
University of Warsaw Lagrangian Cloud Model (UWLCM) 2.0:
Adaptation of a mixed Eulerian-Lagrangian numerical model for
heterogeneous computing clusters
Piotr Dziekan and Piotr Zmijewski
Institute of Geophysics, Faculty of Physics, University of Warsaw, Poland

Correspondence: Piotr Dziekan (pdziekan@fuw.edu.pl)

Abstract.

A numerical cloud model with Lagrangian particles coupled to an Eulerian flow is adapted for distributed memory systems.

Eulerian and Lagrangian calculations can be done in parallel on CPUs and GPUs, respectively. The fraction of time when CPUs

and GPUs work simultaneously is maximized at around 80% for an optimal ratio of CPU and GPU workloads. The optimal

ratio of workloads is different for different systems, because it depends on the relation between computing performance of5

CPUs and GPUs. GPU workload can be adjusted by changing the number of Lagrangian particles, which is limited by device

memory. Lagrangian computations scale with the number of nodes better than Eulerian computations, because the former do

not require collective communications. This means that the ratio of CPU and GPU computation times also depends on the

number of nodes. Therefore, for a fixed number of Lagrangian particles, there is an optimal number of nodes, for which the

time CPUs and GPUs work simultaneously is maximized. Scaling efficiency up to this optimal number of nodes is close to10

100%. Simulations that use both CPUs and GPUs take between 10 to 120 less time and use between 10 to 60 times less

energy than simulations run on CPUs only. Simulations with Lagrangian microphysics take up to eight times longer to finish

than simulations with Eulerian bulk microphysics, but the difference decreases as more nodes are used. Presented method of

adaptation for computing clusters can be used in any numerical model with Lagrangian particles coupled to an Eulerian fluid

flow.15

1 Introduction

As CPU clock frequencies no longer stably increase over time and the cost per transistor increases, new modeling techniques

are required to match the demand for more precise numerical simulations of physical processes (Bauer et al., 2021). We present

an implementation of the cloud model UWLCM for distributed memory systems that uses some of the modeling techniques

reviewed by Bauer et al. (2021): use of heterogeneous clusters (with parallel computations on CPU and GPU), mixed-precision20

computations, semi-implicit solvers, different time steps for different processes, portability to different hardware. Although we

discuss a numerical cloud model, conclusions and the techniques used can be applied to modeling of other processes in which

Lagrangian particles are coupled to an Eulerian field, such as the particle-in-cell method used in plasma physics (Hockney and

Eastwood, 1988).

1

In numerical models of the atmosphere, clouds are represented using various approximations depending on resolution of the25

model. In large scale models, like global climate and weather models, clouds are described with a simplistic process, which

is known as cloud parameterization. Cloud parameterizations are developed based on observations, theoretical insights and on

fine scale numerical modeling. Therefore correct fine scale modeling is important for better understanding of Earth’s climate

and for better weather prediction. Highest resolution numerical modeling is known as direct numerical simulation (DNS). In

DNS, even the smallest turbulent eddies are resolved, which requires spatial resolution in the millimeter range. Largest current30

DNS simulations model a volume of the order of several cubic meters, not enough to capture many important cloud scale

processes. Whole clouds and cloud fields can be modeled with the the Large Eddy Simulations (LES) technique. In LES, small

scale eddies are parameterised, so that only large eddies, typically of the order of tens of meters, are resolved. Thanks to this,

it is feasible to model a domain spanning tens of kilometers.

DNS and LES models of clouds need to resolve air flow, which is referred to as cloud dynamics, and evolution of cloud35

droplets, which is known as cloud microphysics. UWLCM is a tool for LES of clouds with a focus on detailed modeling

of cloud microphysics. Dynamics are represented in an Eulerian manner. Cloud microphysics are modeled in a Lagrangian

particle-based manner based on the Super-Droplet Method (SDM) (Shima et al., 2009). Lagrangian particle-based cloud mi-

crophysics models have gained popularity in the last decade (Shima et al., 2009; Andrejczuk et al., 2010; Riechelmann et al.,

2012). These are very detailed models applicable both to DNS and LES. Their level of detail and computational cost are40

comparable to the more traditional Eulerian bin models, but Lagrangian methods have several advantages over bin meth-

ods (Grabowski et al., 2019). Simpler, Eulerian bulk microphysics schemes are also available in UWLCM.

We start with a brief presentation of the model, with particular attention given to the way the model was adapted to dis-

tributed memory systems. This was done using a mixed OpenMP + Message Passing Interface (MPI) approach. Next, model

performance is tested on single-node systems followed by tests on a multi-node system. The main goals of these tests are45

to determine simulation parameters that give optimal use of computing hardware and check model scaling efficiency. Other

discussed topics are the GPU vs CPU speedup and performance of different MPI implementations.

2 Model description

Full description of UWLCM can be found in Dziekan et al. (2019). Here, we briefly present key features. Cloud dynamics

are modeled using an Eulerian approach. Eulerian variables are the flow velocity, potential temperature and water vapor con-50

tent. Equations governing time evolution of these variables are based on the Lipps-Hemler anelastic approximation (Lipps and

Hemler, 1982), which is used to filter acoustic waves. These equations are solved using a finite difference method. Spatial

discretization of the Eulerian variables is done using the staggered Arakawa-C grid (Arakawa and Lamb, 1977). Integration of

equations that govern transport of Eulerian variables is done with the multidimensional positive-definite advection transport

algorithm (MPDATA) (Smolarkiewicz, 2006). Forcings are applied explicitly with the exception of buoyancy and pressure55

gradient, which are applied implicitly. Pressure perturbation is solved using the generalized conjugate residual solver (Smo-

2

larkiewicz and Margolin, 2000). Diffusion of Eulerian fields caused by subgrid-scale (SGS) turbulence can be modeled with a

Smagorinsky-type model (Smagorinsky, 1963) or with the implicit LES approach (Grinstein et al., 2007).

Cloud microphysics can be modeled with a single- or double-moment bulk scheme, or with a Lagrangian particle-based

model. Depending on the microphysics model, simulations are named UWLCM-B1M (single-moment bulk scheme), UWLCM-60

B2M (double-moment bulk scheme) or UWLCM-SDM (super-droplet method). Details of microphysics models can be found

in Arabas et al. (2015). In both bulk schemes, cloud water and rain water mixing ratios are prognostic Eulerian variables. In the

double-moment scheme, cloud droplet and rain drop concentrations are also prognostic Eulerian variables. In the Lagrangian

particle-based scheme, all hydrometeors are modeled in a Lagrangian manner. The scheme is based on the super-droplet method

(SDM) (Shima et al., 2009). In particular, it employs the the all-or-nothing coalescence algorithm (Schwenkel et al., 2018).65

In SDM, a relatively small number of computational particles, called super-droplets (SD), represent the vast population of all

droplets. Equations that govern behaviour of SD are very similar to the well-known equations that govern behaviour of real

droplets. The condensation equation includes the Maxwell-Mason approximation and the κ-Köhler parameterization of water

activity (Petters and Kreidenweis, 2007). SD follow the resolved, large-scale flow and sediment at all times with the termi-

nal velocity. Velocity of SD associated with SGS eddies can be modeled as an Ornsetin-Uhlenbeck process (Grabowski and70

Abade, 2017). Collision-coalescence of SD is treated as a stochastic process in which probability of collision is proportional

to the collision kernel. All particles, including humidified aerosols, are modeled in the same way. Therefore, particle activa-

tion is resolved explicitly, which often requires short time steps for solving the condensation equation. Short time steps are

sometimes also required when solving collision-coalescence. To permit time steps for condensation and collision-coalescence

shorter than for other processes, two separate substepping algorithms, one for condensation and one for collision-coalescence,75

are implemented.

Equations for the Eulerian variables, including cloud and rain water in bulk microphysics, are solved by a CPU. Lagrangian

microphysics can be modeled either on a CPU or on a GPU. In the latter case, information about super-droplets is stored

in device memory and GPU calculations can be done in parallel with the CPU calculations of Eulerian variables. Compared

to UWLCM 1.0 described in Dziekan et al. (2019), order of operations has been changed to allow for GPU calculations to80

continue in parallel to the CPU calculations of the Eulerian SGS model. An updated UML sequence diagram is shown in fig. 1.

All CPU computations are done in double precision. Most of the GPU computations are done in single precision. The only

exception are high order polynominals, e.g. in the equation for terminal velocity of droplets, that are done in double precision.

So far, UWLCM has been used to model stratocumuli (Dziekan et al., 2019, 2021b), cumuli (Grabowski et al., 2019; Dziekan

et al., 2021b) and raising thermals (Grabowski et al., 2018).85

3 Adaptation to distributed memory systems

The strategy of adapting UWLCM to distributed memory systems was developed with a focus on UWLCM-SDM simulations

with Lagrangian microphysics computed by GPUs. Therefore, this most complicated case is discussed first. Simpler cases with

microphysics calculated by CPUs will be discussed afterwards.

3

The difficulty in designing a distributed memory implementation of code in which CPUs and GPUs simultaneously conduct90

different tasks is in obtaining a balanced workload distribution between different processing units. This is because GPUs have

higher throughput than CPUs, but device memory is rather low, which puts an upper limit on the GPU workload. Taking

this into account, we chose to use a domain decomposition approach that is visualized in fig. 2. The modeled domain is

divided into equal slices along the horizontal axis x. Computations in each slice are done by a single MPI process, which can

control multiple GPUs and CPU threads. Cloud microphysics within the slice are calculated on GPUs, with super-droplets95

residing in device memory. Eulerian fields in the slice reside in host memory and their evolution is calculated by CPU threads.

Since the CPU and GPU data attributed to a process are colocated in the modeled space, all CPU-to-GPU and GPU-to-CPU

communications happen via PCI-Express and do not require inter-node data transfer. The only inter-node communications are

CPU-to-CPU and GPU-to-GPU. If an MPI process controls more than one GPU, computations within the subdomain of that

process are divided among the GPUs also using domain decomposition along the x axis. Intra-node communication between100

GPUs controlled by a single process makes use of the NVIDIA GPUDirect Peer to Peer technology, which allows direct

transfers between memories of different devices. Intra-node and inter-node transfers between GPUs controlled by different

processes are handled by the MPI implementation. If the MPI implementation uses the NVIDIA GPUDirect Remote Direct

Memory Access (RMDA) technology, inter-node GPU-to-GPU transfers go directly from device memory to the interconnect,

without host memory buffers.105

Computations are divided between CPU threads of a process using domain decomposition of the process’ subdomain, but

along the y axis. The maximum number of GPUs that can be used in a simulation is equal to the number of cells in the x

direction. MPI communications are done using two communicators, one for the Eulerian data and one for the Lagrangian

data. Transfers of the Eulerian data are handled simultaneously by two threads, one for each boundary that is perpendicular to

the x axis. This requires that the MPI implementation supports the MPI_THREAD_MULTIPLE thread level. Transfers of the110

Lagrangian data are handled by the thread that controls the GPU that is on the edge of the process’ subdomain. Collective MPI

communication is done only on the Eulerian variables and most of it is associated with solving the pressure problem.

It is possible to run simulations with microphysics, either Lagrangian particle-based or bulk, computed by CPUs. In the

case of bulk microphysics, microphysical properties are represented by Eulerian fields that are divided between processes and

threads in the same manner as described in the previous paragraph, i.e. like the Eulerian fields in UWLCM-SDM. In UWLCM-115

SDM with microphysics computed by CPUs, all microphysical calculations in the subdomain belonging to a given MPI process

are divided amongst the process’ threads by the NVIDIA Thrust library (Bell and Hoberock, 2012).

File output is done in parallel by all MPI processes using the parallel HDF5 C++ library (The HDF Group).

4 Performance tests

4.1 Simulation setup120

Model performance is tested in simulations of a raising moist thermal (Grabowski et al., 2018). In this setup, an initial spherical

perturbation is introduced to a neutrally stable atmosphere. Within the perturbation, water vapour content is increased to obtain

4

RH=100%. With time, the perturbation is lifted by buoyancy and water vapor condenses within it. We chose this setup, because

it has significant differences in buoyancy and cloud formation already at the start of a simulation. This puts pressure solver and

microphysics model to test without need of a spinup period.125

Subgrid-scale diffusion of Eulerian fields is modeled with the Smagorinsky scheme. SGS motion of hydrometeors is modeled

with a scheme described in (Grabowski & Abade 17). Model time step length is 0.5s. Substepping is done to achieve a time

step of 0.1s for condensation and coalescence. These are values typically used when modeling clouds with UWLCM. No

output of model data is done.

4.2 Computers used130

Performance tests were ran on three systems: Rysy, a02 and Prometheus. Hardware and software of these systems is given

in table 1 and table 2, respectively. Rysy and a02 were used only in the single-node tests, while Prometheus was used both in

single- and multi-node tests. Prometheus has 72 GPU nodes connected with Infiniband. We chose to use the MVAPICH2 2.3.1

MPI implementation on Prometheus, because it supports the MPI_THREAD_MULTIPLE thread level, is CUDA-aware and is

free to use. Other implementation that meets these criteria is OpenMPI, but it was found to give greater simulation wall time in135

scaling tests of libmpdata++ (appendix B). NVIDIA GPUDirect RDMA was not used by the MPI implementation, because it

is not supported by MVAPICH2 for the type of interconnect used on Prometheus. MVAPICH2 does not allow more than one

GPU per process. Therefore multi-node tests were done for 2 processes per node, each process controlling 1 GPU and 12 CPU

threads.

4.3 Performance metrics140

Wall time taken to complete one model time step ttot is divided into three parts, ttot = tCPU + tGPU + tCPU&GPU, where:

– tCPU is the time when CPU is performing work and the GPU is idle,

– tGPU is the time when GPU is performing work and the CPU is idle,

– tCPU&GPU is the time when CPU and GPU are performing work simultaneously.

The total time of CPU (GPU) computations is ttotCPU = tCPU+tCPU&GPU (ttotGPU = tGPU+tCPU&GPU). The degree to which145

CPU and GPU computations are parallelized is measured with tCPU&GPU/ttot. Timings tCPU, tGPU and tCPU&GPU are ob-

tained using a built-in timing functionality of UWLCM that is enabled at compile-time by setting the UWLCM_TIMING

CMake variable. The timing functionality does not have any noticeable effect on simulation wall time. Timer for GPU compu-

tations is started by a CPU thread just before a task is submitted to the GPU, and is stopped by a CPU thread when the GPU

task returns. Therefore GPU timing in tCPU&GPU and in tGPU includes time it takes to dispatch (and to return from) the GPU150

task.

5

4.4 Single-node performance

In this section we present tests of computational performance of UWLCM-SDM run on a single-node system. The goal is to

determine how parallelization of CPU and GPU computations can be maximized. We also estimate the speedup achieved thanks

to the use of GPUs. No MPI communications are done in these tests. Size of the Eulerian computational grid is 128x128x128155

cells. In the super-droplet method, quality of microphysics solution depends on the number of super-droplets. We denote the

initial number of super-droplets per cell by NSD. We perform test for different values of NSD. The maximum possible value of

NSD depends on available device memory.

The average wall time it takes to do one model time step is plotted in fig. 3. Time complexity of Eulerian computations

depends on grid size and, ideally, does not depend on NSD. In reality, we see that ttotCPU slightly increases with NSD. Space160

and time complexity of Lagrangian computations increases linearly with NSD (Shima et al., 2009). It is seen that ttotGPU in

fact increases linearly with NSD, except for low values of NSD. For NSD = 3, CPU computations take longer than GPU

computations (ttotCPU > ttotGPU) and almost all GPU computations are done in parallel with CPU computations (tGPU ≈ 0). As

NSD is increased, we observe that both ttot and tCPU&GPU increase, with tCPU&GPU increasing faster than ttot, and that

tCPU decreases. This trend continues up to some value of NSD, for which ttotCPU ≈ ttotGPU. Parallelization of CPU and GPU165

computations (tCPU&GPU/ttot) is highest for this value of NSD. If NSD is increased above this value, GPU computations take

longer than CPU computations, ttot increases linearly and the parallelization of CPU and GPU computations decreases. The

threshold value of NSD depends on the system; it is 10 on Prometheus, 32 on a02 and 64 on Rysy. This difference comes from

differences in relative CPU to GPU computational power between these systems. In LES, NSD is usually between 30 and 100.

The test shows that high parallelization of CPU and GPU computations, with tCPU&GPU/ttot up to 80 %, can be obtained in170

typical cloud simulations.

In UWLCM-SDM, microphysical computations can also be done by the CPU. From the user perspective, all that needs to be

done is to specify --backend=OpenMP at runtime. To investigate how much speedup is achieved by employing GPU resources,

in fig. 4 we plot time step wall time of CPU-only simulations (with microphysics computed by the CPU) and of CPU+GPU

simulations (with microphysics computed by the GPU). Estimated energy cost per time step is also compared in fig. 4. We175

find that simulations that use both CPUs and GPUs take between 10 to 130 times less time and use between 10 to 60 times

less energy than simulations that use only CPUs. Speedup and energy savings increase with NSD and depend on the number

and type of CPUs and GPUs. It is important to note that microphysics computations in UWLCM-SDM are dispatched to CPU

or GPU by the NVIDIA Thrust library. It is reasonable to expect that the library is better optimized for GPUs, because it is

developed by the producer of the GPU.180

4.5 Multi-node performance

Computational performance of UWLCM-SDM, UWLCM-B1M and UWLCM-B2M on distributed memory systems is dis-

cussed in this section. We consider four scenarios in which UWLCM is run on a distributed memory system for different

reasons. Depending on the scenario and on the number of nodes used, number of Eulerian grid cells is between 0.5 and 18.5

6

million, and number of Lagrangian particles is between 40 million and 18.5 billion. Details of the simulation setup for each185

scenario are given in table 3. The scenarios are:

– strong scaling - More nodes are used in order to decrease the time it takes to complete the simulation.

– SD scaling - More nodes are used to increase the total device memory, allowing for more SD to be modeled, while grid

size remains the same. This results in weak scaling of GPU workload and strong scaling of CPU workload. This test is

applicable only to UWLCM-SDM.190

– 2D grid scaling - As more nodes are used, the number of grid cells in the horizontal directions is increased, while the

number of cells in the vertical is constant. In UWLCM-SDM, number of SD per cell is constant. Therefore, as more

cells are added, the total number of SD in the domain increases. This results in weak scaling of both CPU and GPU

workloads. This test represents two use cases: domain size increase and horizontal resolution refinement. Typically in

cloud modeling, domain size is increased only in the horizontal because clouds form only up to certain altitude.195

– 3D grid scaling - similar to 2D grid scaling, but more cells are used in each dimension. This would typically be used to

increase resolution of a simulation.

In each case, the maximum number of super-droplets that fit the device memory is used in UWLCM-SDM. The only

exception is the strong scaling test in which, as more nodes are added, the number of SD per GPU decreases. Note how SD

scaling is similar to strong scaling, but with more SDs added as more GPUs are added. Also note that the 2D grid scaling and200

3D grid scaling tests are similar, but with differences in sizes of distributed memory data transfers.

UWLCM-SDM simulation time versus number of nodes used is plotted in fig. 5. First, we discuss the strong scaling scenario.

We find that most of the time is spent on CPU-only computations. This is because in this scenarioNSD = 3, below the threshold

value of NSD = 10 determined by the single-node test (section 4.4). As more nodes are added, tCPU&GPU and ttot decrease.

Ratio of these two values, which describes the amount of parallelization of CPU and GPU computations, is low (30%) in a205

single-node run and further decreases, however slowly, as more nodes are used.

Better parallelization of CPU and GPU computations is seen in the SD scaling scenario. In this scenario, the CPU workload

scales the same as in the strong scaling scenario, but the workload per GPU remains constant. Largest value of tCPU&GPU/ttot,

approximately 80%, is found for NSD = 10. The same value of NSD was found to give highest tCPU&GPU/ttot in the single-

node tests section 4.4. We observe that ttotGPU is approximately constant. Given the weak scaling of GPU workload in this210

scenario, we conclude that the cost of GPU-GPU MPI communications is small. The small cost of GPU-GPU MPI communi-

cations, together with the fact that for NSD > 10 the total time of computations is dominated by GPU computations, gives very

high scaling efficiencies, around 100%.

2D and 3D grid scaling are weak scaling tests which differ in the way the size of CPU MPI communications scales. We

find that wall time per time step ttot scales very well (scaling efficiency exceeds 95%) and that ttot is dominated by ttotGPU215

(ttotGPU > ttotCPU). The latter observations is consistent with the fact that the number of super-droplets (NSD = 100) is larger than

the threshold, NSD = 10, determined in single-node tests. As in SD scaling, approximately constant ttotGPU indicates low cost

7

of MPI communications between GPUs. Contrary to ttotGPU, ttotCPU clearly increases with the number of nodes. This shows that

the cost of CPU-CPU MPI communications is non-negligible. Increase of ttotCPU does not cause an increase of ttot, because

additional CPU computations are done simultaneously with GPU computations and ttotGPU > ttotCPU in the studied range of the220

number of nodes. It is reasonable to expect that ttotGPU scales better than ttotCPU also for more nodes than used in this study. In that

case, there should be some optimal number of nodes for which ttotGPU ≈ ttotCPU. For this optimal number of nodes both scaling

efficiency and parallelization of CPU and GPU computations are expected to be high.

Comparison of wall time scaling in UWLCM-B1M, UWLCM-B2M and UWLCM-SDM is shown in fig. 6. UWLCM-B1M

and UWLCM-B2M use simple microphysics schemes that are computed by the CPU. UWLCM-B2M, which has four Eu-225

lerian prognostic variables for microphysics, is more complex than UWLCM-B1M, which has two. Regardless of this, wall

time is very similar for UWLCM-B1M and UWLCM-B2M. Wall time of UWLCM-SDM, which uses much more complex

microphysics scheme, is higher by a factor that depends on the number of SD. In 2D grid scaling and 3D grid scaling tests of

UWLCM-SDM there are 100 SD per cell, which is a typical value used in LES. Then, on a single node, UWLCM-SDM sim-

ulations take approximately eight times longer than UWLCM-B1M or UWLCM-B2M simulations. However, UWLCM-SDM230

scales better than UWLCM-B1M and UWLCM-B2M, because scaling cost is associated with the Eulerian part of the model

and in UWLCM-SDM this cost does not affect total wall time, as total wall time is dominated by Lagrangian computations.

In result, the difference in wall time between UWLCM-SDM and UWLCM-B1M or UWLCM-B2M decreases with the num-

ber of nodes. For the largest number of nodes used in 2D grid scaling and 3D grid scaling, UWLCM-SDM simulations take

approximately five times longer than UWLCM-B1M or UWLCM-B2M simulations. The strong scaling UWLCM-SDM test235

uses 3 SD per cell. For such low number of SD, time complexity of Lagrangian computations in UWLCM-SDM is low and we

see that the wall time and it’s scaling are very similar to that of UWLCM-B1M and UWLCM-B2M.

5 Summary

A numerical model with Lagrangian particles embedded in an Eulerian fluid flow has been adapted to clusters equipped with

GPU accelerators. On multi-node systems, computations are distributed among processes using static domain decomposition.240

The Eulerian and Lagrangian computations are done in parallel on CPUs and GPUs, respectively. We identified simulation

parameters for which the amount of time during which CPUs and GPUs work in parallel is maximized.

Single-node performance tests were done on three different systems, each equipped with multiple GPUs. Percentage of time

during which CPUs and GPUs simultaneously compute depends on the ratio of CPU to GPU workloads. GPU workload de-

pends on the number of Lagrangian computational particles. For optimal workload ratio, parallel CPU and GPU computations245

can take more than 80% of wall time. This optimal workload ratio depends on the relative computational power of CPUs and

GPUs. On all systems tested, workload ratio was optimal for between 10 and 64 Lagrangian particles per Eulerian cell. If

only CPUs are used for computations, simulation take up to 120 times longer and consume up to 60 times more energy than

simulations that use both CPUs and GPUs. We conclude that GPU accelerators enable running useful scientific simulation on

single-node systems at a decreased energy cost.250

8

Computational performance of the model on a distributed memory system was tested on the Prometheus cluster. We found

that cost of communication between nodes slows down computations related to the Eulerian part of the model by a much higher

factor than computations related to the Lagrangian part of the model. For example, in a weak scaling scenario (3D grid scaling)

ttotCPU is approximately three times larger on 27 nodes than on one node, while ttotGPU is increased by only around 7% (fig. 5).

The reason why Eulerian computations scale worse than Lagrangian computation is that solving the pressure perturbation,255

which is done by the Eulerian component, requires collective communications, while the Lagrangian component requires

peer-to-peer communications only. In single-node simulations on Prometheus an optimal ratio of CPU to GPU workloads is

seen for 10 Lagrangian particles per Eulerian cell. In the literature, number of Lagrangian particles per Eulerian cell typically

is higher, between 30 and 100 (Shima et al., 2009; Dziekan et al., 2019, 2021b). When such higher number of Lagrangian

particles is used in single-nodes simulations on Prometheus, most of the time is spent on Lagrangian computations. However,260

in multi-node runs, Eulerian computation time scales worse than Lagrangian computation time. Since Eulerian and Lagrangian

computations are done simultaneously, there is an optimal number of nodes for which the amount of time during which CPUs

and GPUs work in parallel is maximized and the scaling efficiency is high. In scenarios in which GPU computations take

most of the time, scaling efficiency exceeds 95% for up to 40 nodes. Fraction of time during which CPU and GPU work in

parallel is between 20% and 50% for the largest number of nodes used. In weak scaling scenarios, the fraction of time during265

which both processing units work could be increased by using more nodes, but it was not possible due to the limited size

of the cluster. Single-node simulations with Lagrangian microphysics computed by GPUs are around eight times slower than

simulations with bulk microphysics computed by CPUs. However, the difference decreases with the number of nodes. For 36

nodes simulations with Lagrangian microphysics are five times slower, and the difference should be further reduced if more

nodes were used.270

Our approach of using CPUs for Eulerian calculations and GPUs for Lagrangian calculations results in CPUs and GPUs

computing simultaneously for majority of the time step and gives good scaling on multi-node systems with several dozen

nodes. The same approach can be used in other numerical models with Lagrangian particles embedded in an Eulerian flow.

Code and data availability. Source code of UWLCM, libmpdata++ and libcloudph++ is available at https://github.com/igfuw. In the study,

the following code versions were used: UWLCM v2.0 (Dziekan and Waruszewski, 2021), libmpdata++ v2.0-beta (Arabas et al., 2021) and275

libcloudph++ v3.0 (Dziekan et al., 2021a). Dataset, run scripts and plotting scripts are available at Dziekan and Zmijewski (2021).

Appendix A: Software

UWLCM is written in C++14. It makes extensive use of two C++ libraries that are also developed at the Faculty of Physics

of the Universitry of Warsaw: libmpdata++ (Jaruga et al., 2015; Waruszewski et al., 2018) and libcloudph++ (Arabas et al.,

2015; Jaruga and Pawlowska, 2018). Libmpdata++ is a collection of solvers for generalised transport equations that use the280

9

https://github.com/igfuw

Multidimensional Positive Definite Advection Transport Algorithm (MPDATA) algorithm. Libcloudph++ is a collection of

cloud microphysics schemes.

In libcloudph++, the particle-based microphysics algorithm is implemented using the NVIDIA Thrust library. Thanks to

that, the code can be run on GPUs as well as on CPUs. It is possible to use multiple GPUs on a single machine, without

MPI. Then, each GPU is controlled by a separate thread and communications between GPUs are done with asynchronous285

cudaMemcpy. Libmpdata++ uses multidimensional array containers from the blitz++ library (Veldhuizen, 1995). Threading

can be done either with OpenMP, Boost.Thread or std::thread. In UWLCM we use the OpenMP threading as it was found to

be the most efficient. Output in UWLCM is done using the HDF5 output interface that is a part of libmpdata++. It is based on

the thread safe version of the C++ HDF5 library. UWLCM, libcloudph++ and libmpdata++ make use of various components

of the Boost C++ library (Koranne, 2011). In order to have parallel CPU and GPU computations in UWLCM, functions290

from libmpdata++ and from libcloudph++ are launched using std::async. UWLCM, libcloudph++ and libmpdata++ are open

source software distributed via the Github repository https://github.com/igfuw/. They have test suits that are automatically run

on Github Actions. To facilitate deployment, a Singularity container with all needed dependencies is included in UWLCM

(https://cloud.sylabs.io/library/pdziekan/default/uwlcm).

Libcloudph++ and libmpdata++ have been adapted to work on distributed memory systems. This has been implemented295

using the C interface of MPI in libcloudph++ and the Boost.MPI library in libmpdata++. Tests of scalability of libmpdata++

are presented in appendix B.

Appendix B: Scalability of libmpdata++

UWLCM uses the libmpdata++ library for solving the equations that govern time evolution of Eulerian variables. The library

had to be adapted for work on distributed memory systems. The domain decomposition strategy is as in fig. 2, but without300

GPUs. Here, we present strong scaling tests of standalone libmpdata++. The tests are done using a dry planetary boundary

layer setup, which is a part of the libmpdata++ test suite. Grid size is 432x432x51. Tests were done on the Prometheus

cluster. Note that all libmpdata++ calculations are done on CPUs. Two implementations of MPI are tested, OpenMPI v4.1.0

and MVAPICH2 v2.3.1. Note that Prometheus has 2 GPU per node, but MVAPICH2 does not support more than 1 GPU per

process, so 2 processes per node would need to be run in UWLCM-SDM. OpenMPI does not have this limitation. For this305

reason in the libmpdata++ scalability tests we consider two scenarios, one with two processes per node and the other with

one process per node. In the case with two processes per node, each process controls half of the available threads. Test results

are shown in fig. A1. In general, better performance is seen with MVAPICH2 than with OpenMPI. Running two processes

per node improves perfromance in MVAPICH2, but decreases performance in OpenMPI. In the best case, scaling efficiency

exceeds 80% for up to 500 threads.310

10

Author contributions. PD developed the model, planned the described work, conducted simulations and wrote the manuscript. PZ took part

in conducting simulations and in writing the manuscript.

Competing interests. No competing interests are present

Acknowledgements. Initial work on implementation of MPI in libmpdata++ was done by Sylwester Arabas. We thank SA for consulting

contents of the paper. This research was supported by the Polish National Science Center grant no 2018/31/D/ST10/01577, by the PLGrid315

Infrastructure, by the Interdisciplinary Centre for Mathematical and Computational Modelling of the University of Warsaw and by the HPC

systems of the National Center for Atmospheric Research, Boulder, Co, USA.

11

References

Andrejczuk, M., Grabowski, W. W., Reisner, J., and Gadian, A.: Cloud-aerosol interactions for boundary layer stratocumulus in the La-

grangian Cloud Model, Journal of Geophysical Research Atmospheres, 115, https://doi.org/10.1029/2010JD014248, 2010.320

Arabas, S., Jaruga, A., Pawlowska, H., and Grabowski, W. W.: Libcloudph++ 1.0: A single-moment bulk, double-moment bulk, and particle-

based warm-rain microphysics library in C++, Geoscientific Model Development, 8, 1677–1707, https://doi.org/10.5194/gmd-8-1677-

2015, 2015.

Arabas, S., Waruszewski, M., Dziekan, P., Jaruga, A., Jarecka, D., Badger, C., and Singer, C.: libmpdata++ v2.0-beta source code,

https://doi.org/10.5281/ZENODO.5713363, 2021.325

Arakawa, A. and Lamb, V. R.: Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model, General

circulation models of the atmosphere, 17, 173–265, https://doi.org/10.1016/b978-0-12-460817-7.50009-4, 1977.

Bauer, P., Dueben, P. D., Hoefler, T., Quintino, T., Schulthess, T. C., and Wedi, N. P.: The digital revolution of Earth-system science, Nature

Computational Science, https://doi.org/10.1038/s43588-021-00023-0, 2021.

Bell, N. and Hoberock, J.: Thrust: A Productivity-Oriented Library for CUDA, in: GPU Computing Gems Jade Edition, edited by Hwu, W.-330

m. W., Applications of GPU Computing Series, pp. 359–371, Morgan Kaufmann, Boston, https://doi.org/https://doi.org/10.1016/B978-0-

12-385963-1.00026-5, 2012.

Dziekan, P. and Waruszewski, M.: University of Warsaw Lagrangian Cloud Model v2.0 source code, https://doi.org/10.5281/zenodo.6390762,

2021.

Dziekan, P. and Zmijewski, P.: Data and scripts accompanying the paper "University of Warsaw Lagrangian Cloud Model (UWLCM) 2.0",335

https://doi.org/10.5281/ZENODO.5744404, 2021.

Dziekan, P., Waruszewski, M., and Pawlowska, H.: University of Warsaw Lagrangian cloud model (UWLCM) 1.0: A modern large-

eddy simulation tool for warm cloud modeling with Lagrangian microphysics, Geoscientific Model Development, 12, 2587–2606,

https://doi.org/10.5194/gmd-12-2587-2019, 2019.

Dziekan, P., Arabas, S., Jaruga, A., Waruszewski, M., Jarecka, D., Piotr, and Badger, C.: libcloudph++ v3.0 source code,340

https://doi.org/10.5281/ZENODO.5710819, 2021a.

Dziekan, P., Jensen, J. B., Grabowski, W. W., and Pawlowska, H.: Impact of Giant Sea Salt Aerosol Particles on Precipitation in Marine

Cumuli and Stratocumuli: Lagrangian Cloud Model Simulations, Journal of the Atmospheric Sciences, https://doi.org/10.1175/JAS-D-21-

0041.1, 2021b.

Grabowski, W. W. and Abade, G. C.: Broadening of cloud droplet spectra through eddy hopping: Turbulent adiabatic parcel simulations,345

Journal of the Atmospheric Sciences, 74, 1485–1493, https://doi.org/10.1175/JAS-D-17-0043.1, 2017.

Grabowski, W. W., Dziekan, P., and Pawlowska, H.: Lagrangian condensation microphysics with Twomey CCN activation, Geoscientific

Model Development, 11, 103–120, https://doi.org/10.5194/gmd-11-103-2018, 2018.

Grabowski, W. W., Morrison, H., Shima, S. I., Abade, G. C., Dziekan, P., and Pawlowska, H.: Modeling of cloud microphysics: Can we do

better?, Bulletin of the American Meteorological Society, 100, 655–672, https://doi.org/10.1175/BAMS-D-18-0005.1, 2019.350

Grinstein, F. F., Margolin, L. G., and Rider, W. J.: Implicit large eddy simulation: Computing turbulent fluid dynamics, vol. 9780521869,

Cambridge university press, https://doi.org/10.1017/9780511618604, 2007.

Hockney, R. W. and Eastwood, J. W.: Computer Simulation Using Particles, https://doi.org/10.1887/0852743920, 1988.

12

https://doi.org/10.1029/2010JD014248
https://doi.org/10.5194/gmd-8-1677-2015
https://doi.org/10.5194/gmd-8-1677-2015
https://doi.org/10.5194/gmd-8-1677-2015
https://doi.org/10.5281/ZENODO.5713363
https://doi.org/10.1016/b978-0-12-460817-7.50009-4
https://doi.org/10.1038/s43588-021-00023-0
https://doi.org/https://doi.org/10.1016/B978-0-12-385963-1.00026-5
https://doi.org/https://doi.org/10.1016/B978-0-12-385963-1.00026-5
https://doi.org/https://doi.org/10.1016/B978-0-12-385963-1.00026-5
https://doi.org/10.5281/zenodo.6390762
https://doi.org/10.5281/ZENODO.5744404
https://doi.org/10.5194/gmd-12-2587-2019
https://doi.org/10.5281/ZENODO.5710819
https://doi.org/10.1175/JAS-D-21-0041.1
https://doi.org/10.1175/JAS-D-21-0041.1
https://doi.org/10.1175/JAS-D-21-0041.1
https://doi.org/10.1175/JAS-D-17-0043.1
https://doi.org/10.5194/gmd-11-103-2018
https://doi.org/10.1175/BAMS-D-18-0005.1
https://doi.org/10.1017/9780511618604
https://doi.org/10.1887/0852743920

Jaruga, A. and Pawlowska, H.: Libcloudph++ 2.0: Aqueous-phase chemistry extension of the particle-based cloud microphysics scheme,

Geoscientific Model Development, https://doi.org/10.5194/gmd-11-3623-2018, 2018.355

Jaruga, A., Arabas, S., Jarecka, D., Pawlowska, H., Smolarkiewicz, P. K., and Waruszewski, M.: Libmpdata++ 1.0: A library

of parallel MPDATA solvers for systems of generalised transport equations, Geoscientific Model Development, 8, 1005–1032,

https://doi.org/10.5194/gmd-8-1005-2015, 2015.

Koranne, S.: Boost C++ Libraries, in: Handbook of Open Source Tools, https://doi.org/10.1007/978-1-4419-7719-9_6, 2011.

Lipps, F. B. and Hemler, R. S.: A scale analysis of deep moist convection and some related numerical calculations., Journal of the Atmospheric360

Sciences, 39, 2192–2210, https://doi.org/10.1175/1520-0469(1982)039<2192:ASAODM>2.0.CO;2, 1982.

Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity,

Atmospheric Chemistry and Physics, 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007.

Riechelmann, T., Noh, Y., and Raasch, S.: A new method for large-eddy simulations of clouds with Lagrangian droplets including the effects

of turbulent collision, New Journal of Physics, 14, 65 008, https://doi.org/10.1088/1367-2630/14/6/065008, 2012.365

Schwenkel, J., Hoffmann, F., and Raasch, S.: Improving collisional growth in Lagrangian cloud models: Development and verification of a

new splitting algorithm, Geoscientific Model Development, 11, 3929–3944, https://doi.org/10.5194/gmd-11-3929-2018, 2018.

Shima, S., Kusano, K., Kawano, A., Sugiyama, T., and Kawahara, S.: The super-droplet method for the numerical simulation of clouds

and precipitation: A particle-based and probabilistic microphysics model coupled with a non-hydrostatic model, Quarterly Journal of the

Royal Meteorological Society, 135, 1307–1320, https://doi.org/10.1002/qj.441, 2009.370

Smagorinsky, J.: General Circulation Experiments with the Primitive Equations, Monthly Weather Review, https://doi.org/10.1175/1520-

0493(1963)091<0099:gcewtp>2.3.co;2, 1963.

Smolarkiewicz and Margolin, L. G.: Variational Methods for Elliptic Problems in Fluid Models, in: Proc. ECMWF Workshop on Develop-

ments in numerical methods for very high resolution global models, 836, pp. 137–159, 2000.

Smolarkiewicz, P. K.: Multidimensional positive definite advection transport algorithm: An overview, International Journal for Numerical375

Methods in Fluids, 50, 1123–1144, https://doi.org/10.1002/fld.1071, 2006.

The HDF Group: Hierarchical Data Format, version 5.

Veldhuizen, T.: Expression Templates, C++ World Conference, pp. 1–8, 1995.

Waruszewski, M., Kühnlein, C., Pawlowska, H., and Smolarkiewicz, P. K.: MPDATA: Third-order accuracy for variable flows, Journal of

Computational Physics, https://doi.org/10.1016/j.jcp.2018.01.005, 2018.380

13

https://doi.org/10.5194/gmd-11-3623-2018
https://doi.org/10.5194/gmd-8-1005-2015
https://doi.org/10.1007/978-1-4419-7719-9_6
https://doi.org/10.1175/1520-0469(1982)039%3C2192:ASAODM%3E2.0.CO;2
https://doi.org/10.5194/acp-7-1961-2007
https://doi.org/10.1088/1367-2630/14/6/065008
https://doi.org/10.5194/gmd-11-3929-2018
https://doi.org/10.1002/qj.441
https://doi.org/10.1175/1520-0493(1963)091%3C0099:gcewtp%3E2.3.co;2
https://doi.org/10.1175/1520-0493(1963)091%3C0099:gcewtp%3E2.3.co;2
https://doi.org/10.1175/1520-0493(1963)091%3C0099:gcewtp%3E2.3.co;2
https://doi.org/10.1002/fld.1071
https://doi.org/10.1016/j.jcp.2018.01.005

solver (CPUs) libcloudph++ (GPUs)

(if not the first step and not after output)

continue

from

previous

timestep

calculate extrapolated advector field using u[n] and u[n−1]

returns u[n+1/2]

calculate SGS RHS for u

returns R
[n]
SGS|u

copy θ[n], q
[n]
v , u[n+1/2] to libcloudph++ memory

launch SD condensation

apply Rn
[n] and RSGS

[n]

modifies θ, qv, u

condensationadvect u with u[n+1/2]

modifies u

returns condensational RHS Rc
[n]

apply Rc
[n]

modifies θ, qv

diagnose third moment of wet radius

returns post-condensational ql

launch SD coalescence and transport

coalescence

advection

subsidence

sedimentation

SGS model

apply Rn
[n]|ql

modifies ql

advect θ, qv, ql with u[n+1/2]

returns θ[n+1], q
[n+1]
v , q

[n+1]
l

apply buoyancy term of R[n+1]

modifies w

apply pressure solver

modifies u

get SD diagnostics

returns moments of the dry/wet size distribution

save the output

if time for outputif time for output

for each timestepfor each timestep

Figure 1. UML sequence diagram showing the order of operations in the UWLCM 2.0 model. Right-hand-side terms are divided into

condensational, non-condensational and subgrid-scale parts, R=Rc +Rn +RSGS. Other notation follows Dziekan et al. (2019).

14

0 1 2 3 4
MPI rank

0

1

2

3

4

5

6

7

8

9

lo
ca

l t
hr

ea
d

ra
nk

x

y

0 1 0 1 0 1 0 1 0 1
local GPU rank

Figure 2. Visualization of the domain decomposition approach of UWLCM. Top-down view on a grid with 10 cells in each horizontal

direction. Scalar variables are located at cell centers and vector variables are located at cell walls. Computations are divided among 5 MPI

processes, each controlling 2 GPUs and 10 CPU threads. Local thread/GPU rank is the rank within respective MPI process. Dashed lines

represent boundaries over which communications need to be done using MPI assuming periodic horizontal boundary conditions.

15

20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

8000
a02 (2 x Intel Xeon E5-2630 v3 and 2 x Nvidia Tesla K80)

tCPU&GPU
tCPU
tGPU

25 50 75 100 125 150 175 200
0

500

1000

1500

2000

2500

wa
ll

tim
e

pe
r t

im
e

st
ep

 [m
s]

Rysy (2 x Intel Xeon Gold 6154 and 4 x NVidia Tesla V100 32GB)

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
NSD

0

500

1000

1500

2000

2500
Prometheus (2 x Intel Xeon E5-2680 v3 and 2 x Nvidia Tesla K40 XL)

0

20

40

60

80

100

0

20

40

60

80

100

t C
PU

&G
PU

/t
to

t [
%

]

0

20

40

60

80

100

Figure 3. Single-node (no MPI) UWLCM-SDM performance for different hardware. Wall time per model time step averaged over 100

time steps. Results of LES of a raising thermal done on three different systems for varying number of super-droplets, NSD. tCPU, tGPU

and tCPU&GPU are wall times of CPU-only, GPU-only and parallel CPU and GPU computations, respectively. These timings are presented

as stacked areas of different color. Total wall time per time step ttot is the upper boundary of the green area. The dashed red line is the

percentage of time spent on parallel CPU and GPU computations.

16

0 50 100

103

104

105

t to
t [

m
s]

a02

0 100 200

Rysy

10 20

Prometheus

0 50 100
NSD

103

104

105

en
er

gy
 p

er
 ti

m
e

st
ep

 [J
]

0 100 200
NSD

10 20
NSD

Figure 4. Wall time (top row) and energy usage (bottom row) per time step of CPU-only simulations (blue) and simulations utilizing both

CPU and GPU (orange). In CPU-only simulations, energy usage is ttot×PCPU, where PCPU is the sum of thermal design power of all

CPUs. In CPU+GPU simulations, energy usage is ttotCPU×PCPU + ttotGPU×PGPU, where PGPU is the sum of thermal design power of all

GPUs. PCPU and PGPU are listed in table 1. Results averaged over 100 time steps of UWLCM-SDM simulations on different single-node

machines.

17

5 10 15 20 25 30 35 40
number of nodes

0

1000

2000

3000

4000

5000

strong scaling

tCPU&GPU
tCPU
tGPU

20 40 60 80 100 120
NSD

5 10 15 20 25 30 35 40
number of nodes

0

1000

2000

3000

4000

5000

SD scaling

100 150 200 250 300 350 400
nx = ny

5 10 15 20 25 30 35
number of nodes

0

250

500

750

1000

1250

1500

1750

2D grid scaling

80100 120 140 160 180 200 220 240
nx = ny = nz

5 10 15 20 25
number of nodes

0

250

500

750

1000

1250

1500

1750

3D grid scaling

0

20

40

60

80

100tCPU&GPU / ttot
scaling efficiency

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

wa
ll

tim
e

pe
r t

im
e

st
ep

 [m
s]

t C
PU

&G
PU

/t
to

t ;
 sc

al
in

g
ef

fic
ie

nc
y

[%
]

Figure 5. As in fig. 3, but for multi-node tests done on the Prometheus cluster for different scaling scenarios. The dotted black line is perfect

scaling of ttot. The solid red line is scaling efficiency, defined as ttot assuming perfect scaling divided by the actual ttot. Perfect scaling is

defined in table 3.

18

100 101

number of nodes

103

strong scaling

UWLCM-SDM
UWLCM-B1M
UWLCM-B2M

100 150 200 250 300 350 400
nx = ny

5 10 15 20 25 30 35
number of nodes

0

500

1000

1500

2D grid scaling

80100 120 140 160 180 200 220 240
nx = ny = nz

5 10 15 20 25
number of nodes

0

500

1000

1500

3D grid scaling

wa
ll

tim
e

pe
r t

im
e

st
ep

 [m
s]

Figure 6. Multi-node model performance for different microphysics schemes. Wall time per model time step averaged over 100 time steps.

Results of LES of a raising thermal done on the Prometheus cluster for different scaling scenarios.

19

Table 1. List of hardware on systems used. Computing performance and memory bandwidths are maximum values provided by the processing

unit producer. Power usage of a processing unit is measured by the thermal design power (TDP).

Rysy a02 Prometheusa

CPUs 2x Xeon Gold 6154 @ 2.50 GHz 2x Xeon E5-2630 v3 @ 2.40GHz 2x Xeon E5-2680 v3 @ 2.50 GHz

GPUs 4x Tesla V100 2x Tesla K80 2x Tesla K40 XL

CPU cores 2x18 2x8 2x12

CPU performance 2x1209.6 Gflops 2x307.2 Gflops 2x480 Gflops

GPU performanceb 4x14.028 (7.014) Tflops 2x8.73 (2.91) Tflops 2x5.34 (1.78) Tflops

CPU TDP 2x200 W 2x85 W 2x120 W

GPU TDP 4x250 W 2x300 W 2x235 W

host memory 384 GB 128 GB 128 GB

device memory 4x32 GB 2x24 GB 2x12 GB

host memory bandwidth 2x128 GB/s 2x68 GB/s 2x68 GB/s

device memory bandwidth 4x900 GB/s 2x480 GB/s 2x288 GB/s

host-device bandwidth (PCI-E) 4x15.754 GB/s 2x15.754 GB/s 2x15.754 GB/s

interconnect n/ac n/ac Infiniband 56 Gb/s
a The cluster has 72 such nodes.
b Single-precision performance. Double-precision performance is given in the brackets. Almost all GPU computations are done in single precision.
c Used in single-node tests only.

20

Table 2. List of software on systems used.

Name CUDA gcc Boost HDF5 Thrust blitz++

Rysya 11.0 9.3.0 1.71.0 1.10.4 1.9.5-1 1.0.2

a02 10.1 4.8.5 1.60.0 1.8.12 1.9.7 0.10

Prometheus 11.2 9.3.0 1.75.0 1.10.7 1.10.0 1.0.2
a software from a Singularity containter distributed with UWLCM.

21

Table 3. Details of multi-node scaling tests. nx, ny and nz is the total number of Eulerian grid cells in the respective direction. NSD is

the initial number of super-droplets per Eulerian grid cell. Nnodes is the number of nodes used for the simulation. Number of Eulerian grid

cells in the domain is equal to nx×ny ×nz . Number of superdroplets in the domain is equal to nx×ny ×nz ×NSD. Workload per CPU

is estimated assuming that it is proportional to the number of grid cells per CPU only. Workload per GPU is estimated assuming that it

is proportional to the number of super-droplets per GPU only. MPI transfers, data transfers between host and device memories, and GPU

handling of information about Eulerian cells are not included in these workload estimates. Data transfer sizes are for copies between different

MPI processes, but do not include copies between host and device memories of the same process. Data transfer sizes are estimated assuming

that time step length and air flow velocities do not change with grid size. t1 is the wall time on a single node. t2GPU is the wall time of GPU

and CPU&GPU calculations in a simulation on two nodes.

strong scaling SD scaling 2D grid scaling 3D grid scaling

nx 240 240
√
Nnodes× 72 3

√
Nnodes× 80

ny 240 240
√
Nnodes× 72 3

√
Nnodes× 80

nz 240 240 100 3
√
Nnodes× 80

NSD 3 Nnodes× 3 100 100

Eulerian cells in domain [103] 13824 13824 Nnodes× 518.4 Nnodes× 512

superdroplets in domain [106] 41.472 Nnodes× 41.472 Nnodes× 51.84 Nnodes× 51.2

workload per CPU ∝ 1/Nnodes ∝ 1/Nnodes const. const.

workload per GPU ∝ 1/Nnodes const. const. const.

data transfer size per CPU const. const. ∝
√
Nnodes ∝N

2/3
nodes

data transfer size per GPU const. ∝Nnodes ∝Nnodes
a ∝Nnodes

a

time assuming perfect scaling t1/Nnodes max(t1/Nnodes, t2GPU)b t1 t1

a Assuming that grid scaling is used to refine the resolution, as done in this paper.
If it is done to increase the domain, data transfer size per GPU scales as the one per CPU.

b GPU time from two nodes simulation is taken as reference, because it is ca. 15% lower
than on a single node. A plausible explanation for this is that, although the number of SD
per GPU does not depend on the number of nodes, GPUs also store information about conditions
in grid cells, and the amount of grid cells per GPU decreases as more nodes are used.
For more than 2 nodes, GPU calculation time is approximately the same as for 2 nodes.

22

102 103
number of threads

100 101

number of nodes

102

103

tim
e

pe
r t

im
e

st
ep

 [m
s]

perfect scaling
OpenMPI 1 task per node
OpenMPI 2 tasks per node
MVAPICH2 1 task per node
MVAPICH2 2 tasks per node

Figure A1. Strong scaling test of the libmpdata++ library. Wall time per time step of a dry planetary boundary layer simulation. The dotted

black line shows perfect scaling.

23

