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Abstract 16 

Documenting year-to-year variations in carbon storage potential in terrestrial ecosystems is crucial for 17 

the determination of carbon dioxide (CO2) emissions. However, the magnitude, pattern and inner biomass 18 

partitioning of carbon storage potential, and the effect of the changes in climate and CO2 on inner carbon 19 

stocks, remain poorly quantified. Herein, we use a spatially explicit individual based-dynamic global 20 

vegetation model to investigate the influences of the changes in climate and CO2 on the enhanced carbon 21 

storage potential of vegetation. The modelling included a series of factorial simulations using the CRU 22 

dataset from 1916 to 2015. The results show that CO2 predominantly leads to a persistent and widespread 23 

increase in light-gathering vegetation biomass carbon stocks (LVBC) and water-gathering vegetation 24 

biomass carbon stocks (WVBC). Climate change appears to play a secondary role in carbon storage 25 

potential. Importantly, with the intensification of water stress, the magnitude of the light- and water-26 

gathering responses in vegetation carbon stocks gradually decreases. Plants adjust carbon allocation to 27 

decrease the ratio between LVBC and WVBC for capturing more water. Changes in the pattern of 28 

vegetation carbon storage was linked to zonal limitations in water, which directly weakens and indirectly 29 

regulates the response of potential vegetation carbon stocks to a changing environment. Our findings 30 

differ from previous modelling evaluations of vegetation that ignored inner carbon dynamics and 31 
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demonstrates that the long-term trend in increased vegetation biomass carbon stocks is driven by CO2 32 

fertilization and temperature effects that are controlled by water limitations. 33 

1 Introduction 34 

As a result of the changes in climate and atmospheric carbon dioxide (CO2), the terrestrial ecosystem 35 

carbon cycle exhibits remarkable trends in interannual variations, which induce uncertainty in estimated 36 

carbon budgets (Erb et al., 2018; Keenan et al., 2017). Recent studies assessing interannual fluctuations 37 

in terrestrial carbon sinks have shown that the land carbon cycle is the most uncertain component of the 38 

global carbon budget (Ahlstrom et al., 2015; Piao et al., 2020; Jung et al., 2017; Humphrey et al., 2018; 39 

Gentine et al., 2019; Humphrey et al., 2021). These uncertainties result from an incomplete understanding 40 

of vegetation biomass carbon production, allocation, storage, loss, and turnover time (Bloom et al., 2016). 41 

The extent and distribution of vegetation carbon storage is central to our understanding of how to 42 

maintain a balanced land carbon cycle. Changes in terrestrial vegetation carbon storage have a significant 43 

effect on atmospheric CO2 concentrations and determine whether biomes become a source or sink of 44 

carbon (Erb et al., 2018; Humphrey et al., 2018; Terrer et al., 2021). Therefore, investigating the 45 

processes producing changes in carbon storage is key to improving the accuracy of estimated terrestrial 46 

carbon budgets, and to tap the greenhouse-gas moderation potentials of vegetation (Ipcc, 2007; Roy et 47 

al., 2001). 48 

 49 

The atmospheric CO2 concentration is affected by the vegetation carbon stock, while the long-term trend 50 

of vegetation carbon storage capacity is also affected by the changes in climate and CO2. Since the 51 

beginning of industrialization, there has been a noticeable enhancement in the plant capacity of storing 52 

and sequestering carbon, which is needed for stabilizing greenhouse gas concentrations and mitigating 53 

global warming (Chen et al., 2019; Pan et al., 2011; Le Noë et al., 2020; Magerl et al., 2019; Bayer et al., 54 

2015; Harper et al., 2018). Due to the interaction between terrestrial vegetation and a changing 55 

environment, both photosynthesis and respiration of the vegetation also changed. To better absorb CO2 56 

and sunlight required for photosynthesis, vegetated zones are gradually covered by vegetation with 57 

higher plant height and wider leaf area (Erb et al., 2008). This change has coincided with a widespread 58 

change in other vegetation features, including a positive increase in annual gross primary productivity 59 
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and a greening of the biosphere (Madani et al., 2020; Zhu et al., 2016). The spatiotemporal distribution 60 

and environmental drivers in total carbon storage potential have been well documented on the basis of 61 

model estimates and satellite-based assessments (Erb et al., 2007; Erb et al., 2018; Bazilevich et al., 1971; 62 

Saugier et al., 2001; Bartholome and Belward, 2005; Olson et al., 1983; Pan et al., 2013; Ajtay et al., 63 

1979; Ruesch and Gibbs, 2008; Kaplan et al., 2011; Shevliakova et al., 2009; Prentice et al., 2011; West 64 

et al., 2010; Hurtt et al., 2011). In contrast, the variability of inner components of carbon storage potential 65 

has not been extensively studied. Without an accurate assessment of the dynamics of each fraction, 66 

attribution of carbon storage potential to environmental drivers is highly uncertain. Consequently, 67 

partitioning potential vegetation carbon storage and revealing its inner processes are essential to 68 

accurately comprehend the current state of carbon storage capacity and reveal the influence of various 69 

drivers on the long-term trend of carbon storage potential. 70 

 71 

The change of carbon storages in vegetation inner components is not only affected by environmental 72 

factors, but also controlled by allocation scheme of assimilated carbon. Fractional dynamics of the carbon 73 

stock are widely used as a key indicator to investigate the responses of vegetation to environmental 74 

drivers, which also reflect the response strategies of vegetation in environments with different water 75 

limitations (Yang et al., 2010). In arid regions, vegetation utilizes a tolerance strategy to allocate biomass, 76 

storing more biomass carbon in roots to resist enhanced water stress (Chen et al., 2013). Conforming to 77 

the optimal partitioning hypothesis, plants store more carbon in shoots and leaves in environments where 78 

water is more available and shift more carbon to roots when water is more limited (Yang et al., 2010; 79 

Mcconnaughay and Coleman, 1999). Water availability controls both carbon allocation and storage and 80 

can potentially transform zones characterized by a positive response to changes in climate and CO2 to 81 

zones exhibiting a negative response. For example, global warming positively stimulates plant 82 

productivity (Keenan et al. 2017), while Madani et al. (2020) found that plants productively with water 83 

stress show a negative response to temperature rise in tropical zones productively showed a negative 84 

response to temperature in tropical zones due to increasing water stress. With increased warming, water 85 

limitations are predicted to increasingly reduce the proportion of leaves' biomass, and decrease plant 86 

photosynthesis (Ma et al., 2021). Water limitations have a strong regulating effect on the spatial pattern 87 

of change in vegetation carbon storage, demonstrating the effects of the changes in climate and CO2 on 88 
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the dynamics of the plant organs are affected by the terrestrial water gradient. Thus, it is important to 89 

systematically investigate the distinct responses of carbon storage potential to changes in climate and 90 

CO2 under differing conditions of water stress.  91 

 92 

As documented above, many studies have investigated the total changes in zonal and global terrestrial 93 

storage of carbon, while few studies have examined trends in the components partitioning of vegetation 94 

carbon storage. Large gaps in our knowledge of the effects of various drivers on the partitioning of carbon 95 

stocks in vegetation biomass remain. Meanwhile, plants adjust carbon allocation scheme to adapt to 96 

environmental change. With increased warming, an increase in the magnitude of water stress may 97 

dramatically change or even reverse the impact of these drivers on inner components of carbon storage 98 

(Ma et al., 2021). Evaluating the response pattern of carbon stocks to various drivers under conditions of 99 

limited water is elemental for clearly documenting the response mechanism of vegetation carbon storage 100 

potential. 101 

 102 

Here, we use a spatially explicit individual-based dynamic global vegetation model (SEIB-DGVM), 103 

along with the components partitioning method to (1) systematically determine the long-term variability 104 

of carbon storage potential and understand its response mechanisms, and (2) estimate trends in 105 

partitioning of potential biomass carbon stocks of vegetation biomass. Throughout this study, the 106 

potential biomass carbon stock, biomass carbon stored in vegetation without anthropogenic disturbance, 107 

is recognized as an indicator of the potential of carbon storage by natural vegetation. Using a set of 108 

factorial simulations to isolate responses to environmental change, we analyse the contributions of 109 

multiple driving factors to the trends of two fractions of carbon stock at large scales individually. We 110 

then conceptualize the role of water availability through an aridity index (AI), in which hydrological 111 

zones are subdivided by their degree of aridity. By comparing the differences in the magnitude of 112 

response between the fractions of light- and water-gathering carbon stocks for varying degrees of water 113 

availability, we assess the effect of water limitations on the response pattern of potential carbon stocks 114 

to changes in climate and CO2. 115 
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2 Model description, experimental design, observational data, and evaluation metrics 116 

In this section, we provided a list of data source (Sect. 2.1), an overview of the modelling concept (Sect. 117 

2.2), the representation of biomass carbon stock partitioning in the SEIB-DGVM (Sect. 2.3), an overview 118 

of the experimental scheme used in the model simulations (Sect. 2.4), and an overview about data source 119 

and pre-processing of observation dataset for model evaluation (Sect. 2.5). 120 

2.1 Forcing Data 121 

Long-term daily meteorological time-series data are required to run model simulations, including 122 

precipitation, daily range of air temperature, mean daily air temperature, downward shortwave radiation 123 

at midday, downward longwave radiation at midday, wind velocity, and relative humidity. These data 124 

were obtained from the Climatic Research Unit (CRU) time series 4.00 gridded dataset (degree 0.5°) for 125 

the period 1901–2015 (Harris et al., 2020). Because the CRU dataset is a monthly based dataset, the 126 

monthly meteorological data were converted into daily climatic variables by supplementing daily 127 

climatic variability within each month using the National Centre for Environmental Prediction (NCEP) 128 

daily climate dataset. The NCEP data, displayed using the T62 Gaussian grid with 192 × 94 points, was 129 

interpolated into a 0.5° grid (which corresponds to the CRU dataset) using a linearly interpolation method. 130 

By combining the CRU data, with the interpolated NCEP dataset, we were able to directly obtain the 131 

most of driving meteorological data (details in Sato et al. (2020)). Neither the CRU nor NCEP datasets 132 

included downward shortwave and longwave radiation at midday. Thus, daily cloudiness values in the 133 

NCEP were used to calculate radiation values using empirical functions (Sato et al., 2007). These data 134 

were all aggregated to a daily timescale with 0.5° resolution to run SEIB-DGVM. 135 

 136 

Atmospheric CO2 concentrations were collected from Sato et al. (2020), which contains reconstructed 137 

CO2 concentrations between 1901 and 2015. The statistical reconstruction of global atmospheric CO2 138 

was used in this analysis. These reconstructions were based on present annual CO2 concentrations 139 

recorded from the Mauna Loa monitoring station. These data assume atmospheric CO2 concentration 140 

was 284 ppm in 1750, and statistically interpolates atmospheric CO2 concentrations to fill the gap from 141 

1750 to 2015. 142 

 143 



6 

 

The physical parameters of the soil used in the model include soil moisture at the saturation point, field 144 

capacity, matrix potential, wilting point and albedo. These data were obtained from the Global Soil 145 

Wetness Project 2. 146 

2.2 Overview of modelling concept in SEIB-DGVM  147 

Model SEIB-DGVM version 3.02 (Sato et al., 2020) was employed in this study. This is a process-based 148 

dynamic global vegetation model driven by meteorological and soil data. It is an explicit and 149 

computationally efficient carbon cycle model designed to simulate transient effects of environmental 150 

change on terrestrial ecosystems and land-atmosphere interactions. It describes three groups of processes: 151 

land-based physical processes (e.g., hydrology, radiation, aridity), plant physiological processes (e.g., 152 

photosynthesis, respiration, litter), and plant dynamic processes (e.g., establishment, growth, mortality). 153 

Twelve plant functional types (PFTs) were classified. During the simulation, a sample plot was 154 

established at each grid boxcell, and then the growth, competition, and mortality of each the individual 155 

PFTs within each plot were modelled by considering the specify conditions for that individual as it relates 156 

to other individuals that surround it (Sato et al., 2007). 157 

 158 

SEIB-DGVM treats the relationships between soil, atmosphere, and terrestrial biomes in a consistent 159 

manner, including the fluxes of energy, water, and carbon. Based on specified climatic conditions and 160 

soil properties, SEIB-DGVM simulates the carbon cycle, energy balance, and hydrological processes. 161 

SEIB-DGVM utilizes three computational time steps: (1) During the growth phase, the metabolic 162 

procedures including photosynthesis, respiration, and carbon allocation are executed for each individual 163 

tree every simulation day. (2) The monthly process of tree growth including reproduction, trunk growth, 164 

and expansion of a cross-sectional area of the crown are executed. (3) On the last day of each year, the 165 

height of the lowest branch increases as a result of purging crown disks, or self pruningself-pruning of 166 

branches, at the bottom of the crown layer. The simulated unit of the model is a 30 m × 30 m spatially 167 

explicit ‘virtual forest’. A grass layer was placed under the woody layer, and provides for a 168 

comprehensive, spatially explicit quantification of terrestrial carbon sinks and sources. The soil depth 169 

was set at 2 m and was divided into 20 layers, each with a thickness of 0.1 m. The photosynthetic rate of 170 

a single-leaf was simulated following a Michaelis-type function (Ryan, 1991). Respiration was divided 171 

into two types: growth respiration and maintenance respiration. Growth respiration is defined as a 172 
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construction cost for plant biosynthesis, which is quantified by the chemical composition of each organ 173 

(Poorter, 1994). Maintenance respiration of live plants occurs every day regardless of the phenological 174 

phase, and is controlled by the temperature and nitrate content of each organ (Ryan, 1991). For a wide 175 

variety of plant organs, the maintenance respiration rate is linearly related to the nitrogen content of 176 

living tissue. The relative proportions of nitrogen in each organ for any PFT are linearly correlated. N-177 

deposition isn't included in SEIB-DGVM. Atmospheric CO2 was envisioned to be absorbed by 178 

photosynthesis of woody PFTs and grass PFTs. This assimilated carbon flux was then allocated into all 179 

the plant organs (leaf, trunk, root, and stock), where maintenance respiration and growth respiration occur. 180 

The hydrology module treats precipitation, canopy interception, transpiration, evaporation, meltwater, 181 

and penetration. 182 

2.3 Carbon stock of vegetation biomass partitioning 183 

2.3.1 Parameterization of daily allocation 184 

Flexible allocation schemes about resources and biomass are set up in the framework of the SEIB-DGVM 185 

biogeochemical model. Based on the updated observation data, the allocation schemes of Boreal Needle-186 

leaved summer-green trees and Tropical Broad-leaved evergreen trees are improved at SEIB-DGVM 187 

V3.02. Allocation schemes of other PFTs are the same as the original version. Atmospheric CO2 is 188 

assimilated by the photosynthesis of both woody and grass foliage, and then is added into the non-189 

structural carbon of the plant. This non-structural carbon of photosynthetic production is allocated to all 190 

the plant organs (foliage, trunk, root, and stock), supplying what is needed for the maintenance and 191 

growth of each organ. When the non-structural carbon is greater than 0 during the growth phase, the 192 

following dynamic carbon allocation is executed for each individual plant at the daily time scale, such 193 

that: 194 

(1) When the fine root biomass (massroot) of wood or grass does not satisfy minimum requirements for 195 

fulfilling functional balance (massleaf/FRratio), the mass of non-structural carbon is allocated to the root 196 

biomass to supplement the deficit. Here, massleaf is the leaf biomass, and FRratio is the ratio of massleaf to 197 

massroot satisfying the functional balance. 198 

(2) The stock biomass is supplemented until it is equal to leaf biomass. This scheme is active after the 199 

first thirty days of the growing phase. 200 
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(3) Woody leaf biomass is constrained by three limitations of the maximum leaf biomass, which are 201 

calculated as follows: 202 

𝑚𝑎𝑥1 = (𝑐𝑟𝑜𝑤𝑛𝑎𝑟𝑒𝑎 + 𝜋𝑐𝑟𝑜𝑤𝑛𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝑐𝑟𝑜𝑤𝑛𝑑𝑒𝑝𝑡ℎ)
𝐿𝐴𝑚𝑎𝑥

𝑆𝐿𝐴
 (1) 203 

𝑚𝑎𝑥2 = 𝐴𝐿𝑀1
𝜋(𝑑𝑏ℎℎ𝑒𝑎𝑟𝑡𝑤𝑜𝑜𝑑/2+𝑑𝑏ℎ𝑠𝑎𝑝𝑤𝑜𝑜𝑑/2)

2
−𝜋(𝑑𝑏𝑔ℎ𝑒𝑎𝑟𝑡𝑤𝑜𝑜𝑑/2)

2

𝑆𝐿𝐴
 (2) 204 

𝑚𝑎𝑥3 =
𝑚𝑎𝑠𝑠𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒

𝑅𝐺𝑓
 (3) 205 

𝑚𝑎𝑠𝑠𝑙𝑒𝑎𝑓 = min⁡(𝑚𝑎𝑥1, 𝑚𝑎𝑥2, 𝑚𝑎𝑥3) (4) 206 

where 𝑚𝑎𝑥1, 𝑚𝑎𝑥2, and 𝑚𝑎𝑥3 are, respectively, maximum leaf biomass for a given crown surface 207 

area, cross-sectional area of sapwood, and non-structural carbon; 𝑆𝐿𝐴 is a constant of PFTs leaf area 208 

(m2 g−1); 𝐿𝐴𝑚𝑎𝑥  is the plant functional type specific maximum leaf area per unit crown surface area 209 

excluding the bottom layer (m2 m−2); 𝐴𝐿𝑀1 represents the area of transport tissue per unit biomass, and 210 

is a constant (dimensionless). If the massleaf is less than the minimum (𝑚𝑎𝑥1 , 𝑚𝑎𝑥2, 𝑚𝑎𝑥3), the mass of 211 

non-structural carbon is allocated into leaf biomass to supplement the deficit. 212 

When the leaf area index of grass equals the optimal leaf area index, it stops to allocate non-structural 213 

carbon to grass leaf, which is calculated as:  214 

𝑙𝑎𝑖𝑜𝑝𝑡 =
ln 𝑝𝑎𝑟𝑔𝑟𝑎𝑠𝑠−ln{

𝑝𝑠𝑎𝑡
𝑙𝑢𝑒

[(1−
𝑐𝑜𝑠𝑡/𝑆𝐿𝐴

0.09093×𝑑𝑙𝑒𝑛×𝑝𝑠𝑎𝑡
)
−2

−1]}

𝑒𝐾
 (5) 215 

where 𝑙𝑎𝑖𝑜𝑝𝑡 is the optimal leaf area index (m2 m−2); 𝑝𝑎𝑟𝑔𝑟𝑎𝑠𝑠 is the grass photosynthetically active 216 

radiation (μmol photon m−2 s−1); 𝑝𝑠𝑎𝑡 is the light-saturated photosynthetic rate (μCO2 m−2 s−1); 𝑙𝑢𝑒 is 217 

the light-use efficiency of photosynthesis (mol CO2 mol photon−1); 𝑐𝑜𝑠𝑡 is the cost of maintaining 218 

leaves per unit leaf mass per day (g DM g DM−1 day−1); 𝑑𝑙𝑒𝑛 is day length (hour); and 𝑒𝐾 is light 219 

attenuation coefficient at midday. 220 

(4) When non-structural carbon is less than 10 g dry mass (DM) PFT−1 or annual NPP is less than 10 g 221 

DM PFT−1 in the previous year, the following daily simulation processes (5-6) will be skipped. 222 

(5) When total woody biomass is more than 10 kg DM, which defines the minimum tree size for 223 

reproduction, 10% of non-structural carbon is used for every daily process of reproduction, including 224 

having flowers, pollen, nectar, fruits, and seeds. These organs are not explicitly modelled in SEIB-225 

DGVM. 226 

(6) During the simulation of trunk growth, the remaining non-structural carbon is allocated to sapwood 227 

biomass. There is no direct allocation to heartwood, which is transformed slowly from sapwood biomass. 228 
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For grass PFTs biomass, the densities of all organs comprising the biomass never decline below 0.1 g 229 

DM m−2 even if the environment is deteriorated for grass survival. A more detailed description of SEIB-230 

DGVM is given by Sato et al. (2007). 231 

 232 

To control plant phenology and the rate of photosynthesis as a function of the limitation in terrestrial 233 

water, the physiological status of the limitation of terrestrial water is calculated as: 234 

𝑝𝑠𝑎𝑡 = 𝑃𝑀𝐴𝑋𝑐𝑒𝑡𝑚𝑝𝑐𝑒𝑐𝑜2𝑐𝑒𝑤𝑎𝑡𝑒𝑟  (6) 235 

𝑐𝑒𝑤𝑎𝑡𝑒𝑟 = √𝑠𝑡𝑎𝑡𝑤𝑎𝑡𝑒𝑟    (7) 236 

𝑠𝑡𝑎𝑡𝑤𝑎𝑡𝑒𝑟 =
𝑚𝑎𝑥(𝑝𝑜𝑜𝑙𝑤(1)/𝐷𝑒𝑝𝑡ℎ(1),⁡⁡𝑝𝑜𝑜𝑙𝑤(2)/𝐷𝑒𝑝𝑡ℎ(2))−𝑊𝑤𝑖𝑙𝑡

𝑊𝑓𝑖−𝑊𝑤𝑖𝑙𝑡
 (8) 237 

where 𝑝𝑠𝑎𝑡  is the single-leaf photosynthetic rate of tree PFTs and grass PFTs (μmol CO2 m-2 s-1); 238 

𝑃𝑀𝐴𝑋 is the potential maximum of photosynthetic rate (μmol mol-1 CO2 m-2 s-1); 𝑐𝑒𝑡𝑚𝑝 and 𝑐𝑒𝑐𝑜2  are 239 

the temperature and CO2 concentration effect coefficient (dimensionless), separately; 𝑐𝑒𝑤𝑎𝑡𝑒𝑟  is the 240 

water effect coefficient (dimensionless); 𝑠𝑡𝑎𝑡𝑤𝑎𝑡𝑒𝑟  is the physiological status of the terrestrial water 241 

limitation, which ranges between 0.0–1.0, dimensionless; 𝑝𝑜𝑜𝑙𝑤(𝑛)⁡is the water content in soil layer n, 242 

mm; 𝐷𝑒𝑝𝑡ℎ(𝑛) is the depth of the soil layer n, mm; 𝑊𝑤𝑖𝑙𝑡  is soil moisture at the wilting point, m m−1; 243 

and 𝑊𝑓𝑖 is soil moisture at field capacity, m m−1. When the temperature of all soil layers is less than 0°244 

C, 𝑠𝑡𝑎𝑡𝑤𝑎𝑡𝑒𝑟  is equal to 0. 245 

2.3.2 Carbon stock partitioning method 246 

SEIB-DGVM allocates and stores the biomass carbon in four pools of woody PFT (foliage, trunk, root, 247 

and stock) and three pools of grass PFT (foliage, root, and stock). To investigate the fractional variability 248 

of carbon sequestration potential between the pools, we partitioned potential vegetation carbon stocks 249 

based on the physiological function of the plant (Figure A1). The root-shoot ratio (R/S) has been used to 250 

distinguish and investigate the ratio of below-ground biomass (root biomass) and above-ground biomass 251 

(shoot biomass) (Zhang et al., 2016). In this study, we adjusted the method of calculating the R/S ratio 252 

by distinguishing between the light-gathering vegetation biomass carbon stock (LVBC) and the water-253 

gathering vegetation biomass carbon stock (WVBC). LVBC represents the biomass carbon invested by 254 

plant is used to gather sunlight, including biomass carbon from woody foliage, woody trunk, and grass 255 

foliage. WVBC represents biomass carbon used to gather water, including biomass carbon from woody 256 
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fine roots and grass fine roots, excluding the stock pool. Stock biomass is used for foliation after dormant 257 

phase and after fires, which is reserve resource in each individual tree. Fine root biomass is just a tiny 258 

fraction to the total biomass, but is has a very high turnover rate and determines the capacity of vegetation 259 

to absorb soil water. Thus, 260 

𝐿𝑉𝐵𝐶

𝑊𝑉𝐵𝐶
=

𝑇𝑚𝑎𝑠𝑠𝑙𝑒𝑎𝑓+𝑇𝑚𝑎𝑠𝑠𝑡𝑟𝑢𝑛𝑘+𝐺𝑚𝑎𝑠𝑠𝑙𝑒𝑎𝑓

𝑇𝑚𝑎𝑠𝑠𝑟𝑜𝑜𝑡+𝐺𝑚𝑎𝑠𝑠𝑟𝑜𝑜𝑡
× 100% (9) 261 

where LVBC is light-gathering vegetation biomass carbon stock (kg C m−2); WVBC is water-gathering 262 

vegetation biomass carbon stock (kg C m−2); 𝑇𝑚𝑎𝑠𝑠𝑙𝑒𝑎𝑓  is the leaf biomass carbon stock of woody 263 

vegetation (kg C m−2); and 𝑇𝑚𝑎𝑠𝑠𝑡𝑟𝑢𝑛𝑘 is the trunk biomass carbon stock of trees (kg C m−2), including 264 

both branch and structural roots. This biomass is simplistically attributed to light-gathering vegetation 265 

organs and is used primarily to support the plant. 𝐺𝑚𝑎𝑠𝑠𝑙𝑒𝑎𝑓 is the leaf biomass carbon stock of grass 266 

(kg C m−2); whereas 𝑇𝑚𝑎𝑠𝑠𝑟𝑜𝑜𝑡 and 𝐺𝑚𝑎𝑠𝑠𝑟𝑜𝑜𝑡  are functional root (fine roots) biomass carbon stocks 267 

of trees and grass, separately (kg C m−2), which absorb water and nutrition from soil. 268 

2.4 Experimental design 269 

2.4.1 Setup of model runs 270 

SEIB-DGVM simulations begin with seeds of selected PFTs planted in bare ground. The establishment 271 

of PFTs seeds are determined by the climatic conditions in each grid cell. We inputted the transient 272 

climate data from 1901 to 1915 to spin up the model in a repetitive loop. No obvious trend in climatic 273 

factors was observed during this period (Tei et al., 2017). A spin-up period of 1050 years was necessary 274 

to bring the terrestrial vegetation carbon cycle into a dynamic equilibrium. To reach quasi-equilibrium 275 

in the vegetation biomass, about 1000 years of simulation was required as a spin-up procedure. 276 

2.4.2 Factorial simulation scheme 277 

Table 1. List of factorial simulations used in this study 

Factorial 

simulation 

CO2 

concentration 
Precipitation Temperature Radiation 

Other 

drivers 

S1 √ √ √ √ √ 

S2 √     

S3 √ √    

S4 √  √   

S5 √   √  

S6 √    √ 
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Note: In factorial simulation S1, historical atmospheric CO2 concentration and historical climate fields from the 

CRU data set were used. In simulation S2, only historical atmospheric CO2 concentration was used, and climate 

variables of the transient period (1901–1915) were repeatedly input. In simulation S3 (or S4, S5), only historical 

atmospheric CO2 concentrations and precipitation (or temperature, radiation) were input, and climate variables 

of the transient period (1901–1915) were repeatedly input. In the last simulation S6, only historical atmospheric 

CO2 concentrations and other climate variables were input, including wind velocity and relative humidity. 

In order to further quantify the relative contributions of varying atmospheric CO2 concentrations, 278 

precipitation, temperature, radiation, and other factors (wind velocity and relative humidity), we 279 

performed six factorial simulations. In simulation S1, atmospheric CO2 concentration and all of climate 280 

variables were varied. In simulation S2, only atmospheric CO2 concentration was varied, and climate 281 

variables were held constant (Climate variables of the transient period (1901-1915) were repeatedly 282 

inputted). In simulation S3 (or S4, S5), atmospheric CO2 and precipitation (or temperature, radiation) 283 

were varied, and other climate variables were held constant. In simulation S6, atmospheric CO2, wind 284 

velocity, and relative humidity were varied, and other climate variables were held constant. Finally, S2 285 

was used to evaluate the effects of CO2 fertilization on carbon stock variation. The differences of S2-S3, 286 

S2-S4, S2-S5, and S2-S6 were used to evaluate the response of carbon stock growth to precipitation, 287 

temperature, radiation, and other drivers, respectively. 288 

2.4.3 Non-parametric test methods 289 

Each driving factor (atmosphere CO2, precipitation, temperature, and radiation) has a different influence 290 

on the carbon stock, so it is difficult to make a simple pre-assumption about the population distribution 291 

pattern for factorial simulations. We used the non-parametric Mann-Kendall and Sen's slope estimator 292 

statistical tests (Gocic and Trajkovic, 2013) to assess the ability of SEIB-DGVM to simulate the response 293 

patterns of carbon storage potential to a change in climate and CO2 concentrations. We regressed the 294 

simulated hundred-year mean global average carbon stock time series to reveal the accumulative 295 

influences of the single variables based on the factorial simulations where only one or two drivers were 296 

varied. As shown in Figures A2 and A3, detection trends of LVBC and WVBC for all driving factors 297 

performed statistically well (in agreement at the 95% confidence intervals), indicating this analytical 298 

method was suitable for trend attribution at the global scale. 299 
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2.4.4 Distinguishing hydrological regions 300 

 

Figure 1. Global spatial patterns of water availability. Spatial variations in water availability were 

categorized based on the multiyear average aridity index (AI), defined as the ratio of the multiyear 

mean precipitation to the potential evapotranspiration. Categories include: hyper-arid (AI ≤ 0.05), arid 

(0.05 < AI ≤ 0.2), semi-arid (0.2 < AI ≤ 0.5), sub-humid (0.5 < AI ≤ 0.65), and humid (AI > 0.65). 

The white grid cell was not assigned hydrological category. 

Locally available water strongly regulates and limits the response of carbon stocks to changes in climate 301 

and CO2. We used aridity index (AI) to distinguish between the global hydrological regions for 302 

comparing the long-term trend in carbon stocks over different hydrological environments, and for 303 

quantifying the influences of each hydrological environment on the variations in the trends. The AI was 304 

defined as: 305 

𝐴𝐼 =
�̅�

𝐸𝑇𝑝̅̅ ̅̅ ̅
 (10) 306 

where �̅� is the multiyear mean precipitation (mm year−1); and 𝐸𝑇𝑝̅̅ ̅̅ ̅ is the multiyear mean potential 307 

evapotranspiration (mm year−1), which was calculated by the Penman-Monteith model (Monteith and 308 

Unsworth, 1990). As in a previous study (Chen et al., 2019), five hydrological regions were categorized 309 

based on a AI value. Under the influences of climate change, the hydrological condition was changed in 310 

some grid cells (Figure A4). For example, the grid cell classified as sub-humid zone in the period of 311 

1916-1945 was redefined as semi-arid zone in the period of 1986-2015. In this study, gird cells with 312 

consistent hydrological condition between the period of 1916-1945 and the period of 1986-2015 were 313 

selected and classified (Figure 1). 314 
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2.5 Observation dataset for model evaluation 315 

A global time series of potential vegetation carbon was modelled by the SEIB-DGVM between 1916-316 

2015. In terrestrial vegetation biomes, there is a high correlation between biomass carbon stock density 317 

and NPP per unit (Erb et al., 2016; Kindermann et al., 2008) (Figure A1). Thus, we collected NPP 318 

observation dataset and used NPP as a proxy of the carbon stock to assess model accuracy. Ecosystem 319 

Model-Data Intercomparison (EMDI) builds upon the accomplishments of the original worldwide 320 

synthesis of NPP measurements and associated model driver data prepared by Global Primary Production 321 

Data Initiative. We obtained the monitoring station data from the EMDI working group, and then 322 

compared their data with modelled multiyear average NPP in the period of 1916-1999 (Figure 2). 323 

 

Figure 2. Multiyear average NPP simulated by SEIB-DGVM and EMDI global site distribution. 

Green rhombuses indicate the monitoring stations of the EMDI. 

However, in-situ observations are sparse for global spatial-temporal validation. Therefore, we used the 324 

MOD17A3 products to further verify the simulated potential NPP in the twenty first century. These data 325 

were collected by the Moderate Resolution Imaging Spectroradiometer and are some of the most widely 326 

used data to assess the accuracy of global model simulations (Gulbeyaz et al., 2018). The natural 327 

vegetation zones refer to the hypothetical condition that would prevail in an assumed absence of 328 

anthropogenic activity, but under historical climate fields (Erb et al., 2018; Haberl et al., 2014). The 329 

potential NPP is defined as that assimilated carbon stored in natural vegetation without the disturbance 330 

of anthropogenic activities (Erb et al., 2018). 331 

 332 

In order to distinguish the distribution of vegetation zones gird cells without anthropogenic disturbance, 333 
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we obtained global land cover types in the period 2001-2015 from MCD12C1 (Table A1). We included 334 

grid cells whose largest vegetation component defined vegetation grid cells as those whose largest 335 

component was evergreen needleleaf forest, evergreen broadleaf forest, deciduous needleleaf forest, 336 

deciduous broadleaf forest, mixed forest, closed shrublands, open shrublands, woody savannas, savannas 337 

or grasslands. Other grid cells were excluded from our analysis. 338 

 339 

Part of grid cells covered by grassland were grazed by livestock, leading to the decrease of NPP of grass 340 

PFTs. There is a weak anthropogenic disturbance in rangeland, while managed pasture is intensely grazed 341 

by livestock. To remove pasture area with strong anthropogenic disturbance, We we obtained land-use 342 

forcing data from Land-Use Harmonization (LUH2) to map the distribution of managed pasture data 343 

from 2001 to 2015 (Hurtt et al., 2020). As shown in Figure A5, grassland in eastern Asia, western Europe, 344 

south central Africa, and western South America were severely affected by grazing. For exhibit the 345 

disturbance of managed pasture, we calculated the mean fraction of managed pasture within the 346 

corresponding 0.5° grid unit. When the fraction of managed pasture over 10%, the grid cell was 347 

considered to be affected by managed pasture. To reduce the interference effects of livestock grazing, 348 

we first removed the grid cells  affected by managed pasture. Then, we map the distribution of natural 349 

vegetation zones grid cells without anthropogenic disturbance (Figure A6). We declare that tThis 350 

exclusion method is only used for potential NPP comparison. 351 

3 Results and discussion 352 

3.1 Evaluation of SEIB-DGVM 353 

Figure 3 illustrates the comparison between model simulated and observed multi-year mean NPP during 354 

1916-1999. The determined coefficient (R2) between EMDI observed and estimated multiyear average 355 

NPP of 669 in-situ observations is 0.54, which is significant at the p=0.01 level. The slope of the 356 

regressed line is 0.70 during the twentieth century. 357 
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Figure 3. Comparison of multiyear average NPP calculated by SEIB-DGVM and EMDI for the 

twentieth century. The solid line is the best fit curve; and the dashed line represents a perfect 

correspondence in the results of the two. 

Based on land cover types dataset from 2001 to 2015, we obtained NPP-MOD17A3 data in natural 358 

vegetation zones without anthropogenic disturbance at the same period. Figure 4 shows that the modelled 359 

NPP from the SEIB-DGVM exhibited a high degree of consistency with the NPP-MOD17A3 data in 360 

natural vegetation zones over the period (R2=0.63, p<0.05). The general spatiotemporal agreement 361 

between the simulated NPP derived from SEIB-DGVM with in-situ observations and derived from 362 

satellites reveals that it is reasonable to use the SEIB-DGVM simulations to evaluate the same 363 

mechanisms controlling global potential biomass carbon stocks of vegetation. 364 

 

Figure 4. Spatial patterns in the potential NPP correlation coefficients (P<0.05) between SEIB-

DGVM and MODIS between 2001–2015. These data were used to validate SEIB-DGVM. 

Finally, the modelled result of potential vegetation biomass carbon stock was compared with current 365 
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existing data from the literature and state-of-the-art datasets. Figure 5 shows that the modelled results are 366 

within the range of potential carbon stocks, which indicate that the SEIB-DGVM reliably simulated the 367 

carbon stock dynamics.  368 

 

Figure 5. Estimates of the potential vegetation biomass carbon stock from the literature (blue 

plot), state-of-the-art datasets (red plot) and this study (black line). Datasets are from the 

following studies: (1)(Erb et al., 2018; Erb et al., 2007), (2)(Bazilevich et al., 1971), (3)(Saugier et al., 

2001), (4)(Erb et al., 2018; Bartholome and Belward, 2005), (5)(Olson et al., 1983), (6)(Erb et al., 

2018; Pan et al., 2011), (7)(Ajtay et al., 1979), (8)Erb et al., 2018; Ruesch and Gibbs, 2008), 

(9)(Kaplan et al., 2011), (10)(Shevliakova et al., 2009), (11)(Kaplan et al., 2011), (12)(Pan et al., 

2013), (13)(Prentice et al., 2011), (14)(Erb et al., 2018; Erb et al., 2007), (15)(Erb et al., 2018; West 

et al., 2010), (16)(Hurtt et al., 2011). 

3.2 Enhanced carbon stocks and its fractions 369 

We distinguished the changes of LVBC and WVBC from total vegetation carbon stocks. The historical 370 

temporal trends over the period are showed shown in Figure 6a. The potential vegetation carbon stock 371 

exhibits a net increase of 119.26 ± 2.44 Pg C in the last century (± 2.44 represents intra-annual fluctuation 372 

in carbon stock, which is the difference between maximum value and minimum value of carbon stock 373 

within the year). Based on Pearson correlation analysis, this increasing trend of annual average carbon 374 

stock exhibits a robust agreement with the dramatic increase in atmospheric CO2 concentration 375 

(R2=0.9677, p<0.001), suggesting that the carbon stock is strongly affected by CO2 fertilization. 376 
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Meanwhile, the positive correlation between the carbon stock and CO2 generally extends across LVBC 377 

(R2=0.9669) and WVBC (R2=0.9622). After the value of the global terrestrial carbon stock and trends 378 

were partitioned among the vegetation functional classes, we see that LVBC increases 116.18 ± 2.34 Pg 379 

C (or ~15.60%), which explains 97.42% of total carbon stock increasing trend and dominates the positive 380 

global carbon stock trend; WVBC also increases 3.08 ± 0.14 Pg C (or ~18.03%) over the past century.  381 

 

Figure 6. Global potential biomass carbon stocks of vegetation during the past 100 years. (a) The 

evolution of global potential biomass stocks (LVBC+WVBC), along with changes in biomass stocks 

that can be attributed to the variability and trend of LVBC and WVBC through the twentieth century. 

The red line represents the monthly value of LVBC, the blue line represents the monthly value of 

WVBC, and the black line represents the annual value of CO2 concentration. (b, c) Zonal averaged 

sums of the annual LVBC and WVBC for latitudinal bands during the first decade (1916–1925, red 

line) and the last decade (2006–2015, blue line) shows the increased carbon stock capacity. 

The global distributions of the decadal-average change in LVBC and WVBC are shown in Figures 6b 382 

and 6c, respectively. The significant historical changes in climate and CO2 enhance the carbon stock of 383 

the terrestrial ecosystem, and their positive influences are broadly distributed across a latitudinal north–384 

south gradient. The latitudinal bands of increasing annual LVBC are mainly distributed in the tropical 385 

and boreal latitudes, which is consistent with Figure 7b. The decadal and inter-annual variabilities of 386 

LVBC are dominated by the tropical and semi-aridboreal zones where large portions of the zones are 387 

(a) 

(b) (c) 
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highly productive (Ahlstrom et al., 2015; Poulter et al., 2014). Tropical LVBC dominates the long-term 388 

trend of global LVBC in the last hundred years. Compared with LVBC, the increase of tropical WVBC 389 

is light. There is a single peak in the spatial variation of annual WVBC (Figure 6c and Figure 7c). WVBC 390 

exhibits robust growth at most latitudes, and increases mainly in boreal latitudes.  391 

3.3 Spatial variability in estimated LVBC and WVBC trends 392 

In Figures 7(a) and 7(b), total carbon stock and LVBC exhibited a significantly increasing trend in eastern 393 

South America, southern Africa, and northern Asia, while they declined in central North America, 394 

northwest South America, and central Africa. WVBC showed a more widely increasing tendency in 395 

North America, southeastern South America, and Europe, while had a decreasing trend in part zones of 396 

Asian. We find that the total carbon stock as well as the light- and water-gathering vegetation biomass 397 

carbon stocks over the period of 1916–2015 exhibited a remarkable spatial heterogeneity. Figure 7a 398 

shows that an increase in vegetation carbon stocks occurred over zones and global aggregate levels during 399 

the entire study period. About 57.39% of the terrestrial grid cells exhibited an increase with a noticeable 400 

trend (p<0.05) in biomass carbon stock; 53.82% of global grid cells possessed increases that were 401 

statistically significant at the p=0.01 level. To determine the contributions of each fraction (LVBC, 402 

WVBC) to the total change in the potential vegetation carbon stock, we partitioned and present the 403 

historical spatial and temporal patterns for each fraction separately (Figure 7b, 7c). LVBC contributes 404 

97.33% to the incremental change of total carbon stock (116.18 ± 2.34 Pg C), with about 51.32% of the 405 

grid cells possessing a noticeable positive trend (p=0.01). Generally, spatial patterns of LVBC and the 406 

total carbon stock are consistent (Figure 7a, 7b), which further supports the argument that LVBC 407 

dominates the trend in carbon stocks in most zones. Although the proportion of the total change in carbon 408 

stocks is small (2.58% of total carbon stock increase), about 61.00% of the land surface shows an increase 409 

in WVBC; of these terrestrial grid cells, 55.81% was characterized by a significant p=0.01 increase. 410 
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Figure 7. Spatial patterns in the trends of potential vegetation carbon stocks and their fractions 

from 1916 to 2015. Difference induced by changes in climate and CO2 in terrestrial biomass carbon 

stock (a), LVBC (b), and WVBC (c) during the historic period 1916–2015. The blue bar indicates the 

significantly increasing trends and the red bar indicates the significantly decreasing trends in carbon 

stocks. (d) Trend in the LVBC/WVBC ratio from 1916 to 2015. The blue bar indicates significantly 

increasing trends in the ratio, and vice versa. The grey bar indicates the trend is statistically 

insignificant (P >0.05). The sub-graphs show the significant test results. A ‘+’ symbol indicates a 

positive trend, and vice versa. 

Under the influences of a changing climate and CO2 concentrations, there is a slight increase in the ratio 411 

of global LVBC/WVBC; the rate of increase is 0.0171 yr−1 in the last hundred years, which is significant 412 

at the 0.01 level (Figure 7d). About 42.08% of the terrestrial grid cells exhibits an increase with a 413 

noticeable trend (p<0.05) in the ratio of LVBC and WVBC; 37.95% of global grid cells possessed 414 

increases that are statistically significant at the p=0.01 level. Meanwhile, 33.32% of the land surface 415 

shows a significant decrease in LVBC/WVBC; of these terrestrial grid cells, 30.06% is characterized by 416 

a significant p=0.01 decrease. Zones Gird cells with noticeable increases in the ratio of LVBC to WVBC 417 

are mainly located in southern Africa, central South America, and northern Eurasia. Negative trends in 418 

LVBC/WVBC ratios are found in northern America, southern Europe, and tropical Africa. 419 

3.4 Responses of LVBC and WVBC to environmental drivers 420 

The responses of LVBC and WVBC to changes in climate and CO2 are both positive at the global level 421 

(Figure 8a, 8c), although zonally, they exhibit both negative and positive responses (Figure 8b, 8d). 422 

Based on the results of factorial simulations and Mann-Kendall+Sen tests, CO2 fertilization explains the 423 

(a) (b) 

(d) (c) 
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largest proportion of the change in the carbon stock; about 82.45% change in LVBC was positive (Figure 424 

8a), whereas 89.28% of the change in WVBC was positive (Figure 8c). In factorial simulation S2, the 425 

long-term trend of LVBC was 15.521 g C m−2 yr−1 and that of WVBC was 0.435 g C m−2 yr−1 at the 426 

period from 1916 to 2015 (Figure A2a and Figure A3a). The separately simulated LVBC and WVBC 427 

increased by 80.98 Pg C and 2.66 Pg C with increasing atmospheric CO2 concentrations (from 301.73 428 

ppm in 1916 to 400.83 ppm in 2015). The other climatic drivers (precipitation, temperature, radiation, 429 

humidity, and wind speed) remained at baseline values. While the increase or decrease in the carbon 430 

stock may be attributed to more than one driving factor, within any specified grid cell, the one with the 431 

highest positive or negative contribution is the dominated dominant driver that consistently resulted in 432 

the highest increase or decrease in the carbon stock for that grid cell. The spatial pattern illustrates that 433 

CO2 dominates the variability in LVBC in 7.28% of the zonesgrid cells, including 1.21% of the zones 434 

grid cells that exhibited a negative change and 6.07% that exhibited a positive change (Figure 8b). CO2 435 

dominates the variability in WVBC in 27.60% of the zonesgrid cells, including 1.73% of the zones grid 436 

cells that exhibited a negative change and 25.87% of zones grid cells with a positive change (Figure 8d). 437 

Under the effect of CO2 fertilization, grid cells with increased trend in WVBC mainly distribute in boreal 438 

latitudes (Figure 6c). These trends are consistent with and previous studies (Tharammal et al., 2019; Zhu 439 

et al., 2016; Keenan et al., 2017) in which positive trends occurred, especially for WVBC. 440 
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Figure 8. The proportion of changes in the vegetation biomass carbon stocks attributed to 

driving factors. Ratios of the driving factors of CO2 fertilization effects (CO2), climate change effects 

(CLI), precipitation (Pre), temperature (Tem), radiation (Rad) for LVBC (a) and WVBC (c) under the 

five scenarios usingare calculated by the Mann-Kendall and Sen's slope estimator statistical tests. 

Attribution of LVBC (b) and WVBC (d) dynamics to driving factors calculated as averages along 15° 

latitude bands. At the local scales, the driving factors include CO2, Pre, Tem, Rad, and other climate 

factors (OF). The fraction of global area grid cells (%) that is predominantly influenced by the driving 

factors is showed at the bottom of the bar. The ‘-’ symbol before fraction indicates a negative effect 

of the driving factor on carbon stock, and vice versa. 

Climate change induced by the greenhouse effect explains part of the increase in carbon stocks, but unlike 441 

CO2 fertilization, climate has dramatic negative effects on some vegetated zones. Figure 8a illustrates 442 

that temperature is the largest climatic contributor to the change in LVBC (13.83%, 2.572 g m−2 yr−1), 443 

followed by precipitation (8.51%, 1.572 g m−2 yr−1) and radiation (–3.19%, –0.649 g m−2 yr−1). The spatial 444 

distribution shows that temperature predominantly influences the change in LVBC (Figure 8b), 445 

influencing over 27.56% of the global vegetated zonesgrid cells, followed by precipitation (21.88%) and 446 

radiation (20.67%). Figure 8c shows there are negative effects and contributions of precipitation on the 447 

change in WVBC at the global level (–2.76%, –0.013 g m−2 yr−1). Temperature is the largest climatic 448 
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contributor to the change in WVBC (15.36%, 0.075 g m−2 yr−1), followed by radiation (-5.63%, -0.027 g 449 

m−2 yr−1). Modelled WVBC trends based on the factorial simulations have similar spatiotemporal patterns 450 

to LVBC (Figures A2 and A3), and the spatial patterns of light- and water-gathering carbon stocks show 451 

a significantly increasing trend in the most of boreal zones. In the Southern Hemisphere, the trends of 452 

WVBC are extensively statistically insignificant in all factorial simulations, and only a small proportion 453 

of grid cellss show a significantly increasing trend. There is a significantly increasing trend in LVBC in 454 

south-central Africa and northern South America. The effects of temperature on WVBC are stronger than 455 

LVBC, because temperature has a stronger effect on the metabolism process of root growth, dominating 456 

the turnover rate and the costs of maintenance respiration in root growth process (Gill and Jackson, 2000). 457 

It should be noted that trends in the global carbon stock can be largely attributed to the influences of CO2, 458 

precipitation, temperature, and radiation (Figure 8). Nonetheless, at the zonal scale, the contributions of 459 

other factors should be considered, such as humidity and wind speed. The effects of these other factors 460 

dominate trends in LVBC in over 16.05% of the zones grid cells that increased and 6.57% of the zones 461 

grid cells that decreased. In the case of changes in WVBC, other factors were dominant drivers in over 462 

14.75% of the zones grid cells that increased and 3.57% of zones grid cells that decreased. Under the 463 

effect of climate, the variability of LVBC and WVBC is positive in most zonesgrid cells, promoting the 464 

noticeable increase of carbon stocks in boreal latitudes. 465 
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3.5 Constraints imposed by water limitations 466 
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Figure 9. Relationships in of the incremental change between AI and LVBC over the 

hydrological grid cells (Figure 1). Magnitude of change in LVBC in the historical scenario S1 (a), 

CO2 in scenario S2 (b), CO2 + precipitation in scenario S3 (c), CO2 + temperature in scenario S4 (d), 

and CO2 + radiation in scenario S5 (e). Range The range of the box is 25%-75% of values; the range 

of the whiskers is 10%-90% of values; the small red square is average value; the red line is the median 

line; and the black line is the fitted curve. Positive value of the Y axis represents the magnitude of 

increased LVBC from 1916 to 2015 under water-limitations conditions, and vice versa. AI of grid 

cells is calculated by multiyear average precipitation and multiyear average potential 

evapotranspiration in the period of 1916-2015. Categories of hydrological zones include: hyper-arid 

(AI ≤ 0.05), arid (0.05 < AI ≤ 0.2), semi-arid (0.2 < AI ≤ 0.5), sub-humid (0.5 < AI ≤ 0.65), 

and humid (AI > 0.65).. 

Terrestrial water availability emerged as a key regulator of terrestrial carbon storage, by affecting the 467 

response mechanism of the vegetation carbon stock to changes in driving factors. As shown in Figures 9 468 

and 10, with the accumulated change of LVBC and WVBC in the period of 1916 to 2015 across the 469 

aridity index (i.e., an increase in available water), the magnitude and range in responses of LVBC density 470 
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and WVBC density gradually increase. Based on the results of the historical simulation (Figure 9), we 471 

find a positive relationship between LVBC and aridity index. In extreme water stress, the increase of 472 

LVBC tends to zero and plants stop increasing their carbon storage. There is no obvious difference in 473 

the slopes of fitting curves between factorial simulations, which shows the robustness in the response of 474 

LVBC to the change of water stress. The pattern of the enhanced magnitude and range of variation in the 475 

WVBC density is unimodal with water stress gradient in all factorial simulations. With the increasing of 476 

AI, the magnitude of change in WVBC increases at first and then decreases finally. The mitigation of 477 

water stress promotes WVBC increase, while excess surface water limits the response of WVBC to 478 

changes in climate and CO2. These results reveal that the carbon stock increases stimulated by changes 479 

in climate and CO2 are constrained by water available. With increased warming, water limitations are 480 

expected to increasingly limit the carbon stock increase, specially at arid regions. To further reveal the 481 

controls of water limitation on the responses of inner carbon storages to each driver, we analyse the long-482 

term variability of potential vegetation carbon stocks by means of factorial simulations for each 483 

hydrological region (Figure 1). Figure A7b shows that the maximum change magnitudefluctuation range 484 

(the difference between maximum value and minimum value in each factorial simulation) of LVBC 485 

density across all factorial simulation is 1.202 kg C m−2 in the hyper-arid regions for the 1916-2015 486 

period. As shown in Figure A7f, the maximum change magnitudefluctuation range of LVBC density in 487 

humid regions is 6.068 kg C m−2 during the same period.  In Figure A8b, the maximum change 488 

magnitude of WVBC density across all factorial simulation is 0.011 kg C m−2 in the hyper-arid regions 489 

during the time of 1916-2015. In Figure A8f, the maximum change magnitude of WVBC density is 0.046 490 

kg C m−2 in humid regions during the same period. Compared with plants lived in aridity regions, plants 491 

in humid regions show more dramatic responses to the stimulation from drivers’ change. With a lessening 492 

of water stress (from hyper-arid to humid region), the response magnitudes of the carbon stock to the 493 

changes of climate and CO2 gradually become more noticeable. The robust pattern in the zonal average 494 

density of the carbon stock shows that terrestrial water limitations strongly regulate the enhanced 495 

magnitude of the carbon stock.  496 
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Figure 10. Relationships in of the incremental change in AI and WVBC over the hydrological 

grid cells (Figure 1). Magnitude of change in WVBC in the historical scenario S1 (a), CO2 in scenario 

S2 (b), CO2 + precipitation in scenario S3 (c), CO2 + temperature in scenario S4 (d), and CO2 + 

radiation in scenario S5 (e). The Rrange of the box is 25%-75% of values; the range of the whiskers 

is 10%-90% of values; the small red square is average value; the red line is the median line, and the 

black line is the fitted curve. Positive value of the Y axis represents the magnitude of increased WVBC 

from 1916 to 2015 under water-limitations conditions, and vice versa. AI of grid cells is calculated by 

multiyear average precipitation and multiyear average potential evapotranspiration in the period of 

1916-2015. Categories of hydrological zones include: hyper-arid (AI ≤ 0.05), arid (0.05 < AI ≤ 

0.2), semi-arid (0.2 < AI ≤ 0.5), sub-humid (0.5 < AI ≤ 0.65), and humid (AI > 0.65). 

Water limitations not only directly reduced the magnitude of the response in the two fractions' carbon 497 

stock (LVBC and WVBC) to changes in climate and CO2, but also indirectly confined the response 498 

direction of each fractions' carbon stock by transforming vegetation structure and function. Figure 11 499 

illustrates temporal variations in the carbon stock ratio within and between hydrological regions. From 500 

hyper-arid zones regions to humid zonesregions, the fluctuation range (the difference between maximum 501 

value and minimum value in each factorial simulation) of LVBC/WVBC ratio significantly changes. The 502 

fluctuation magnitudes of LVBC/WVBC in humid and hyper-arid zones regions are greater than that in 503 

other hydrological zonesregions. Compared with plants in hyper-arid zonesregions, plants in humid 504 

zones regions exhibit more significant responses to changes in climate and CO2. Meanwhile, the long-505 

term effects of driver changes have a remarkable influence on this carbon allocation pattern at global 506 

level (Figure 7d). Under the synergistic effect of drivers and water stress, the trends of light- and water-507 

gathering vegetation carbon stock are upward in the past hundred years (Figure 6). However, there is a 508 

difference in the increasing rate between LVBC and WVBC, resulting in a dramatic and complicated 509 

fluctuation in global LVBC/WVBC ratio (Figure 11a). Whereas LVBC decreases and WVBC increases 510 

in hyper-arid and arid regions (Fig. A7 and A8), causing a downward trend in LVBC:WVBC ratio, 511 

semiarid regions see an increase in LVBC. The density of LVBC decreases and that of WVBC increases 512 

in hyper-arid and arid zones for all factorial simulations (Figures A7 and A8). So, the ratio of LVBC and 513 

WVBC shows a downward trend in these zonesregions. LVBC in semi-arid regions shows upward 514 

tendency in the past years (Figure A7d) because of the aridity mitigation. There is an upward trend in 515 
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WVBC in semi-arid regions (Figure A8d). Plants in semi-arid regions still utilize a tolerance strategy 516 

and allocates more non-structural carbon to water-gathering vegetation organ to resist water stress, 517 

resulting in the decline of LVBC/WVBC ratio. In humid zonesregions, light- and water-gathering 518 

biomass carbon stocks both increased in all factorial simulations (Figures A7 and A8). The proportion 519 

of LVBC increases more than that of WVBC for capturing more resources like CO2 and radiation energy, 520 

leading to an increase in the LVBC/WVBC ratio. The value of LVBC/WVBC in S3 is higher than that 521 

in S4 and S5, which represents that precipitation makes more contributions to the change of 522 

LVBC/WVBC ratio among meteorological factors. 523 

 

Figure 11. Temporal fluctuations in carbon stock dynamics in vegetation biomass in different 

factorial simulations. Black indicates historical factorial simulation from 1901-2015, green indicates 

the CO2-driven factorial simulation, blue indicates the precipitation-driven factorial simulation, red 

indicates the temperature-driving factorial simulation and yellow indicates radiation driven factorial 

simulation. Uncertainty bounds are provided as shaded areas reflect the intra-annual fluctuation (± 1 

s.d.) (a) Modelled trend of LVBC/WVBC ratio in Global area. (b-f) Modelled trend of the 

LVBC/WVBC ratio in different hydrological regions (Figure 1).  
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4 Discussions and conclusion 524 

To understand the response of carbon storage potential and its inner biomass carbon stocks to 525 

environmental change, we conducted a series of factorial simulations using SEIB-DGVM V3.02. More 526 

importantly, we investigated the extent of the responses of carbon stocks to water limitations. 527 

 528 

Over the past 100 years, there has been an ongoing increase in the carbon storage capacity of the 529 

terrestrial ecosystem from 735 Pg C in 1916 to 855 Pg C in 2015 (Figure 6), which has slowed the rate 530 

at which atmospheric CO2 has increased and may have mitigated global warming. These findings are 531 

consistent with the conclusions of research conducted at the local scale. For example, based on carbon 532 

flux data, Erb et al. (2008) suggested that the vegetation carbon stock in Austria increased from 1043 Mt 533 

C to 1249 Mt C (aboveground carbon stocks growth was 1.059 Mt C yr−1 and belowground carbon stocks 534 

growth was 0.2 Mt C yr−1) since industrialization. Le Noë et al. (2020) showed that increases in the 535 

carbon stocks and carbon density were the predominant drivers in the forest terrestrial carbon 536 

sequestration capacity in France from 1850 to 2015. Tong et al. (2020) also found a substantial increase 537 

of aboveground carbon stocks in southern China (0.11 Pg C yr−1) during the period 2002–2017. However, 538 

these studies focused on zonal trends in total vegetation carbon stocks and did not investigate the extent 539 

of the response in vegetation carbon stocks partitioned between light- and water-gathering biomass. Our 540 

results show that the increase in carbon stock in light-gathering vegetation organs was much larger than 541 

that in water-gathering vegetation organs, and light-gathering biomass carbon stock dominates the 542 

historical trend of the terrestrial carbon stock. During the past decades, the global land surface has been 543 

greening because of the flux and storage of more carbon into plant trunks and foliage (Zhu et al., 2016). 544 

LVBC increases 116.18 ± 2.34 Pg C from 1916 to 2015, accounting for 97.42% of the total carbon stock 545 

increase (119.26 ± 2.44 Pg C). The long-term trends and spatial pattern of vegetation carbon stock are 546 

predominated the variability characteristic of LVBC. The latitudinal bands of increasing annual change 547 

in LVBC are mainly distributed in tropical latitudes, a conclusion consistent with prior knowledge that 548 

tropical zones dominate carbon uptake and storage (Erb et al., 2018; Schimel et al., 2015). Under the 549 

influences of environmental stressors, WVBC increases significantly in boreal latitudes. Biomass carbon 550 

allocation between light- and water-gathering vegetation organs reflect the changes in individual growth, 551 

community structure and ecosystem function, which are important attributes in the investigation of 552 
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carbon stocks and carbon cycling within the terrestrial biosphere (Hovenden et al., 2014; Fang et al., 553 

2010; Ma et al., 2021). During the past hundred years, the ratio of LVBC/WVBC showed a slight upward 554 

trend since LVBC increased relatively more  dramatically than WVBC. The rate of increase is 0.0171 555 

yr-1, which is significant at the 0.01 level. To better absorb CO2 and sunlight required for photosynthesis, 556 

vegetated regions are gradually covered by vegetation with higher plant height and wider leaf area, 557 

thereby adjusting their characteristic ecosystem functions (Erb et al., 2008). 558 

 559 

Based on our factorial simulations (Figure 8), the influences of CO2 fertilization induce the most 560 

significant variation of the vegetation carbon stock. In addition, the responses of carbon stocks to the 561 

changes of climatic factors are obvious, particularly at the zonal grid cell scale. Previous studies have 562 

pointed out that the variation of the terrestrial carbon stock caused by releasing or sequestering carbon is 563 

sensitive to anomalous changes in water availability and light use efficiency (Madani et al., 2020; 564 

Humphrey et al., 2018). At the grid cell scale, shown in Figure 8b and 8d, radiation and precipitation 565 

dominate the long-term trend of carbon stocks over one third of global grid cells. At the global scale, 566 

radiation and precipitation explain approximately 10% of long-term trend in LVBC and WVBC (Figure 567 

8a and 8c). LVBC and WVBC variations driven by precipitation and radiation are ultimately offset by 568 

spatially compensatory effects, which dampens the response of the carbon stock to these factors at global 569 

scale (Jung et al., 2017). This spatially compensatory effect of climate changes is consistent with previous 570 

analyses (Zhu et al., 2016) that climate changes explain 8% of the increasing carbon storage of global 571 

foliage, while climate changes dominate the greening trend over 28.4% of the global land. Results reveal 572 

that trends in temperature drove historical long-term trends in the potential carbon stocks, with faster 573 

increases and considerable variation occurring by zone. The accumulated influence of climate warming 574 

induces dramatic changes in the carbon stock at a global scale. Thus, we suggest that temperature 575 

dominates the long-term trends in the carbon stock among climatic drivers, while a compensatory effect 576 

exists in the global change in the carbon stock induced by precipitation and radiation.At the grid cell 577 

scale, as shown in Figures 8b and 8d, temperature, radiation, precipitation, and other climate factors 578 

(humidity and wind speed) dominate the long-term trend of carbon stocks over two thirds of global grid 579 

cells. At the global scale, climate factors explain 17.55% and 10.72% of long-term trend in LVBC and 580 

WVBC, respectively (Figures 8a and 8c). LVBC and WVBC variations driven by climate factors are 581 
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ultimately offset by spatially compensatory effects, which dampens the response of the carbon stock to 582 

these factors at the global scale (Jung et al., 2017). Thus, contributions of precipitation and radiation to 583 

the variability of LVBC and WVBC are relatively low at the global scale, and the effects of humidity 584 

and wind speed on global carbon stock are minor. This spatially compensatory effect of climate changes 585 

is consistent with a previous analysis (Zhu et al. 2016) which found that climate changes explain only 8% 586 

of the increasing trend in foliage carbon storage at the global level but that they dominate the trend over 587 

28.4% of global land area. Results show that trends in temperature drive historical long-term trends in 588 

the potential carbon stocks, with faster increases and considerable variation occurring by grid cell. Thus, 589 

our results reveal that temperature dominates the long-term trends of carbon stock among climatic drivers, 590 

while a relatively strong compensatory effect exists in the global change in the carbon stock induced by 591 

precipitation, radiation, humidity, and wind speed. 592 

 593 

By partitioning the trends of LVBC and WVBC into five hydrological regions (Figure 1), we found that 594 

the long-term change in carbon stocks is tightly coupled to terrestrial water availability. These results 595 

indicate that vegetation in humid regions is responsible for most of the trend in global LVBC, while 596 

plants in semi-arid regions play a dominate global role in controlling the long-term trend in WVBC 597 

(Figures 9 and 10). As water stress decreases, the magnitude and range in variation of LVBC gradually 598 

increase (Figure 9), which suggests that limited water availability constrains the response magnitude of 599 

the changes in LVBC to changes in CO2 and climate. The response pattern of WVBC growth to the 600 

increasing water availability is different from that of LVBC. Drought mitigation promotes the growth of 601 

WVBC. In sub-humid and humid regions, plants face low water limitations and intensified light-602 

competition and have to invest as much non-structural carbon as possible into leaf and trunk. This 603 

allocation scheme leads to the decreased investment of ΔWVBC in wet regions. The result is consistent 604 

with previous finding that plants reduce investment to roots in dense forests where aboveground 605 

competition for light is high (Ma et al. 2021). Moreover, we found that indirect effects of water limitation 606 

regulate increasing rate of each carbon pool. Although vegetation carbon stocks dramatically increase 607 

under the effects of climate and CO2 changes, the increasing rate of LVBC faster than WVBC in humid 608 

regions. Vegetation stores more biomass in aboveground plant organs (trunk and foliage) to gather light. 609 

Dryland plants decrease the LVBC/WVBC ratios and store more biomass below ground to enhance the 610 
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capture of water resources. Based on these results, we demonstrate that water limitations controlled the 611 

variable response of terrestrial vegetation carbon stocks.  612 

 613 

Our findings are consistent with other reports about the impact of increasing water limitations on 614 

terrestrial ecosystem. Based on observation from satellite remote sensing observations, Madani et al. 615 

(2020) found that the constraining impact of water limitation determines whether global ecosystem 616 

productivity responds positively or negatively to the changes in climate factors. Madani et al. (2020) 617 

found that changes in water constraints significantly affect the response patterns of ecosystem 618 

productivity and net carbon exchange. Humphrey et al. (2021) found that increasing water stress limits 619 

the response magnitude of carbon uptake rates through a down-regulation of stomatal conductance and 620 

suggested that land carbon uptake is driven by temperature and vapour pressure deficit effects that are 621 

controlled by terrestrial water availability. Ma et al. (2021) found that plants increase investment into 622 

building roots in arid region because the extent of water limitation there is exacerbated by global warming. 623 

Terrestrial hydrological conditions significantly affect the carbon cycle process of terrestrial ecosystems, 624 

including carbon uptake, allocation, and stock. Terrestrial ecosystems utilize sensitive strategies to 625 

allocate and store biomass to adjust to local hydrological conditions. A significant conclusion is that 626 

water constraints not only confine the responses of vegetation carbon stocks to drivers of variability, but 627 

also constrain the proportion of biomass carbon stocks in gather- and water-gathering fractions. 628 

 629 

Distinguishing the response of carbon stock fractions estimated by SEIB-DGVM improves the 630 

understanding of the interactive impacts of terrestrial carbon and water dynamics. However, uncertainty 631 

still exists because of the limitations in the processes of modelling vegetation metabolism with SEIB-632 

DGVM. Trunk biomass contains tree branches and structural roots (coarse roots and tap roots) (Sato et 633 

al., 2007), so the R/S ratio of potential vegetation in factorial simulations is smaller than the R/S of actual 634 

vegetation in observation stations. Root biomass only contains the fine root biomass, leading to an 635 

apparent underestimate in belowground organ biomass of trees and grasses compare with previous 636 

conclusion (Ma et al., 2021; Yang et al., 2009). Availability of nitrogen is a key limiting factor for 637 

vegetation growth, especially when higher CO2 fertilization effects exist (Tharammal et al., 2019). The 638 

limitation could be alleviated by nitrogen deposition in most temperate and boreal ecosystems. The 639 
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SEIB-DGVM experiments were conducted with a focus on documenting CO2 fertilization and climate 640 

change interactions; these experiments did not consider the influences of nitrogen deposition, which leads 641 

to a slight should cause an underestimate of the contributions of CO2 fertilization on biomass production. 642 

 643 

In summary, we evaluated SEIB-DGVM V3.02 and used this model to offer new perspectives on the 644 

response of vegetation carbon storage potential to changes in climate and CO2. Our simulation results 645 

show that changes in CO2, rather than climate, dominate the light- and water-gathering partitioning of 646 

the carbon storage potential. More importantly, we suggest that the impact of CO2 fertilization and 647 

temperature effects on vegetation carbon-sequestration potential depends on water availability and its 648 

impacts on plant stress. With increased global warming, water limitations are expected to increasingly 649 

confine global carbon sequestration and storage. Our findings highlight the need to account for terrestrial 650 

water limitation effects when estimating the response of the terrestrial carbon storage capacity to global 651 

climate change, and the need for stronger interactions between those involved in vegetation model 652 

development and those in between the hydrological and ecological research communities.  653 
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Appendices 654 

Table A1. MCD12C1 legend and class descriptions 655 

Name Value Description 

Evergreen Needleleaf 

Forests 
1 

Dominated by evergreen conifer trees (canopy >2m). Tree 

cover >60%. 

Evergreen Broadleaf 

Forests 
2 

Dominated by evergreen broadleaf and palmate trees 

(canopy >2m). Tree cover >60%. 

Deciduous Needleleaf 

Forests 
3 

Dominated by deciduous needleleaf (larch) trees 

(canopy >2m). Tree cover >60%. 

Deciduous Broadleaf 

Forests 
4 

Dominated by deciduous broadleaf trees (canopy >2m). Tree 

cover >60%. 

Mixed Forests 5 
Dominated by neither deciduous nor evergreen (40-60% of 

each) tree type (canopy >2m). Tree cover >60%. 

Closed Shrublands 6 Dominated by woody perennials (1-2m height) >60% cover. 

Open Shrublands 7 Dominated by woody perennials (1-2m height) 10-60% cover. 

Woody Savannas 8 Tree cover 30-60% (canopy >2m). 

Savannas 9 Tree cover 10-30% (canopy >2m). 

Grasslands 10 Dominated by herbaceous annuals (<2m). 

Permanent Wetlands 11 
Permanently inundated lands with 30-60% water cover 

and >10% vegetated cover. 

Croplands 12 At least 60% of area is cultivated cropland. 

Urban and Built-up Lands 13 
At least 30% impervious surface area including building 

materials, asphalt, and vehicles. 

Cropland/Natural 

Vegetation Mosaics 
14 

Mosaics of small-scale cultivation 40-60% with natural tree, 

shrub, or herbaceous vegetation. 

Permanent Snow and Ice 15 
At least 60% of area is covered by snow and ice for at least 

10 months of the year. 

Barren 16 
At least 60% of area is non-vegetated barren (sand, rock, 

soil) areas with less than 10% vegetation. 

Water Bodies 17 At least 60% of area is covered by permanent water bodies. 

Unclassified 255 Has not received a map label because of missing inputs 

 656 
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Figure A1. Schematic of ecosystem carbon cycle. Yellow arrow indicates carbon flux. Atmospheric 

CO2 transitions into gross primary production (GPP) by photosynthesis. GPP is partitioned into 

respiration and net primary production (NPP). NPP is partitioned into three biomass carbon pools 

(foliage, trunk, and root). 

 657 

 

Figure A2. Potential LVBC trend maps during the period of 1916 to 2015 under different factorial 

simulations. (a) CO2 driving factorial simulation (S2); (b) CO2+precipitation driving factorial simulation 

(S3); (c) CO2+temperature driving factorial simulation (S4); and (d) CO2+radiation driving factorial 

simulation (S5). Positive values indicate increasing trends in the ratio, and vice versa. All results from 

Mann-Kendall and Sen's slope statistical tests correspond to the 95% confidence interval. 

 658 

(a)

 

(b)

 

(c)     (d)

 



36 

 

 

Figure A3. Potential WVBC variation trend maps during the period of 1916 to 2015 under different 

factorial simulations. (a) CO2 driving factorial simulation (S2); (b) CO2+precipitation driving factorial 

simulation (S3); (c) CO2+temperature driving factorial simulation (S4); and (d) CO2+radiation driving 

factorial simulation (S5). Positive values indicate increasing trends in the ratio, and vice versa. All 

results from Mann-Kendall and Sen's slope statistical tests correspond to the 95% confidence interval. 
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Figure A4. The shift of hydrological regions defined by the multiyear average AI index from the period 

of 1916-1945 to the period of 1986-2015. The outermost number represent the percentage of 

hydrological regions in 1916-1945. 

(a)

 

(b)

 

(c)

 

(d)
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 660 

 

Figure A5. Spatial distribution of multi-year average fraction of managed pasture from 2001-2015 at 

0.5 × 0.5 arc-degree resolution. 

   661 
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Figure A6. Map of grid cells whose largest vegetation componentland vegetation without 

anthropogenic disturbance from MCD12C1 and LUH2. ENF: Evergreen needleleaf forest, EBF: 

Evergreen broadleaf forest, DNF: Deciduous needleleaf forest, DBF: Deciduous broadleaf forest, MF: 

Mixed forest, CS: Closed shrublands, OS: Open shrublands, WS: Woody savannas, SA: Savannas, 

GL: Grasslands, NI: Not included, which means the zone is not covered by vegetation without 

anthropogenic disturbance.  

 662 
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Figure A7. Trends in average density of potential LVBC. (a) Modelled trend of annual averaged 

LVBC globally. Modelled trends in annual averaged LVBC in hyper-arid zone region (b), arid zone 

region (c), semi-arid zone region (d), sub-humid zone region (e), and humid zone region (f).  

 663 

 

Figure A8. Trends in average density of potential WVBC. (a) Modelled trend of annual averaged 

WVBC globally. Modelled trends in annual averaged WVBC in hyper-arid zone region (b), arid zone 

region (c), semi-arid zone region (d), sub-humid zone region (e), and humid zone region (f).  

Code and data availability statement 664 

The code of SEIB-DGVM version 3.02 can be download from http://seib-dgvm.com/. Climatic Research 665 

Unit data can be downloaded from https://crudata.uea.ac.uk/cru/data/hrg/. The soil physical parameters 666 

can be downloaded from www.iges.org/gswp. The reconstructed CO2 concentration dataset and SEIB 667 

code can be downloaded from http://seib-dgvm.com/. In model validation, Ecosystem Model-Data 668 

Intercomparison (multiyear average NPP product) data were collected from 669 

https://daac.ornl.gov/NPP/guides/NPP_EMDI.html. Remote sensing product MOD17A3 data were 670 

obtained from https://lpdaac.usgs.gov/products/mod17a3hgfv006/, MCD12C1 data were obtained from 671 

http://seib-dgvm.com/
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Jungclaus, J., Jed Kaplan, Kennedy, J., Kristzin, T., Lawrence, D., Lawrence, P., Ma, L., Mertz, O., 777 

Pongratz, J., Popp, A., Poulter, B., Riahi, K., Shevliakova, E., Stehfest, E., Thornton, P., Tubiello, 778 



43 

 

F. N., van Vuuren, D. P., Zhang, X.: Harmonization of Global Land-Use Change and Management 779 

for the Period 850-2100 (LUH2) for CMIP6, Geoscientific Model Development, 13, 5425-5464, 780 

10.5194/gmd-13-5425-2020, 2021. 781 

IPCC: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth 782 

Assessment Report of the Intergovernmental Panel on Climate Change, 2007. 783 

Jung, M., Reichstein, M., Schwalm, C. R., Huntingford, C., Sitch, S., Ahlstrom, A., Arneth, A., Camps-784 

Valls, G., Ciais, P., Friedlingstein, P., Gans, F., Ichii, K., Jain, A. K., Kato, E., Papale, D., Poulter, 785 

B., Raduly, B., Rodenbeck, C., Tramontana, G., Viovy, N., Wang, Y. P., Weber, U., Zaehle, S., and 786 

Zeng, N.: Compensatory water effects link yearly global land CO2 sink changes to temperature, 787 

Nature, 541, 516-520, 10.1038/nature20780, 2017. 788 

Kaplan, J. O., Krumhardt, K. M., Ellis, E. C., Ruddiman, W. F., Lemmen, C., and Goldewijk, K. K.: 789 

Holocene carbon emissions as a result of anthropogenic land cover change, Holocene, 21, 775-791, 790 

10.1177/0959683610386983, 2011. 791 

Keenan, T. F., Prentice, I. C., Canadell, J. G., Williams, C. A., Wang, H., Raupach, M., and Collatz, G. 792 

J.: Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake 793 

Nat Commun, 7, 10.1038/Ncomms16137, 2017. 794 

Kindermann, G. E., Mcallum, I., Fritz, S., and Obersteiner, M.: A global forest growing stock, biomass 795 

and carbon map based on FAO statistics, Silva Fenn, 42, 387-396, 10.14214/Sf.244, 2008. 796 

Le Noë, J., Matej, S., Magerl, A., Bhan, M., Erb, K. H., and Gingrich, S.: Modeling and empirical 797 

validation of long-term carbon sequestration in forests (France, 1850-2015), Glob Chang Biol, 26, 798 

2421-2434, 10.1111/gcb.15004, 2020. 799 

Liu, J., Bowman, K. W., Schimel, D. S., Parazoo, N. C., Jiang, Z., Lee, M., Bloom, A. A., Wunch, D., 800 

Frankenberg, C., Sun, Y., O'Dell, C. W., Gurney, K. R., Menemenlis, D., Gierach, M., Crisp, D., 801 

and Eldering, A.: Contrasting carbon cycle responses of the tropical continents to the 2015-2016 El 802 

Nino, Science, 358, eaam5690, 10.1126/science.aam5690, 2017. 803 

Ma, H. Z., Mo, L. D., Crowther, T. W., Maynard, D. S., van den Hoogen, J., Stocker, B. D., Terrer, C., 804 

and Zohner, C. M.: The global distribution and environmental drivers of aboveground versus 805 

belowground plant biomass, Nat Ecol Evol, 5, 1110-+, 10.1038/s41559-021-01485-1, 2021. 806 

Madani, N., Parazoo, N. C., Kimball, J. S., Ballantyne, A. P., Reichle, R. H., Maneta, M., Saatchi, S., 807 

Palmer, P. I., Liu, Z., and Tagesson, T.: Recent Amplified Global Gross Primary Productivity Due 808 

to Temperature Increase Is Offset by Reduced Productivity Due to Water Constraints, AGU 809 

Advances, 2, e2020AV000180, 10.1029/2020AV000180, 2020. 810 

Magerl, A., Le Noë, J., Erb, K.-H., Bhan, M., and Gingrich, S.: A comprehensive data-based assessment 811 

of forest ecosystem carbon stocks in the U.S. 1907–2012, Environ Res Lett, 14, 125015, 812 

10.1088/1748-9326/ab5cb6, 2019. 813 

McConnaughay, K. D. M. and Coleman, J. S.: Biomass allocation in plants: ontogeny or optimality? A 814 

test along three resource gradients, Ecology, 80, 2581-2593, 10.1890/0012-815 

9658(1999)080[2581:BAIPOO]2.0.CO;2, 1999. 816 

Monteith, J. L. and Unsworth, M. H.: Principles of Environmental Physics, 2nd ed., London1990. 817 

Olson, J., Watts, J., and Allison, L.: Carbon in Live Vegetation of Major World Ecosystems, Oak Ridge 818 

National Laboratory1983. 819 

Pan, Y. D., Birdsey, R. A., Phillips, O. L., and Jackson, R. B.: The Structure, Distribution, and Biomass 820 

of the World's Forests, Annu Rev Ecol Evol S, 44, 593-622, 10.1146/annurev-ecolsys-110512-821 

135914, 2013. 822 



44 

 

Pan, Y. D., Birdsey, R. A., Fang, J. Y., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., 823 

Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. 824 

D., Piao, S. L., Rautiainen, A., Sitch, S., and Hayes, D.: A Large and Persistent Carbon Sink in the 825 

World's Forests, Science, 333, 988-993, 10.1126/science.1201609, 2011. 826 

Piao, S. L., Friedlingstein, P., Ciais, P., Zhou, L. M., and Chen, A. P.: Effect of climate and CO2 changes 827 

on the greening of the Northern Hemisphere over the past two decades, Geophys Res Lett, 33, 828 

L23402, 10.1029/2006GL028205, 2006. 829 

Piao, S. L., Wang, X., Wang, K., Li, X., Bastos, A., Canadell, J. G., Ciais, P., Friedlingstein, P., and 830 

Sitch, S.: Interannual variation of terrestrial carbon cycle: Issues and perspectives, Glob Chang Biol, 831 

26, 300-318, 10.1111/gcb.14884, 2020. 832 

Poorter, H.: Construction costs and payback time of biomass: a whole plant perspective, A Whole-Plant 833 

Perspective on Carbon-Nitrogen Interactions, SPB Academic Publishing, The Hague1994. 834 

Poulter, B., Frank, D., Ciais, P., Myneni, R. B., Andela, N., Bi, J., Broquet, G., Canadell, J. G., Chevallier, 835 

F., Liu, Y. Y., Running, S. W., Sitch, S., and van der Werf, G. R.: Contribution of semi-arid 836 

ecosystems to interannual variability of the global carbon cycle, Nature, 509, 600-603, 837 

10.1038/nature13376, 2014. 838 

Prentice, I. C., Harrison, S. P., and Bartlein, P. J.: Global vegetation and terrestrial carbon cycle changes 839 

after the last ice age, New Phytol, 189, 988-998, 10.1111/j.1469-8137.2010.03620.x, 2011. 840 

Roy, J., Saugier, B., and Mooney, H. A.: Estimations of global terrestrial productivity: converging toward 841 

a single number? In: Terrestrial Global Productivity, Academic Press, San Diego2001. 842 

Ruesch, A. and Gibbs, H. K.: New IPCC Tier-1 global biomass carbon map for the year 2000, 2008. 843 

Ryan, M. G.: Effects of Climate Change on Plant Respiration, Ecological Applications, 1, 157-167, 844 

10.2307/1941808, 1991. 845 

Sato, H., Itoh, A., and Kohyama, T.: SEIB–DGVM: A new Dynamic Global Vegetation Model using a 846 

spatially explicit individual-based approach, Ecological Modelling, 200, 279-307, 847 

10.1016/j.ecolmodel.2006.09.006, 2007. 848 

Sato, H., Kobayashi, H., Beer, C., and Fedorov, A.: Simulating interactions between topography, 849 

permafrost, and vegetation in Siberian larch forest, Environ Res Lett, 15, 095006, 10.1088/1748-850 

9326/Ab9be4, 2020. 851 

Saugier, B., Roy, J., and Mooney, H.: Estimations of Global Terrestrial Productivity, Terrestrial Global 852 

Productivity, Academic Press, San Diego, Calif2001. 853 

Schimel, D., Stephens, B. B., and Fisher, J. B.: Effect of increasing CO2 on the terrestrial carbon cycle, 854 

Proceedings of the National Academy of Sciences of the United States of America, 112, 436-441, 855 

10.1073/pnas.1407302112, 2015. 856 

Seo, H. and Kim, Y.: Interactive impacts of fire and vegetation dynamics on global carbon and water 857 

budget using Community Land Model version 4.5, Geosci Model Dev, 12, 457-472, 10.5194/gmd-858 

12-457-2019, 2019. 859 

Shevliakova, E., Pacala, S. W., Malyshev, S., Hurtt, G. C., Milly, P. C. D., Caspersen, J. P., Sentman, L. 860 

T., Fisk, J. P., Wirth, C., and Crevoisier, C.: Carbon cycling under 300 years of land use change: 861 

Importance of the secondary vegetation sink, Global Biogeochem Cy, 23, 10.1029/2007gb003176, 862 

2009. 863 

Sun, F., Roderick, M. L., and Farquhar, G. D.: Changes in the variability of global land precipitation, 864 

Geophys Res Lett, 39, L19402, 10.1029/2012gl053369, 2012. 865 

Tei, S., Sugimoto, A., Liang, M. C., Yonenobu, H., Matsuura, Y., Osawa, A., Sato, H., Fujinuma, J., and 866 



45 

 

Maximov, T.: Radial Growth and Physiological Response of Coniferous Trees to Arctic 867 

Amplification, J Geophys Res-Biogeo, 122, 2786-2803, 10.1002/2016JG003745, 2017. 868 

Terrer, C., Phillips, R. P., Hungate, B. A., Rosende, J., Pett-Ridge, J., Craig, M. E., van Groenigen, K. J., 869 

Keenan, T. F., Sulman, B. N., Stocker, B. D., Reich, P. B., Pellegrini, A. F. A., Pendall, E., Zhang, 870 

H., Evans, R. D., Carrillo, Y., Fisher, J. B., Van Sundert, K., Vicca, S., and Jackson, R. B.: A trade-871 

off between plant and soil carbon storage under elevated CO2, Nature, 591, 599-603, 872 

10.1038/s41586-021-03306-8, 2021. 873 

Tharammal, T., Bala, G., Devaraju, N., and Nemani, R.: A review of the major drivers of the terrestrial 874 

carbon uptake: model-based assessments, consensus, and uncertainties, Environ Res Lett, 14, 875 

093005, 10.1088/1748-9326/Ab3012, 2019. 876 

Tong, X. W., Brandt, M., Yue, Y. M., Ciais, P., Jepsen, M. R., Penuelas, J., Wigneron, J. P., Xiao, X. 877 

M., Song, X. P., Horion, S., Rasmussen, K., Saatchi, S., Fan, L., Wang, K. L., Zhang, B., Chen, Z. 878 

C., Wang, Y. H., Li, X. J., and Fensholt, R.: Forest management in southern China generates short 879 

term extensive carbon sequestration, Nat Commun, 11, 10.1038/s41467-019-13798-8, 2020. 880 

West, P. C., Gibbs, H. K., Monfreda, C., Wagner, J., Barford, C. C., Carpenter, S. R., and Foley, J. A.: 881 

Trading carbon for food: Global comparison of carbon stocks vs. crop yields on agricultural land, 882 

Proceedings of the National Academy of Sciences of the United States of America, 107, 19645-883 

19648, 10.1073/pnas.1011078107, 2010. 884 

Wild, M., Gilgen, H., Roesch, A., Ohmura, A., Long, C. N., Dutton, E. G., Forgan, B., Kallis, A., Russak, 885 

V., and Tsvetkov, A.: From dimming to brightening: Decadal changes in solar radiation at Earth's 886 

surface, Science, 308, 847-850, 10.1126/science.1103215, 2005. 887 

Yang, Y., Fang, J., Ma, W., Guo, D., and Mohammat, A.: Large-scale pattern of biomass partitioning 888 

across China's grasslands, Global Ecology and Biogeography, 19, 268-277, 10.1111/j.1466-889 

8238.2009.00502.x, 2010. 890 

Zhang, H., Song, T. Q., Wang, K. L., Yang, H., Yue, Y. M., Zeng, Z. X., Peng, W. X., and Zeng, F. P.: 891 

Influences of stand characteristics and environmental factors on forest biomass and root-shoot 892 

allocation in southwest China, Ecol Eng, 91, 7-15, 10.1016/j.ecoleng.2016.01.040, 2016. 893 

Zhu, Z. C., Piao, S. L., Myneni, R. B., Huang, M. T., Zeng, Z. Z., Canadell, J. G., Ciais, P., Sitch, S., 894 

Friedlingstein, P., Arneth, A., Cao, C. X., Cheng, L., Kato, E., Koven, C., Li, Y., Lian, X., Liu, Y. 895 

W., Liu, R. G., Mao, J. F., Pan, Y. Z., Peng, S. S., Penuelas, J., Poulter, B., Pugh, T. A. M., Stocker, 896 

B. D., Viovy, N., Wang, X. H., Wang, Y. P., Xiao, Z. Q., Yang, H., Zaehle, S., and Zeng, N.: 897 

Greening of the Earth and its drivers, Nat Clim Change, 6, 791-+, 10.1038/Nclimate3004, 2016. 898 


