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Abstract. Land surface models are important for improving our understanding of the earth system. They are continuously 

improving and becoming more accurate in describing the varied surface processes, e.g. the Community Land Model version 5 10 

(CLM5). Similarly, observational networks and remote sensing operations are increasingly providing more and higher quality 

data. For the optimal combination of land surface models and observation data, data assimilation techniques have been 

developed in the past decades that incorporate observations to update modeled states and parameters. The Parallel Data 

Assimilation Framework (PDAF) is a software environment that enables ensemble data assimilation and simplifies the 

implementation of data assimilation systems in numerical models. In this paper, we present the further development of the 15 

PDAF to enable its application in combination with CLM5. This novel coupling adapts the optional CLM5 ensemble mode to 

enable integration of PDAF filter routines while keeping changes to the pre-existing parallel communication infrastructure to 

a minimum. Soil water content observations from an extensive in-situ measurement network in the Wüstebach catchment in 

Germany are used to illustrate the application of the coupled CLM5+PDAF system. The results show overall reductions in 

root mean square error of soil water content from 7% up to 35% compared to simulations without data assimilation. We expect 20 

the coupled CLM5+PDAF system to provide a basis for improved regional to global land surface modelling by enabling the 

assimilation of globally available observational data. 

1 Introduction 

The land surface forms the interface between the atmosphere and the lithosphere and plays a crucial role in the global climate 

system. Therefore, land surface models (LSMs) are an important tool to progress our understanding of the Earth system. LSMs 25 

represent a wide variety of processes from energy partitioning and mass exchanges to hydrological and ecological processes. 

The research community has developed sophisticated parameterizations and combined them into increasingly complex and 

accurate LSMs (Overgaard et al., 2006). However, predictions with LSMs are still affected by various important sources of 

uncertainty, including initial conditions, parameters, parameterization (e.g. surface and subsurface water flow), and effects of 

the commonly used coarse resolution of LSMs (Wood et al., 2011). Therefore, observational data are often used to improve 30 

model predictions. Here we focus on soil water content (SWC) as it is a key variable that strongly influences the partitioning 
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of latent and sensible heat flux as well as the partitioning of precipitation into surface runoff and infiltration (e.g. Vereecken 

et al. 2008). Furthermore, SWC has a strong influence on vegetation growth and modulates fire risks (e.g. Buotte et  al. 2019). 

A common LSM is the Community Land Model (CLM) (Lawrence et al. 2019), of which the performance has already been 

evaluated in various studies with observational data. For example, Hudiburg et al. (2013) used a single-point setup of the 35 

CLM4.0 model to predict net and gross primary production of forested FLUXNET sites in Oregon, USA. Similar CLM single-

point setups were also used to perform model sensitivity studies.  For instance, Zhang et al. (2019) adjusted vegetation 

phenology parameters of the temperate grassland plant functional type in CLM4.5 to reduce an overestimation of growing-

season LAI and annual gross primary production, while enhancing the partitioning of evapotranspiration for the study site. 

Similarly, Post et al. (2017) also used CLM4.5 single-point setups to estimate net carbon fluxes at four European sites and they 40 

improved the assessment of annual net ecosystem exchange by estimating ecosystem parameters using a Markov chain Monte 

Carlo method. 

On the other hand, observational SWC data also face various limitations and uncertainties (Vereecken et al., 2008). For 

instance, high-quality in-situ SWC measurements usually only cover relatively small areas, while remote sensing observations 

give only indirect information about SWC for the upper few centimeters of the soil and with a coarse spatiotemporal resolution. 45 

Data assimilation aims at optimally merging model simulations and measurement data, according to statistical optimality 

principles, so that the uncertainty of the model simulations is reduced and the accuracy improved. Commonly numerical models 

are implemented without intrinsic data assimilation and external frameworks are used to perform data assimilation. Coupling 

to a framework instead of implementing data assimilation inside the numerical model provides many advantages. External 

frameworks are usually built for modularity and extendibility, i.e., these frameworks provide multiple different data 50 

assimilation methods and can be updated when new methods are developed. Additionally, frameworks are usually optimized 

for parallel computing. Between frameworks and sometimes within frameworks we can further distinguish between two 

different approaches for the coupling of models with external frameworks. In case of offline coupling, the framework wraps 

around the model and does not modify the model. This non-intrusive method uses the input, output and restart functionalities 

of the model to perform data assimilation. In contrast, the online coupling framework is incorporated into the model code, 55 

which allows to perform data assimilation in the main memory during simulation avoiding costly file input/output operations. 

The Data Assimilation Research Testbed (DART) (Anderson et al., 2009), which was originally developed for data 

assimilation with atmospheric models, is commonly used for offline coupled data assimilation. Recently some studies have 

shown its application in combination with CLM. For example, Zhang et al. (2014) assimilated satellite snow cover fraction 

data from MODIS (Moderate Resolution Imaging Spectroradiometer) into CLM4.0 using DART, which led to improved snow 60 

depth predictions. Ling et al. (2019) assimilated the Global Land Surface Satellite (GLASS) leaf area index (LAI) product into 

CLM4.0 using DART. They showed that updating both model LAI and leaf C/N can reduce the largest bias from 5m²/m² by 

1m²/m² and significantly improve LAI predictions especially in forested regions. In another study, LAI and biomass 

observations were assimilated into a single-point CLM4.5 model for a semiarid ecosystem site in central New Mexico, USA, 

which  improved the simulation of the carbon cycle (Fox et al. 2018). Recently, DART has been also been used to assimilate 65 
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brightness temperature data from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) into 

CLM4.0 on a global scale to improve the prediction of soil water content (Zhao et al., 2016). In this study, it could be shown 

that soil water content simulation can be improved by data assimilation, but some of the systematic biases of CLM4 simulations 

could not be resolved. The Parallel Data Assimilation Framework (PDAF) (Nerger et al. 2005) has also been used in various 

studies to assimilate SWC measurements into different CLM model versions. In a recent study, PDAF was used to assimilate 70 

the ESA CCI microwave soil water content product in CLM3.5 with the ensemble Kalman filter to improve European 

predictions of soil water content and runoff estimations (Naz et al. 2019, 2020). 

In this study, we choose PDAF as a framework for the data assimilation because it provides many data assimilation algorithms, 

supports online coupling, and includes templates for the modifications to the model code that are necessary for the coupling 

with CLM5. Additionally, PDAF is also part of the modular Terrestrial System Modeling Platform (TSMP) (Shrestha et al. 75 

2014). PDAF has previously been coupled to CLM 3.5 within TSMP (Kurtz et al. 2016) and thus coupling PDAF to CLM5 

has the potential benefit of simplifying future couplings to the other components of TSMP. 

To illustrate the potential of the CLM5 PDAF coupling, we also present an application using the ensemble Kalman Filter to 

perform simultaneous state and parameter updates in the forest headwater catchment Wüstebach. The Wüstebach catchment 

is part of the TERENO network and various hydrological models have already been applied to it, e.g. HydroGeoSphere 80 

(Cornelissen et al., 2016; 2014); MIKE-SHE (Koch et al., 2016) and CLM-Parflow (Fang et al., 2015; 2016). Some of these 

modelling studies have focused on the spatial and temporal analysis of the effect of different parameterization approaches to 

represent the heterogeneous soil properties (Cornelissen et al., 2014; Fang et al. 2015; 2016). Koch et al. (2016) compared 

CLM-Parflow, HydroGeoSphere and MIKE-SHE and concluded that the consideration of heterogeneous porosities can 

increase model performance depending on the model structure. In contrast to these detailed distributed catchment studies, we 85 

model the study site from the viewpoint of a larger regional model where the catchment is represented by a single grid cell. 

In this paper, we present the further development of the latest version of CLM (CLM5) to enable the use of PDAF and thus 

explore the potential of data assimilation in CLM5 and test the potential for updating model parameters. Furthermore, we 

investigate whether updating of the soil organic matter parameter via data assimilation can further improve the prediction of 

soil water with CLM5. 90 

The paper is structured as follows: First, we give a short description of CLM5 and PDAF and then explain in detail how their 

coupling was realized. We then present the study site, the data used for the simulations, and the results for different data 

assimilation scenarios. The paper ends with a conclusion and outlook on further improvements that will be made, specifically 

concerning parameter updating. 
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2 Methods 95 

2.1 Model description 

In this study, the Community Land Model 5.0 (CLM5) (Lawrence et al. 2019) is used to simulate land surface processes, in 

particular hydrological processes such as infiltration, evaporation from both soil and vegetation, transpiration, surface runoff 

and sub-surface drainage.  We focus in particular on the simulation of the distribution and temporal dynamics of soil water 

within the soil column. Surface runoff is simulated in CLM5 using the SIMTOP model (Niu et al. 2005), which is based on 100 

the TOPMODEL approach (Beven and Kirkby 1979). Compared to previous versions, CLM5 allows a spatially variable soil 

depth with an underlying, impermeable bedrock. This replaces the unconfined aquifer parameterization (Niu et al. 2007) of 

previous versions with a zero flux lower boundary condition and an explicit water table depth (Lawrence et al. 2018). Sub-

surface drainage is calculated as a function of an ice impedance factor, a baseflow calibration parameter, the topographic slope, 

and the thickness of the saturated part of the soil column (Lawrence et al. 2018). The distribution and temporal evolution of 105 

soil water within the soil column is calculated with a finite-difference approximation of the Richard’s equation including 

Brooks-Corey parameterization. The hydraulic parameters involved in these calculations are determined by a weighted 

combination of mineral and organic properties. The mineral component of the soil hydraulic parameters is determined by 

pedotransfer functions and depends on sand and clay fractions (Clapp and Hornberger 1978). See appendix A for detailed 

equations of the pedotransfer function used in CLM5.  110 

The numerical solution of the Richard’s equation in CLM5 is based on a linearization that leads to a tridiagonal system of 

equations (Lawrence et al. 2018). CLM5 uses an adaptive time-stepping solver (Clark & Kavetski 2010, Kavetski et al. 2001) 

that improves the numerical stability for frozen soils and shallow bedrock compared to solvers in previous versions. 

2.2 Data assimilation framework 

2.2.1 Ensemble Kalman Filter 115 

In Earth sciences, two common data assimilation approaches are variational methods, often used in atmospheric models, and 

sequential methods like the Ensemble Kalman filter (Reichle 2008). The Kalman Filter originates in filtering and prediction 

of linear dynamic systems (Kalman 1960) and the Ensemble Kalman Filter (EnKF) is a stochastic approximation for nonlinear 

dynamic systems based on Monte Carlo methods (Evensen 1994, Burgers et al. 1998). Included in PDAF are implementations 

of the most common variants of the Kalman filter. This study uses exclusively the ensemble Kalman filter (EnKF), in which 120 

an ensemble of independent model simulations is used to approximate the model error covariance matrix from the spread of 

the ensemble. For nonlinear models, like CLM5, ensemble spread is created from perturbations of model parameters and model 

forcings individually for each ensemble member. During the simulations, the EnKF uses an update step to assimilate 

observational data at time steps where observations are available. The update step is described by the following equation: 

𝐱a
i = 𝐱f

i + 𝐊[𝐲 − 𝐇𝐱f
i] (1) 125 
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where the superscript i refers to ensemble member i, 𝐱a
i  is the updated state vector after the analysis, 𝐱f

i  is the forecasted model 

state vector, K is the Kalman gain, y is the observation vector, and H is the so-called measurement operator that transforms 

between model and observational states. The Kalman gain K represents the weighting of observations versus model and is 

computed as follows: 

𝐊 = 𝐏𝐇T (𝐑 + 𝐇𝐏𝐇𝐓)−1 (2) 130 

where the superscript T refers to transposed matrices, P is the model error covariance matrix and R is the observational error 

covariance matrix. Therefore, the Kalman gain represents how much the model error contributes to the total error. 

Conceptually, K approaches 1 if the observational error covariance is very small compared to the model error covariance 

which in Eq. 1 would result in more weight for the correction based on the observational data. On the other hand, K approaches 

0 if the observational error covariance is much larger than the model error covariance resulting in a smaller weight for the 135 

update term in Eq. 1. The observational error covariance matrix R is often statically defined based on the measurement error 

of the observations which are usually assumed to be independent. The model error covariance matrix P in the Ensemble 

Kalman Filter is approximated using the ensemble statistics. Specifically, 

𝐏 =
1

(N−1)
 ∑ (𝐱f

i − 𝐱f)(𝐱f
i − 𝐱f)

TN
i=1  (3) 

where N is the number of ensemble members and x̄ is the ensemble mean. For example, ensemble members can be generated 140 

based on perturbed soil parameters and atmospheric forcings. The perturbations of soil properties and forcings represent the 

uncertainty range of the model.  

Only during the data assimilation update step the ensemble members are connected through Eq. 3. Therefore, the ensemble 

Kalman filter is well-suited for parallelization. See Kurtz et al. (2016) for a discussion of the scaling of the Ensemble Kalman 

filter in PDAF. 145 

Observational data is also perturbed for each ensemble member to maintain the correct error statistics (Burgers et al. 1998). 

Therefore, y in equation 1 is shorthand for y=o+i where o is the observational data and i is a perturbation vector with mean 

zero and covariance according to the observational error covariance matrix. Each ensemble member is independently 

propagated in time. 

In this study, the observation vector y contains the soil water content observations, described in Section 3.2. The state vector 150 

𝐱i  contains soil water content (model states), sand and clay fractions (parameters), and organic matter fractions (parameters) 

depending on the experiment as described in Section 3.3. The measurement operator in this case is a simple mapping of the 

three observation vector components to the state vector component at the corresponding depth. 

2.2.2 Parameter updating 

In this study, we also apply a joint state and parameter estimation approach to further improve simulation results. Specifically, 155 

the state augmentation approach (Friedland, 1969; Fertig et al., 2009) is applied in which the forecasted model state vector (𝐱f
i 
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in Eq. 1) contains both the model state variables and relevant model parameters. The attached model state parameters are 

updated based on the Kalman gain (Eq. 2) without direct observations of the model parameters. 

For assimilation of soil water content the relevant model parameters are the hydraulic parameters. A common approach (Naz 

et al., 2019) is to indirectly update the hydraulic parameters by updating the soil texture, i.e. sand and clay fraction, and using 160 

the pedotransfer function as described in Section 2.1. Previous to CLM version 4.0 only sand and clay fractions were used to 

calculate the hydraulic parameters and therefore previous couplings of CLM and PDAF did not include organic matter as an 

option for joint state and parameter estimation. Similar to the work of Han et al. (2014) for CLM 4.5, we added organic matter 

as an additional parameter which can be updated with the CLM5+PDAF coupled model. 

 165 

2.3 Coupling CLM5 with PDAF 

As previously mentioned, this study makes use of the highly modular nature of TSMP (Shrestha et al. 2014) to integrate CLM5 

as a new option for the land surface model component in the coupling framework. TSMP is designed to couple combinations 

of an atmospheric model, e.g. COSMO (Baldauf et al. 2011), a land surface model, e.g. CLM (Oleson et al. 2008), a sub-

surface model, e.g. ParFlow (Ashby and Falgout 1996; Kollet and Maxwell 2006), and a data assimilation framework, e.g. 170 

PDAF (Nerger et al. 2005). The modularity allows not only the realization of a fully coupled system of all components, but 

also combinations like CLM and ParFlow or CLM and PDAF and also individual model components can be executed.  

This study focuses on the implementation of the coupling of CLM5 and PDAF inside the TSMP framework. However, an 

advantage of implementing this single pair coupling inside a larger, modular platform is to facilitate future coupling 

implementations to the other components of TSMP. In general, the coupling in TSMP uses the Ocean-Atmosphere-Sea-Ice-175 

Soil coupler – Model Coupling Toolkit (OASIS-MCT) (Valcke et al., 2013) to couple the models in a multiple program 

multiple data (MPMD) approach. However, as described in Kurtz et al. (2016), coupling with PDAF is an exception to this 

approach. Instead of using MPMD, a single executable is built out of modified, pseudo-library versions of the models. This 

keeps all model data in main memory and avoids I/O intensive re-initialization of models. Additionally, since in this study 

only one model (CLM5) and PDAF are coupled, the utilization of OASIS-MCT is not necessary.  180 

Figure 1 shows the five main components necessary for coupling CLM5 and PDAF in the TSMP framework and their 

connection. The PDAF components, core functions and user functions, are the same as described in Nerger et al. (2005) and 

Kurtz et al. (2016) respectively. The only modifications to code in the PDAF user functions are superficial inclusions of CLM5 

as option with the same functionality as already implemented and described by Kurtz et al. (2016) for CLM 3.5. 

The main program, labeled TSMP-PDAF driver, controls the individual components and handles the parallel communication 185 

using multiple MPI communicators. Adding CLM5 coupling requires only minor changes to the TSMP-PDAF driver to add 

CLM5 as a new option to the models controlled by the driver. 
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The TSMP wrapper contains the majority of additional code for coupling CLM5 and PDAF. The TSMP-PDAF driver uses the 

TSMP wrapper as an interface to the individual pseudo-libraries of the models. Therefore, the TSMP wrapper contains the 

modified routines from the model for initialization, time stepping, and clean-up. These routines are moved from the CLM5 190 

specific CIME driver into the TSMP wrapper. The clean-up routine is migrated without modification. The modification to the 

initialization routine involves an added call to the subroutine that defines the state vector. The main time stepping loop in 

CLM5 works by looping until a stop alarm is received. On the other hand, the TSMP framework, similar to older versions of 

CLM, works with a loop counting up until a specified end time is reached enabling data assimilation at specified time steps. 

Therefore, the TSMP wrapper subroutine to advance CLM5 contains only the code from inside the original time stepping loop. 195 

In this way, the TSMP-PDAF driver can control how many CLM5 time steps are performed before stopping for an interrupting 

data assimilation step. Further modifications to the time stepping subroutine include the addition of calling the PDAF specific 

subroutine to set the state vector before each data assimilation step.  

Additionally, the TSMP wrapper contains the model specific routines for managing the PDAF state vector. This includes 

defining the size of the state vector based on domain decomposition, for non-single grid cell simulations and options for 200 

parameter updating. The TSMP wrapper provides both the subroutine called by the model to set the state vector and the 

subroutine called by the data assimilation method to update the model variables contained in the state vector. For soil water 

content and soil texture parameters setting the state vector is simply copying the model values to their respective place in the 

state vector. The subroutine to update the state vector contains functionality to catch invalid values, e.g. below residual soil 

water content, above porosity, and below 0% or above 100% for the sum of the sand and clay fractions. Furthermore, for the 205 

optional  parameter updating it is necessary to provide a function to transform the input parameters, e.g. soil texture, to the 

model parameters, e.g. the soil hydraulic parameters. CLM5 performs this transformation once during initialization to obtain 

the hydraulic parameters from the soil texture in the surface file. As mentioned in Section 2.1, this procedure has changed 

compared to older versions of CLM. The subroutine to perform this transform after each data assimilation step follows the 

implementation in CLM5 and is shown in Appendix A. 210 

The component labeled libclm5 in Figure 1 is the pseudo-library from CLM5 compiled modules. Code modifications for 

CLM5 source files are limited to two driver modules related to parallel communication and ensemble reading of namelist files. 

As previously mentioned, the TSMP-PDAF driver manages the initialization of the parallel communication that involves 

initializing MPI and splitting the global communicator MPI_COMM_WORLD into specific model, filter, and coupling 

communicators. However, by default CLM5 also initializes MPI and uses MPI_COMM_WORLD for its parallel 215 

communication. Since only one MPI_COMM_WORLD can exist within a MPI application, the CLM5 code was modified to 

not initialize MPI and not use MPI_COMM_WORLD. 

For ensemble simulations, each ensemble member has individual input files. In CLM input files are controlled by namelists. 

In older versions of CLM a single namelist was used and to enable ensemble simulations for TSMP-PDAF only involved 

attaching an ensemble identifier suffix to the name of this namelist. In CLM5 there are multiple namelists and managing the 220 

https://doi.org/10.5194/gmd-2021-38
Preprint. Discussion started: 8 September 2021
c© Author(s) 2021. CC BY 4.0 License.



8 

 

reading of them has become more complex. However, CLM5 also supports an ensemble mode where each ensemble member 

reads namelists with identifier suffixes. Our implementation of CLM5+PDAF makes use of this ensemble mode. The ensemble 

mode is modified such that it uses the PDAF model communicator instead of splitting the global communicator. Therefore, 

the initialization subroutine that handles the ensemble mode is modified to accept a communicator and an individual ensemble 

member number from PDAF. Additionally, the initialization subroutine also passes the PDAF information to the subroutine 225 

that initializes the communicators for CLM5 and replaces the default ensemble mode identifiers with the PDAF specific 

identifiers. Figure 2 illustrates these modifications and shows the general process flow difference between CLM5 and 

CLM5+PDAF, i.e., the interruption of the CLM simulation by the PDAF data assimilation step. 

  

3. Test case 230 

3.1 Study Site 

The coupled modeling framework is applied to the small (38.5 ha) forested catchment Wüstebach located in the Eifel National 

Park near the German-Belgian border. As part of the Terrestrial Environmental Observatories (TERENO) network (Bogena et 

al., 2015; Bogena et al., 2018), the Wüstebach site uses a wireless sensor network (SoilNet) to provide soil water content and 

soil temperature measurements since 2009 at 5cm, 20cm, and 50cm depth at 150 locations every 15 minutes (Bogena et al. 235 

2010). 

The Wüstebach test site is also interesting because in the late summer / early autumn of 2013 the national park forest 

management removed the prevailing spruce monoculture forest in an area to promote the natural regeneration of deciduous 

forest. The SoilNet was installed before this change, so that the impact on the soil water content is measured before and after 

this land-use change. However, in this study we use the study site mainly to demonstrate the functionality of the newly coupled 240 

CLM5+PDAF framework and therefore, we focus on the undisturbed forested area. 

As mentioned in the introduction, we do not focus on spatial heterogeneity but instead look at the study site as it would be 

modeled in a regional or continental simulation, i.e., as a single grid cell. This allows for a clear and simple setup to test and 

demonstrate the functionality of CLM5+PDAF and simultaneously allows us to use a larger ensemble than is usually feasible 

for regional or continental data assimilation simulations. More specific details on the simulation setup are presented in Section 245 

3.3.  
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3.2 Data 

3.2.1 Soil water content – in-situ measurements 

The observational data of the study site Wüstebach is pre-processed before assimilation. The raw data from the TERENO data 

portal (Sorg et al. 2015) contains data for all stations and all sensors in 15 minutes intervals including quality flags. The 250 

observational data is pre-processed using filters that remove data based on their quality flag, spikes, frozen soil condition, and 

erroneous values. Spikes are defined as reductions in soil water content of more than 1 vol% or increases in soil water content 

of more than 5 vol% with an immediate return to values within 1% of the value before the spike. Soil water content below 1 

vol.% or above 90 vol.% is considered erroneous. These thresholds and the definition of spikes are based on Wiekenkamp et 

al. (2016) and Dorigo et al. (2013). In Wüstebach each soil water content sensor is paired with a soil temperature sensor. This 255 

allows for the removal of unreliable measurements due to frozen soil. Time steps in which less than 25% of all sensors provide 

data are filtered out. The filtered raw data is then spatially and temporally averaged to fit the requirements of the model, i.e., 

daily averages for the three soil depths. 

As mentioned above, the Wüstebach was partially deforested in 2013, with SoilNet SWC sensors covering both the undisturbed 

and deforested areas.  The deforested part of the Wüstebach catchment is mainly located in the riparian zone featuring shallow 260 

groundwater that is strongly influenced by incoming lateral flows within the catchment. However, lateral flows are not well 

represented in the single point CLM5 setup. Therefore, we omitted the riparian zone and selected only SoilNet stations located 

in the groundwater distant forested parts of the Wüstebach catchment in this study.  With these criteria 37 soil water stations 

remain in the forested part of the Wüstebach catchment and are used in this study. 

 265 

3.2.2 Atmospheric forcings 

The atmospheric forcings used in this study are measurements of air pressure, shortwave radiation, relative humidity, 2m air 

temperature, and wind speed from an on-site meteorological station. Additionally, the precipitation data is provided by the 

meteorological station Kaltenherberg (DWD, German Weather Service) located 5km west of the Wüstebach study site (Bogena 

et al., 2015). The atmospheric forcing data is perturbed to generate an ensemble for data assimilation using the EnKF. In this 270 

study, the perturbed variables are precipitation, shortwave radiation, longwave radiation, and air temperature. These variables 

are perturbed according to cross-correlation coefficients derived from global observations by Reichle et al. (2007). The specific 

perturbation characteristics used in this study are from Han et al. (2014) and shown in Table 1. 

3.2.3 Surface parameters 

The over 70 different surface parameters included in each CLM5 surface file are generated by the tools provided by CLM5 275 

from remapping of various pre-processed global files, see Lawrence et al. (2019) for details. For the single grid cell of the 
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study site, all default values were used, except for the plant functional type and the depth to bedrock. We chose the plant 

functional type “needleleaf evergreen temperate tree” to represent the spruce monoculture of the Wüstebach site. The depth to 

bedrock was adjusted to 1.6 meters according to Fang et al. (2015). Sand, clay, and organic matter fractions are perturbed for 

each ensemble member. Perturbed values were obtained by drawing from a uniform distribution with mean zero and a range 280 

between -20% and +20%. Perturbations that cause the sum of sand and clay fractions to exceed 100% are re-scaled to be 

limited to 100%. These perturbations are larger than, for example, the ones used in Han et al. (2014) to represent a larger initial 

model parameter uncertainty for a single grid cell simulation with a larger ensemble. 

3.3 Simulation experiments 

Four different setups were used to demonstrate the functionality and effectiveness of CLM5+PDAF. The open loop (OL) setup 285 

has forward simulations without data assimilation. These simulations are equivalent to CLM5 standalone ensemble simulations 

with perturbed inputs. The initial data assimilation setup limits the state vector to the soil water content variable (DA_s). The 

data assimilation with state and parameter updates setup (DA_s+p) applies the joint state and parameter estimation approach, 

described in Section 2.2.2, by augmenting the state vector with sand and clay fractions. The fourth setup, data assimilation 

with state and parameter updates including organic matter (DA_s+p+o) adds the soil organic matter fraction to the state vector. 290 

All setups were run for a 10 year time period starting from 2009 when observations become available. 

We used four statistical metrics to evaluate the quality of the simulation results: the root-mean-square-error (RMSE), the 

unbiased root-mean-square-error (ubRMSE), the mean bias error (MBE) and the squared correlation coefficient (R²): 

RMSE =  √∑ (𝐇𝐱i− 𝐲i)2N
i=1

N
 (4) 

ubRMSE =  √∑ [(𝐇𝐱i−𝐇𝐱i  )− ( 𝐲i− 𝐲i)]2N
i=1

N
 (5) 295 

MBE =  
∑ (𝐇𝐱i− 𝐲i)N

i=1

N
 (6) 

R2 =  1 −
∑ (𝐲i− 𝐇𝐱i )

2N
i=1

∑ ( 𝐲i− 𝐲i)
2

N
i=1

 (7) 

where y represents observations, Hx represents simulated values, i is the ensemble member, N the total number of ensemble 

members and overbar represents ensemble average.  

 300 
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3.4 Comparison of the four different simulation setups 

Figure 3 shows time series of the monthly averaged SWC at the three observation depths. The monthly averages highlight 

better the tendencies for the different simulation setups. The simulation results of all model setups show a good agreement 

with the soil water content observations at 20 cm depth, while there are clear deviations at 5 cm and 50 cm depth. The 

simulations tend to overestimate SWC compared to the observations. This difference is more distinct in the summer months 305 

at 5 cm depth, especially during the dry summer of 2018. The soil water content overestimation by the model at 50 cm depth 

is smaller, but more consistent over time. The results of the simulations at 5 cm depth illustrate the effects of data assimilation: 

All three data assimilation setups provide soil water content predictions that are closer to the observations compared to the 

open loop setup simulation. 

The scatter plots in Figures 4, 5, and 6 show the comparisons of the different data assimilation scenarios in terms of correlation 310 

of daily soil water content averages between observations and simulations. Table 2 summarizes the complementary statistical 

results. The evaluation at 5 cm depth, shown in the top left of Figure 4, reflects the overestimation of soil moisture content by 

the open loop simulation. All observed daily average SWC below 40% are overestimated by the model. The other three scatter 

plots in Figure 4 highlight the progressive effectiveness of the three data assimilation setups. While the DA_s setup still shows 

overestimation of SWC compared to observations it reduces the RMSE compared to the OL setup by 30%, the ubRMSE by 315 

35%, and increases the R² to above 0.9. The DA_s+p and DA_s+p+o setups show similar, improved results. DA_s+p performs 

slightly better in terms of ubRMSE and R² than the DA_s+p+o but slightly worse in terms of RMSE and MBE. 

The results at 20 cm depth (Fig. 5) show a closer agreement between observations and simulations than the results at 5cm and 

50cm depth. At 20cm depth, simulations slightly underestimate SWC. Similar to 5cm depth, the DA_s improves the RMSE 

by 30% compared to OL and increases the R² to above 0.9. At 20 cm depth, the DA_s+p+o shows an especially small MBE 320 

and overall very good agreement with the observations, suggesting that updating the organic matter faction does contribute to 

more accurate simulation results. 

The results from 50 cm depth (Fig. 6) show the most consistent overestimation of SWC by the model and the smallest 

improvement by data assimilation. The DA_ssetup reduces the RMSE by only 7% compared to the OL and even the best 

performing setup (DA_s+p+o) only improves RMSE by 15%. The DA_s+p and DA_s+p+o scenarios result in similar results 325 

at 5cm depth (Fig. 4). 

 

Table 3 shows the changes in soil texture related to the parameter updates. The parameter updates increase the sand fraction at 

all three measurement depths by a factor of 2. The clay fraction, on the other hand, is only slightly reduced across these depths. 

Organic matter fraction is also increased in all three depths, but more significantly in 5 cm and 20cm. 330 
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4. Conclusions 

In this study, we presented the newly coupled data assimilation framework CLM5+PDAF. The presented implementation can 

be summarized by three main aspects: the online variant of PDAF, re-use of CLM5 ensemble mode, and the TSMP framework. 

The PDAF online variant performs data assimilation in the main memory during runtime by coupling the model and PDAF in 

a single executable. We have described the necessary code modifications to achieve this coupling. The presented 335 

implementation re-uses the CLM5 ensemble mode which enables multiple simulations to run in parallel from the same 

executable while using independent inputs and creating individual outputs. This re-use minimizes necessary code changes to 

connect CLM5 and PDAF and simplifies the management of the parallel communicators of CLM5 and PDAF. The framework 

of TSMP provided the build infrastructure and the template for the coupling components. We chose to include CLM5+PDAF 

in the TSMP to make it available for future developments in the modular environment and facilitate future couplings to other 340 

components. The performance of the CLM5+PDAF data assimilation system was illustrated with the assimilation of soil water 

content data for the Wüstebach site in Germany. Data assimilation decreases the mismatch between observations and model 

states. We further showed that including parameter updates can improve overall estimations, although some systematic bias 

remains. Updating also organic matter fraction, as one of the parameters determining the soil hydraulic properties, has an 

overall positive effect. However, even with this addition some significant differences between simulated and observed values 345 

remain, especially at 5cm depth and in dry years. 

The performance of CLM5+PDAF can be further improved in the future by updating soil hydraulic parameters themselves, 

instead of indirectly updating them via soil texture and pedotransfer functions. This could potentially reduce the model 

uncertainty further since the accuracy of the pedotransfer functions would be less of an issue after parameter updating. This 

will require more fundamental code changes and will be considered in future work. In addition, CLM5+PDAF will be further 350 

extended by the assimilation of more state variables, like for example LAI or soil temperature. 

Appendix A: CLM5 specific equations relating sand, clay, and organic matter fractions to soil hydraulic parameters 

In CLM5 the soil hydraulic parameters are determined by a weighted average of the respective mineral and organic 

components. Specifically, for the mineral component the following approximations from Cosby et al. (1984) are used: 

θ(min,sat,i) = 0.489 − 0.00126 (%sand)i (A1) 355 

where θ(min,sat,i) is the porosity of the mineral part and subscript i refers to the vertical level. 

B(min,i) = 2.91 + 0.159 (%clay)i (A2) 

where B(min,i) is the hydraulic conductivity exponent of the mineral part. 

k(min,sat,i) = 0.0070556 (10 −0.884 + 0.0153 (%sand)i) (A3) 

https://doi.org/10.5194/gmd-2021-38
Preprint. Discussion started: 8 September 2021
c© Author(s) 2021. CC BY 4.0 License.



13 

 

where k(min,sat,i) is the saturated hydraulic conductivity of the mineral part. 360 

Ψ(min,sat,i) = 10 (10(1.88−0.0131 (%sand)i (A4) 

where Ψ(min,sat,i)  is the saturated suction / saturated soil matric potential of the mineral part and is related to the adsorptive 

and capillary forces within the soil matrix. 

The organic component of the soil hydraulic parameters is approximated by the following equations from Lawrence and Slater 

(2008): 365 

θ(om,sat,i) = max (0.83, 0.93 − 0.1 Di) (A5) 

Where θ(om,sat,i) is the porosity of the organic part and  

Di =
depthi

zsapric
 (A6) 

where depthi is the depth of the vertical level and zsapric is the depth at which organic matter takes on characteristics of sapric 

peat. 370 

B(om,i) = max (12, 2.7 + 9.3 Di) (A7) 

whereB(om,i)  is the hydraulic conductivity exponent for the organic part. 

k(om,sat,i) = max (k(min,sat,i) , 0.28 − 0.2799 Di) (A8) 

where k(om,sat,i)  is the saturated hydraulic conductivity for the organic part. 

Ψ(om,sat,i) = min (10.1, 10.3 − 0.2 Di) (A9) 375 

where Ψ(om,sat,i) is the saturated suction of the organic part. 

 

Code availability.  

The development branch of the CLM5+PDAF coupling is freely available via Zenodo, doi:10.5281/zenodo.4534157 

Data availability. 380 

Soil water content data from the TERENO site Wüstebach (TERENO ID: WU_B_001 to WU_B_150) are freely available via 

the TERENO data portal TEODOOR (http://teodoor.icg.kfa-juelich.de/). 
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 515 

Figure 1: Components of TSMP CLM5+PDAF highlighting the distinct separation of PDAF functionality, TSMP wrapper, and 

CLM5 pseudo-library. 
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Figure 2: Schematic overview of CLM5 ensemble mode (left side) and CLM5+PDAF (right side) communication initialization and 

process flow. In the diagram NMLST means namelist, SIM means simulation process, HIST means history file output, PID means 520 
PDAF identification number. 
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Figure 3: Time series of the monthly averaged soil water content (SWC) from 2009 to 2018 at the three different depths and for each 

simulation scenario. The red, full line shows observational data. The light green, dotted line shows open loop simulation results. The 

blue, dash-dotted line shows results for data assimilation of state variables. The purple, dashed line shows results for the assimilation 525 
of states and updating of parameters. The dark green, dashed line shows results for assimilation of states and updating of parameters 

including organic matter. 
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Figure 4: Correlation diagrams for observed (OBS) and simulated soil water content (SWC) at 5 cm depth. Each marker shows one 

daily average. Top left diagram shows open loop (OL), top right shows assimilation of state variables (DA_s), bottom left shows data 530 
assimilation of state and parameters (DA_s+p), and bottom right shows data assimilation of state and parameters including organic 

matter (DA_s+p+o). Each diagram includes the root mean square error (RMSE), unbiased root mean square error (ubRMSE), mean 

bias error (MBE), and squared correlation coefficient (R²). 
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Figure 5: Correlation diagrams for observed (OBS) and simulated soil water content (SWC) at 20 cm depth. Each marker shows 535 
one daily average. Top left diagram shows open loop (OL), top right shows data assimilation of state variable (DA_s), bottom left 

shows data assimilation of state and parameters (DA_s+p), and bottom right shows data assimilation of state and parameters 

including organic matter (DA_s+p+o). Each diagram shows root mean square error (RMSE), unbiased root mean square error 

(ubRMSE), mean bias error (MBE), and squared correlation coefficient (R²). 
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 540 

Figure 6: Correlation diagrams for observed (OBS) and simulated soil water content (SWC) at 50 cm depth. Each marker shows 

one daily average. Top left diagram shows open loop (OL), top right shows data assimilation of state variable (DA_s), bottom left 

shows data assimilation of state and parameters (DA_s+p), and bottom right shows data assimilation of state and parameters 

including organic matter (DA_s+p+o). Each diagram shows root mean square error (RMSE), unbiased root mean square error 

(ubRMSE), mean bias error (MBE), and squared correlation coefficient (R²). 545 

 

Table 1: Statistical properties and cross-correlation coefficients (CC) used to perturb the atmospheric forcing data. 
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 Perturbation Mean Standard 

deviation 

CC PR CC SW CC LW CC TP 

Precipitation (PR) Multiplicative log-

normal distribution 

1.0 0.5 1.0 -0.8 0.5 0.0 

Shortwave 

radiation (SW) 

Multiplicative log-

normal distribution 

1.0 0.3 -0.8 1.0 -0.5 0.4 

Longwave 

radiation (LW) 

Additive normal 

distribution 

0.0 20.0 0.5 -0.5 1.0 0.4 

2m Air 

temperature (TP) 

Additive normal 

distribution 

0.0 1.0 0.0 0.4 0.4 1.0 

 

  550 

 

Table 2: Statistical evaluation measures for the four different simulation and assimilation scenarios, always compared to 

measurements.  

 OL DA_s DA_s+p DA_s+p+o 

RMSE / 5cm 8.08 5.59 5.24 4.82 

ubRMSE / 5cm 6.52 4.19 3.29 3.47 

MBE / 5cm -4.78 -3.7 -4.07 -3.35 

R² / 5cm 0.63 0.91 0.93 0.92 

RMSE / 20cm 4.03 2.84 2.27 1.67 

ubRMSE / 20cm 3.56 1.62 1.86 1.64 

MBE / 20cm 1.89 2.33 1.3 0.31 

R² / 20cm 0.66 0.96 0.92 0.95 

RMSE / 50cm 4.42 4.12 4.01 3.73 

ubRMSE / 50cm 2.58 1.77 1.56 1.9 

MBE / 50cm -3.58 -3.72 -3.7 -3.21 

R² / 50cm 0.67 0.86 0.9 0.86 

 

Table 3: Initial soil texture data and soil texture data after updating by data assimilation. 555 

Type / depth Initial ensemble mean Updated ensemble mean Updated ensemble standard 

deviation 
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Sand / 5 cm 19.3 45.7 13.0 

Sand / 20 cm 23.3 49.1 12.3 

Sand / 50 cm 27.3 52.6 11.3 

Clay / 5 cm 38.9 35.0 12.2 

Clay / 20 cm 38.9 34.9 10.9 

Clay / 50cm 37.9 33.4 10.5 

Organic matter / 5 cm 34.1 51.4 8.17 

Organic matter / 20 cm 15.8 32.3 7.8 

Organic matter / 50 cm 8.7 13.1 4.9 

 

https://doi.org/10.5194/gmd-2021-38
Preprint. Discussion started: 8 September 2021
c© Author(s) 2021. CC BY 4.0 License.


