
Responses by author to interactive comments by RC1 on “Calibrating a global 
atmospheric chemistry transport model using Gaussian process emulation and 
ground-level concentrations of ozone and carbon monoxide" by Edmund Ryan 
and Oliver Wild 
 
(1) Reviewer’s comment:  The authors use reanalysis data from Flemming et al. (2017). It 
would help the reader if the authors make a clearer reference to this dataset by referring to 
it as the “CAMS interim Reanalysis”, considering that ECMWF has published various 
atmospheric composition reanalyses. Also, even though atmospheric ozone in this reanalysis 
is constrained by satellite observations, the constraints on surface ozone concentrations are 
typically less, and are more governed by the model assumptions. To the least, it would be 
worthwhile to provide insight in the quality of surface ozone and carbon monoxide, e.g. as 
documented in Huijnen et al. (2020), and/or Flemming et al. (2017), and to what extent 
these aspects may alter your analysis. Also along these lines, the reference to 
“measurement data” (pp 15, line 7) may be confusing in this context. 
 
Author’s response: Thank you for pointing out the potential confusion in naming. We have 
amended the text to refer to this dataset in the manner suggested. We have also added a 
sentence to note the strengths and weaknesses of this dataset referring to these papers to 
give a more complete picture of the reanalysis data. We have replaced the reference to 
“measurement data” with “surface concentration data” to avoid confusion. 
 
Changes to manuscript: We now state: “This reanalysis reproduces observed O3 and CO 
distributions relatively well, and biases at surface measurement stations are generally small 
(Huijnen et al., 2020). The dataset also has the benefit of complete global coverage, allowing 
us to test the importance of measurement coverage directly.”  We now specifically state 
“we use CAMS interim reanalysis data” in Section 2.2. 
 
 
(2) Reviewer’s comment: Page 10, line 7. The authors write a little cryptically: “We included 
p as one of the parameters to estimate for the reanalysis data and found values in the range 
0.16-0.19.” Not being a specialist in mathematics, could you give some interpretation of this 
analysis? Why is it in this range, and not much smaller (or much larger)? 
 
Author’s response: Thank you for highlighting this.  The 0.16-0.19 range was derived from 
estimating the parameters using the reanalysis, prior to carrying out the model calibration 
involving the synthetic datasets.  However, we appreciate that the way this sentence is 
phrased is not entirely clear. In the revised manuscript we have rewritten this and added 
extra detail to improve clarity.   
 
Changes to manuscript:  We now state “where p is a scaling factor that provides a measure 
of the representation error. We used the reanalysis data to estimate p alongside the model 
parameters, and found posterior values of p that were in the range 0.16-0.19. We therefore 
selected four values of p (0.01, 0.1, 0.2 and 0.3) to explore the importance of representation 
error when using the synthetic data.” 
 



(3) Reviewer’s comment: Page 11, line 8: “In contrast, methods based on neural networks 
can require thousands of training runs.”: This statement reads a bit unfounded. Could you 
please either add a reference (e.g. a study which actually uses a neural network approach to 
model atmospheric chemistry), or further clarification? If I understand correctly, one of the 
key aspects compared to published use of machine learning in atmospheric chemistry is 
that the full CTM is replaced by the Gaussian Process Emulator, rather than ‘just’ the 
chemistry solver code as I am aware of (Keller et al., 2019) 
 
Author’s response: Thank you for this comment.  The point we make here is that more 
traditional machine learning methods for mapping model inputs to model outputs typically 
have hundreds of parameters, and for this reason thousands of training points are required. 
Neural network methods have not been applied yet to full CTMs for this reason, although 
they have been used for specific components of atmospheric models, as the reviewer notes. 
A key benefit of Gaussian Process emulation is the greatly reduced number of training runs 
that permit the methods to be applied to more complex models. We have rephrased the 
sentence to make this clearer. We do not cite the Keller et al. paper here, as the point we 
are making is not specific to atmospheric models, and because they used a random forest 
approach, but we agree that it is a good example of application of machine learning 
methods in the discipline.      
 
Changes to manuscript:  We now state “This is in contrast to methods based on neural 
networks, which often have a large number of parameters that necessitate thousands of 
training runs.” 
 
(4) Reviewer’s comment: The results from the sensitivity analysis (Sec. 3.1) indicate that 
surface ozone deposition is the largest driver to explain biases in modeled surface ozone 
concentration. While I completely understand from mathematical perspective, and 
experience with old-fashioned tuning in a chemistry transport model, that by changing 
(modifying) the dry deposition velocity for ozone has indeed a direct impact on surface 
concentrations, I find this result also a little worrying, in light of what would be a reasonable 
range of the ozone deposition flux. To get a handle on this, would it be easy and useful to 
quantify the change in annual total surface ozone deposition as suggested by this 
optimization method? In fact, the authors also rightly discuss the issues with this sensitivity 
analysis when including the simultaneous optimization of CO, pp22, line 6-9. When reading 
this manuscript, I had found it helpful if this aspect was already alluded to in Sec. 3.1 . 
Indeed, I agree that the use of this synthetic modeling can be very useful, but different 
optimization factors obtained using (in this case) different combinations of control variables 
also stress the danger of a false impression of a physically well-constrained parameter. 
 
Author’s response:  Our aim in this paper is to demonstrate the feasibility of calibrating a 
full CTM, and we have intentionally chosen to use a simplified system with only 8 scaling 
parameters to demonstrate the method. As there are many sources of uncertainty that we 
do not consider here, we do not expect the calibration to generate the same results that it 
might when including all sources. However, we still expect it to provide useful insight. 
Surface O3 is a little high over land masses in the model, and thus in the absence of 
consideration of uncertainty in chemical processes, the calibration suggests that dry 
deposition fluxes should be about 40% greater than the a priori value. Deposition accounts 



for 930 Tg(O3)/yr in the model, so this would constitute a sink of 1300 Tg/yr (neglecting 
feedbacks); while this is at the high end of recent estimates, it remains within the spread of 
published model results.  However, in the absence of consideration of all sources of 
uncertainty, we choose to highlight the ability to constrain processes rather than the value 
of the scaling factors that arise, for the reasons that the reviewer identifies. For the simple 
system we consider, the parameters are constrained well for this parameter as shown by 
the small posterior uncertainty.  A more complete study addressing uncertainty in a much 
wider range of processes is needed to generate a more robust assessment of the scaling 
factors needed for a particular process.  In Section 3.1 we already acknowledge the limited 
range of processes considered (“of the eight considered here”) but to address the 
reviewer’s concerns we add a statement at the end of Section 2.8 that alludes to the 
sensitivity of the calibration to the system considered.    
 
Changes to manuscript:  We have now added: "We discuss the implication of these results 
and the limitations of considering a simple eight-parameter system rather than all sources 
of model uncertainty in Section 4.” 
 
(5) Reviewer’s comment: Page 18, line 19: “along with a reduction in associated 
uncertainty”: Could you be more explicit on this? I don’t directly see such decrease in 
uncertainty. 
 
Author’s response: Thank you for spotting this error.  The uncertainty is reduced compared 
to using CO alone, but is comparable to that using O3 alone, and therefore this phrase isn’t 
needed. We have now removed this part of the sentence.    
 
Changes to manuscript:  this phrase has been removed. 
 

(6) Reviewer’s comment: Figure 10, panels c/f/i : In almost any of the test configurations 
the parameter estimate for the Boundary Layer Mixing is approaching the maximum range 
that is given. Can you provide further interpretation in this aspect? Is the given uncertainty 
range for boundary layer mixing sufficient? Now it is written on page 21, l. 11-13 that this 
process “may not be represented well in the model”. Or could this be an artifact of other 
(missing) processes not considered in this sensitivity analysis, or that this process is just 
treated differently between datasets. 
 
Author’s response: The range of the Boundary Layer Mixing scaling parameter is already 
large, spanning a factor of 100.  The fact that the parameter estimates lie very close to the 
bounds suggests that the process is not well represented in the model. However, the 
reviewer is right to point out that other processes may be important; we are considering a 
simplified system here with only 8 scaling parameters and the boundary layer mixing 
parameter may thus be acting as a surrogate for uncertainty in processes not considered 
here, most notably chemical processes. We already acknowledge this point in Section 4.4 of 
the paper. Our aim in the paper is to demonstrate how well the calibration method works in 
a simplified system, and more complete coverage of uncertain parameters would be needed 
to provide a more robust assessment of specific processes.  However, we have altered the 
text at the end of section 4.3 to acknowledge the influence of other processes. 



 
Changes to manuscript: We now state: “In contrast, our estimates of the boundary layer 
mixing scaling parameter are substantially larger than those from the model, suggesting that 
this process is not represented well in the model, or that other processes not considered 
here may be influencing the result.” 
 
(7) Reviewer’s comment: pp 21, l 13: “Our results suggest that dry deposition and isoprene 
emissions are represented relatively well in the FRSGC/UCI CTM “ : Good to add phrase 
“with respect to the independent reanalysis data”? 
 
Author’s response: We agree that this should be clarified and have rephrased this sentence 
in the manuscript as suggested. 
 
Changes to manuscript:  We have rephrased the sentence as suggested so that it now reads 
“Overall, our estimates of the dry deposition and isoprene emission scaling parameters are 
close to a priori values from the FRSGC/UCI CTM, with respect to the independent reanalysis 
data.” 
 
(8) Reviewer’s comment: pp 23, l9: “…while it *is* effective …” 
 
Author’s response: Thank you for spotting this.  We have corrected this in the revised 
manuscript. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Response by author to interactive comment by RC2 on “Calibrating a global 
atmospheric chemistry transport model using Gaussian process emulation and 
ground-level concentrations of ozone and carbon monoxide" by Edmund Ryan 
and Oliver Wild 
 
Major Comments 
 
(1) Reviewer’s comment: When I read the abstract and introduction, I have an impression 
that the author will apply the calibration framework developed by Kenndy and O’Hagan 
(2001), but it turns out that it is not the case. The author should have explained in the 
beginning why they do not include model discrepancy in the methodology or GP model. It is 
well known that model discrepancy is very important for model calibration (Brynjarsdóttir 
and O’Hagan, 2014), and it is obvious there is no CTM that can perfectly predict the true 
process, even with the optimised inputs. 
Brynjarsdóttir, J. and O'Hagan, A.: Learning about physical parameters: The 
importance of model discrepancy, Inverse Problem, 30, 114007, 2014 
 
Author’s response: Many thanks for this comment.  We have specifically chosen not to 
include a discrepancy term for two reasons:  
 For the scenarios where we use synthetic data, no discrepancy term is required because 

the synthetic data is generated by adding noise and spatial gaps to the emulator output 
for the control run. 

 For the scenarios involving reanalysis data, there is no simple and defensible method to 
estimate the discrepancy term.   

Neither of the papers cited in the reviewer’s comment explain the need for the term for 
anything other than the most simple model system.   

The discrepancy represents the missing processes in the model.  However we often don’t 
know what these missing processes are or how to estimate them.  When performing a 
regular model calibration without an emulator (e.g., applying MCMC on the original model) 
we would not include a discrepancy term.  It is therefore not clear why we need to include a 
discrepancy term into the calibration formulation when using an emulator.  We highlight 
that in the abstract of the Brynjarsdóttir and O’Hagan paper it states: “The challenge with 
incorporating model discrepancy in statistical inverse problems is being confounded with 
calibration parameters, which will only be resolved with meaningful priors”.  If we wish to 
estimate the discrepancy term as part of the calibration process, then this confounds the 
parameters we are trying to estimate.  Hence, the paper makes the point that you need 
highly informative priors.   The paper does not address what to do if you do not have these, 
as is the case here. 

However, to investigate the importance of this term we adopt the simple rule of thumb that 
the discrepancy term is 10% of the magnitude of the observation (Jeremy Oakley, personal 
communication). We repeated the experiment to estimate the eight scaling parameters and 
the SD term using surface ozone reanalysis data at 2.5% spatial coverage.  We find that 
there is almost no difference in the marginal posterior distribution when we include the 
discrepancy terms in the formulation compared with when we omit them, see Figure 1. 



 
Figure 1: Mean and 95% credible interval of the marginal posterior distributions of the eight scaling 
parameters and the SD term, corresponding to the MCMC scenario involving surface ozone reanalysis 
with 2.5% spatial coverage.  The red crosses and error bars correspond to the results using the 
discrepancy term in the emulator formulation, while the black crosses show the standard results 
without.   
 
These results clearly demonstrate that including a discrepancy term makes no substantial 
difference to the derived posterior distributions for the situation that we are considering 
here. We therefore feel that in the absence of clear justification for the use of the term and 
how it might be estimated, our results stand as they are.   
 
Changes to manuscript: The results relating to the reanalysis data remain unchanged, but 
we have included a new subsection in the methods (2.8) which gives reasons why we not 
included a discrepancy term in this study, but also that recognises that including such a term 
may be useful in other calibration studies.  This includes the following text:  
“It has been suggested that a model discrepancy term should be included when carrying out 
model calibration involving Gaussian process emulators (e.g. Kennedy and O’Hagan, 2001; 
Brynjarsdóttir and O'Hagan, 2014).  The discrepancy term represents the processes missing 
in the model. However, in this demonstration study we have chosen not to include a 
discrepancy term for two reasons. Firstly, for scenarios where we use synthetic data, no 
discrepancy term is required because the synthetic data is generated by adding noise and 
spatial gaps to the emulator output for the control run. Secondly, for scenarios involving 
reanalysis data, there is no simple and defensible method to estimate the term.  When 
performing model calibration by applying MCMC directly, a discrepancy term would not be 
included.  Since the purpose of the emulator here is to estimate the output of the model for 
a given set of parameter values, we argue that it is not necessary to include a discrepancy 
term into the calibration formulation.   However, we agree that including such a term may 
be helpful in situations where there is good prior information. 
 
“To investigate the importance of a discrepancy term, we repeat the experiment to estimate 
the eight scaling parameters using surface ozone reanalysis data and assuming a 



discrepancy term that is 10% of the magnitude of the observation.  We find that there is 
almost no difference in the marginal posterior distribution when we include the discrepancy 
term compared with when we omit it (see Figure S16 in the supplemental material).  We 
therefore choose to omit the term for our study.” 
 
We now include the figure above as Figure S16 in the Supplementary material. 
 
 
(2) Reviewer’s comment: I used to think the calibration won't work on tropospheric ozone, 
since accurate tropospheric ozone simulation relies on accurate regional emission inventory 
and meteorology. These inputs need to be continuously updated, rather than calibrated. As 
far as I am aware, the existing calibration approaches assume the parameters are "fixed 
initial condition", rather than time-varying or spatial-varying settings. Would it be making 
more sense to consider such input, e.g. emission inventory, as a time series? 
Morris, M. D. (2012). Gaussian surrogates for computer models with time-varying 
inputs and outputs. Technometrics, 54(1), 42-50. 
 
Author’s response: The parameters we are estimating are global scaling parameters applied 
uniformly to major input variables, e.g.  global surface NOx emissions.  These variables 
already vary in space and time, and our parameters merely scale the global annual 
magnitude. It would certainly be interesting in a future study to explore the effects of 
seasonality through temporally varying factors, as the reviewer suggests, although this 
comes at the cost of a greatly increased number of parameters to calibrate.  However, for 
the current study our aim is to demonstrate the feasibility of calibration and thus we have 
attempted to keep the problem as simple as possible, and focus only on a single, globally 
uniform scaling parameter for a given input. We anticipate that using the approaches 
successfully demonstrated here, atmospheric modellers will be able to explore the more 
complex spatial and temporal sensitivities for different variables in future.  
 
Changes to manuscript: We have rephrased our introduction to the scaling factors in 
section 2.1 to highlight that they are global factors applied uniformly to the particular 
process considered. We now state: “To provide a simple and easily interpretable approach 
to calibration, we define a global scaling factor for each process that spans the range of 
uncertainty in the process and that is applied uniformly in space and time.” 
 
 
(3) Reviewer’s comment: The authors split the total output into 6528 separated GP 
emulators (p13). Since each emulator is treated separately, how can they be certain all the 
emulators yield the same calibrated inputs? 
- what if the calibrated inputs from different emulators are diverse? 
- even if the calibrated inputs from different emulators are similar, how the optimised 
inputs are determined? 
 
Author’s response: The estimates and associated uncertainties of the eight scaling 
parameters are determined using a common type of Markov Chain Monte Carlo (MCMC) 
algorithm called Gibbs sampling.  In its basic form, Gibbs sampling is a special case of the 
Metropolis-Hastings algorithm.  A key component of the algorithm is a likelihood function 



which quantifies the mismatch between the measurements and the model predictions for a 
given set of values for the parameters.  The 6528 separate emulators correspond to 12 
monthly measurements at each of the 272 spatially varying grid cells, for each of the 2 
variables (ozone and carbon monoxide).    In short, the number of emulators corresponds to 
the dimension of the output space.  For the scenario involving all 6528 emulators, the 
likelihood function incorporates all 6528 modelled values (where the emulator is used in 
place of the chemistry model) and the corresponding 6528 measurement values.  Thus while 
the emulators are treated separately, only a single likelihood function is considered, not 
6528 separate likelihood functions as the reviewer’s comment suggests.  We thus end up 
with a single set of calibrated inputs that has already been optimised over all times and 
locations. We have made changes to our description of the approach used to make this 
clearer.       
 
Changes to manuscript: We recognise that in the current description of the MCMC 
algorithm is brief and in particular we do not mention Gibbs sampling.   
We now provide more detail at the start of Section 2.7: “This uses Gibbs sampling, which is 
an approach based on Markov Chain Monte Carlo (MCMC) that we use to determine multi-
dimensional posterior probability distribution of the model parameters (Gelman et al., 
2013).  Gibbs sampling is an extension of the more traditional Metropolis-Hasting variant of 
MCMC, and uses conditional probability to sample from the marginal distribution when 
moving around the multi-dimensional parameter space.” 
 
(4) Reviewer’s comment: Given the fact that the authors build an emulator separately for 
each location and month, I am actually concerned whether this study is actually useful. If 
the inputs are only calibrated at a specific month/location, and might not be valid for other 
months/locations, then this message is not really useful for modelers. If they cannot run the 
model at a single setting of the input parameters, the calibration does not consider to be 
working. It is also contradictory to its title ”Calibrating a global atmospheric chemistry 
transport model”, because the authors have not taken any spatial and temporal correlations 
into account in their GP model. 
 
Author’s response:  As noted in our previous response, the likelihood function is applied 
across all independent emulators so that we derive a single set of calibrated inputs across all 
times and places. We agree that independent calibration of each emulator would not be 
useful, as the reviewer suggests, but we hope that we have now addressed this 
misunderstanding through the changes we have made to the text in response to the 
comment above. Our approach generates a single set of scaling parameters and thus allows 
us to effectively calibrate the model.  
  
Changes to manuscript: To address this point, we have added two sentences following 
equation 4 in section 2.7: “We note that although separate emulators are used for each of 
the spatial and temporal locations in the model output, there is still only a single likelihood 
function.  Hence, evaluating all of the emulators for a specific set of values of the scaling 
parameters is equivalent to evaluating the CTM once at those values of the parameters.” 
 
(5) Reviewer’s comment: A collection of 272 locations is not strictly prohibited for GP 
emulation/calibration, why building 24 emulators is not an option? 



 
Author’s response: As noted above, we build separate emulators for each variable (ozone 
and CO) for each month at each of the 272 grid cells.  It would be possible to reduce the 
number of emulators needed through application of principal component analysis methods, 
which we have demonstrated in a previous study (Ryan et al., 2018), but we have chosen to 
generate separate emulators here both for reasons of simplicity and because emulator 
generation is not the most computationally demanding aspect of this study. 
 
Changes to manuscript: To address this point we have added a new paragraph to the end of 
section 2.6: “Finally, we recognise that principal component analysis (PCA) could be used to 
reduce the dimensionality of the output space and hence the number of emulators required 
(Higdon et al., 2008).  In a previous study we found that a PCA-emulator hybrid approach 
resulted in similar performance compared to using separate emulators for each point in the 
output space, and reduced the number of emulators required from 2000 to 40 or fewer 
(Ryan et al., 2018). However, for this study, we choose an emulator-only approach because 
it is much simpler to demonstrate.  Nonetheless, future emulation-calibration studies could 
benefit from the computational savings of applying a PCA-emulator hybrid approach.  Other 
approaches for dealing with high dimensional output are also available, such as low rank 
approximations (Bayerri et al.,2007).” 
 
 
(6) Reviewer’s comment: Calibration is not just about estimating the optimised inputs, but 
also about estimating (under reasonable assumptions) the potential simulator 
misspecification, or discrepancy. However, this latter estimation is not explored in the 
studies. This should be explored more carefully, even if the model discrepancy is not 
accounted for. For example, does the final calibrated model outperform than the ensemble 
mean output from their Latin hypercube design with respect to synthetic or real 
observations? 
 
Author’s response: The reviewer makes a good point here about estimating the model 
misspecification.  To address this point, we have created a new figure that compares the 
emulator predictions of the measurements using the prior and posterior values for the 
inputs (figure 2).  The left-hand plot shows the mean and 95% prediction interval of the 
surface O3 as predicted by the emulators, using 1000 samples of the inputs from the prior 
distribution.  For the right-hand plot, we took 1000 samples of the inputs from posterior 
distribution, based on the calibration run involving only surface O3 data, 20% spatial 
coverage, and a representation error factor of p=0.2 (the third level of representation 
error).  We then ran all 1000 posterior samples through each emulator.  For each panel 
there are 272*12 points, which are made up of 272 spatial pixels and 12 months for each 
pixel.  Note that although the calibration run involved 20% of the data, these predictions 
involve 100% of the data.  We can clearly see that the prior distribution values of the 
predicted surface ozone are unbiased and have large uncertainty (more so at high values).  
In contrast the posterior distribution values of the predicted ozone have a very small value 
of the median absolute difference (MAD).  
Note that we have updated this figure and above text from our initial response to the 
reviewer’s comments, due to a typo in the code used to create the figure that had resulted 
in bias in the prior distribution.   



 
Figure 2 
 
Changes to manuscript: A new section 3.4 has been created and the above figure has also 
been included in the revised manuscript as figure 11. Section 3.4 states: “We demonstrate 
the benefit of the calibration by evaluating the emulators using the values of the scaling 
parameters sampled from the prior and posterior distributions.  As an example, we show 
surface O3 before and after calibration using the calibration runs involving synthetic data at 
20% spatial coverage and a representation error of p=0.2 (Figure 11).  Despite the 
calibration involving only 20% spatial coverage, we apply the resulting parameter values to 
all grid squares.  We can clearly see that the prior surface O3 concentrations are unbiased 
but have large uncertainty, especially at high values.  In contrast the calibrated O3 
concentrations have a small uncertainty, demonstrating that even with 20% spatial coverage 
in the calibration data we are able to achieve improved predictions for all model grid 
boxes.” 
 
 
(7) Reviewer’s comment: How do the authors choose the settings of their prior distributions 
for the hyperparameters in GP mean and covariance functions? This is not discussed 
anywhere. 
 
Author’s response: The hyperparameters for each emulator are estimated by maximum 
likelihood using the DiceKriging R package (Roustant et al., 2012).  As Kennedy & O’Hagan 
(2001) point out, in order to integrate out the hyperparameters in the formulation of the GP 
emulator, we would require highly informative priors.  In most cases, such informative 
priors do not exist.  Hence, Kennedy & O’Hagan (2001) propose to provide a point estimate 
of the hyperparameters and to use these in the formulae for the mean and covariance 
functions of the GP emulator.   
 
Changes to manuscript: To address this point, a new paragraph has been added to the end 
of section 2.5: “A final issue to resolve is how to estimate the roughness parameter since 
the posterior distribution of f(∙) is conditional on these hyperparameters.  A Bayesian 
approach would be to integrate out these hyperparameters in the formulation of the GP 
emulator.  This would require highly informative priors, but in most cases such informative 
priors do not exist.  Kennedy and O’Hagan (2001) propose using maximum likelihood to 
provide a point estimate of the hyperparameters and to use these in the formulae for the 
mean and covariance functions of the GP emulator.  We adopt this approach in this study.” 



 
(8) Reviewer’s comment: The authors often attribute the variation between irregularly 
distributed measurements and gridded output to representative error throughout the 
paper. This is unfair and inadequate, because model simulated output at gridded points 
does not imply model output is more representative at a broader scale, but simply because 
the model is too limited or too coarse to represent all the fine structures. 
 
Author’s response: The model output represents concentrations averaged over a coarse 
model grid square (not at a “gridded point”), while measured concentrations are indeed at 
specific points. There is a fundamental incommensurability in this comparison, given that 
the model cannot resolve fine structures, while the measurements may or may not sample 
them. To calibrate the model we need a measurement based assessment of concentrations 
at the model grid scale, ideally, but there are insufficient measurement sites per grid square 
to generate this. Our comparison is thus dependent on how well the available measurement 
sites represent the wider area, and we have defined this as the representation error in the 
paper. We note that this is a function of the grid scale considered as much as a property of 
the measurement due to its siting.   
 
Changes to manuscript:  We have rephrased our definition of representation error on page 
5 in the introduction to make this clearer:  “Firstly, global chemistry transport models 
typically have grid scales of the order of 100 km which is insufficient to resolve spatial 
variability in many atmospheric constituents. Surface measurements made at a single 
location may not be representative of the spatial scales resolved in the model.”  See also our 
response to the specific comments about this point, below. 
 
 
Minor Comments 
 
Reviewer’s comment: P2, l5 and P6, l4, I understand that this is a standard statement to say 
poor spatial coverage of atmospheric composition measurements, but in your case the 
surface ozone measurements are very dense in Europe and most of the US, compared to the 
2.8 degree resolution of their model output. 
 

Author’s response: While there are certainly more surface measurements in Europe and the 
US than elsewhere around the globe, the adequacy of the coverage must be judged on the 
spatial variability of the variable of interest, not the model resolution. While the lifetime of 
ozone is long in the free troposphere, the short timescales for chemical and dynamical 
processes controlling surface ozone drive much greater spatial variability. Given that the 
current network is still far from sufficient to capture this, we feel fully justified in describing 
the measurements as sparse.    
 

Changes to manuscript: No changes were made. 
 
Reviewer’s comment: p3, l4, this reference should be updated to the most recent GBD 2019 
study. 4.2m premature deaths are referring to the pm2.5 estimates. This study is about 
ozone, so the latest estimate of 365 thousand premature deaths is more appropriate. 
 



Author’s response: We agree that this would be more relevant here and thank the reviewer 
for pointing this out.   
 

Changes to manuscript:  We have updated the reference and amended the text to include 
this figure, as suggested. 
 
Reviewer’s comment: p3, l14-16, this statement seems unfair, since several attempts were 
already made for calibrating/emulating this type of model output. See following references 
Chang, K. L., & Guillas, S. (2019). Computer model calibration with large non-stationary 
spatial outputs: application to the calibration of a climate model. Journal of the Royal 
Statistical Society: Series C (Applied Statistics), 68(1), 51-78.Couvreux, F., Hourdin, F., 
Williamson, D., Roehrig, R., Volodina, V., Villefranque, N. et al. (2021). Process-based climate 
model development harnessing machine learning: I. a calibration tool for parameterization 
improvement. Journal of Advances in Modeling Earth Systems, 13(3), e2020MS002217. 
Guan, Y., Sampson, C., Tucker, J. D., Chang, W., Mondal, A., Haran, M., & Sulsky, D. (2019). 
Computer model calibration based on image warping metrics: an application for sea ice 
deformation. Journal of Agricultural, Biological and Environmental Statistics, 24(3), 444-463. 
Karagiannis, G., Konomi, B. A., & Lin, G. (2019). On the Bayesian calibration of expensive 
computer models with input dependent parameters. Spatial Statistics, 34, 100258. Salter, J. 
M., Williamson, D. B., Scinocca, J., & Kharin, V. (2019). Uncertainty quantification for 
computer models with spatial output using calibration-optimal bases. Journal of the 
American Statistical Association. 
 

Author’s response:  The point we are making here refers specifically to atmospheric 
chemistry models, as stated in the text. However, we acknowledge that calibration has been 
successfully applied to climate models, as the reviewer highlights, and we have therefore 
modified the text to note this.  
 

Changes to manuscript: We have updated text and cited some of the papers mentioned by 
the reviewer: “While estimation of model parameters is common in many fields of science, 
and has successfully been applied to climate models (e.g. Chang and Guillas, 2019; Couvreux 
et al., 2021), it is rarely attempted with atmospheric chemistry models because they are 
computationally expensive to run and it is thus burdensome to perform the large number of 
model runs required to explore model parameter space.” 
 
Reviewer’s comment: P5, l5 and p22, l21 “require thousands of model runs” appear to be 
exaggerating, since the authors are aware that will be dependent on how many parameters 
to be turned (and they only use 80 runs). 
 

Author’s response: The point that we are making here is that global sensitivity analysis (e.g. 
extended FAST) and model calibration (e.g. MCMC) require thousands of model evaluations.  
This is true whether we use a computationally expensive model or a surrogate model.  The 
process is currently only feasible with a surrogate model, and this is our motivation for using 
Gaussian Process emulation. Generating the emulator requires only a small number of 
executions of the expensive model (80 in our case), but we still need to carry out 1000s of 
runs with the emulator to conduct sensitivity analysis and model calibration.  However, we 
acknowledge the reviewer’s concern and have rephrased the first occurrence to avoid the 
appearance of exaggeration.   
 



Changes to manuscript: We have updated the text to make the point clearer, noting 
specifically that sensitivity analysis and model calibration “may require thousands of model 
runs”. 
 
Reviewer’s comment: P5, l10, “Since the first application of emulation methods for model 
calibration (Kennedy and O'Hagan, 2001), [...] In this study, we apply these approaches to 
models of tropospheric ozone for the first time to demonstrate the feasibility of parameter 
estimation.” This is inappropriate because the authors do not consider model discrepancy 
and measurement uncertainty in their emulator component (see my major comment 1).  
 

Author’s response: As noted in our responses above, we have chosen to omit the 
discrepancy term for this demonstration of feasibility, as our exploratory tests showed that 
the effect is small, but measurement uncertainty is included as a component of 
representation error. We have applied the same emulation methods as Kennedy and 
O’Hagan, despite considering a very different system, and therefore we feel that it is fully 
appropriate to credit them with introducing it.    
 

Changes to manuscript: We have implemented changes in response to major comment 1 by 
including a new section 2.8, which addresses this comment as well. 
 
Reviewer’s comment: P5, l12, Higdon et al. (2008) should be cited, since this is the first 
paper successfully extending the calibration framework into the “highly multivariate 
output”. Higdon, D., Gattiker, J., Williams, B., & Rightley, M. (2008). Computer model 
calibration using high-dimensional output. Journal of the American Statistical Association, 
103(482), 570-583.  
 

Author’s response: Thank you for this reference; we now cite this here as suggested. 
 

Changes to manuscript: This paper is now cited in the manuscript on page 5. 
 
Reviewer’s comment: P5, l18, “Firstly, ground-level composition measurements are usually 
made at a single location which may not be representative of a wider region at the grid-
scale of the model. Global chemistry transport models typically have a spatial scale of the 
order of 100 km.” This statement is somehow misleading, because dense ground based 
measurements (especially in Europe) reflect the local fine variations that can not be solved 
by coarse model resolution.  
 

Author’s response: The reviewer is correct to point out that this is phrased somewhat 
awkwardly in the paper from the perspective of the model (the observations aren’t 
representative of the model grid square) rather than of the measurements (the model is 
unable to represent observed variations below the grid scale). However, even over Europe 
where there are more observations than in other parts of the world, measurement sites are 
insufficiently dense to fully characterise the spatial variability that would be needed to 
integrate them reliably to the model grid scale. To avoid any potential confusion, we have 
now rephrased this sentence in the manuscript. 
 

Changes to manuscript: We have rephrased these sentences to read: “Firstly, global 
chemistry transport models typically have grid scales of the order of 100 km which is 
insufficient to resolve spatial variability in many atmospheric constituents. Surface 



measurements made at a single location may not be representative of the spatial scales 
resolved in the model.” 
 
Reviewer’s comment: P8, l6, As I mentioned earlier, emissions are also dynamic in time and 
space. So the authors should comment if these parameters only represent the initial 
conditions. 
 

Author’s response: As noted in our response to the earlier comment, we are applying 
globally uniform scaling factors that do not vary in space and time. These are applied to the 
processes continuously, and are independent of the initial conditions. As noted above, the 
introductory text in Section 2.1 has been adjusted to make this clearer. 
 

Changes to manuscript: As noted in our response to point 2 above. 
 
Reviewer’s comment: P8, l19, I believe the reference is Chang et al. (2017).  
 

Author’s response: Thank you, and apologies for getting the publication date wrong here! 
 

Changes to manuscript: The reference has been corrected in the manuscript. 
 
Reviewer’s comment: P11, l23, There are a few alternative approaches, such as principal 
components (Higdon et al. 2008; Holden et al., 2015) or low rank approximations (Bayerri et 
al.,2007; Bowman and Woods 2016; Chang and Guillas, 2019), that are proposed to tackle 
high dimensional output. 
Bayarri, M., Berger, J., Cafeo, J., Garcia-Donato, G., Liu, F., Palomo, J., Parthasarathy, R., 
Paulo, R., Sacks, J., and Walsh, D. (2007). Computer model validation with functional output. 
Ann. Statist., 35(5):1874–1906 Bowman, V. E. and Woods, D. C. (2016). Emulation of 
multivariate simulators using thin-plate splines with application to atmospheric dispersion. 
J. Uncertnty Quant., 4(1):1323–1344. Holden, P. B., Edwards, N. R., Garthwaite, P. H., and 
Wilkinson, R. D. (2015). Emulation and interpretation of high-dimensional climate model 
outputs. J. Appl. Statist., 42(9):2038–2055.  
 

Author’s response: In a previous paper using the same model, we implemented the 
principal component approach to carry out global sensitivity analysis (Ryan et al., 2018, 
cited in the manuscript).  This gives a similar answer to building separate scalar-output 
emulators for each dimension of the output space, and is thus a useful way to reduce the 
dimensionality.  We have considered multivariate outputs, but feel that unless the outputs 
of the emulator are being used as inputs for another emulator it is fine to use the scalar 
output emulator approach.  However, we agree that it would useful to reference other 
approaches to dealing with multivariate output when implementing emulators, and have 
now done this. 
 

Changes to manuscript: We have added references to other approaches of dealing with 
multivariate output when implementing emulators, including those suggested by the 
referee, in the final paragraph of section 2.6 quoted in the response to point (5) above. 
 
Reviewer’s comment: P12, l16, If “where B is a p × p matrix with zeros in the off diagonals” 
how the different input parameters can be correlated?  
 



Author’s response: As explained in section 2.5, B is a diagonal matrix where the elements 
are roughness parameters that describe the linearity of the input-output relationship. The 
matrix does not describe the relationship between the input terms as the reviewer suggests 
here.  This is part of a standard explanation for the description of the Gaussian process 
emulator (e.g. see papers by Jeremey Oakley and Tony O’Hagan).   
 

Changes to manuscript: We have added the phrase “roughness parameters” to the 
following sentence to try to make this clearer: “The roughness parameters give an indication 
of whether the input-output relationship for each input variable, given the training data, 
should be linear.” 
 
Reviewer’s comment: P14, l1, The emulators used in this study are not taken into account 
measurement uncertainty or model discrepancy, so it merely represents the “output 
interpolator”, I do not see why the authors should report R2.  
 

Author’s response: The uncertainty in the measurements is typically substantially less that 
that in their representativeness of the model grid scale, and it is thus effectively included as 
a small component of the representation error that we do fully consider.   We do not 
include a model discrepancy term as explained above.  We implement a Gaussian process 
emulator as described in O’Hagan (2006), which also quantifies the uncertainty at points in 
the output spaces where there are no training data. We therefore feel that it is appropriate 
to quote an R2 for the comparison.  
O’Hagan (2006) Bayesian analysis of computer code outputs: a tutorial. Reliability 
Engineering & System Safety, 91, 1290-1300 
 

Changes to manuscript: The R2 term has been retained in the manuscript. 
 


