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Abstract. Tropical cyclones are responsible for a large share of global damage resulting from natural disasters and estimating

cyclone-related damage at a national level is a challenge attracting growing interest in the context of climate change. The

global climate models, whose outputs are available from the Coupled Model Intercomparison Project (CMIP), do not resolve

tropical cyclones. The Cyclone generation Algorithm including a THERmodynamic module for Integrated National damage

Assessment (CATHERINA) presented in this paper, couples statistical and thermodynamic relationships to generate synthetic5

tracks sensitive to local climate conditions and estimates the damage induced by tropical cyclones at a national level. The

framework is designed to be compatible with the data from CMIP models offering a reliable solution to resolve tropical

cyclones in climate projections. We illustrate this by producing damage projections in Representative Concentration Pathways

(RCP) at the global level and for individual countries. The algorithm contains a module to correct biases in climate models

based on the distributions of the climate variables in the reanalyses. This model was primary developed to answer the need10

of the economic and financial community that is seeking quantitative signals that would allow for a better quantification of

physical risks in the long term, to estimate, for example, the impact on sovereign debt.

1 Introduction

Climate-related physical risks pose a growing threat to humanity, and the design and implementation of adequate adaptation

and mitigation measures require assessing future physical risks at a national and global scale. The projections of the global15

climate models are an important source of information about the future climate. However, the spatial resolution of these global

models is unfortunately still not sufficient to fully resolve extreme events, particularly tropical cyclones. On the other side of

the spectrum, Integrated Assessment Models (IAM) directly assess the impact of the climate on economic activity. Although

these models are used to calibrate optimal mitigation or adaptation pathways, most of them embed a physical damage module,

usually limited to a very generic damage function. Tools to assess the impact of future cyclones in shared socioeconomic20

pathways are starting to appear in the literature. For example Geiger et al. (2021) evaluate the population exposure. Our study

instead focuses on the damage costs of tropical cyclones with the aim to include these advanced signals in integrated economic
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modeling. The objective of this paper is to fill the gap between climate models and integrated assessments: We build synthetic

cyclones based on the climate data produced by the global climate models, and evaluate the economic damage of these synthetic

cyclones under assumptions regarding the socio-economic scenarios.25

The physics of tropical cyclones has been intensively studied in the literature. The thermodynamic cyclone theory builds

upon the seminal contributions by Emanuel (1988) followed by Holland (1997) and Emanuel (1999). Concerning the impact of

climate change, it is well known that the presence of greenhouse gases in the atmosphere increases the radiative forcing, which

leads to a progressive warming of the atmosphere (Butchart et al., 2000), and the rise of sea surface temperatures (Solomon

et al., 2007; Pachauri et al., 2014). This phenomenon increases the amount of energy available for cyclones to grow in intensity30

(Emanuel, 1991) and this growth is already measurable (Emanuel, 2005). Risk assessments have been developed based on

hurricane potential intensity maps to assess the damage in the US and around the world (Emanuel et al., 2008; Emanuel, 2011;

Mendelsohn et al., 2012).

Models relying on statistical relationships (James and Mason, 2005; DeMaria and Kaplan, 1994; Kaplan and DeMaria, 1995)

are available in the literature to produce synthetic cyclones with properties closely resembling those of observed cyclones.35

Recently, Bloemendaal et al. (2020) developed a modeling framework to simulate realistic synthetic tropical cyclone tracks:

the Synthetic Tropical cyclOnes geneRation Model (STORM). This model computes the maximum pressure intensity (MPI)

associated with the sea-surface temperature (SST), and uses this potential as a predictor in the central pressure dynamics

(James and Mason, 2005). In line with Merrill (1987), we find that although the sea-surface temperature plays a major role,

this variable alone is not a reliable predictor of whether a given storm will intensify. Thus, we prefer to rely on the formulation40

of Holland (1997) and model the effect of climate change on the maximum potentials in the different scenarios through a better

description of the underlying thermodynamic phenomenon, well described by Emanuel (1988); Holland (1997) or Emanuel

(1999). We therefore develop an alternative to STORM by adding a thermodynamic module in the perspective of producing

cyclones in different climate scenarios. In particular, we retrieve two additional variables (relative humidity and tropopause

temperature) from climate models to bridge the gap between data from global circulation models (GCMs) and the theory of45

the intensification of tropical depressions.

On the damage modeling side, Bresch (2017); Lüthi (2019); Aznar Siguan and Bresch (2019) set up a platform for physical

risk estimation (CLIMADA), coupled with a database of estimated values of local assets (Eberenz et al., 2019, 2020). The asset

resolution (30 arc-sec) and geo-spatial description of extreme events is particularly advanced. We propose a simplification of

this work that applies in the context of national level assessment. The CLIMADA framework focuses on damage modeling50

based on global aggregated temperature projections and does not make use of the climate data produced by atmosphere-ocean

general circulation models (AOGCM). Coupling CLIMADA and STORM methodology with an extended thermodynamic

module fitted on four climate variables, our approach provides a novel long-term tail risk assessment at a national level,

offering an adaptive framework to estimate investments required to mitigate this risk.

This paper makes three contributions. First, we provide an algorithm to generate synthetic cyclones from climate data55

inspired by Bloemendaal et al. (2020) fitted on four physical variables extracted from ERA-5 reanalysis and including a

thermodynamic module to better describe cyclone physics. Second, we build an algorithm generating synthetic tracks directly
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Figure 1. Cyclone generation Algorithm including a THERmodynamic module for Integrated National damage Assessment (CATHERINA)

Framework

from CMIP models, expose the biases in CMIP5 datasets and propose a correction module based on Vrac et al. (2012). Third,

we bridge the gap between climate data and damage modeling by using the physical asset values from Eberenz et al. (2020)

and computing the damage along cyclone tracks using the regional specific damage functions designed in the CLIMADA60

project. Combining open data sources and methodologies allows us to propose a complete bottom-up integrated physical risk

assessment model for tropical cyclones presented in Figure 1: the Cyclone generation Algorithm including a THERmodynamic

module for Integrated National damage Assessment (CATHERINA).

The process is the following. The cyclones are initiated with spatial and seasonal distribution estimated on the IBTrACS

database similarly to Bloemendaal et al. (2020). Their movement is described with a simple auto regressive stochastic pro-65
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cess (James and Mason, 2005; Bloemendaal et al., 2020). Along the simulated cyclone tracks, we retrieve climate variables

from climate models allowing to define locally the maximum potential intensity based on the simplified expression in Holland

(1997). Some controls such as the maximum pressure drop observed for the corresponding temperature and the decay rela-

tionship for cyclones evolving over land are also fitted for each basin and applied in the synthetic tracks generation algorithm.

Extracting the climate variables from different models allows us to correct the biases and evaluate model uncertainty. Then, we70

use the physical asset values (Eberenz et al., 2020) and regional damage functions from the CLIMADA module to evaluate the

cyclone-related damage at a national level. This step requires to extract the local physical asset values and aggregate them on

tiles of length defined proportionally to the average radius to maximum wind (approx. 50km) along the cyclone path. Summing

the losses along tracks for each year and for each country allows us to establish a national assessment of the damage generated

by tropical cyclones.75

CATHERINA aims to provide country-level estimates for the future damage from tropical cyclones, consistent with climate

model projections, with mainly economic and financial applications in mind. Examples of applications include estimating the

impact of cyclones on the creditworthiness of government debt; providing a physical risk module for integrated assessment

models; creating physical risk scenarios for stress testing the resiliency of the financial system at a country level and at a global

level etc. Given this aggregate country-level analysis objective, our model is certainly a simplification compared to state-of-80

the-art cyclone dynamics models, does not aim for precise prediction of individual cyclone tracks, and does not integrate a

bottom-up description of damage to individual assets. At the same time, our paper improves earlier studies of cyclone damage

on the aggregate level. For example, compared to Mendelsohn et al. (2012): our model uses several climate scenarios with

state-of-the-art bias correction, as well as Shared Socioeconomic Pathways (SSPs) to project population and regional domestic

products and is based on precise physical asset value distribution.85

The paper is organized as follows. Section 2 describes the datasets used to fit the model on ERA-5 and to generate synthetic

cyclones based on both ERA-5 and CMIP5 models datasets. Section 3 describes the statistical calibration process and the

details of the thermodynamic instrumental variables. Section 4 recalls the calibration methods implemented in the CLIMADA

environment to fit the regional damage functions, defines the parameters of these functions using Eberenz et al. (2021) and

applies them along the synthetic tracks produced to study the distribution of national annual damages. Section 5 explores the90

properties of the produced synthetic tracks, with ERA-5 and 7 CMIP models, assesses climate uncertainty and introduces the

bias correction module in the context of changing climate conditions. To close this section, we present the global and regional

projections of cyclone damage between 2070 and 2100 obtained with CATHERINA.

2 Input data

In the CATHERINA framework, we fit the properties of historical cyclones (IBTrACS database) on past climate reanalyses95

(ERA-5) in the perspective of describing future cyclones based on global climate models outputs (CMIP), having a lower

spatial and temporal resolution. This perspective constrains us to use monthly data.
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2.1 Climate model data (CMIP)

CATHERINA aims at generating cyclone tracks with properties drawn from climate models to enable national damage assess-

ments, bridging the gap between Atmosphere-Ocean General Circulation Models (AOGCM) outputs and damage assessments.100

To reduce the bias in the variables produced by climate models and evaluate the performance of CATHERINA on past data

by comparing the simulated cyclone damages to the realized ones we use historical simulations (as opposed to future climate

projections) from the Coupled Model Inter-comparison project (Phase 5) models (Taylor et al., 2012). We use the historical

climate simulations at the monthly frequency for the relative humidity (RH) at two meters, sea surface temperature (SST),

mean sea level pressure (MSLP) and tropauspose temperature (Ttropo) (at pressure level of 50 hPa) from Copernicus climate105

data store.1 CMIP5 data are used in the 5th assessment report of the Intergovernmental Panel on Climate Change (IPCC). The

latest synthesis Report in 2022 (IPCC AR6) uses CMIP6 datasets but in the present paper, we use CMIP5 data because of the

broader availability of climate variables.

We use models from the following climate centers: NASA, Goddard Institute for Space Studies (GISS-E2-H, USA), Institut

Pierre Simon Laplace (IPSL-CM5A-NR, France), Bureau of Meteorology - Commonwealth Scientific and Industrial Research110

Organisation (ACCESS1-0, BoM-CSIRO, Australia), Beijing Climate Center (bcc-csm1-1-m, China), Institute of Numerical

Mathematics (inmcm4, Russia), Norwegian Climate Centre (NorESM1-ME, Norway), Canadian Centre for Climate Modelling

and Analysis (CanESM2, Canada). The spatial resolution goes from 0.75° to 2.5° depending on the model (See Table 1). Each

climate model produces a potentially biased estimate of multiple climate variables at the spatial resolution given in Table 1

and on a monthly basis. The choice of the CGMs was driven by the availability of the variables of interest in the Copernicus115

Climate data store (CDS) in the representative concentration pathways used in the exercise (RCP 2.6, 4.5 and 8.5 W/m2) in

both single level and multiple pressure level monthly data in the same ensemble (r1i1p1). We also aimed at having multiple

regions represented.

To reduce the influence of model bias, we use a large number of models and consider the distribution of results provided

by all the models. Then we correct, variable by variable, and for each basin and each model, the biases with respect to the120

reanalysis along the same tracks.

2.2 ERA-5 Reanalysis

Climate reanalyses describe the historical climate conditions, obtained by assimilating all available observations into the mod-

els. They provide numerical estimates of atmospheric parameters (e.g. air temperature, pressure and wind) at different altitudes

/ pressure levels, and surface parameters (such as rainfall, soil moisture content, ocean-wave height and sea-surface tempera-125

ture) on a single level. We use reanalyses to calibrate the cyclone generation algorithm based on the most realistic available

estimates of climate variables.
1Climate data is available on the Copernicus Climate data store: https://cds.climate.copernicus.eu/.
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Table 1. Climate data resolution

Resolution (x, y) in degrees

ERA-5 (Reanalysis) 0.25 x 0.25

ACCESS1-0 (BoM-CSIRO, Australia) 1.875x 0.9331648

CanESM2 (CCCMA, Canada) 1.40625 x 0.9364358

GISS-E2-H (NASA, USA) 2.5 x 2

NorESM1-ME (NCC, Norway) 1 x 1

bcc-csm1-1-m (BCC, China) 1 x 0.7402597

IPSL-CM5A-MR (IPSL, France) 1 x 1

INMCM4 (INM, Russia) 2 x1.5

We use ERA-5 reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) to fit the CATHE-

RINA model2 (Hersbach et al., 2020). This dataset covers the Earth on a 30 km grid (∼ 0.25 °) and resolves the atmosphere

using 137 levels from the surface up to a height of 80 km. In this paper, to ensure compatibility with CMIP5 models, we extract130

mean sea-level pressure (MSLP), sea-surface temperature (SST), sea-level relative humidity (RH), and tropopause temperature

(Ttropo) at the monthly frequency. Because ERA-5 better resolves past tropical cyclones than climate models, the historical

mean sea-level pressure values in ERA-5 are influenced by their presence. Consequently, we retrieve the mean sea-level pres-

sure and environmental relative humidity 500 km (∼ 5° longitude) away from the storm center to extract a value for Penv , that

is meant to represent the pressure - at a given latitude and season - in normal environmental conditions.3135

2.3 Historical cyclone tracks (IBTrACS)

We use the International Best Track Archive for Climate Stewardship (IBTrACS) database (Knapp et al., 2010).4 This database

provides information on past cyclone tracks at 3-hour frequency. We remove the events classified as disturbance or extra

tropical, and do not consider the South Atlantic basin (see Figures A1 for more information). Climate reanalysis availability

requires us to focus on post 1980 cyclones, which reduces the database to 4,574 cyclones. In the context of an integrated140

damage assessment, to focus on the events that have a potentially substantial impact on assets, we select only tropical cyclones

with maximum wind speed exceeding 35 m.s−1 obtaining 2,966 on the full database and 1,451 focusing on tropical cyclones

between 1980 and April 2020. In Figure 2, we plot the central pressure along each cyclone life. This graph suggests that the

2Climate data is available on the Copernicus Climate data store: https://cds.climate.copernicus.eu/.
3We retrieve both pressure (MSLP) and humidity (RH) to define P env and RHenv (Holland, 1997) away from the center in the reanalysis because tropical

cyclone thermodynamic potential intensity - through thermodynamic efficiency and moist entropy (Equation (8) and (7))- arise from the deviations from the

normal conditions. Monthly averaging may smooth values so that the data extracted along historical tracks may not represent the conditions at the time of

cyclone passage. Therefore, using monthly means, this translation is mainly made for reasons of theoretical coherence. In future studies, this model will be

applied with higher temporal resolution and performing this translation would be more important. In the present version of our paper, because the CMIP5

projections of the sea-level temperature were only available at monthly frequency in the CDS, we chose to perform the exercise using monthly data to illustrate

our approach.
4See http://ibtracs.unca.edu/ for a browser of the data and https://www.ncdc.noaa.gov/ibtracs/index.php?name=ib-v4-access for the full dataset.
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Figure 2. Normalized evolution of the central pressure (in hPa) during cyclones life. The central pressure values are retrieved from IBTrACS.

For the West Pacific we reduced the sample to events between 1995 and 2020 for visualisation purpose.

cyclone phases are fully represented in the database i.e. from the genesis to dissipation. The North Indian basin has the lowest

number of reported events with wind speed above 35 m.s−1 (50 compared to 291 for East Pacific, 185 for North Atlantic,145

305 for South Indian, 158 for South Pacific and 515 for West Pacific) with variable reporting quality, which explains the more

erratic shapes of the central pressure. For example, the return to normal of some events does not seem to be completely reported

for this basin as indicated in Figure 2. We extract the maximum wind speed, cyclone eye pressure and coordinate variations of

the eye from this database.

2.4 Physical asset exposure and damage150

Eberenz et al. (2019) present a methodology to downscale physical asset values on a high-resolution grid using a combination

of nightlight intensity, population data, and global country indicators and make their dataset fully available (Eberenz et al.,

2020). These estimates of physical asset value are based on the light intensity Li – from Nighttime lights of the Black Marble

2016 annual composite of the VIIRS day–night band (DNB) (Román et al., 2018) in 2016 at the 15 arc-second resolution – and

the population Ppix per pixel – from Gridded Population of the World (GPW) database (Center for International Earth Science155

Information Network (CIESIN), 2017) in 2015 at the 30 arc-sec resolution for 224 countries, and various additional sources5

5Produced Capital, comprehensive global estimate of produced capital stock, i.e. the value of produced or manufactured assets per country (World Bank,

2018) – 2014 / 140 countries; the GDP to wealth ratio from Global Wealth Report (Credit Suisse, 2017) – 2017 / 84 countries; the gross domestic product

(GDP) per country from World Bank Open Data portal (World Bank, 2019) – 2014 / 224 countries and Subnational equivalent of GDP (GRP) from varying

sources – 2012-2017 / 504 regions in 14 countries.
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allowing to define the total asset (Atot) for each country. This value is distributed to each grid cell proportionally to the light

intensity Li times the local population Ppix:6

Apix =Atot
Li ·Ppix∑N

pixi
(Li ·Ppixi)

. (1)

The physical asset value is expressed in USD as of 2014. Using this dataset in the future requires correcting (either simulated160

or reported damages) by inflation using, for instance, the consumer price index.7

This method for allocation of national assets has limitations. For example, the distribution of assets near the coast, industrial

production sites or agricultural facilities may not be well represented. However, with this approach asset values are defined on

a uniform grid across countries and can be projected by multiplication with appropriate dynamic factors.

2.5 Global disaster database (EM-DAT)165

The fitting of the damage functions was performed by Eberenz et al. (2021) on reported damages in the EM-DAT database

(Guha-Sapir et al., 2018).8 Filtering the database by sub-type ‘tropial cyclone’ allows us to extract 1855 tropical cyclones

in the period between 1980 and 2021, among which 1101 events have a reported total damage cost in USD (See Figure 4).

In terms of damage, tropical cyclones are, using the full set of observations from 1980 to 2021, the most damaging events

reported (see Figure 3). This database includes a start date field (day, month and year) allowing us to map 455 events, with the170

events reported in IBTrACS using start year and month and country.9 We use this database to validate our simplified estimation

process.

2.6 The Shared Socioeconomic Pathways (SSPs) framework

Future exposure is sensitive to the scenarios of population growth and economic development. To take this into account, we use

the framework of the shared socioeconomic pathways (SSP) introduced in O’Neill et al. (2014). These narratives are used in175

the IPCC development scenarios and provide a reference framework for risk assessment. A growing segment of the literature

is dedicated to measuring the feasibility, costs and implications of achieving these scenarios (Riahi et al., 2017, 2021) and

multiple Integrated Assessment Models (IAMs) were launched on assumptions based on these narratives (Riahi et al., 2017;

Rogelj et al., 2018; Gidden et al., 2019).10 Figure 5 displays the projections of the main features used by CATHERINA, the

global domestic production (GDP) and population in the five SSPs at the global level by the IIASA GDP model.11 CATHERINA180

uses these two indicators at regional level (32 regions are available) to compute future local exposure (see section 4.5).

We reiterate the main features underlying these narratives. The ‘middle road’ pathway (SSP2) is used as the reference in

most scenario analyses. It is a plausible baseline in terms of economic and social resiliency, in which the urbanization level is

6The values of Apix on a 30 arc-second grid are available at https://www.research-collection.ethz.ch/handle/20.500.11850/331316.
7Available at: https://fred.stlouisfed.org.
8Available at: www.emdat.be.
9Eberenz et al. (2021) functions are fitted on a similar sample of 376 tropical cyclones used for calibration.

10For example, for the variable of interest, the outputs of IIASA GDP, IIASA-WiC POP, NCAR, PIK GDP-32, OECD Env-Growth models are available.
11Variables relative to SSPs are available here: https://tntcat.iiasa.ac.at/SspDb/.
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Figure 3. Proportion of damage cost (total damage in USD) by disaster subtypes reported in EM-DAT. Using the number of people affected

places tropical cyclones after riverine floods and droughts, and the number of deaths places ground movements in first position (see Table

A1 for details).
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relatively high and GDP and population are constantly increasing following the observed historical trend. On the other hand,

the ‘rocky road’ or ‘national-rivalry’ pathway (SSP3) presents totally different properties: relative stagnation of GDP with185

a strong increase of the population (See Figure 5). SSP4 corresponds to a scenario with the highest inequality and SSP5 is

the most likely to lead to the higher concentration pathways (RCP8.5), with extensive use of fossil fuel reserves but higher

economic development and global markets integration.

9



2000 2020 2040 2060 2080 2100
0

100

200

300

400

500

600

700

800
GDP PPP (bilion USD 2005/year) x103

SSP1
SSP2
SSP3
SSP4
SSP5

2000 2020 2040 2060 2080 2100
6000

7000

8000

9000

10000

11000

12000

13000
Population (million)

Figure 5. SSP GDP and Population variation until 2100, at global scale, by the IIASA GDP model

Based on these storylines, it is clear that the physical exposure to tropical cyclones will be driven by different factors in

different SSP scenarios. Scenarios with steady growth of GDP are generally associated with an increase in urbanisation but190

a decrease in the global population by 2050. In general, all narratives, except the SSP3, present relatively similar population

dynamics at the global level. On the other hand, the scenario with the lowest economic growth (SSP3) presents a sustained

increase of the population (cf. Figure 5), in particular in rural areas. We can therefore expect, in the former case, the physical

asset value exposure to be driven by the increase of regional wealth, and mainly by the growth of the exposed population in the

latter.195

In this paper, we specify economic and climate parameters independently while the literature generally associates specific

SSP and RCP, in particular in the CMIP6 exercise. Indeed, integrated assessment modeling demonstrates that specific temper-

ature targets can only be reached under some socioeconomic conditions. The socioeconomic and representative concentration

pathways are therefore intrinsically linked at the global scale. For example, CMIP6 refers to the following scenarios: SSP1-1.9,

SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. On the other hand, this pairing is not straightforward at the regional level. In200

particular, the SSP2 scenario is associated with regional heterogeneity in socioeconomic pathways. As a result, although we

can expect a convergence in the long run, we considered it relevant to use economic development scenarios independently from

RCP in this exercise.

Lastly, we acknowledge another limitation of our approach: The vulnerability parameter (represented by the damage function

parameter vh in our framework) does not depend on the SSP, while we could expect a reduction in the vulnerability parameter205

in the scenarios where the adaptation challenges are limited, such as SSP5 (cf. Figure 6). This question is left for further

research.
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Figure 6. SSP Matrix (O’Neill et al., 2017)

3 Cyclone generation algorithm

Our model structure follows Bloemendaal et al. (2020) with three main modeling steps: genesis, displacement of the eye and

calibration of the cyclone properties. The STORM model relies on statistical relationships (James and Mason, 2005; DeMaria210

and Kaplan, 1994; Kaplan and DeMaria, 1995). This simulation method differs from the purely thermodynamic approach

developed by Kerry Emmanuel (Emanuel, 1999; Emanuel et al., 2008).

The major change in our specification compared to Bloemendaal et al. (2020) is that we use the local definition of the avail-

able thermodynamic potential based on climate data. In particular, we use relative humidity (RH) and tropopause temperature

(at 50 hPa, Ttropo), for better theoretical representation of the physics underlying the intensification process. In this section,215

we present the process of generating synthetics tracks, characterized by the maximum wind (Vt) and central pressure (P ct ) at

each time step, given the climate conditions extracted from climate models.

3.1 Cyclone genesis

The scientific consensus is that climate change will induce a reduction in tropical cyclone frequency: “Existing modeling

studies also consistently project decreases in the globally averaged frequency of tropical cyclones, by 6 to 34%. Balanced220

against this, higher resolution modeling studies typically project substantial increases in the frequency of the most intense

cyclones" (Knutson et al., 2020, 1). Although thermodynamic descriptions of cyclone genesis exist in the literature (Gray,

1975; DeMaria et al., 2001) we choose to rely on a simple statistical model based on past frequencies for the genesis.

The number of synthetic cyclones each year is determined by the Poisson distribution in each basin, with intensity parameter

defined as the average number of cyclones per year in the historical data. We use the parameters given in Bloemendaal et al.225

(2020) i.e. λ̂EP = 14.5 for the East Pacific, λ̂NA = 10.8 for the North Atlantic, λ̂NI = 2.0 for the North Indian, λ̂SI = 12.3

for the South Indian, λ̂SP = 9.3 for the South Pacific, and λ̂WP = 22.5 for the West Pacific. The parameters would have been

smaller if estimated using our filtered database of tropical cyclones with wind speed above 35 m.s−1: λ̂35EP = 7.31, λ̂35NA = 4.43,

λ̂35NI = 1.6, λ̂35SI = 6.81, λ̂35SP = 4.00 and λ̂35WP = 11.86. However, we maintain the original parameters used in STORM to take

into consideration the fact that some events will be generated in conditions not favorable for the development of cyclones and230
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cleared out of the database. The number of cyclones making landfall being critical for damage estimation (Hall and Jewson,

2007; Lee et al., 2018; Arthur, 2021), we ensured that the simulated landfall rates are in line with the observations over the

historical period: Figure 7 shows that the parameters of Bloemendaal et al. (2020) lead to approximately the same number of

intense cyclones making landfall per year in each basin in the historical data, in our simulations based on reanalysis data and in

simulations based on CGMs. We note however that the framework can be further improved by choosing the intensity parameter235

to match exactly the average historical number of cyclones making landfall.
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Figure 7. Number of tropical cyclones over 35m.s−1 making landfall simulated using Bloemendaal et al. (2020) parameters over the histor-

ical period (1980-2010)

Similarly, the temporal and spatial initial positions of synthetic future cyclones (longitude x, latitude y and starting month

m) are generated by independent sampling from the historical distribution of these variables. Figure 8 shows the geographical

distribution of cyclones retrieved from IBTrACS (i.e. xobs,yobs) and the histograms in Figure 9 show the monthly distribution

(mobs) of cyclones in each basin.240

3.2 Cyclone trajectories

A rich literature focuses on cyclone tracking algorithms, see e.g., Neu et al. (2013) for a comprehensive review. Although more

advanced definitions have been proposed (Hall and Jewson, 2007; Fabregat et al., 2016), we choose, in line with Bloemendaal

et al. (2020), to implement a simple auto-regressive model for cyclone coordinates. Following James and Mason (2005), the

time evolution of the latitude and longitude of the cyclone center is described by the following stochastic dynamics:245

∆xt = a0 + a1∆xt−1 + εxt , εxt ∼N (0,σx), (2)

∆yt = b0 + b1∆yt−1 +
b2
yt

+ εyt , εyt ∼N (0,σy). (3)

Here xt and yt are the latitude and longitude of the cyclone center sampled with a 3 hour time step; ∆xt = xt−xt−1, ∆yt =

yt− yt−1, εxt and εyt are i.i.d. noises independent from one another, and the constants a0, a1, b0, b1, b2, σx and σy are fitted on
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Figure 8. Spatial distribution of genesis points (tropical cyclones over 35m.s−1 in IBTrACS). The color scale corresponds to the count of

cyclone per 5x5° box (truncated to 25 for scaling reason). The genesis location corresponds to the first reported point of each track.
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Figure 9. Relative monthly distribution (%) of cyclones in each basin defined from potentially damaging cyclones (over 35m.s−1) in

IBTrACS. Each bar gives the probability for each cyclone to be allocated to a given month.

IBTrACS data independently for each basin by least squares regression. The non-linear term in the incremental variation of the250

latitude is justified by the tendency for cyclones to move away from the equator, especially at very low latitudes (James and

Mason, 2005, p. 183).

To take into account the dependency of the cyclone displacement on the location of the eye, and following Bloemendaal

et al. (2020), we fitted these relationships locally using an additional grouping by 5° longitude and latitude sections and

months. Figure A2 illustrates the parameters a0 and a1, the adjusted R2 and the number of observation averaged over months255

used to fit the Equation (2). We note that the trajectories in North Indian basin are less well captured in some areas, particularly

longitudinal movements near the coast from Yemen, Oman and the United Arab Emirates (see maps of adjusted R2 in Figure

A2).
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This statistical definition of cyclone trajectories does not consider changes in track behaviour. For example, observed trends

in tropical cyclone translation speed Kossin (2018) and poleward migration of maximum intensity Kossin et al. (2014) could260

be considered to improve the projections of tropical activity. This indeed has potential implications for tropical cyclone-related

risk in some areas where vulnerabilities are high and the present-day frequency of tropical cyclones is low Bruyère et al. (2019).

3.3 Thermodynamic description of cyclone intensity

The intensity of cyclones in our model is defined through the following five steps described in detail in subsequent paragraphs.

The wind-pressure relationship (WPR) links the central pressure to the maximum 10 minute-sustained wind speed. The local265

thermodynamic maximum potential intensity (MPI) is determined from local meteorological variables. The maximum pressure

drop (MPD) is determined from historically observed pressures. The depression dynamics (DD) along tracks is defined using

an autoregressive stochastic equation. When the cyclone arrives on land, a statistical decay relationship (SDR) dictates the

evolution.

3.3.1 Wind-pressure relationships (WPR)270

We describe the cyclone intensity through its central pressure P ct , which is linked with the maximum wind through an empirical

relationship. Let Vt be the maximum 10-min sustained wind speed (in m.s−1)12 of the cyclone at time t. This maximum wind is

observed around 50 km away from the storm center on average13 and reported in the IBTrACS dataset for historically observed

cyclones.

The wind-pressure relationship (WPR) is calibrated separately for each basin and takes the following form:275

Vt = a (Penv(xt,yt, t)−P ct )
b
, (4)

where Penv(x,y, t) is the mean sea-level pressure (MSLP) extracted 500 km away from the eye location at this time in ERA-5

and P ct is the central pressure extracted from IBTrACS. This relationship is illustrated in Figure 10 and the parameters a and b

are fitted on ERA-5 and IBTrACS data using nonlinear least squares.

We acknowledge that most cyclone track data use wind-pressure relations (WPRs) to determine Pc. The conversion back to280

wind speed from reported Pc using a basin-specific WPR still introduces errors, as different WPRs are used to operationally es-

timate Pc within each basin (Harper, 2002; Courtney, 2009; Courtney and Burton, 2018; Courtney et al., 2021). However, given

the similarity of the relationships, we find that basin-level estimations are a sufficient proxy in the context of this illustration of

the CATHERINA framework.
12For the data from the World Meteorological Organisation (WMO) and the agencies reporting 1 or 3-minutes sustained wind speed, we performed the

conversion to 10-minutes sustained wind speed using the coefficients suggested by Knapp et al. (2010). See Figure A1 in the Appendix for more details about

the agencies and reporting bias.
13Radii of maximum wind are also reported in IBTrACS but this information is not central for national level assessment.

14



0 20 40 60 80 100 120
Pressure drop (hPa)

10

20

30

40

50

60

70

80

W
in

d 
sp

ee
d 

(m
.s

-1
) Basin

East Pacific

North Atlantic

North Indian

South Indian

South Pacific

West Pacific

Figure 10. Maximum wind and pressure drop values from IBTrACS together with the fit of Equation (4). The coefficients a and b fitted per

basin are provided in Table A2.

3.3.2 Local thermodynamic maximum potential intensity (MPI)285

We compute the local thermodynamic maximum potential intensity (MPI) following the thermodynamic relationships defined

in Holland (1997). This is particularly relevant in the context of a national damage assessment under a changing climate.

Greenhouse gas emissions not only warm up the oceans but also cool down the lower stratosphere (Butchart et al., 2000;

Forster et al., 2007; Ramaswamy et al., 2006). Thus, the tropopause temperature - that is, the temperature corresponding

to a pressure of 50 hPa or to an altitude of approximately 20 km available in multi-level CMIP dataset (Ttropo) must be290

included in the modeling of the intensification process. Indeed, the thermodynamic efficiency factor Et proportional to the

difference between tropopause and sea-surface temperatures plays an essential role in the determination of the central pressure

of tropical cyclones. The relative humidity (RH) (which changes with climate change, see Sherwood et al. (2010)) is also an

influential parameter allowing for a better description of thermodynamic potential enabling cyclone intensification. Adding

these two climate variables enables the CATHERINA model to better take into account the additional energy potential due to295

the widening of temperature differences between the sea-surface and upper troposphere and variation in moist entropy.
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Following the seminal formulation in Emanuel (1988) and integrating additional simplifications proposed in the subsequent

paper (Emanuel, 1991), leads to the following framework summarized in Holland (1997).

MPIt = MSLP(xt,yt, t) · exp−Xt , (5)

Xt =
Et ·SST(xt,yt, t) ·∆Smt −

f(yt)
2r2env

4

Rd ·SST(xt,yt, t)
, (6)300

Et =
SST(xt,yt, t)−Ttropo(xt,yt, t)

SST(xt,yt, t)
, (7)

∆Smt =Rdln

(
MSLP(xt,yt, t)

P ct−1

)
+
Lυ(q?c t− qenvt )

SST(xt,yt, t)
, (8)

q?c t =
3.08

P ct−1

exp

(
(SST(xt,yt, t)− 273.15)

SST(xt,yt, t)− 29.65

)
, (9)

qenvt =
3.08 ·RH(xt,yt, t)

MSLP(xt,yt, t)

× exp

(
17.67(SST(xt,yt, t)− 273.15)

SST(xt,yt, t)− 29.65

)
. (10)305

where (xt,yt, t) are the coordinates of the eye defined in Equations (2) and (3), SST(xt,yt, t) and Ttropo(xt,yt, t) are re-

spectively the sea-surface and tropopause temperatures, Rd = 287.058 J · kg−1 ·K−1 is the specific gas constant for dry air,

MSLP(xt,yt, t) is the mean local sea-level pressure, RH(xt,yt, t) is the near surface relative humidity at 2 meters extracted

from the monthly dataset of ERA-5 climate reanalysis or CMIP climate models. f(yt) = 2ω sin(yt) is a Coriolis parameter de-

pending on the latitude, renv is the distance between the eye and the area under regular conditions (fixed at 500 km), qenv and310

q∗c respectively are the specific humidity at environmental conditions and at saturation, i.e. for RH = 100%, in the eye. ∆Sm

is the difference of moist entropy between the environment and the storm center and Lυ is the latent heat of vaporization. The

distributions of the climate variables and the instrumental indicators computed from ERA-5 climate variables along IBTrACS

involved in this step are shown in Figure 11.

3.3.3 Maximum pressure drop (MPD)315

Several papers, including Bloemendaal et al. (2020), link the sea-surface temperature directly to the pressure drop, or equiv-

alently the wind speed, via a statistical relationship (DeMaria and Kaplan, 1994). Merrill (1987) suggests that this predictor

alone does not provide a good indication of whether a given storm will intensify. However, in line with Emanuel (1988) and

DeMaria and Kaplan (1994) the sea-surface temperature can be used to fix a limit for the pressure drop. Thus in CATHE-

RINA, to prevent the pressure drop from diverging in the projection, we cap it by the maximum observed pressure drop for the320

corresponding sea-surface temperature:

P ct := max(P ct ,MSLP(xt,yt, t)−MPD(SST(xt,yt, t))),

where the maximum pressure drop function is given by the following equation:

MPD(SST) =A+B · eC(SST(xt,yt,t)−T0) (11)
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Figure 11. Empirical distribution of physical properties along tracks (IBTrACS and ERA-5), and distribution of instrumental variables of

CATHERINA

with T0 = 30oC. To fit this functional relationship, we first retrieve, for each basin, and for each value of the sea-surface325

temperature SST, rounded at 0.1, the maximum observed value of the pressure drop in the basin. These values are shown as

crosses in Figure 12. The coefficients A, B and C from relationship (11) are then fitted to these values by nonlinear least

squares. The resulting MPD functions for each basin are shown in Figure 12 as solid lines.

The definition of the MPD is identical in STORM and CATHERINA, but the role of this quantity differs in the two models.

Figure 12 gives a misleading idea about the strength of correlation between the sea-surface temperature and the central pressure:330

indeed, fitting the distribution on the full sample (instead of just the maximum pressure drop for each temperature value) shows

a much weaker influence of sea-surface temperature alone, even on a weekly basis (see Jien et al. (2017)). However, this

instrumental variable is essential to prevent CATHERINA from producing unrealistically low central pressure. On the other

hand, limiting the maximum pressure drop in simulations to the parametric function given by equation (11) fitted by non-linear

least squares to the observed MPD leads to an excessively strong limitation on the intensity of the simulated cyclones, since335

many points in Figure 12 (lower graph) are above the red curve. Therefore, we shift this parametric function upward to the

highest observed point to relax this limitation.

3.3.4 Depression dynamics (DD)

The evolution of the central pressure depending on the intensification factor Yt (which is defined differently in our approach

and in STORM, as we explain below) is described by the following autoregressive stochastic equation (James and Mason,340
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Figure 12. Top: full distribution of observed pressure drop values for given SST. Bottom: maximum observed pressure drop values for given

SST. The red line shows the least squares fit of Equation (11), which corresponds to parameter values A = 30.6, B = 86.3 and C = 0.19.

The blue curve is the capping function used to prevent unrealistic pressure drops, obtained by shifting the red curve upwards.

2005):

∆P ct = c0 + c1∆P ct−1 + c2e
−c3[P c

t −Yt] + εPt , (12)

εPt ∼N (0,σP c), (13)

This relationship channels the effect of global warming, affecting the thermodynamic potential constructed with climate pro-

jections, on the cyclone intensity. Thus, the incremental variation of the central depression of the cyclone is linked to the345

difference between the central pressure at time t and the potential available in the environment.

The intensification module of CATHERINA is inspired by STORM (Bloemendaal et al., 2020). The main differences are

the definition of the thermodynamic maximum potential intensity (MPI) used in Equation (12) and the role of played by the

maximum pressure drop (MPD). In Bloemendaal et al. (2020), the MPI is defined subtracting the maximum pressure drop

(MPD) from the normal environmental pressure (MSLP) where the MPD is defined as a function of the SST and Bister and350

Emanuel (2002) values are used to bound their values. On the other hand, we define the thermodynamic intensification factor

following Holland (1997) with variables extracted along the synthetic tracks and use the SST-MPD relationship as a capping

function (see Figure 12). Table A3 summarizes the main differences of the two approaches.

As illustrated in Figure 13, both methods produce a similar dependence of the intensitication function (12) on the distance

to potential and maximum pressure drop. When Pc approaches the local maximum potential intensity (or maximum pressure355
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Figure 13. Response of the depression dynamics model to distance to thermodynamic potentials over intensification factor domains

drop), ∆P c is more likely to be positive and to decrease the storm intensity. In other words, we can distinguish two phases

(see Figure 13, left graph): the intensification phase (in blue), when the central pressure is above the local MPI threshold, and

a decay phase (in red) where the central pressure is below this local MPI.

In contrast to the MPD, the MPI does not represent the maximum achievable pressure and can be exceeded when accounting

for additional external factors not reflected in climate data. For example, Chen et al. (2021) suggest that rapid intensification also360

depends on dynamical factors (e.g. upper divergence and wind shear). While James and Mason (2005) formulation implicitly

assumes that these factors are accounted for in the residual term of Equation (13), it does not consider that the distance to the

maximum potential thus defined, can take negative values. Indeed, this specification originally suggests using the maximum

achievable central pressure, therefore that Pc−MPI> 0. As a result, the two intensification factors are not defined on the

same domain (see Figure 11). Using the local thermodynamic MPI, negative values, corresponding to a situation where the365

central pressure is below the MPI (Pc <MPI), are associated with a positive response of the pressure dynamic module, and

an decrease in storm intensity. Using the MPD, the response (is likely to) become positive when distance to MPD is below 40

to 60 hPa, depending on whether the function has been applied to the local sea-surface temperature or the maximum per grid

box (5◦× 5◦×month). Given the similar response provided, using the local MPI instead of MPD as the intensification factor

offers a better theoretical representation of the conditions affecting cyclone intensification in the cyclone dynamic module. The370

central pressure dynamics used for the fitting and the dynamics of the synthetic tracks produced in the north Atlantic basin are

illustrated in Figure 14. The intensification of synthetic cyclones is in line with historical observations.

3.3.5 Statistical decay relationship (SDR) over land

We model the evolution of the cyclone after landfall using an exponential decay function considering that tropical cyclone

intensity decreases as a function of the time and distance the tropical cyclone has covered whilst being over land (Kaplan and375
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Figure 14. Individual historical vs. Synthetic depression dynamics in North Atlantic Basin, and confidence interval.

DeMaria, 1995). Similarly to Bloemendaal et al. (2020), after three steps on land we suppose that the wind at time tL follows:

VtL = Vb + (R ·V0−Vb)e−αtL − f1(tL)

(
ln
Dl

D0

)
+ f2(tL) (14)

= V (tL,D
l,V0).

where Dl is the distance to coast computed using natural earth coastlines,14 V0 is the wind at landfall and tL the time spent

on land by the eye. This function was fitted on IBTrACS using nonlinear least squares. In our procedure, we use the global380

parameters: R= 0.79, Vb = 15 m.s−1, α= 0.044 h−1, and f1(tL) = c̃1tL(t0,L− tL), c̃1 = 3.35.10−4 ms−1h−2 , t0,L = 172

h, f2(tL) = d1tL(t0,L− tL), d1 =−0.00186 ms−1h−2 and D0 = 1 km. Kaplan and DeMaria (1995) introduced this function

to model the decay of tropical cyclones over land in a simple way and showed that it provides an acceptable approximation for

tL > 12 h. As each time step is 3 hours, we let the TC intensity be driven by Eq. (12) the first three steps and apply the decay

function after three steps, that is, for tL > 12 h. A more sophisticated description could integrate for instance, cyclone physics,385

kinetic energy, and non-meteorological parameters such as ground topology. The SDR puts a strong constraint on the cyclone

evolution after three steps. However, in the context of national damage assessment we reiterate that reported damage costs are

the combination of a series of various impacts including storm surge and not only extreme wind and that the most exposed area

is at landfall. We consider therefore that the hypothesis of a rapid decay is acceptable and in line with observations.

3.4 Cyclone generation algorithm390

The full cyclone generation procedure is presented in Algorithm 1. The cyclone wind speed is initiated at 20 m.s−1 and the

initial pressure is determined from the WPR (Equation (4)). While the cyclone is over sea, the pressure evolution ∆Pc is
14Available at https://www.naturalearthdata.com/downloads/10m-physical-vectors/.
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Figure 15. Example of 100 representative years of synthetic tracks produced with CATHERINA on IPSL-CM5A-MR raw climate data in

the RCP85 between 2075-2100 (i.e. four runs over the 25 years period)

entirely determined from Equation (12) based on the local thermodynamic potential. To prevent the model from producing

unrealistically low central pressure, we cap the maximum pressure drop (MPD) using Equation (11). With this truncation the

lower bound for the pressure is given by the observed low pressure values in similar sea-surface temperature conditions. While395

the cyclone is over sea, the wind is defined with the WPR (Equation (4)). When the cyclone arrives on land the MPI is computed

from the last known climate variables for the first three steps and the pressure still follows the relationship (12). After three

steps (9h) on land, we start applying the decay relationship (Equation (14)) to define the wind. The variations of longitude and

latitude are always defined using Equation (2) and Equation (3). We force cyclones to remain in their genesis basins in this

exercise. For example, running the algorithm on IPSL climate projections between 2075 and 2100, in the RCP85 produces the400

output plotted in Figure 15.

The cyclone intensification process used is inspired by STORM model form Bloemendaal et al. (2020), which includes a

single climate variable, and extended following Holland (1997) and Emanuel (1988) to encompass 2 more variables. We found

that this extension provides statistically significant instrumental variables in the description of tropical cyclone intensification,

which is the aim of the algorithm. Consequently, even if some thermodynamic processes have been simplified in our approach,405

it is still a step forward with respect to the existing state-of-the-art in the field of integrated assessment modeling for climate

impact analysis. Indeed, our approach is easy to implement, more sophisticated in terms of processes included than most

existing IAM, has low bias due to our state of the art bias correction module described below, and can integrate any CMIP
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simulation with a limited set of available variables (only a few vertical levels, some only available at monthly time scale, with

some variables not always available).410

4 Damage assessment at the national level

4.1 Damage modeling

The percentage of asset value destroyed by a tropical cyclone depends on multiple parameters. For example, to assess the

vulnerability of specific infrastructures to tropical cyclones, precise descriptions of building vulnerability are provided in the

Federal Emergency Management Agency (FEMA) reports. Unanwa et al. (2000) propose a series of wind-damage bands415

depending on building types. The sensitivity is higher for commercial and institutional buildings than for residential and mid-

rise buildings. Unanwa et al. (2000) reveals that generalized damages occur above 43-60 m.s−1. A sustained wind regime

above 73 m.s−1 could lead to the destruction of the entire superstructure of most buildings (expect for mid- and low-rise

ones). Damages provoked by winds between 60 and 81 m.s−1 strongly depend on building components and connections.

These bottom-up approaches allow us to set the limits of the potential damage functions, but their use requires a complete420

inventory of assets and up-to-date values of numerous parameters (age, height, materials, etc.). Therefore, CATHERINA relies

on regional damage functions calibrated by Eberenz et al. (2021) on wind speed along cyclone track (IBTrACS) and reported

damages in Guha-Sapir et al. (2018).

Damages provoked by tropical cyclones can be related to several sub-perils. While 40% of cyclone damages are directly

wind-related, another 40% can generally be attributed to storm surge, and the rest of the damage is generated by heavy pre-425

cipitation. However, CATHERINA does not distinguish these sub-perils, associated with key thermodynamical processes of

cyclones (heavy precipitation, storm surge and associated flooding, strong winds) but uses a statistical relationship to estimate

the regional global damage induced by a cyclone from a proxy variable given by the maximum wind speed. Indeed, the wind

speed is the proxy used in the Saffir-Simpson Hurricane wind scale to define the intensity of a cyclone. The damage function

is fitted on multiple events from the total damage reported in the global disaster database EM-DAT (Guha-Sapir et al., 2018).430

This database, used in most studies on the topic, accounts for the total reported damage (sum of all sub-perils) and does not

distinguish damages from sub-perils.

4.2 From an explicit damage function...

Damage functions can take several different forms (Prahl et al., 2015) but the most common choice is a cubic functional of

the wind speed. To estimate the fraction of loss from a storm with sustained wind speed V , Emanuel (2011) introduced the435

following formula:

f(V,vjh) =
(max(V − v0,0))

3

(vjh− v0)3 + (max(V − v0,0))
3 , (15)
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Figure 16. Fraction of property value lost as a function of wind speed, obtained using Equation (15) with different values of vh. Source:

Emanuel (2011).

where f is the fraction of the property value lost, v0 = 25.7 m.s−1 and vjh a parameter that needs to be calibrated for each

region j. Figure 16 illustrates the shape of the damage function for different values of this parameter.

To account for adaptation we could modify this function and introduce an additional threshold value. For instance, to account440

for local adaptation to the wind climate, Leckebusch et al. (2007) suggest to scale the wind value by the 98th percentile of the

local wind speed distribution. However, the assumption that adaptation will always keep the damages from the 98-percentile

wind at the same level is probably optimistic, and will prevent us from using the model to estimate the required investment to

balance future damages and economic shocks.

4.3 ... to a regional damage calibration445

Using the reported damage estimates from the International Disaster Database (EM-DAT) crossed with cyclone tracks (IB-

TrACS), and geographical and socio-economic information along these tracks, Lüthi (2019) refined the damage function ap-

proach using machine learning techniques introducing region-specific damage functions.

We recall the main steps of the methodology presented in Eberenz et al. (2021) to define the regional damage functions.

The authors first defined the event damage ratio (EDR) as a ratio of simulated damage (SED) to normalized reported damage450

(NRD) for each cyclone:

EDR(i, j) =
SED(i,vh(j))

NRD(i)
. (16)

The total damage ratio (TDR) is then defined in each region summing over events:

TDR(j) =

∑
iSED(i,vh(j))∑

iNRD(i)
. (17)
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For each event, there is a value for vh allowing to optimally calibrate the explicit damage function given in Equation (15). The455

relatively wide distribution of vh for the same country shows that there is a large uncertainty in the relationship between the

wind speed and the corresponding fraction of losses. Figure A4 shows the uncertainty in regional damage functions depending

on the optimization technique used and Figure A5 allows us to appreciate, for countries where more than 5 cyclones were

reported, the spread of plausible damage functions.

Eberenz et al. (2021) propose two alternative optimization methodologies to find the value of v?h maximizing the prediction460

quality of the regional damages: root mean square fraction (RMSF), minimizing the spread of the event damage ratios (EDR):

vh
?
RMSF(j) = argminjexp

(√
1

N

∑
(ln(EDR(i)))

2

)
, (18)

and total damage ratio (TDR), finding the value of v?h, such that the ratio of total simulated damage – obtained summing over

event damages – and total reported damage tends to 1.

vh
?
TDR(j) = argminj |TDR(j)− 1| (19)465

The values of v?h obtained by Eberenz et al. (2021) with the two methods are given in Table 2. For most regions, the optimized

curves are similar for the two optimization techniques, but the results diverge for the Philippines (WP2) and to a lesser extent

for China Mainland (WP3) events. The case of the Philippines, for example, discussed in Eberenz et al. (2021), is explained by

the large number of parameters involved in the damage estimation, and emphasizes two main limitations of the model: First,

this framework lacks an explicit representation of sub-perils that disrupt and damage several sectors and services. Second,470

differences in exposure and vulnerability between urban and rural areas exposed to tropical cyclones are likely to contribute to

the large spread in EDR.

4.4 Simplified damage estimation along tracks

In the context of our national level assessment, we propose a simplified damage module. The simulated damage for a given

cyclone – in both IBTrACS and our synthetic tracks – is computed using the following procedure for each individual cyclone.475

First, a uniform grid of physical asset value with step given by the average cyclone radius is defined on the map of affected

area. The cyclone track is linearly interpolated, and the tiles affected by the cyclone (containing a part of the interpolated

path) are identified (see Figure 17). Second, for each tile identified in the previous step, we retrieve the maximum wind speed

V , and compute the proportion of wealth lost f(V,vjh) using the relation (15) with the total damage ratio parameter given in

Eberenz et al. (2021). Then, we compute the total simulated damage by aggregating the physical asset exposure multiplied by480

the proportion of wealth lost on each tile over all tiles affected by the cyclone.

As a result of this procedure, we obtain the total simulated damage SEDi(j, t) caused by the i-th cyclone in region j,

simulated with climate variables for year t. Finally, the cyclone damage cost in region j and year t is simulated as follows:

D(j, t) =
∑
i

SEDi(j, t), (20)
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Table 2. Values of vh obtained using TDR and RMSF methods for each region from the CLIMADA environment

Region vh
?
TDR vh

?
RMSF

Caribbean and Mexico (NA1) 58.8 59.6

China Mainland (WP3) 101.5 80.2

USA and Canada (NA2) 80.5 86

North Indian (NI) 63.7 58.7

South East Asia (WP1) 60.7 56.7

North West Pacific (WP4) 169.6 135.6

Philippines (WP2) 167.5 84.7

Oceania (OC) 56.8 49.7

South Indian (SI) 48.5 46.8

Global (GLB) 98.9 73.4

Coefficient from version 1.5 of the CLIMADA environment. Figure A4

also illustrates the shapes of the functions for the different optimization

problems (RMSF vs. TDR) and version (1.0 vs 1.5).

Figure 17. Illustration of the high resolution asset data (a) original physical asset value resolution; (b) aggregation of asset value over 0.25◦

boxes to evaluate asset exposure along interpolated cyclone track (here corresponding to the 2013 Hayan cyclone); (c) Illustration of damage

calculation: damage is aggregated over the white boxes which correspond to cyclone locations over land.
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Figure 18. Estimated (RMSF) vs. reported damage. The filled dots represent individual year/country pairs with reported damage in EM-

DAT. The small targets represent countries average and large targets income groups average. This distribution is obtained using a 0.25 x 0.25

resolution projection. Crosses correspond to country average (over all years).

where the sum is taken over all cyclones occurring in a given year. This procedure can then be repeated many times to obtain485

the distribution of annual cyclone damages and compute other statistics such as the mean and quantiles of this distribution.

The damage functions used in the second step are retrieved directly from the CLIMADA environment. These functions were

fitted with the same physical asset value. However, in our case, we project these values on a coarser grid (first step), in such a

way that the extraction is simplified for a large number of synthetic tracks in the context of the present global exercise. To ensure

that the estimated damages produced with this simplification are consistent with the historical records, we computed simulated490

damages over the historical tracks and compared the results to EM-DAT. We aggregate asset values on 0.25 x 0.25° grid.

The spread between SED and NRD distribution remains important. To further reduce the errors, we thus divide the simulated

damage by the average estimated damage (SED) over realised damage (NRD) ratio in each region, which are computed using

the RMSF damage function on IBTrACS and total reported damage from EM-DAT:

r̂j =

∑
iSED(i,vRMSF

h (j))∑
iNRD

(21)495

Figure 18 presents the estimated versus actual damages computed using the RMSF damage function and the distribution of the

re-scaled estimation by country using the intersection of IBTrACS with lands (762 events), crossed with EMDAT (606). Each

dot represents the total damage over a year in a country (211 observations).

4.5 Dynamic projection of local exposure in SSPs

To estimate future exposures along the cyclone tracks in each scenario, we use the downscaled estimation for the exposed500

wealth (Eberenz et al., 2020) and the coefficients representing the change between the current state and the future scenario in

the framework of the shared socioeconmic pathways (O’Neill et al., 2014, 2017; Jones and O’Neill, 2020). The local physical
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Figure 19. Regional F capGDP factor variation in SSPs IIASA database (R32). Source : https://tntcat.iiasa.ac.at/SspDb/. The country mapping

is provided in Table A4.

exposure at the coordinates (x,y) at time t in a region j in scenario k is defined as follows:

Φ(x,y,j,k, t) = F capGDP(j,k, t)︸ ︷︷ ︸
Global macro factor

·Fpop(x,y,k, t) · LP (x,y)︸ ︷︷ ︸
Local factor

. (22)

where LP (x,y) is the data from Eberenz et al. (2020). The factor F capGDP is the projected GDP per capita growth for each region:505

F capGDP(j,k, t) =
GDP(j,k, t)/GDP(j, t= 2020)

P (j,k, t)/P (j, t= 2020)
(23)

where P is the total population of the region retrieved from SSP database (Riahi et al., 2017).15 Figure 19 displays the scenario-

based projections of GDP and population in the five SSP, at the regional level by the IIASA model. The population exposure

growth factor Fpop is defined as follows:

Fpop(x,y,k, t) =
p(x,y,k, t)

p(x,y, t= 2020)
(24)510

where p(x,y,k, t) represents the local projections of population (Jones and O’Neill, 2020) illustrated in Figure 20.

5 Application to damage assessment in representative concentration pathways (RCP)

5.1 Climate simulation bias correction for climate change application

The variables from climate model projections used by CATHERINA are subject to multiple biases. To reduce uncertainty

caused by these biases, we use the Cumulative Distribution Function-transform (CDF-t) method developed in Vrac et al.515

15https://tntcat.iiasa.ac.at/SspDb/.
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Figure 20. Local Fpop factor variation in all SSPs in 20100 (source: Jones and O’Neill (2020), NASA Socio-Economic Data Application

Center (SEDAC)). The scenario-based population grid generation methodology is detailed by Jones and O’Neill (2020) with a last version

downscaled at 1 km following Gao (2020). This population grid is available every 10 years. CATHERINA uses the closest value in the

definition of the exposure.

(2012); Michelangeli et al. (2009) to correct the distribution of each variable, in each basin. Our bias correction approach is the

standard in the climate community (Navarro-Racines et al., 2020). 16

Consider a generic climate variable (denoted by χ) at a fixed location, which is available both from ERA5 reanalysis and

from a given CMIP5 model. We are interested in two time periods: the historical period (covered both by the climate model

and the reanalysis) and a future time period (covered only by the climate model). Let FhERA5 and FhCMIP be the distribution520

functions of χ under reanalysis and under climate model for the historical period, and F fCMIP5 be the distribution function of χ

under climate model for the future period. The distribution function under the climate model is subject to much stronger biases

than that under the reanalysis. The CDF-t method constructs the distribution function for χ with reduced bias for the future

time period, denoted by F̂ fCMIP and given by

F̂ fCMIP(·) = FhERA5(Fh,−1
CMIP(F fCMIP(·))),525

16see http://ccafs-climate.org/bias_correction/
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where Fh,−1
CMIP is the inverse function of FhCMIP. For a given value χfCMIP of the variable χ obtained for the future period from

the climate model, the corresponding bias-corrected value χ̂fCMIP may then be computed via

χ̂fCMIP = F̂ f,−1
CMIP(F fCMIP)

= F f,−1
CMIP(FhCMIP(Fh,−1

ERA5(F fCMIP(χfCMIP )))).

When the future period and the historical period coincide, the method reduces to the standard quantile transform:530

χ̂hCMIP = Fh,−1
ERA5(FhCMIP(χhCMIP )). (25)

First, we use the method on the historical period to compare the description of the thermodynamic potential and wind speed

with and without correction, so equation (25) may be used directly. To extract the CDFs of the variables of interest, we generate

synthetic track candidates from 1980 (beginning of ERA-5) to 2010. We launch the simulation 10 times over these 30 years

to obtain 300 representative years. By definition, for the genesis of the cyclones, the time of year and location are in line with535

historical cyclone data. However, in this module, the synthetic tracks are generated without climate constraints, i.e. cyclones

are allowed to drift relatively far away from their genesis location (in the limits of their initial basin), and therefore can cover

conditions which do not lead to the formation of tropical cyclones. At this stage, these tracks are not to be considered as ‘tropical

cyclone tracks’ but as ‘candidate’ tracks. In the following stage, actual cyclone tracks will be generated from candidate tracks

by filtering those ones where meteorological conditions for cyclone formation are satisfied. For each point in space and time540

along these synthetic tracks, we extract the values of the four climate variables from the reanalysis (ERA-5) and from the

historical simulations of the 7 climate models. Then, by comparing the CDF of the climate variables estimated by the models

with the reference CDF computed from the reanalysis, we determine the transformation allowing the values estimated by the

models to better match those from ERA-5.

The sea-level pressure distributions are stable over basins and models. The tropospheric temperature and near surface relative545

humidity distributions depend largely on the basin and display evidence of non-negligible model uncertainty. The sea-surface

temperature estimates along the same synthetic tracks in the historical period display much larger uncertainty. The North Indian

basin presents the widest uncertainty for all climate variables, which adds further uncertainty concerning the impact of climate

change on tropical cyclones in this area.17

Individual variables entering the MPI computation are correlated as shown in Table 3. For example, sea-surface temperature550

and tropopause temperature exhibit a negative correlation of 83%. Therefore, applying bias correction to individual variables

may lead to unrealistic combinations when evaluating the thermodynamic potentials. For example, extremely low tropopause

temperatures associated with very high SSTs lead to overemphasizing lapse rates therefore generating unrealistically large

potentials. To overcome this issue we perform the bias correction on the MSLP, SST, thermodynamic efficiency factor E ,

and relative humidity - which should not be correlated to other variable according to the level of correlation present in the555

reanalysis. Figure 21 shows that this correction leads to similar distribution of the thermodynamic potentials in the models and

the reanalysis.
17Figure A7 presents the CDF-t of climate data in the sub-sample. These important biases and uncertainties may be mitigated in the latest launch of the

models at the occasion of the CMIP6 (Gusain et al., 2020).
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Figure 21. Bias correction module QQplots

Table 3. Correlation levels (global) of modeled variables affecting the MPI with their reference values in ERA5

SSTERA5 SSTCGMs MSLPERA5 MSLPCGMs T tropo
ERA5 T tropo

CGMs RHERA5 RHCGMs

SSTERA5 1

SSTCGMs 0.95 1

MSLPERA5 0.46 0.39 1

MSLPCGMs 0.45 0.38 0.86 1

T tropo
ERA5 -0.83 -0.82 -0.37 -0.33 1

T tropoCGMs -0.77 -0.79 -0.31 -0.27 0.85 1

RHERA5 -0.07 -0.07 -0.12 -0.09 0.22 0.19 1

RHCGMs -0.27 -0.30 -0.18 -0.14 0.33 0.37 0.47 1

We apply the CDF-t correction technique along our historical synthetic tracks and compute the maximum potential intensity

following section 3.3.2. The pressure follows the dynamic process introduced in section 3.3.4 and the corresponding wind is

derived from the WPR (see section 3.3.1). We define the model error as the relative error (χCMIP−χERA5

χERA5
) between the value560

produced by the model and the one produced by the reanalysis ERA-5. Figure 22 displays the average relative errors and shows

that a 2% relative error in the description of the maximum potential intensity can lead to more than 20% error in the description

of the implied wind compared to the result obtained with ERA-5. This figure illustrates the efficiency of bias correction in the

historical period. Indeed, on average the CDF-t correction technique clearly reduces the error between the MPI estimated with

climate reanalysis and the one computed from modeled climate data as well as (more importantly) the error in the description565

of the maximum wind speed. However, running CATHERINA on the different CGMs still produces a wide range of results

in climate projections (c.f. Figure 22). Although the intensity of the storms increases with each model, underlying climate

modeling uncertainty still strongly impacts the synthetic tracks produced.
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Figure 22. Relative error at the level of maximum potential intensity (MPI) computed with ERA-5 and climate data produced by the 7

climate models for the historical period. The transparent bars represent original errors and the color parts represent the residual relative error

after CDF-t correction averaged over 30 years of cyclones.

5.2 Results in CMIP5 projections

The international climate modeling community introduced shared socioeconomic pathways (SSP) to translate varying narra-570

tives on the development of the society in the long-term. These projections impact the local physical asset value dynamics

(Jones and O’Neill, 2020; Chen et al., 2020), and global macroeconomic variables (O’Neill et al., 2014, 2017). Under the

assumptions of constant cyclone genesis frequency and constant impact ratio (i.e. the damage functions remain the same),

CATHERINA allows us to derive damage projections in varying climate and socio-economic scenarios. Socio-economic

change leads to wider differences than climate change, and this was expected (cf. Mendelsohn et al. (2012), Figure 3 for575

example). Using bias-corrected climate variable projections from the seven climate models over the period 2070-2100, we

provide an example of the application of the CATHERINA framework.18 We run the model and produce synthetic tracks using

climate projections of several models.

For example, over 2070-2100, the RCP 2.6 scenario, which is in line with the Paris Agreement and keeps global warming

below 2°C by 2100, involves a growth of expected global annual financial losses from tropical cyclones by a factor of 4.84 on580

18Because of the time slicing of the CMIP5 climate data available in the climate data store, we launch the models on 25 consecutive years over this period:

2070-2095 for IPSL, BCC, NCC, CCCMA, 2075-2100 for GISS and 2085-2095 for INM (only a 10 year slice of climate data is available on the CDS for this

model). We repeat this process changing the seed 12 times to obtain 300 representative years in each model (except INM for which we only have 120 years).
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Figure 23. Average and standard deviation of maximum wind speed of tropical cyclones generated with the CMIP5 models after correction
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Figure 24. Annualized global damage in shared socioeconomic pathways (SSP) and representative concentration pathways (RCP) between

2070 and 2100 based on synthetic tracks produced with 7 climate models (with bias correction) over 250 representative years launched

independently. Top range: 95%−98% (extremely unlikely losses), followed by 95%−66%, 50%−66% and 0%−50%. Historical damages

are computed with 300 representative years of synthetic tracks generated with ERA-5 between 1980-2010. The physical asset value is

corrected by inflation between cyclone year and 2014 (GDP ref. year of Litpop).

average compared to the last 40 years. In the case of RCP 4.5 (between 1.7 and 3.2°C warming by 2100) and RCP 8.5 (between

3.2 and 5.4°C warming by 2100), the average expected damage will be multiplied by 5.99 and 7.95 respectively. These results
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Figure 25. Annualized regional expected damage in SSP and RCP between 2070 an 2100 based on synthetic tracks produced with 7 climate

models (with bias correction) over 250 representative years launched independently. The scale differs between SSPs.

were obtained under the economic assumptions associated with the socio-economic pathway SSP2 (i.e. the ‘Middle of the

Road’ scenario in O’Neill et al. (2014)’s framework). The choice of the socio-economic scenario is also a determinant for

damage estimation. In the case of the SSP5 socio-economic scenario (which assumes sustained exponential economic growth),585

with constant damage functions, the previous figures become 8.67, 11.1 and 15.22 respectively. Table 4 provides the expected

values in the simulations and Figure 24 provides the quantile values for the modeled damage obtained using CATHERINA.

At a global scale, in the SSP2 and the RCP 4.5 damages above USD 67.7 billion are ‘more likely than not’, accounting for

tropical cyclone related direct damage only. In the SSP5-RCP 8.5, the median losses establish at 166.3 USD billion in the

current calibration of CATHERINA. We reiterate that the scale and spread of annual damage per country is sensitive to the590

scaling parameter that would benefit from more precise local calibration. However, the sensitivity to changing is present under

all assumptions.

Figures 25 displays the average annual damage per country, in the different shared socioeconomic pathways. We can see that

the distributions across countries are slightly different from one SSP to another. Indeed, we have the same distribution in SSP2

and SSP5 with a higher expected damage in SSP5 because of the growth hypothesis this scenario relies on. However, SSP3595

(rocky road) or SSP4 (inequality) are distributed differently. The scenario emphasizing inequalities – and its interpretation by
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Table 4. Simulated expected annual damage (2014 USD Billions) in historical calibration period and representative concentration pathways

between 2075 and 2100

SSP Configuration and RCP Mean damage USD Bn

Historical (1980-2020) Synthetic ERA-5 34.72

Historical (1980-2020) Computed along IBTrACS 47.59

Historical (1980-2020) Reported in EM-DAT 21.10

SSP2 RCP26 164.81

SSP2 RCP45 208.23

SSP2 RCP85 276.36

SSP3 RCP26 105.51

SSP3 RCP45 133.66

SSP3 RCP85 172.20

SSP4 RCP26 128.77

SSP4 RCP45 161.95

SSP4 RCP85 216.12

SSP5 RCP26 301.78

SSP5 RCP45 385.36

SSP5 RCP85 528.41

scientists in terms of (i) socioeconomic developments Riahi et al. (2017) and (ii) population distribution Jones and O’Neill

(2017) – increases damage concentration in the United-States. On the other hand, the rocky-road scenario, linked to a larger

and more rural population, lower GDP and national rivalry sees the damage more equally distributed among other nations.

We ran the 7 models over 300 representative years to obtain these distributions. In these illustrative simulations, there is an600

effect due to certain large coastal cities exposure for the ‘very unlikely’ band (between 95 to 98 percentile) of annual damages.

However, given the scale observed more than one city have been hit by storms. Because the aim of the model was also to

stress test the resiliency of the financial and economic systems, looking at the expected value of damage can be less interesting

that studying the quantile value, especially in the context of events with large tail-risk. Coronese et al. (2019) investigating the

increase in economic damage due to extreme natural disasters supports this thesis showing that the impact of climate change605

is particularly striking for extreme events (see for example, Coronese et al. (2019), Figure 2A).

6 Conclusions

This paper proposes a novel structural framework to generate synthetic storms based on large-scale climate data and produce

simulations of annual cyclone damages per country. We show that when used with reanalysis data and CMIP5 models over the

historical period, our method produces tracks consistent with historical observations.610
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The synthetic tracks generated with our model have several applications. The first one is in natural disaster risk-management,

to calibrate adaptation measures. For this purpose, the track-generation algorithm may be enhanced, for instance, by including

dependency in the latitudinal and longitudinal incremental displacement, coupling with a meteorological forecasting model,

or including ground topography to model the cyclone displacement over land. Another major field of application is to climate

financial risk management, where this scenario-based events database can be used to evaluate physical risks and compute615

portfolio exposures. This would require to better define asset-level vulnerabilities.

The dataset used for the examples of this paper, based on low resolution data and including a limited number of simulations,

may not be accurate enough to properly calibrate adaptation measures. However, we believe that the framework presented here

may be used to project a dense set of trajectories, compute expected damage and damage percentiles over the next decades

and measure the investment required for adaptation and mitigation measures in the next fifty years. This work also reflects a620

practical exercise not carried out until now, of cross-referencing the latest data sets developed, putting into perspective both

the socio-economic and climatic development hypotheses, and to carrying out a bottom-up, rather than top-down, damage

calculation.

Code and data availability. Code is available from the E4C datahub at https://www.e4c.ip-paris.fr/#/fr/datahub/projects, and Zenodo at 10.

5281/zenodo.5645516. The deposit includes R scripts with functions, a fitting script, the parameters of the fitting of all the relationships on625

ERA-5, historical and future synthetic tracks, and a sample of simulated annual damage per country and scenario. We included a user guide

for data exploration and a quick start guide.
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Algorithm 1 Cyclone generation algorithm

V ← 20 m.s−1

Pc(s = 0)←MSLP−
(
V

a

)1/b

if MSLP−Pc > 0 & V > vm & sl < 4 then

while the pressure is bellow normal, wind is above threshold and we are not on land, do:

x(s) ← x(s− 1) + ∆x(s)

where ∆x(s)∝ Equation (2)

y(s) ← y(s− 1) + ∆y(s)

where ∆yt ∝ Equation (3)

MPI(s) ← fMPI(y(s),Pc(s− 1),SST(s),

Ttropo(s),MSLP(s),RH(s))

fMPI ∝ Equation (5)

Pc(s) ← max(Pc(s) + ∆Pc(s),MSLP(s)−MPD(s))

MPD∝ Equation (11) &

∆Pc(s)∝ Equation (12)

V (s) ← a(MSLP−Pc(s))
b

if on land = TRUE then

sl← sl + 1

end if

else

if sl > 4 then

Same functional for x and y but, compute distance to land D(s) from natural earth coastlines and do

V (s) ← Vb + (R ·V0−Vb)e
−αsl

− f1(tL)

(
ln

D

D0

)
+ f2(tL)

V (s)∝ Equation (14)

sl← sl + 1

end if

end if

Note: This algorithm assumes step-wise extraction of climate data in the Monte-Carlo process. Another way, closer to the framework

suggested in Bloemendaal et al. (2020) would be to (i) compute the tracks without properties, (ii) retrieve all climate variables, (iii)

determine the properties using the extracted climate conditions in the last step.
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Figure A1. Information in IBTrACS.The cyclones are split by nature (DS: Disturbance; TS: Tropical; TE: Extratropical; ST: Subtropical; NR:

Not reported; MX: Mixture or contradicting nature reports from different agencies). We remove Extratropical cyclones (75) and Disturbance

(205). The cyclones are reported in the following basins: East Pacific (EP); North America (NA); North India (NI); South Atlantic (SA);

South India (SI); South Pacific (SP); Western Pacific (WP). One can also explore sub-basin decomposition Eberenz et al. (2021) (MM :

missing - no sub basin for this basin (no sub-basins provided for WP, SI); CS : Caribbean Sea; GM : Gulf of Mexico; CP : Central Pacific;

BB : Bay of Bengal; AS : Arabian Sea; WA : Western Australia; EA : Eastern Australia) but we chose to use basins. The different agencies

worldwide report central pressure and maximum wind speed but use sometimes different standards. In particular, the reporting can vary in

terms of sustained wind speed. According to the dataset documentation the North Atlantic - U.S. Miami (NOAA NHC) bureau (hurdat/atcf)

gives the 1-minute winds speed while Tokyo i.e. RSMC Tokyo (JMA) provides dirrectly the 10-minute sustained wind speed (Similarly,

newdelhi corresponding to RSMC New Delhi (IMD) gives the 3-minute wind speed; reunion - RSMC La Reunion (MFLR), the Australian

TCWCs (TCWC Perth, Darwin, Brisbane) (BOM), the RSMC Nadi (FMS); TCWC Wellington (NZMS) provide the 10 minute sustained

wind speed and (CMA) 2-minute sustained wind). The lack of reporting standards between agencies is a source of uncertainty in the input

data.
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Figure A2. Map of longitude variation mean coefficients fitted on a 5x5 grid grouped per month

43



Figure A3. Map of latitude variation mean coefficients fitted on a 5x5 grid grouped per month
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Figure A4. Regional Optimal Damage Functions of the CLIMADA package (Eberenz et al., 2021)
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Figure A6. Evidence of models uncertainty. A comparison of the properties obtained generating 30 years of tropical cyclones with different

models from the CMIP5 raw climate data versus ERA-5. The average number of cyclone making landfall is computed averaging the number

of event with a number of steps on land positive (sl > 0). Maximum pressure drop and wind are respectively computed extracting the

maximum value for the corresponding variables of the cyclone tracks.The light blue bars represent the mean of the variable of interest among

IBTrACS filtered dataset (with the confidence interval drawn from the standard deviation of the distribution). The yellow bars represent the

same variable extracted from the synthetic data generated by the algorithm 1 using ERA-5 data. In terms of average values the models produce

consistent tracks on every basins. Then, we compare the output of this algorithm with different climate data produced on the historical by the

climate models taking part of the 5th phase of the CMIP. A general observation is the poorer performance of the model in the North Indian

basin. This could be due to the smaller number of intense cyclones remaining in the sample after the filtration by intensity (1.6 storms per

year with wind exceeding 35 m.s−1).
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Figure A7. Cumulative distribution functions per basin for the variables of interest along synthetic tracks produced with ERA-5 and extracted

(at the same location) from climate data produced by the 7 climate models.

NA: North America, EP: East Pacific, NI: North Indian, SI: South Indian, SP: South Pacific, WP: West Pacific.

The bias-correction module is indeed fitted on a larger range of climate conditions. By definition, for the genesis of the cyclones, the time of

year and location are in line with historical cyclone data. However, in the bias-correction module, the synthetic tracks are generated without

climate constraints, i.e. cyclones are allowed to drift relatively far away from their genesis location (in the limits of their initial basin), and

therefore can cover conditions which do not lead to the formation of tropical cyclones. At this stage, these tracks are not to be considered as

‘TCs tracks’ but as ’candidate’ tracks. In the following stage, TC tracks will be generated from candidate tracks by filtering those ones where

meteorologiocal conditions for cyclone formation are satisfied.
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Table A1. EM-DAT reporting proportions?

Total Damages (US$) Total Deaths Insured (US$) Total Affected Recnst. Costs?? (US$)

Ash fall 0,12% 1,09% 0,00% 0,09% 0,00%

Avalanche 0,02% 0,20% 0,02% 0,00% 0,00%

Coastal flood 0,30% 0,14% 0,14% 0,32% 0,00%

Cold wave 0,37% 0,70% 0,51% 0,25% 0,00%

Convective storm 9,86% 0,68% 21,78% 4,51% 0,00%

Drought 5,29% 24,75% 2,58% 36,35% 0,00%

Extra-tropical storm 1,60% 0,02% 3,09% 0,06% 3,31%

Flash flood 2,07% 2,58% 1,18% 3,03% 0,00%

Forest fire 2,45% 0,08% 3,86% 0,09% 0,76%

Ground movement 16,75% 26,78% 6,59% 2,61% 87,07%

Heat wave 0,68% 7,09% 0,03% 0,08% 0,00%

Land fire??? 0,80% 0,03% 1,76% 0,02% 0,00%

Landslide 0,14% 1,04% 0,01% 0,15% 0,00%

Lava flow 0,02% 0,00% 0,00% 0,01% 0,00%

Mudslide 0,10% 0,21% 0,00% 0,02% 0,00%

Pyroclastic flow 0,01% 0,02% 0,00% 0,03% 0,00%

Riverine flood 16,61% 5,20% 6,59% 38,68% 4,46%

Rockfall 0,00% 0,02% 0,00% 0,00% 0,00%

Severe winter cond. 0,74% 0,16% 0,20% 1,27% 0,00%

Subsidence 0,00% 0,01% 0,00% 0,00% 0,00%

Tropical cyclone 34,26% 18,33% 45,64% 12,34% 2,23%

Tsunami 7,81% 10,87% 6,01% 0,11% 2,16%

Notes:
? Proportion exclude damages which sub types are not reported.
?? Reconstruction costs are not well reported over disaster subtypes.
??? Brush, Bush, Pasture

Among disasters subtypes, tropical cyclones present an higher quality in reporting and represent a large share of total damages.
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Table A2. Wind pressure relationships coefficients

Basin Coefficient estimate std error

EP a 5.181 0.023

EP b 0.550 0.001

NA a 4.020 0.037

NA b 0.589 0.002

NI a 3.707 0.065

NI b 0.632 0.005

SI a 3.012 0.016

SI b 0.653 0.001

SP a 2.935 0.025

SP b 0.660 0.002

WP a 3.652 0.011

WP b 0.598 0.001

Table A3. Comparison STORM-CATHERINA cyclone intensification module

STORM CATHERINA

Nb of variables 2 4

MDP definition SST-MPD relationship - Eq.

(4)

SST-MPD relationship - Eq.

(4)

0.25x0.25 basin

0.1°C bins 0.1°C bins

MDP use Infer MPI Cap basin pres. drop

MPI definition MPI = P env −MPD Holland (1997)

Unrealistic values Bister and Emanuel (2002) MPD
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Table A4. Mapping countries to IIASA regions

admin REGION admin REGION

Mexico R32MEX Australia R32ANUZ

United States of America R32USA Madagascar R32SSA-L

Canada R32CAN Mozambique R32SSA-L

Cuba R32LAM-M South Africa R32SSA-L

Haiti R32LAM-L United Republic of Tanzania R32SSA-L

Dominican Republic R32LAM-M Indonesia R32IDN

Mauritania R32LAM-M Mauritius R32SSA-M

Nicaragua R32LAM-L France R32EU15

Guatemala R32LAM-L Malawi R32SSA-L

Belize R32LAM-L Zimbabwe R32SSA-L

Venezuela R32LAM-M Swaziland R32SSA-L

Honduras R32LAM-L Lesotho R32SSA-L

Jamaica R32LAM-M Zambia R32SSA-L

Puerto Rico R32LAM-M Comoros R32SSA-L

Costa Rica R32LAM-M New Zealand R32ANUZ

The Bahamas R32LAM-M Vanuatu R32OAS-L

El Salvador R32LAM-M Fiji R32OAS-L

Panama R32LAM-M Solomon Islands R32OAS-L

Colombia R32LAM-M New Caledonia R32EU15

Grenada R32LAM-M French Polynesia R32EU15

Antigua and Barbuda R32LAM-M Papua New Guinea R32OAS-L

Barbados R32LAM-M Wallis and Futuna R32EU15

Cape Verde R32SSA-L Cambodia R32OAS-CPA

India R32IND Thailand R32OAS-L

Pakistan R32PAK Laos R32OAS-CPA

Bangladesh R32OAS-L Vietnam R32OAS-CPA

Oman R32MEA-H South Korea R32KOR

United Arab Emirates R32MEA-H Japan R32JPN

Iran R32MEA-M Russia R32RUS

Myanmar R32OAS-L Philippines R32OAS-L

Nepal R32OAS-L Taiwan R32TWN

Yemen R32MEA-M North Korea R32OAS-L

Saudi Arabia R32MEA-H United States of America R32USA

Qatar R32MEA-H Mongolia R32OAS-CPA

Kuwait R32MEA-H Hong Kong S.A.R. R32CHN

Iraq R32MEA-M Federated States of Micronesia R32OAS-L

Sri Lanka R32OAS-M Macao S.A.R R32CHN

Afghanistan R32PAK Guam R32OAS-M

China R32CHN Malaysia R32OAS-M
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