noted in previous 11 

studies and is partly a consequence of rapid photochemical formation from fresh emissions that 12 

is magnified at coarse model resolution (Wild and Prather, 2006).  For this exploratory study we 13 

bias-correct the modelled surface O3 by reducing it by 25%, following the approach taken by 14 

Shindell et al. (2018), so that it matches the reanalysis data (Fig. 2a).  This adjustment accounts 15 

for the effect of chemical processes and model resolution which are not explored in this study, 16 

and provides a firmer foundation for investigating the effects of other processes.     17 

2.3  Representation error 18 

The “representation error” describes how well measurements made at a single location represent 19 

a wider region at the spatial scale of the model (2.8°×2.8° for this study).  The error may be 20 

reduced by averaging measurements made at different stations within a model grid box, although 21 

atmospheric measurements may be too sparse to permit this (Schultz, 2016).  The representation 22 

error is sometimes taken as the mean of the spatial standard deviation of different measurements 23 
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within a grid-box (Sofen et al. 2016).  However, this measure quantifies the spatial variability of 1 

measured O3 within a grid-box and may not match the representation error   2 

To test the effect on parameter estimates of varying this representation error, we use 3 

synthetic data from the control run of the model using parameters set to their nominal default 4 

values.  Synthetic O3 and CO data were generated by adding different levels of representation 5 

error for each level of spatial coverage.  In mathematical terms: 6 

 𝑑𝑎𝑡𝑎௜ = 𝑚௜(𝑥௖௢௡௧௥௢௟) + 𝜀௜,     𝜀௜~𝑁(0, 𝜎௜
ଶ) (1) 

where for the ith point in space or time, 𝑑𝑎𝑡𝑎௜ refers to the synthetic data for O3 or CO, 7 

𝑚௜(𝑥௖௢௡௧௥௢௟) is the O3 or CO from the model control run, and 𝜀௜ is generated from a Normal 8 

distribution with mean of zero and standard deviation 𝜎௜ that is directly proportional to the 9 

magnitude of 𝑚௜(𝑥௖௢௡௧௥௢௟).  In this case, 𝜎௜ = 𝑝 × 𝑚௜(𝑥௖௢௡௧௥௢௟) where p is a scaling factor that 10 

provides a measure of the representation error. We used the reanalysis data to estimate p 11 

alongside the model parameters, and found posterior values of p that were in the range 0.16-0.19. 12 

We therefore selected four values of p (0.01, 0.1, 0.2 and 0.3) to explore the importance of 13 

representation error when using the synthetic data.   14 

2.4 Global sensitivity analysis 15 

Sensitivity analysis was carried out to determine the sensitivity of the simulated surface O3 and 16 

CO to changes in each of the eight parameters.  This allows us to identify which of the 17 

parameters are most important in governing surface O3 and CO.  We use global sensitivity 18 

analysis (GSA), varying each input while averaging over the other inputs.  This provides a more 19 

integrated assessment of uncertainty than the traditional one-at-a-time approach varying each 20 

input in turn while fixing the other inputs at nominal values.  We use the extended FAST method 21 

(Saltelli et al., 1999), a common and robust approach to GSA in which the sensitivity indices are 22 
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quantified by partitioning the total variance in the model output (i.e. modelled surface O3 or CO) 1 

into different sources of contribution from each input.  Like most sensitivity analysis methods, 2 

this approach requires several thousand executions of the model, which would be 3 

computationally expensive for the CTM used here.  This is overcome by replacing the CTM with 4 

a Gaussian process (GP) emulator.  Further details of the implementation of GSA are described 5 

in Ryan et al. et al. (2018).   6 

2.5 Gaussian Process Emulation - theory 7 

We replace the CTM with a surrogate model that maps the inputs of the CTM (the eight 8 

parameters listed in Table 1) with its outputs (surface O3 and CO).  We employ a surrogate 9 

model based on Gaussian process (GP) emulation for three reasons.   Firstly, due to the attractive 10 

mathematical properties of a GP, the emulator needs very few runs of the computationally 11 

expensive model to train it, typically less than 100.  This is in contrast to methods based on 12 

neural networks, which often have a large number of parameters that necessitate thousands of 13 

training runs.  Secondly, a GP emulator is an interpolator and so predicts the output of the model 14 

with no uncertainty at the input points it is trained at.  Thirdly, it gives a complete probability 15 

distribution, as a measure of uncertainty, for estimates of the model output at points it is not 16 

trained at.  17 

A GP is an extension of the multivariate Gaussian distribution, where instead of a mean 18 

vector µ and covariance matrix Σ, mean and covariance functions given by 𝐸(𝑓(𝑥)) and 19 

cov(𝑓(𝑥), 𝑓(𝑥ᇱ)) are used (Rasmussen, 2006).   Here, 𝑓(∙): 𝜒 ∈ ℝ௤ → ℝ௤ᇲ
 represents the 20 

computationally expensive model and 𝜒 denotes the input space given by x = ൫𝑥ଵ, … , 𝑥௤൯ ∈21 

χଵ × … × χ௤ = χ ⊂ ℝ௤, and q is the number of input variables.  GP emulators within a Bayesian 22 

framework were first developed in the 1990s and early 2000s (O’Hagan, 2006, Oakley and 23 



- 12 - 
 

O'Hagan, 2004, Kennedy and O'Hagan, 2000, Currin et al., 1991).  The simplest and most 1 

common GP emulator is one where the outputs to be emulated are scalar.  Thus, if the 2 

computationally expensive model is given by 𝑓(∙), then the one-dimensional output 𝑦 is 3 

calculated by 𝑦 = 𝑓(𝑥).  This means that if the model output is multidimensional – e.g. a global 4 

map or a time-series – then we need to build a separate emulator for each point in the output 5 

space.  To build the emulator requires training runs from the expensive model.  In general, we 6 

choose n training inputs, denoted by 𝐱ଵ, 𝐱ଶ, … , 𝐱௡, based on a space filling design such as a 7 

Maximin Latin Hypercube design (Morris and Mitchell, 1995).  The number of training points is 8 

based on the rule of thumb 𝑛 = 10 × 𝑞 (Loeppky et al., 2012). 9 

Denoting the scalar outputs by 𝑦ଵ = 𝑓(𝐱ଵ), 𝑦ଶ = 𝑓(𝐱ଶ), …, 𝑦௡ = 𝑓(𝐱௡), we then build 10 

an emulator 𝑓መ(∙) given by 𝑦ො = 𝑓መ(𝑥), where 𝑦ො is the estimated output from the emulator.  If 𝑥 11 

represents one of the training inputs (i.e. 𝑥 = 𝐱௜ , 1 ≤ 𝑖 ≤ 𝑛), then 𝑦ො is equal to the output from 12 

𝑓(∙) with no uncertainty (i.e. 𝑦ො = 𝑦).  If 𝑥 represents an input the emulator is not trained at, then 13 

𝑦ො has a probability distribution represented by a mean function 𝑚(𝑥) and a covariance function 14 

𝑉(𝑥, 𝑥′), where 𝑥′ is a different input.  The mean function is given by: 15 

 𝑚(𝑥) = ℎ(𝑥)்𝛽መ+𝑡(𝑥)்𝐀ିଵ൫𝐲 − 𝐻𝛽መ൯, (2) 

where ℎ(𝑥)்is a 1×(q+1) vector given by (1,  𝑥்), 𝛽መ  is a vector of coefficients determined by 16 

𝛽መ = (𝐻்𝐀ିଵ𝐻)ିଵ𝐻்𝐀ିଵ𝐲 , 𝑡(𝑥)் = ൫𝐶(𝑥, 𝑥ଵ; 𝜓), … , 𝐶(𝑥, 𝑥௡; 𝜓)൯, and 𝐀 is a matrix whose ele-17 

ments are determined by 𝐀𝐢,𝐣 = 𝐶൫𝐱𝐢, 𝐱𝐣; 𝜓൯, 𝐲 = [𝑓(𝐱ଵ), … , 𝑓(𝐱௡)]், 𝐻 = [ℎ(𝐱ଵ), … , ℎ(𝐱௡)]் .  18 

Here, 𝐶(𝑥, 𝑥′; 𝜓) is a correlation function that represents our prior belief about how the inputs 𝑥 19 

and 𝑥′ are correlated.  A common choice is a Gaussian correlation function which takes the form:  20 

𝐶(𝑥, 𝑥′; 𝜓) = 𝑒𝑥𝑝൫−(𝑥 − 𝑥′)்𝐁(𝑥 − 𝑥′)൯ , where B is a p × p matrix with zeros in the off-21 

diagonals and diagonal elements given by the roughness parameters 𝜓 = (𝜓ଵ, … , 𝜓௤).  The 22 
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roughness parameters give an indication of whether the input-output relationship for each input 1 

variable, given the training data, should be linear.  Low values reflect a linear (or smooth) 2 

relationship, whereas high values (e.g. > 20) suggest a non-linear (or non-smooth) response 3 

surface.  For implementation purposes we express the correlation function as 𝐶(𝑥, 𝑥′; 𝜓) =4 

∑ exp ቀ−𝜓௝൫𝑥௝ − 𝑥௝ ′൯
ଶ

ቁ
௤ାଵ
௝ୀଵ , where 𝑥 = (𝑥ଵ, … , 𝑥௤) and 𝑥′ = (𝑥ଵ′, … , 𝑥௤′).   The formula for the 5 

covariance function 𝑉(𝑥, 𝑥′) is given in appendix A.   6 

 A final  issue to resolve is how to estimate the roughness parameter since the posterior 7 

distribution of 𝑓(∙) is conditional on these emulator parameters.  A Bayesian approach would be 8 

to integrate out these emulator parameters in the formulation of the GP emulator.  This would 9 

require highly informative priors, but in most cases such informative priors do not exist.  10 

Kennedy and O’Hagan (2001) propose using maximum likelihood to provide a point estimate of 11 

the emulator parameters and to use these in the formulae for the mean and covariance functions 12 

of the GP emulator.  We adopt this approach in this study.   13 

2.6 Gaussian Process Emulation - implementation 14 

Using the Loeppky rule we choose n = 80 different training inputs for our eight-parameter 15 

calibration study.  In total, we emulate two variables (surface O3 and CO) over 12 months at 272 16 

spatial locations, and so require 6528 different GP emulators.  To estimate the model parameters 17 

we evaluate each of the GP emulators tens of thousands of times.  Although emulation is 18 

computationally fast, this presents a substantial computational burden, even for more 19 

computationally efficient versions of the emulator (Marrel et al., 2011, Roustant et al., 2012).  20 

We overcome this by computing parts of equation (2) prior to these evaluations.  Specifically, we 21 

compute the vectors 𝛽መ , 𝑚௅௉ and 𝜓 for all points in the output space, where 𝑚௅௉ denotes 22 

𝐀ିଵ൫𝐲 − 𝐻𝛽መ൯, the last part of m(x) from equation (2). We store these three objects as three 23 
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matrices 𝛽መ஺௅௅, 𝑚௅௉.஺௅௅ and 𝜓஺௅௅. Evaluated at a new input 𝑥௡௘௪, the mean function of the 1 

emulator (equation 1) can now be expressed as: 2 

 𝑚௜(𝑥௡௘௪) = ℎ(𝑥௡௘௪)்𝛽መ஺௅௅[𝑖, : ] + 𝑡௜(𝑥௡௘௪)்𝑚௅௉.஺௅௅[𝑖, : ], 

𝑡௜(𝑥௡௘௪)் = ൫𝐶(𝑥௡௘௪, 𝑥ଵ; 𝜓஺௅௅[𝑖, : ]), … , 𝐶(𝑥௡௘௪, 𝑥௡; 𝜓஺௅௅[𝑖, : ])൯,  

 

(3) 

where i (1 ≤ i ≤ 6528) denotes the ith point in the output space.  The equivalent formula for  3 

𝑉(𝑥, 𝑥′) is given in appendix A.   4 

To the test the accuracy of GP emulation, we ran each of the 6528 emulators at 20 sets of 5 

parameters which were not used for training the emulators.  The estimated O3 and CO values 6 

from the emulators for all spatial locations and months closely match the simulated O3 and CO 7 

output from the FRSGC/UCI model for these validation runs, with R2 > 0.995 for each variable, 8 

see Fig. 3. 9 

Finally, we recognise that principal component analysis (PCA) could be used to reduce 10 

the dimensionality of the output space and hence the number of emulators required (Higdon et 11 

al., 2008).  In a previous study we found that a PCA-emulator hybrid approach resulted in similar 12 

performance compared to using separate emulators for each point in the output space, and 13 

reduced the number of emulators required from 2000 to 40 or fewer (Ryan et al., 2018). 14 

However, for this study, we choose an emulator-only approach because it is much simpler to 15 

demonstrate.  Nonetheless, future emulation-calibration studies could benefit from the 16 

computational savings of applying a PCA-emulator hybrid approach.  Other approaches for 17 

dealing with high dimensional output are also available, such as low rank approximations 18 

(Bayerri et al.,2007). 19 

2.7 Parameter Estimation 20 
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We estimate the eight model parameters using Bayesian statistics via the software package Just 1 

Another Gibbs Sampler (Plummer, 2003).  This uses Gibbs sampling, which is an approach 2 

based on Markov Chain Monte Carlo (MCMC) that we use to determine multi-dimensional 3 

posterior probability distribution of the model parameters (Gelman et al., 2013).  Gibbs sampling 4 

is an extension of the more traditional Metropolis-Hasting variant of MCMC, and uses 5 

conditional probability to sample from the marginal distribution when moving around the multi-6 

dimensional parameter space. 7 

To find the posterior distribution, the MCMC algorithm searches the parameter space 8 

using multiple sets of independent chains.  Here, a chain refers to a sequence of steps in the 9 

parameter space that the algorithm takes.  A new proposed parameter set in this search is 10 

accepted on two conditions: (1) the set is consistent with the prior probability distribution, which 11 

for our study was a set of Uniform distributions with the lower and upper bounds given by the 12 

defined ranges in Table 1; and (2) the resulting modelled values using the proposed set of 13 

parameters are consistent with measurements, which is assessed using the following Gaussian 14 

likelihood function:  15 

 
𝐿(𝜃) = ∏

ଵ

ඥଶగఙ೔
𝑒𝑥𝑝 ൬

௙೔(ఏ) ି ௠೔

ఙ೔
మ ൰

ଶ
ே
௜ୀଵ ,  

(4) 

where N is the number of measurements used, 𝑓௜(𝜃) is the ith model output (1 ≤ i ≤ N) using the 16 

proposed parameter set 𝜃, 𝑚௜ is the measurement corresponding to the ith model output and 𝜎௜ is 17 

the representation error for measurement 𝑚௜.  We note that although separate emulators are used 18 

for each of the spatial and temporal locations in the model output, there is still only a single 19 

likelihood function.  Hence, evaluating all of the emulators for a specific set of values of the 20 

scaling parameters is equivalent to evaluating the CTM once at those values of the parameters.    21 
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We ran three parallel chains for 10,000 iterations each.  After discarding the first half of 1 

these iterations as ‘burn in’, we thinned the chains by a factor of five to reduce within-chain 2 

autocorrelation.  Convergence was assessed using the Brooks-Gelman-Rubin diagnostic tool 3 

(Gelman et al., 2013).  This produced 3000 independent samples from the posterior distribution 4 

for each parameter, which we summarize using their posterior means and 95% credible intervals 5 

(CIs) defined by the 2.5th and 97.5th percentiles (Gelman et al., 2013).  We used the R language 6 

to code up our configuration of the MCMC algorithm.   7 

2.8 Model discrepancy 8 

It has been suggested that a model discrepancy term should be included when carrying out model 9 

calibration involving Gaussian process emulators (e.g. Kennedy and O’Hagan, 2001; 10 

Brynjarsdóttir and O'Hagan, 2014).  The discrepancy term represents the processes missing in 11 

the model. However, in this demonstration study we have chosen not to include a discrepancy 12 

term for two reasons. Firstly, for scenarios where we use synthetic data, no discrepancy term is 13 

required because the synthetic data is generated by adding noise and spatial gaps to the emulator 14 

output for the control run. Secondly, for scenarios involving reanalysis data, there is no simple 15 

and defensible method to estimate the term.  When performing model calibration by applying 16 

MCMC directly, a discrepancy term would not be included.  Since the purpose of the emulator 17 

here is to estimate the output of the model for a given set of parameter values, we argue that it is 18 

not necessary to include a discrepancy term into the calibration formulation.   However, we agree 19 

that including such a term may be helpful in situations where there is good prior information. 20 

To investigate the importance of a discrepancy term, we repeat the experiment to estimate 21 

the eight scaling parameters using surface ozone reanalysis data and assuming a discrepancy 22 

term that is 10% of the magnitude of the observation.  We find that there is almost no difference 23 
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in the marginal posterior distribution when we include the discrepancy term compared with when 1 

we omit it (see Figure S16 in the supplemental material).  We therefore choose to omit the term 2 

for our study.    3 

2.9 Experimental approach 4 

We first perform a global sensitivity analysis to identify the parameters which have the greatest 5 

influence on the two variables we consider. We then perform parameter estimation using surface 6 

concentration data over the regions of North America and Europe shown in Fig 1 and focus our 7 

analysis on the parameters which have the greatest influence. To provide a demonstration of the 8 

approach we first use “synthetic” measurement data drawn from the control run of the CTM 9 

which was not used to train the emulators, adding increasing levels of noise to represent 10 

measurement representation errors of 1, 10, 20 and 30% (p = 0.01, 0.1, 0.2 and 0.3), and varying 11 

the spatial coverage of these measurements over the regions considered over a wide range: 2.5, 5, 12 

10, 20, 40 and 100%. We focus on surface O3 only, surface CO only and then both variables 13 

together. We then use the reanalysis data to represent the measurements, focussing on the effects 14 

of spatial coverage alone, and estimating the representation error p from this independent dataset.  15 

The 90 different scenarios we consider are summarised in Table 2.  We discuss the implication 16 

of these results and the limitations of considering a simple eight-parameter system rather than all 17 

sources of model uncertainty in Section 4. 18 

3. Results 19 

3.1 Global sensitivity analysis 20 

Results from global sensitivity analysis reveal that over the continental regions of Europe and 21 

North America considered here, the simulated monthly mean concentrations of surface O3 are 22 
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most sensitive to dry deposition and, to a lesser extent, to isoprene emissions (Fig. 4).  This is not 1 

unexpected, given the importance of direct deposition of ozone to the Earth’s surface, and the 2 

role of isoprene as a natural source of ozone in continental regions. The simulated surface CO is 3 

most sensitive to isoprene emissions, which represent a source of CO, and to boundary layer 4 

mixing, which influences the transport of CO from polluted emission regions.  We thus identify 5 

the scaling parameters corresponding to dry deposition, isoprene emissions and boundary layer 6 

mixing as the most important of the eight considered here to estimate accurately to reduce the 7 

bias in modelled surface O3 and CO.  For completeness, we show the geographical distribution 8 

of sensitivity indices in Figs 5 and 6, which reveal the importance of humidity in governing O3 9 

over oceanic regions and highlight the very different responses of surface O3 and CO to the 10 

major driving processes. 11 

3.2 Estimation of scaling parameters using synthetic data 12 

We next use synthetic observation data to calibrate the model and estimate scaling parameters. 13 

For synthetic data we use the model control run with a specified level of representation error 14 

(Table 2), and the default model parameters define the true scaling that we aim to retrieve. 15 

Prescribing surface O3 with very little error (p = 0.01) gives an estimate of the dry deposition 16 

scaling parameter, which has the largest influence on modelled surface O3, close to its true value 17 

and the uncertainty is small even when the spatial coverage of measurements is only 2.5% (Fig. 18 

7, column 1).  As the representation error is increased to p = 0.1, the parameter uncertainty is 19 

larger at low spatial coverage but the mean estimate remains unbiased (Fig. 7, column 2).  The 20 

uncertainty at all levels of spatial coverage becomes larger as p increases to 0.2 and 0.3, but the 21 

means remain very close to the true values (Fig. 7, columns 3 and 4).  Surface CO is largely 22 

unaffected by dry deposition, and thus provides very little constraint on the scaling parameter. 23 
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The effect of prescribing surface CO and O3 together is very similar to that of using surface O3 1 

alone.   2 

 Using surface CO alone with very little representation error (p = 0.01), the mean estimate 3 

of the isoprene emission scaling parameter is equal to the true value with very little uncertainty, 4 

regardless of the spatial coverage (Fig. 8, column 1).  When the representation error is increased 5 

to p = 0.1, the estimate remains very close to the true value, but the uncertainty is substantially 6 

higher at low spatial coverage (2.5% and 5%) than at higher coverage (40% and 100%) (Fig. 8, 7 

column 2).  The estimates deviate further from the truth at higher levels of representation error (p 8 

= 0.2 and 0.3) and the uncertainty is greater (Fig. 8, columns 3 and 4).  Estimates of the isoprene 9 

scaling parameter are less accurate than those of the dry deposition scaling parameter as the 10 

posterior means are further from the true value of the parameter and the uncertainty intervals are 11 

wider (Fig. 8 vs Fig. 7).  As with our findings for dry deposition, the posterior means and the 12 

lengths of the uncertainty intervals for the isoprene scaling parameter remain relatively 13 

unchanged when surface O3 data is prescribed at the same time.   14 

Our findings for the boundary layer mixing scaling parameter follow a similar pattern to 15 

the other two parameters (Fig. 9).  In all combinations of representation error and spatial 16 

coverage, we find that the mean estimates are unbiased.  Furthermore, we find that the parameter 17 

uncertainty is significantly smaller when the spatial coverage is 10% or higher when p = 0.1, 18 

20% or higher when p = 0.2, and 40% or higher when p = 0.3 (Fig. 9, Table 2).  It is clear from 19 

these results that the scalings for these three model parameters can be successfully estimated 20 

from synthetic data with low uncertainty when the representation error is low, and that the 21 

estimates remain good, albeit with higher uncertainty, at higher representation error if the spatial 22 

coverage is relatively good. 23 
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3.3 Estimation of scaling parameters using reanalysis data 1 

We consider next the CAMS interim reanalysis data for surface O3 and CO which are based on 2 

assimilated concentrations from the ECMWF model and are thus independent of the 3 

FRSGC/UCI model. The reanalysis is representative of similar spatial scales to the FRSGC/UCI 4 

model, and thus we ignore the representation error and vary the spatial coverage only.  However, 5 

we are able to estimate the representation error factor p by treating it as a parameter to estimate.  6 

With 100% spatial coverage, this error term is estimated with the MCMC algorithm to be p = 7 

0.168 ± 0.004 and p = 0.191 ± 0.005 for surface O3 and CO, respectively.  Although we do not 8 

know the true values of the parameters in this case, the good agreement between the control run 9 

of the FRSGC/UCI model and the reanalysis data suggests that they lie close to their true values.    10 

Using the reanalysis data for surface O3 alone, we find that the posterior means and 11 

uncertainty for the dry deposition parameter are in the upper half of the range defined, indicating 12 

that the real dry deposition flux is greater than that calculated with the FRSGC/UCI model. This 13 

is largely as expected, as the FRSGC/UCI model overestimates surface O3 at these continental 14 

sites and greater deposition would bring the model into better agreement with the reanalysis. As 15 

the spatial coverage is increased, the estimate of the scaling factor increases to around 1.4 and 16 

the uncertainty is reduced (Fig. 10a).  In contrast, using surface O3 and CO together results in an 17 

estimate closer to 1 and an additional reduction in uncertainty (Fig. 10g).  Inclusion of surface 18 

CO measurements, as an additional constraint to surface O3, results in an estimate of the dry 19 

deposition parameter closer to that modelled.   20 

Using surface CO alone, estimates of the isoprene scaling parameter lie in the central part 21 

of the defined range, whilst estimates of the boundary layer mixing scaling parameter lie in the 22 

upper half of the defined range (Fig 10e,f).  For both parameters, increasing the spatial coverage 23 
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leads to a reduction in uncertainty.  Unlike for dry deposition, inclusion of surface O3 when 1 

estimating either of these parameters results in very little difference in the magnitude of the 2 

estimate or in the associated uncertainty (Fig. 10e vs 10h; Fig. 10f vs 10i).    3 

3.4 Evaluation of surface O3 following calibration 4 

We demonstrate the benefit of the calibration by evaluating the emulators using the values of the 5 

scaling parameters sampled from the prior and posterior distributions.  As an example, we show 6 

surface O3 before and after calibration using the calibration runs involving synthetic data at 20% 7 

spatial coverage and a representation error of p=0.2 (Figure 11).  Despite the calibration 8 

involving only 20% spatial coverage, we apply the resulting parameter values to all grid squares.  9 

We can clearly see that the prior surface O3 concentrations are unbiased but have large 10 

uncertainty, especially at high values.  In contrast the calibrated O3 concentrations have a small 11 

uncertainty, demonstrating that even with 20% spatial coverage in the calibration data we are 12 

able to achieve improved predictions for all model grid boxes.   13 

4. Discussion 14 

4.1 Representation error 15 

Our results show the impact of the size of the representation error on the accuracy of estimated 16 

model parameters.  The parametric uncertainty (i.e. the size of the credible intervals in Figs 7-9) 17 

increases at an approximately linear rate as the representation error increases from p = 0.01 to p 18 

= 0.3.  This is consistent with Hill et al. (2012) who estimated the parameters and uncertainties of 19 

a simple terrestrial carbon model under varying levels of measurement error.   20 

 For the reanalysis data, we treat the representation error as a parameter for the MCMC 21 

algorithm to estimate along with the eight model parameters.  This is possible because we 22 
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assume that the measured value of O3 is proportional to the simulated value from a forward run 1 

of the FRSGC/UCI model, although such an assumption may not be possible in other situations.  2 

An alternative approach to estimate the representation error would be to carry out an intensive 3 

measurement campaign to determine whether the average O3 from different measuring stations 4 

within a grid-square is representative of the true average.  Satellite products of the terrestrial 5 

biosphere are checked for accuracy using this type of approach (De Kauwe et al., 2011).  6 

Although measurement campaigns at these large spatial and temporal scales would be 7 

challenging and costly, they may not be need to continue for long periods of time since we might 8 

expect representation error to decrease as the temporal scale increases (Schutgens et al., 2016). 9 

4.2 Spatial coverage  10 

We find that as the volume of measurements increase, the estimates of the model parameters are 11 

closer to the truth and the width of the credible intervals decrease.  This is particularly clear for 12 

the dry deposition and isoprene emission scaling parameters when using both O3 and CO 13 

concentrations (Figs 8 and 9). While this highlights the value of good spatial coverage, we note 14 

that the benefits are greatly reduced if the representation error is relatively high. For the 15 

boundary layer mixing parameter, we find little decrease in the credible intervals using synthetic 16 

CO data with the highest representation error (p = 0.3), where the spatial coverage is less than 17 

20% (Fig. 9, row 2).  In contrast, at the p = 0.1 level, a large decrease in uncertainty is seen 18 

between the 2.5% and 20% coverage.  Similar effects are seen, to a lesser extent, for the dry 19 

deposition and isoprene scaling parameters as the spatial coverage increases.   20 

 Our results using synthetic data show that while the size of the uncertainty intervals vary 21 

substantially depending on the spatial coverage or representation error, the posterior means are 22 

for the most part very close to the true values.  Deviation from these typically occurs when the 23 
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measurements contain less information either due to low spatial coverage or high representation 1 

error.  However, the uncertainty intervals include the true values of the parameters for all the 2 

experimental scenarios considered here, unlike in Hill et al. (2012).  This gives strong confidence 3 

in the reliability of the MCMC method used to estimate the parameters.   4 

4.3 Applying multiple constraints 5 

The importance of multiple constraints was most apparent for scenarios involving the  6 

reanalysis data.  For the dry deposition scaling parameter, which explains much of the variance 7 

in surface O3 (Fig. 4), we found that using O3 data alone results in mean estimates that are in the 8 

upper half of the range of possible values (Fig 10a).  However, including CO data brought the 9 

mean estimates into the central part of the range where we would expect the true value to lie 10 

(Fig. 10g).  This is remarkable given that dry deposition is not an important process for 11 

controlling CO, and highlights the coupling between processes that permits constraints on one 12 

process from one variable to influence those on another.  However, it is consistent with previous 13 

studies exploring the uncertainty in estimates of key parameters in an aerosol-chemistry-climate 14 

model (Johnson et al., 2018).  For the isoprene emission and boundary layer mixing scaling 15 

parameters, there was little difference in the mean estimates or the size of the uncertainty 16 

intervals when using O3 and CO together rather than a single constraint.  This reveals that the 17 

importance of using multiple constraints is dependent on the process and on the variable 18 

constrained.  A judicious choice of these could allow a particular process to be targeted. 19 

Overall, our estimates of the dry deposition and isoprene emission scaling parameters are close 20 

to a priori values from the FRSGC/UCI CTM, with respect to the independent reanalysis data.  In 21 

contrast, our estimates of the boundary layer mixing scaling parameter are substantially larger 22 
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than those from the model, suggesting that this process is not represented well in the model, or 1 

that other processes not considered here may be influencing the result.  2 

4.4 Towards constraint with real surface measurements  3 

Our results have demonstrated the feasibility of using measurement data to constrain model 4 

parameters under the right conditions. We have chosen to use synthetic data as they have allowed 5 

us to vary the spatial coverage and to investigate the effects of representation error which is 6 

poorly characterised when using real measurements data.  Quantifying this type of error for real 7 

measurements is difficult because measurement sites are relatively sparse and are often 8 

representative of a limited area rather than the larger area typical of a model grid-square.  9 

However, this study has allowed us to estimate the representation error associated with the 10 

reanalysis data, and in the absence of more information these values could be used as a guide 11 

when applying surface measurements as a constraint.   12 

 The reanalysis data provide a more critical test, as they are independent of the 13 

FRSGC/UCI CTM used here. Although we do not know the true values of the scaling 14 

parameters, we expect them to lie close to those used in the control run given the relatively good 15 

agreement for O3 and CO concentrations.  For the dry deposition parameter, we expect scaling 16 

values to be close to 1, but using surface O3 reanalysis data alone we found posterior mean 17 

scaling parameters approaching 1.4, with credible intervals that did not include 1 (Fig. 10a).  18 

This likely reflects overestimation of surface O3 in continental regions in the CTM and may 19 

reflect uncertainties and biases in other processes not considered here, most notably in the 20 

chemical formation and destruction of O3 and in model transport processes. In the absence of 21 

consideration of the uncertainty in these processes in this feasibility study, the dry deposition 22 

parameter is used as a proxy process to reduce O3 concentrations. This is an example of 23 
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equifinality, where different sets of parameters can result in model predictions that give equally 1 

good agreement with observations  (Beven et al., 2001). Applying simultaneous constraints to 2 

CO goes some way to addressing this, but does not remove the problem. Before applying real 3 

surface measurements to constrain the CTM, we propose a more comprehensive assessment of 4 

model uncertainties with a wider range of parameters so that the constraints can more directly 5 

inform process understanding and model development. 6 

Conclusion 7 

We have demonstrated the use of surface O3 and CO concentrations to constrain a global 8 

atmospheric chemical transport model and generate accurate and robust estimates of model 9 

parameters. This would normally be prohibitive for such a model given that thousands of model 10 

runs are required.  Our approach is to replace the CTM with a surrogate model using Gaussian 11 

process emulation and then estimate the parameters using the emulator in place of the CTM. In 12 

this feasibility study we have shown that surface O3 has a large sensitivity to dry deposition, and 13 

that surface CO is most sensitive to isoprene emissions and boundary layer mixing processes, as 14 

expected.  We find that estimates of the scaling parameters for these processes are dependent on 15 

the spatial coverage and representation error of the surface O3 and CO data.  Our parameter 16 

estimates become less uncertain as coverage increases and as the representation error decreases, 17 

whilst remaining unbiased.  Furthermore, we show that using two separate data constraints, in 18 

this case surface O3 and CO, instead of a single one can result in mean parameter estimates that 19 

are much closer to their likely true values.  However, this is dependent on the processes 20 

considered and constraints applied, and while it is effective for dry deposition here, we find 21 

relatively little improvement in the estimates or uncertainties for isoprene emission or boundary 22 

layer mixing processes that are also considered here.   23 
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The approach we adopt here provides a means of constraining atmospheric models with 1 

observations and identifying sources of model error at a process level. Our results based on the 2 

independent reanalysis data suggest that dry deposition and isoprene emissions are represented 3 

relatively well in the FRSGC/UCI CTM but that boundary layer mixing processes may be 4 

somewhat underestimated.  However, we have explored the effect of only eight parameters in 5 

this study and consideration of a more complete set of processes, including those governing 6 

photochemistry and dynamics, is needed to generate more realistic constraints for key pollutants 7 

such as O3.  We aim to expand this study to investigate a more extensive range of parameters and 8 

processes and to constrain with a wider range of observation data.  The emulator-based approach 9 

for estimating parameters that we have successfully demonstrated here can be applied to any 10 

model where evaluating the model the required number of times is too computationally 11 

demanding. 12 

Code and data availability 13 

The R code used for building and validating the emulators and estimating the posterior 14 

distribution of the model parameters using the Markov Chain Monte Carlo algorithm is available 15 

from the Zenodo data repository via the link: https://zenodo.org/record/4537614.  The 16 

FRSGC/UCI model output used for training the emulators is available from the CEDA data 17 

repository via the link: https://catalogue.ceda.ac.uk/uuid/d5afa10e50b44229b079c7c5a036e660. 18 

Appendix A 19 

The formula for the covariance function 𝑉(𝑥, 𝑥′) from §2.2 is given by: 20 

𝑉(𝑥, 𝑥ᇱ) = 𝜎ଶ[𝐶(𝑥, 𝑥ᇱ; 𝜓) − 𝑡(𝑥)்𝐀ିଵ𝑡(𝑥) 21 

+ (ℎ(𝑥)் + 𝑡(𝑥)்𝐀ିଵ𝐻)(𝐻୘𝐀ିଵ𝐻)ିଵ(ℎ(𝑥′)் + 𝑡(𝑥′)்𝐀ିଵ𝐻)்] 22 
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where,  1 

𝜎ଶ =
𝐲୘(𝐀ିଵ − 𝐀ିଵ𝐻(𝐻୘𝐀ିଵ𝐻)ିଵ𝐻୘𝐀ିଵ)𝐲

𝑛 − 𝑞 − 1
 2 

To compute the variance or uncertainty of a prediction 𝑥 we use the formula for 𝑉(𝑥, 𝑥ᇱ) with  3 

𝑥ᇱ = 𝑥, which results in 𝐶(𝑥, 𝑥; 𝜓) = 1.  Since we need to evaluate a large number of emulators 4 

for each MCMC iteration step (because we have a separate emulator for every dimension of the 5 

model output), it is more computationally efficient to compute the parts of the above formula 6 

prior to using the emulator.  Hence, the above formula can be replaced with: 7 

𝑉௜(𝑥௡௘௪, 𝑥௡௘௪) = 𝜎஺௅௅
ଶ [𝑖, 1]ൣ൫1 − 𝑡௜(𝑥௡௘௪)்𝑉௜,ଵ𝑡௜(𝑥௡௘௪) 8 

+ ൫ℎ(𝑥௡௘௪)் + 𝑡(𝑥௡௘௪)்𝑉௜,ଶ൯𝑉௜,ଷ൫ℎ(𝑥௡௘௪)் + 𝑡(𝑥௡௘௪)்𝑉௜,ଶ൯
்

ቃ 9 

where: 10 

 i (1 ≤ i ≤ r) denoted the ith point in the r-dimensional simulator output.  11 

 𝜎஺௅௅
ଶ  is a r×1 vector that stores the values of 𝜎ଶ for all r outputs. 12 

 𝑉௜,ଵ is the n × n matrix 𝐀ିଵ corresponding to the ith point in the simulator’s output.  It is 13 

stored as the ith block of the nr × n matrix 𝑉ଵ defined by: 14 

𝑉ଵ = ൮

𝑉ଵ,ଵ

𝑉ଶ,ଵ

⋮
𝑉௥,ଵ

൲ 15 

 𝑉௜,ଶ is the n × q matrix 𝐀ିଵ𝐻 corresponding to the ith point in the simulator’s output.  It 16 

is stored as the ith block of the nr × q matrix 𝑉ଶ defined by: 17 

𝑉ଶ = ൮

𝑉ଵ,ଶ

𝑉ଶ,ଶ

⋮
𝑉௥,ଶ

൲ 18 
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 𝑉௜,ଷ is the q × q matrix (𝐻୘𝐀ିଵ𝐻)ିଵ corresponding to the ith point in the simulator’s 1 

output.  It is stored as the ith block of the qr × q matrix 𝑉ଷ defined by: 2 

𝑉ଷ = ൮

𝑉ଵ,ଷ

𝑉ଶ,ଷ

⋮
𝑉௥,ଷ

൲ 3 
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Figures and Tables for 1 
 2 

‘Calibrating a global atmospheric chemistry transport model using Gaussian process 3 
emulation and ground-level concentrations of ozone and carbon monoxide’ 4 

 5 

 6 
Figure 1. Annual mean surface ozone mixing ratio (in ppb) from the FRSGC/UCI CTM showing the 7 
regions considered here and the 272 grid cells used for model calibration.   8 
 9 
 10 

 11 
Figure 2. Monthly mean surface O3 (panel a) and surface CO (panel b) over Europe and North America 12 
simulated with the FRSGC/UCI CTM compared with ECMWF reanalysis data.   13 
 14 
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 1 
Figure 3. Simulated surface O3 (panel a) and surface CO (panel b) from the FRSGC/UCI CTM versus 2 
those predicted from the Gaussian process emulators.  The simulated and emulated concentrations were 3 
generated using 20 sets of model parameters that were not used for training the emulators.   4 
  5 

 6 
Figure 4. Sensitivity indices representing the percentage of the variance in surface O3 and CO over the 7 
USA and Europe in the FRSGC/UCI model output due to changes in each parameter.   8 

 9 
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 1 
Figure 5. Sensitivity indices representing the percentage of the variance in surface O3 in the FRSGC/UCI 2 
model output due to changes in each input parameter.  The four parameters displayed here have the 3 
highest sensitivity indices and the largest effect on simulated surface O3.  Maps of sensitivity indices 4 
corresponding to the other four parameters are shown in Figure S2 of the supplementary material.   5 

 6 
 7 

 8 
Figure 6. Sensitivity indices representing the percentage of the variance in surface CO in the 9 
FRSGC/UCI model output due to changes in each input parameter.  Maps of sensitivity indices for the 10 
other four parameters are shown in Figure S3 of the supplementary material.   11 
 12 
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 1 
Figure 7. Means and 95% credible intervals of 3000 samples of the Dry Deposition scaling parameter 2 
from posterior distributions using the MCMC algorithm based on synthetic datasets from scenarios 1-72 3 
(table 1). Control refers to the FRSGC/UCI model control run surface concentration for each output point. 4 

 5 
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 1 
Figure 8. Means and 95% credible intervals of 3000 samples of the Isoprene emission scaling parameter 2 
from posterior distributions using the MCMC algorithm based on synthetic datasets from scenarios 1-72 3 
(table 1). Control refers to the FRSGC/UCI model control run surface concentration for each output point. 4 
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 1 
Figure 9. Means and 95% credible intervals of 3000 samples of the Boundary Layer Mixing scaling 2 
parameter from posterior distributions using the MCMC algorithm based on synthetic datasets from 3 
scenarios 1-72 (table 1). Control refers to the FRSGC/UCI model control run surface concentration at 4 
each output point.  The scaling parameter values are given here on a log10 scale. 5 



- 40 - 
 

 1 
Figure 10. Means and 95% credible intervals of 3000 samples of the Dry Deposition, Isoprene and 2 
Boundary Layer Mixing scaling parameters from posterior distributions using the MCMC algorithm 3 
based on reanalysis datasets from scenarios 73-90 (table 1). The first and second rows show these 4 
parameters estimated using one stream of data (O3 for the first row and CO for the second row), while the 5 
third row shows estimates using two data streams (O3 and CO). 6 

 7 

 8 

 9 

Figure 11. Emulator predictions of surface O3, evaluated at values of the scaling parameters sampled 10 
from the prior distribution (panel a) and posterior distribution (panel b) showing the effects of calibration.  11 
In panel b, the outputs correspond to the scenario where the calibration involved synthetic O3 data, a 12 
representation error of 𝑝 = 0.2 and a spatial coverage of 20% (table 2).  The predictions shown here are 13 
carried out for all model grid boxes, i.e. 100% spatial coverage.     14 
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Table 1. Model processes and associated scaling parameter ranges used in this study.   1 

Number Model process Control run value Scaling parameter values 
1 Global surface NOx emissions (TgN/year) 40 0.75 – 1.25 
2 Global lightning NO emissions (TgN/year) 5 0.40 – 1.60 
3 Global isoprene emissions (TgC/year) 500 0.40 – 1.60 
4 Dry deposition rates model value 0.40 – 1.60 
5 Wet deposition rates model value 0.40 – 1.60 
6 Humidity model value 0.80 – 1.20 
7 Cloud optical depth model value 0.33 – 3.00   
8 Boundary Layer mixing model value 0.10 – 10.0 

 2 

Table 2. Summary of the 90 different MCMC scenarios carried out for this study. The scenarios involved 3 
varying: (i) the type of data (synthetic or reanalysis); (ii) the representation error used for the synthetic 4 
data (p) where 𝑚௜(𝑥௖௢௡௧௥௢௟) is the control run output of the CTM and 𝜎௜ is the amount of statistical noise 5 
added; (iii) the percentage coverage of grid-squares in the USA and Europe.  For the synthetic data the 24 6 
scenarios correspond to a full factorial combination of four levels of representation error and six levels of 7 
spatial coverage, while for the reanalysis data the six scenarios correspond to the six levels of spatial 8 
coverage.   9 

Scenarios Dataset Representation error, p 
൫𝜎𝑖 = 𝑝 × 𝑚𝑖(𝑥𝑐𝑜𝑛𝑡𝑟𝑜𝑙)൯ 

Spatial coverage 

1-24 Synthetic O3  0.01, 0.1, 0.2, 0.3 2.5%, 5%, 10%, 20%, 40%, 100% 
25-48 Synthetic CO  0.01, 0.1, 0.2, 0.3 2.5%, 5%, 10%, 20%, 40%, 100% 
49-72 Synthetic O3 & CO  0.01, 0.1, 0.2, 0.3 2.5%, 5%, 10%, 20%, 40%, 100% 
73-78 Reanalysis data (O3) Parameter to be estimated 2.5%, 5%, 10%, 20%, 40%, 100% 
79-84 Reanalysis data (CO) Parameter to be estimated 2.5%, 5%, 10%, 20%, 40%, 100% 
85-90 Reanalysis data (O3 & CO) Parameter to be estimated 2.5%, 5%, 10%, 20%, 40%, 100% 

 10 


