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Abstract. To support the needs of practitioners regarding 3D geological modelling and uncertainty quantification in the field,

in particular from the mining industry, we propose a Python package called loopUI-0.1 that provides a set of local and global

indicators to measure uncertainty and features dissimilarities among an ensemble of voxet models. Results are presented of a

survey launched among practitioners in the mineral industry, enquiring about their modelling and uncertainty quantification

practice and needs. It reveals that practitioners acknowledge the importance of uncertainty quantification even if they do not5

perform it. Four main factors preventing practitioners to perform uncertainty quantification were identified: lack of data uncer-

tainty quantification, (computing) time requirement to generate one model, poor tracking of assumptions and interpretations,

relative complexity of uncertainty quantification. The paper reviews and proposes solutions to alleviate these issues. Elements

of an answer to these problems are already provided in the special issue hosting this paper and more are expected to come.

1 Introduction10

One objective of researchers who develop open-source 3D geological modelling algorithms (Loop, 2019; de la Varga et al.,

2019) is to make them Findable, Accessible, Interoperable and Reusable (FAIR) for practitioners. As for any software, these

algorithms should satisfy the needs and expectations of users (Franke and Von Hippel, 2003; Kujala, 2008). Thus, new de-

velopments should rely on a good understanding of modelling purposes, processes and limitations, following a philosophy of

continuous improvement. In a general context, this becomes even more important given the increasing number of open-source15

algorithms in the fields of earth and planetary sciences (see Figure 1). However, to the best of our knowledge, the needs and

uses of 3D geological modelling practitioners with respect to uncertainty quantification are only partially described in the

literature, as it constitutes an emerging field that only recently gained traction in both academia and industry.

An essential purpose of modelling is to support decision makers by offering a simplified representation of nature that also

provides a corresponding quantitative assessment of uncertainty, communicating what we know, what remains unknown and20
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Figure 1. Evolution of open-source algorithm publications between 2000 and 2020; data from Web Of Knowledge.

what is ambiguous (Ferré, 2017). Uncertainty quantification is essential, because it allows us to mitigate predictive uncertainty

(Jessell et al., 2018) by expanding our knowledge, rejecting hypotheses (Wilcox, 2011) or falsifying scenarios (Raftery, 1993).

Questions related to 3D geological modelling and uncertainty quantification are not just limited to the minerals industry, but

also concern the fields of CO2 sequestration (Mo et al., 2019), petroleum (Scheidt et al., 2009) and geothermal (Witter et al.,

2019) energy resources as well as hydrogeology (Linde et al., 2017) or civil engineering in urban environments (Osenbrück25

et al., 2007; Tubau et al., 2017). Here, we are interested in the uses and practices of the minerals industry, that is dealing with

both sedimentary basin and hard-rock and/or cratonic settings across regional to mine scales.

The three main pillars of uncertainty quantification are the characterization of uncertainty sources, their propagation and

mitigation throughout the modelling workflow (see Figure 2). The different sources of uncertainty, often overlooked, are re-

lated to measurement errors, interpretations, assumptions, modelling approximations and limited knowledge (sample size or30

unknown process). Measurement or data errors can be estimated by repetitive sampling or from instrument characteristics; they

can be propagated through the modelling workflow by Monte Carlo data perturbation (Wellmann and Regenauer-Lieb, 2012;

Lindsay et al., 2012; Pakyuz-Charrier et al., 2018). Combined with expert knowledge, initial dataset can be used to shape some

assumptions and define plausible conceptual models; but despite the importance of conceptual uncertainty on predictions (Pirot

et al., 2015), it is too often limited to the definition of a unique scenario (Ferré, 2017). From a perspective on algorithms, some35

assumptions such as how to set parameter ranges are needed and this can greatly impact the definition of geological parameters

(Lajaunie et al., 1997) prior to running predictive numerical simulations. Another aspect that is not always considered is the

uncertainty related to a spatially limited sampling. Unsampled locations suggest a high uncertainty about the spatial distribution

of the model parameters (or values of the property field); this is why it is preferable to resort to spatial stochastic simulations

(e.g. Sequential Gaussian Simulations in a multi-Gaussian world) rather than interpolations (e.g. kriging) to generate models40

that are parameter fields (Journel and Huijbregts, 1976).

While the main objective of uncertainty quantification and data integration might be to improve the confidence level of

predictions for decision making, it usually involves the generation of model ensembles via Monte Carlo algorithm and it is
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Figure 2. Schematic representation of a geo-modelling workflow; each ellipse is associated with some uncertainty.

rarely a straightforward step. Indeed, because of the high dimensionality and non-linearity of earth processes or the lack of

data, history matching might prove difficult to achieve and predicted outcomes might present multiple modes (e.g. ?Sambridge,45

2014; Pirot et al., 2017). In such cases, geological uncertainty analysis allows to improve our understanding of geological

model (dis)similarities and how specific or shared features can be related to upstream parameters and downstream predictions.

Local uncertainty indicators such as voxel-wise entropy or cardinality (Lindsay et al., 2012), computed over an ensemble of

geological voxets will inform about property field variability at specific locations (voxels) of the model mesh. Global indicators

or summary metrics might be useful to identify how the statistics of specific patterns (e.g. fault or fracture network density,50

anisotropy, connectivity, etc.) evolve between different models and might also be a way to perform model or scenario selection

(e.g. Pirot et al., 2019) or to reduce the dimensionality of the sampling space, from a high dimensional geological space to

a low dimensional latent space (Lochbühler et al., 2013). Though some indicators have been used or developed for specific

studies or softwares (Li et al., 2014), to the best of our knowledge, no independent uncertainty analysis tool applicable to both

discrete and continuous property fields, combining local and global indicators is available to practitioners.55

To investigate the uses and practices of the minerals industry regarding modelling and uncertainty quantification, we re-

cently conducted a survey among numerical modelling practitioners from industry, government and academia in the sector of

exploration and production of economic minerals. In this paper, first, we present the main results and interpretations from this

survey, which questions are listed in Appendix A. Second, to answer these needs, we propose a set of indicators to quantify

geological uncertainty over an ensemble of geological models characterized by lithological units and their underlying scalar-60
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field derived from implicit modelling. The various indicators are illustrated with a synthetic case derived from a simplified

Precambrian dataset of the Hamersley, Western Australia. The Python code called loopUI-0.1 (Pirot, 2021) and the notebooks

used to compute and illustrate these indicators are available at https://doi.org/10.5281/zenodo.5656151. 5656151

2 Survey

2.1 Material and method65

The survey was designed to be concise to encourage participation but with several open-ended questions to maximize our

chance to learn about different uses and practices, as well as to minimize induced bias whenever possible. The survey is in two

parts. Its first part was general and enquired about the scales and dimensions (questions 1 and 2) of geological models. The

second part of the survey was more specific at a fixed modelling scale. It enquired about outputs or objectives (questions 3 and

4), about data input (question 5), current workflows (questions 6 to 9) and limitations and expected improvements (question70

10). It was distributed between October 2019 and January 2020 among the 3D Interest Group (3DIG), Centre for Exploration

Targeting (CET) members, Loop researcher and related networks. Respondents had the opportunity to complete the survey on

paper, in a text file or online. A total of 35 responses were collected and anonymised. Seven responses concerned models at

different scales, and when the second part of the survey was not clearly duplicated for each scale, the answers were considered

with caution for each modelling scale.75

2.2 Results

This section summarises the answers provided by the survey respondents. Table 1 provides the general statistics of answers to

the survey. The high answer rate (mostly over 80%) indicates that questions are meaningful for the respondents and indicates

that the reader can have confidence in the presented results. The most answered question is Q1, about the modelling scale.

The least answered question is Q9, about data integration and upscaling . The second least answered question is Q8, about the80

modelling workflow used. All other questions have an answer rate above 80% on a global average. Note that global number of

survey answers is smaller than the sum of each survey answers grouped by scale, as some survey answers were returned only

once for multiple scales.

Due to existing overlap of collected answers on different questions, the results presented hereafter summarize and group the

collected answers by theme (Output or objectives, Input data, Current modelling workflow and Limitations), as outlined in the85

survey (see Appendix). Each theme is treated by modelling scale (see Figure 3) when it involves different answers.

Q3-4. The main modelling objectives depend on the scale of investigation. At the largest scales, investigation and modelling

are particularly useful to assist exploration and prospectivity mapping. At the Greenfields or Regional scale (>10km dimension,

˜ 1km resolution) , the main objective is to obtain a contextual and conceptual understanding of the regional geology, in par-

ticular regarding stratigraphy, topology and geochronology. At the Brownfields scale (1-10km dimension, ˜ 100m resolution),90

modelling aims to estimate deep structure beyond the depths reached by drilling, such as depth of a particular interface or the
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Table 1. Global number and rate of answers per question and detailed by modelling scale.

Total Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

All scales Answer rate 100% 97% 94% 83% 91% 89% 86% 77% 60% 83%

Nb. answers 35 35 34 33 29 32 31 30 27 21 29

Mine scale Answer rate 100% 93% 100% 71% 93% 86% 86% 64% 43% 79%

Nb. answers 14 14 13 14 10 13 12 12 9 6 11

Brownfields scale Answer rate 100% 94% 100% 82% 94% 94% 94% 82% 76% 82%

Nb. answers 17 17 16 17 14 16 16 16 14 13 14

Greenfields scale Answer rate 100% 100% 88% 75% 81% 81% 88% 81% 63% 81%

Nb. answers 16 16 16 14 12 13 13 14 13 10 13

Figure 3. Modelling scales and resolutions in the mineral industry with examples of scale-specific scientific enquiry; model illustrations of

the Vihanti-Pyhäsalmi Area, Finland, adapted from Laine et al. (2015).

delineation of potential mineral system components (e.g. fluid-alteration pathways and ore deposition environments). At the

Mine scale (<1km dimension, ˜ 10m resolution), the objectives are to assist with near mine exploration, resource estimation,

ore body localization, drill targeting, operation scheduling and efficient mining, by characterizing local structures and geome-

tries of stratigraphy and mineralization. In addition to fulfilling these various objectives, 3D models are useful to improve95

hydrogeological characterization, to identify critical zones where more knowledge has to be gained , to allow for comparison

between datasets and test internal consistency, scenarios and last but not least, for visualization and communication.
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Figure 4. Consideration of input data uncertainty in modelling.

Q5. Data types used as input for geoscientific modelling are similar and complementary across scales. For instance, geolog-

ical mapping, geophysical data (gravity, magnetics, electro-magnetics , seismic), and geochemistry are useful at all scales even

though the related measurements might inform about a regional trend. Drillhole-derived data is usually much more abundant at100

the Mine scale and can be useful to understand the regional context if analysed with this alternative use in mind. For example,

drill logs that only record the presence or absence of mineralisation are not useful for the regional context, however those

that record rock properties, lithology and structure can be extrapolated to larger scales and integrated in regional models (e.g.

Lindsay et al., 2020).

Q6. Regarding current modelling practices, although the survey respondents acknowledge the importance of uncertainty105

quantification and propagation into modelling to estimate the confidence around predictions, only about 10% perform quanti-

tative uncertainty characterization and propagation from input data; about 20% do some qualitative characterization and a vast

majority of 70% recognize that it is ignored (see Figure 4).

Q7-9. Modelling steps, assumptions or geological interpretations are not recorded in one third of the cases. In most cases,

assumptions and elements of the modelling process are described in metadata or in separate reports. In very few cases, specific110

procedures and tools are available to keep track of those. The respondents use a variety of software, platforms or programming

tools to produce 3D geological models and further data-integration. The lack of a coherent workflow introduces the potential

for uncertainty, error and loss of precision when forced to translate data formats across multiple software platforms, in addition

to the time lost that could otherwise be dedicated to solving the problem under question or exploring alternative hypotheses.

Q10. Overall, the main limitations involved in 3D geological modelling are uncertainty underestimation due to strong con-115

straining and underlying assumptions (e.g. lack of consideration of alternative conceptual models, lack of uncertainty around

interpreted horizons, etc.), navigation between scales, the amount of work required to process and prepare input data (including

necessary artificial data), the time required to generate one model, the difficulty to integrate 2D data in a 3D framework, the

difficulty to visualize and manage a huge amounts of drillhole data in 3D, the advent of geological inconsistencies, workflow
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and model reproducibility given the same inputs, joint integration of geological and geophysical data, lack of tools to visualize120

uncertainty.

3 Uncertainty indicators for categorical or continuous property fields

The estimation of prediction confidence in geosciences relies heavily on numerical simulations and requires generation of an

ensemble of models. As indicated by the survey results, an important aspect of uncertainty quantification is its representation.

It helps identifying specific features or zones of interest. Moreover, respondents estimate that such visualization tools are125

missing. The uncertainty indicators presented hereafter provide a way to identify zones of greater or smaller uncertainty as

well as (dis-)similarities between geo-model realizations.

Geo-models can be used to convey very different discrete or continuous properties. Discrete or categorical properties such as

lithological formations or classification codes should be compared carefully. Indeed, while it is straightforward to state if two

values are identical or different, additional information is needed to rank dissimilarities. Continuous properties such as potential130

fields or physical properties (e.g. porosity, conductivity, etc.) do not present this ambiguity to compare range of values. One

can note, that depending on how physical properties are assigned during modelling, their value spectrum might be discrete.

Some modelling platforms may produce a discrete physical property value spectrum depending on how physical properties are

assigned or what input constraints are enforced during model construction.

Local measures of uncertainty provide indicator voxets of the same dimensions than the voxets of a model ensemble. For a135

given voxel, uncertainty indicators are computed from the distributions of values taken by a given property at the corresponding

voxel (same location) across the ensemble of model realizations. Such local indicators are very convenient for visualization:

by sharing the same voxet as the model realizations, it is relatively easy to spot zones of low or high uncertainty. However,

to be useful, it requires advanced modelling that integrates some spatial constraints, and possibly computationally expensive,

in particular if they are produced by inversion algorithms. Here, we propose to compute Cardinality and Shannon’s Entropy140

for discrete properties (e.g. Wellmann and Regenauer-Lieb, 2012; Pakyuz-Charrier et al., 2018), and similarly, range, standard

deviation and continuous Entropy for continuous properties (e.g. Marsh, 2013; Pirot et al., 2017).

Global measures rely on the computation of summary statistics or on the identification of feature characteristics, indepen-

dently from their locations. The dissimilarities between summary statistics or characteristics can be estimated via appropriate

metrics such as the Wasserstein distance (Vallender, 1974) or the Jensen-Shannon divergence (Dagan et al., 1997) for instance.145

The resulting global measures allow comparing models with voxets or meshes of different dimensions. However, the com-

putation of summary statistics might be more time consuming than local measures. Their main advantage is that it allows to

focus on pattern similarity between models which might be particularly useful to explore the selection of alternative scenarios

or prior realizations, before data integration and history matching. In what follows, we propose a series of dissimilarity mea-

sures, applicable to categorical and continuous property fields, based on one-point statistics (histogram Dagan et al., 1997),150

two-point (geo)statistics (semi-variogram Matheron, 1963), multiple-point statistics (multiple-point histogram Boisvert et al.,

7

https://doi.org/10.5194/gmd-2021-377
Preprint. Discussion started: 7 January 2022
c© Author(s) 2022. CC BY 4.0 License.



2010), connectivity (Renard and Allard, 2013), wavelet decomposition (e.g. Scheidt et al., 2015) and topology (Thiele et al.,

2016, e.g.).

To illustrate the different indicators, inspired by a Precambrian geological setting, that is a simplified dataset from the

Hamersley region, Western Australia, we generated synthetic ensembles of 10 model sets for three different scenarios. Each155

model set is composed of a lithocode voxet describing the lithological units (categorical variable), and of its underlying scalar-

field voxet (continuous variable). The underlying scalar-field is obtained by composition of the different scalar-fields for each

unconformable stratigraphic group. Scenario 1 considers all synthetic input data, while scenario 2 keeps only 50% of the data

within a North-South limited band and scenario 3 retains input data with a 50% probability (see Figure 5). For each scenario,

the positions and orientations of the input data are perturbed to provide 10 stochastic realizations. Positions are perturbed with160

a Gaussian error of zero mean and 3m standard deviation. Orientations are perturbed with a von Mises Fisher error of κ= 150

(corresponding to about ±5deg of error). Each 3D model was generated using LoopStructural(Grose et al., 2021).

3.1 Cardinality

The Cardinality of a set, in Mathematics, is the number of elements of the set. Here, we define the Cardinality for a given voxel

as the number of unique elements over the ensemble of models for the corresponding voxel (Lindsay et al., 2012). Computed165

for all voxels, it provides a Cardinality voxet of the same dimensions than the model voxets. It assumes that all voxets of the

model ensemble have the same dimensions. By definition, this indicator can be compute on discrete or categorical property

fields. For continuous property fields, we propose to use the range between the minimum and maximum value, the standard

deviation. Eventually, these continuous indicators can be normalized over the voxet and then averaged or weighted to provide

another indicator. Figure 6 shows a Cardinality voxet computed from an ensemble of lithocode voxets as well as the range,170

standard deviation and their normalized average from an ensemble of density voxets.

3.2 Entropy

Shannon’s entropy (see Eq. 1) is a specific case of the Rényi entropy when its parameter α converges to 1 (Rényi et al., 1961).

It has been applied to geo-models since a few decades already (Journel and Deutsch, 1993; Wellmann and Regenauer-Lieb,

2012) and is a finer way than cardinality to describe uncertainty over an ensemble of models, as it takes into account the175

histogram proportions of the unique values encountered. Let us consider the categorical or discrete variable X that represent

a voxel property and assume that it can take n distinct values among an ensemble of voxets. By denoting the probability of

observing the ith possible value as pi, the entropy H of X is computed as follows.

H(X) =−
n∑

i=1

pi lnpi (1)

For continuous property fields, one need to discretize the continuous domain and integrate along the width of the bins (Marsh,180

2013). Here, for the considered example, we choose 50 regular bins. Figure 7 displays Shannon’s entropy for the lithocode

voxets and the continuous entropy for the other ensemble of property fields: magnetic field, gravity field, density and magnetic

susceptibility.
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Figure 5. Example model set of lithocode and scalar fields for each of the three scenarios; the left column illustrates input data and model

set for scenario 1 when all data is considered; the middle column illustrates input data and model set for scenario 2 when 50% of the data

within a band is considered; the right column illustrates input data and model set for scenario 3 where each input data is decimated with a

probability of 50%.

3.3 Histogram dissimilarity

Given a pair of voxets VP and VQ, we measure the dissimilarities between their histograms by computing a symmetrized and185

smooth version of the Kullback-Leibler divergence (Kullback and Leibler, 1951) known as the Jensen-Shannon divergence or

total divergence to the average (Dagan et al., 1997). Given two random variables P and Q, the Jensen-Shannon divergence is

conmputed as JSD(P ||Q) = 1
2 KLD(P ||M) + 1

2 KLD(Q||M), where M = P+Q
2 and KLD is the Kullback-Leibler divergence.
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Figure 6. Horizontal sections of cardinality voxets for a categorical property field (first row) or similar indicators for a continuous property

field (second to fourth row); the first row shows the cardinality over the ensemble of lithocode voxets, the second row displays the (max-min

range) over the ensemble of scalar-field voxets, the third row presents the standard deviation over the ensemble of scalar-field voxets, the

fourth row displays the averaged normalized range and standard deviation over the ensemble of scalar-field voxets; the left column refers to

scenario 1, the middle column to scenario 2 and the right column to scenario 3.
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Figure 7. Horizontal sections entropy voxets; the first row shows Shannon’s entropy over the ensemble of lithocode voxets, the second row

displays the continuous entropy over the ensemble of scalar-field voxets; the left column refers to scenario 1, the middle column to scenario

2 and the right column to scenario 3.

It requires P and Q to share the same support X and can be computed for continuous or discrete variables. Here, we assume

that for our pair of voxets VP and VQ, the support of our random variables P and Q respectively, is discrete and of size n190

(possibly n bins for discretized continuous variables).

Denoting the support of P and Q by (xi)i=1...n, pi = Prob(P = xi), qi = Prob(Q= xi) and mi = pi+qi

2 , the Jensen-Shannon

divergence is computed as in Eq. 2.

JSD(P ||Q) =
1
2

n∑

i=1

piln

(
pi
mi

)
+

1
2

n∑

i=1

qiln

(
qi
mi

)
(2)

3.4 Semi-variogram dissimilarity195

Introduced by Matheron (1963), the semi-variogram measure the dissimilarity of values taken by random variables at different

spatial locations as a function of a distance. Assuming stationarity and isotropy, it can be written as:

γ(h) =
1
2
E
[
(Z(s)−Z(s+h))2

]
, where s denotes a spatial location, h denotes a distance and Z is the random variable of interest.
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Using spatial samples of a random variable, it is then possible to compute an experimental or empirical semi-variogram over n

lags of width δ as follows:200

γ̂(hi) =
1

2Ni

∑

(j,k)

|Z(sj)−Z(sk)|2, where hi = (i−1
2

)δ is the centre of the ith lag, 1≤ i≤ n and Ni is the number of pairs (j,k)

of points such that (i− 1)δ ≤ ||Z(sj)−Z(sk)|| ≤ i.
Given two empirical semi-variograms γ̂1 and γ̂2 (see e.g. Figure 8), we propose to use a weighted lp norm as defined in Eq.

3.205

||γ̂1− γ̂2||p =


 1∑

1≤i≤n
1
hi

∑

1≤i≤n

1
hi
|γ̂1(hi)− γ̂2(hi)|p




1
p

, where p= 2 in the following examples. (3)

Note that the weight is inversely proportional to the lag distance, giving more importance to dissimilarities of the semi-

variogram for small distances. This allows to account for the structural noise and (dis-)continuity of the property fields.

Figure 8. Example of experimental semi-variogram for two lithocode voxets, computed for the lithocode value of 2; the two first columns

show an horizontal section for each voxet; the last column shows the two corresponding experimental semi-variogram.

3.5 Connectivity dissimilarity

The existence of preferential flow-paths or barriers in the subsurface often has a strong impact in many geo-applications.210

Their characterization can improve the management of groundwater quality, the extraction of geothermal energy, and help

mitigate the environmental impact related to either the production of non- and renewable resources from the subsurface or the

sequestration of carbon dioxide and waste (e.g nuclear waste). Renard and Allard (2013) have shown that connectivity cannot

be captured by topological indicators such as the Euler characteristic, nor by one-point or two-point statistics (e.g. by histogram

or semi-variogram analysis respectively). However, they have shown how a global percolation metric Γ(p) and a lag-distance215

connectivity function τ(h) are useful to characterize the connectivity of binary, categorical or continuous property fields.

Connectivity indicators have also been used in multiple-point statistics applications to characterize the quality of stochastic
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simulations with respect to a training image (Meerschman et al., 2013) and in hydrogeophysical application for model selection

(Pirot et al., 2019).

Let us consider a binary spatial variable X ∈ 0,1, and a distance h. Then, the lag-distance connectivity function τ(h) is220

defined as the probability that two h-distant points s and s+h whose value of X = 1 are connected. For a binary voxet, two

voxels are connected if a path through the face of successive neighbour voxels with the same property exists. The lag-distance

connectivity function (see Figure 9) can be written as:

τ(h) = Prob
(
s

connected←−−−−→ s+h | X(s) = 1,X(s+h) = 1
)

.

Figure 9. Illustration of the τ(h) connectivity function (right panel) computed on a 2D horizontal section from a binary 3D voxet (left panel).

225

Now let us assume that the percolation threshold p produces a binary voxet characterized by the binary spatial variable

X ∈ 0,1. The global percolation metric Γ(p) (see Figure 10) is the proportion of the pairs of voxels that are connected amongst

all the pairs of voxels for which X = 1:

Γ(p) =
1
n2
p

N(Xp)∑

i=1

n2
i =

N(Xp)∑

i=1

p2
i ,

where N(Xp) is the number of distinct connected components formed by voxels of value X = 1 and pi = ni/np is the propor-230

tion of voxels forming the ith distinct connected component, ni being the size in voxels of the ith connected component and

np being the total number of voxels of value X = 1 in the voxet. Conversely, for the complementary set of voxels for which

X = 0, we can compute Γ(p)c (see Figure 10). One can note that the two connectivity metrics are related as
∑
h

τ(h) = npΓ(p)

(Renard and Allard, 2013).

We propose two measures of connectivity dissimilarity between voxets, based either on τ(h) or Γ(p) and Γ(p)c. Let us235

denote by Nc the number of considered class of values. Note that for a categorical variable voxet, the classes are defined by the

category values, while for continuous variable voxet, they can be obtained by thresholding with Nc percolation thresholds p.

Let us consider Nlag the number of lags (defined similarly as for the experimental semi-variogram in the previous subsection),

lp = 2 the distance norm and 1τ = 1−1Γ the indicator allowing to choose between τ or Γ connectivity. The we can compute
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Figure 10. Illustration of a scalar-field voxet horizontal section (top left) and its global percolation metrics Γ(p) and Γ(p)c (top right)

computed over the 2D sections; the bottom row displays horizontal sections of binary fields obtained by applying different percolation

threshold p[%] to the scalar-field 3D voxet; blue areas, above the percolation threshold, contribute to Γ(p); yellow areas, below the percolation

threshold, are used to compute Γ(p)c.

the connectivity dissimilarity between two voxets as follows in Eq. 4:240

dCTY(Voxet1,Voxet2) =
Nc∑

i=1

1
Nc


1τ



Nlag∑

h=1

|τ1(h)− τ2(h)|lp
Nlag


+ (1−1τ )|Γ1(i)−Γ2(i)|lp


 (4)

3.6 Multiple-point histogram dissimilarity

Multiple-point histograms (MPH Boisvert et al., 2010) are based on pattern recognition and have been primarily used in the

field of geostatistics (Guardiano and Srivastava, 1993) to quantify the quality of multiple-point statistics simulations. Patterns

are delimited by a search window whose dimensionality matches the one of the dataset. One can count unique patterns, however245

the number of unique patterns might be relatively important, in particular for continuous property fields. In that case, it might

require to restrain the analysis to the most frequent patterns (Meerschman et al., 2013). An alternative is to base the analysis

on pattern cluster representatives (see Figure 11). Here, using an l2 norm distance between patterns and k-means clustering

(Pedregosa et al., 2011, scikit-learn implementation), we classify all patterns into Nc = 10 clusters. Each cluster centroid or

barycentre defines its representative.250

In addition, voxets can be easily upscaled which allows MPH analysis of potentially large scale features with a small search

window at high level of upscaling. Note that a given level l of upscaling, the size of the dataset is divided by 2l along each

dimension. Here, to avoid property values smoothing, we perform a stochastic upscaling, i.e. in a 2D case, the upscaled value
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Figure 11. Illustration of multiple-point histogram cluster representatives and sizes for two scalar-field horizontal sections, at the 3rd up-

scaling level; the left column shows the two 2D voxets; for the other columns the first and second rows, respectively third and fourth rows,

display the 10 cluster representatives and their size (number of counted patterns attached to the cluster representative) for the first voxet,

respectively for the second voxet; their order reflect the best similarity between the cluster representatives for both voxets.

of a 2×2 subset of pixels is achieved by a uniform random draw among the values of the 4 pixels. Cluster pattern identification

is performed at the initial resolution level (l = 0) and at all possible upscaled levels.255

For a given upscaling level, once k-means clustering of patterns has been performed on two voxets or datasets, distances

between cluster representatives of two images can be computed: d(Ci1,C
j
2) =

(
Nw∑
w=1

(Ci1(w)−Cj2(w))2

) 1
2

, where Ci1 is the

ithcluster representative for voxet 1, Cj2 is the jthcluster representative for voxet 2 and w denotes the index of the window-

search elements.

The cluster representatives between two datasets are paired by similarity (smallest distance), and re-orderd such that ∀i,260

1≤ i≤Nc, Ci1 is paired with Ci2. To account for cluster size differences, the distance between paired cluster representative are

weighted by proportion dissimilarities. It results in an MPH cluster based distance between voxets/datasets 1 & 2 defined as in

Eq.5.

dMPH(Voxet1,Voxet2) =
Nc∑

i=1

1
Nc

[(
1 + d(Ci1,C

i
2)
)
×
(

1 +
|pi1− pi2|
pi1 + pi2

)
− 1
]

, (5)

where pi1 and pi2 are the proportions of the paired clusters Ci1 and Ci2 with respects to voxets 1 & 2 respectively.265
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One advantage of selecting cluster representative independently between two voxets is to lower computing requirements

over large ensemble of voxets, performing the analysis forNv voxets instead of Nv(Nv−1)
2 pairs. However, performing k-means

pattern clustering on two datasets might provide a more accurate and precise way to compute a distance between histograms

with the same support of cluster representatives, allowing thus the use of Jensen-Shannon divergence for instance. One can

note that we accounted for the size of the clusters, but we could also consider the density spread or concentration around cluster270

representatives.

3.7 Wavelet decomposition coefficient dissimilarity

Wavelet decomposition is way to compress images. Each level of decomposition produces a series of coefficients. If computed

for images to be compared, the dissimilarity of histogram of coefficients can be computed with the Jensen-Shannon divergence

(Eq. 2). Here, wavelet decomposition (Figure 12) is performed with the PyWavelets Python package (Lee et al., 2019) at all275

possible levels of decomposition and using the ’Haar’ wavelet. Other wavelet could be used, however, tests have shown that

such dissimilarity measures are note very sensitive to the choice of the wavelet (Pirot et al., 2019). Then a wavelet-based

Figure 12. Illustration of a first level of haar-wavelet decomposition and the resulting coefficients histograms for two lithocode voxet hori-

zontal sections.

dissimilarity measure between two voxet can be computed as in Eq. 6 by summing the Jensen-Shannon divergences computed
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for all pairs of approximation and decomposition coefficients at all possible levels:

dWVT(Voxet1,Voxet2) =
∑

i,j

JSD(Ci,j1 ||Ci,j2 )∑
i,j

1
, (6)280

where Ci,j1 and Ci,j2 denote the distributions of the ith coefficients at upscaling level j for Voxet1 and Voxet2 respectively.

3.8 Topological dissimilarity

Thiele et al. (2016) give an overview of possible representations of the topology in the context of 3D geological modelling.

Different levels of complexity (e.g. 1st or 2nd orders ...) can be used. Nonetheless, any topological indicator is a graph, that

can take the form of an adjacency matrix. Thus to compute a topological distance between two 3D geological models (for285

instance as in Giraud et al., 2019), it seems natural to look at distances defined between graphs. Donnat and Holmes (2018)

provide a comprehensive review of graph distances, used in the study of graph dynamics or temporal evolution. Though, here,

in a geological context, we aim at comparing the topological diversity of an ensemble of geological models, we can use similar

distances. Donnat and Holmes (2018) classify graph distances into three main categories as summarised below.

Low-scale distances capture local changes in the graph structure. The Hamming (structural) distance is the sum of absolute290

value of differences between two adjacency matrices, requires the same number of vertices (nodes) between the graphs - note

that it is a specific case of the more general Graph Edit Distance. The Jaccard distance is defined as the difference between

the union and intersection of two graphs. The Graph Edit Distance belongs to the NP-complete class of problems, and is not

computed here. More info available in (Gao et al., 2010), at https://en.wikipedia.org/wiki/Graph_edit_distance, or in Part IV

Chapter 15 of the Encyplopediae of Distances (Deza and Deza, 2009, p. 301). Note that some packages and implementations295

exist to compute the graph-edit distance, but have not been tested here ( GMatch4py, graphkit-learn, other proposed heuristic

).

High level / spectral distances are global measures and reflect the smoothness of the overall graph structure changes by

measuring dissimilarities in the eigenvalues of the graph Laplacian or its adjacency matrix. Some examples are the IM distance

(Ipsen and Mikhailov, 2003), lp distances on eigenvalues, or the Kruglov distance on eigenvector coordinates (Shimada et al.,300

2016).

Meso-scale distances are a compromise or combination of low-scale and spectral distances: Hamming-IM (HIM) combina-

tion, Heat-Wave distance, polynomial distance, neighbourhood level distances, connectivity-based distances.

Here, we propose to build first order adjacency matrices (see Figure 13) from 2D or 3D voxet models. For continuous

property fields, the voxet is discretize in N = 10 classes of values defined by N equi-percentile thresholds over the distribution305

of the combined voxets. We compute two topological distances: the structural Hamming distance and the Laplacian spectral

distance (Shimada et al., 2016).

Note that graphs characterizing geological model topology could be defined as attributed graph, to contain more information

(edges properties such as age constraint, type of contact; vertices properties such as formation type, geophysical properties).

Thus more specific measures could be developed to take into account such characteristics. However, it would rely on the310
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Figure 13. Illustration of topological distances and adjacency matrices in the right column for two categorised voxets in the middle column,

derived from two scalar-field voxet horizontal sections in the left column.

ability of geomodelling engines to provide these topology graphs with each model, and there is no guarantee that it would be

meaningful for the inference of geochronology from geophysics.

3.9 Results: indicator comparison

Local measures of uncertainty (see Figure 14 & 15) and global indicators (see Figure 17 & 18) have been computed for 2D,

3D, categorical and continuous variable voxets (lithocode, scalar-field) for an ensemble of 30 model-sets. We also provide a315

comparison of the required computing time for the different indicators and highlight the contributing factors/parameters (see

Table 2).

One can see from Figure 14 that Shannon’s entropy and cardinality computed from lithocode voxets can have a good correla-

tion. However, equivalent indicators continuous entropy and averaged normalized range and standard deviation computed from

scalar-field voxet (Figure 15) have very little in common. Indeed, the standard deviation or the range of values are sensitive to320

extremely different values, while the continuous entropy is sensitive to the proportion of categories of values.

Figure 16 shows that histogram dissimilarities computed from lithocode or scalar-field voxets have a good correlation. Multi-

dimensional scaling (MDS) plots reveal that dissimilarities are smallest within scenario 1 and then within scenario 3 while they

are greatest within scenario 2. MDS plots show that scenarios 1 and 3 model-sets overlaps while scenario 2 model-sets are

characterized by less similar histograms and thus scenario 2 sample cloud of points form a distinct cluster.325

Figure 17 shows some correlation between histogram, semi-variogram, wavelet and structural Hamming based measures

from the lithocode voxets. Figure 18 shows a good correlation, between histogram dissimilarity, wavelet based dissimilarity

and structural Hamming distance from the scalar-field voxets, but not as strong as when computed from the lithocode voxets.
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Figure 14. Comparison of local uncertainty measures for an ensemble of 10 lithocode 3D voxets for scenario 1; 3D visualisation looking

from the NW of the voxet, the top surface of the voxet an EW section at the northern face of the model looking from the south, a NS section

on the western face of the voxet looking from the east.

Figure 15. Comparison of local uncertainty measures for an ensemble of 10 scalar-field 3D voxets for scenario 1; 3D visualisation looking

from the NW of the voxet, the top surface of the voxet an EW section at the northern face of the model looking from the south, a NS section

on the western face of the voxet looking from the east.

4 Discussion

Several factors might explain why a majority of practitioners do not consider input data uncertainty, but all are related to the330

limited resources available to practitioners (knowledge, algorithms, computing time, project timeframe or funding). One of

them is that data uncertainty is not quantified at the time of data acquisition or not available for some measurements, which is

the case when only one measurement or observation of geological data is made at a given location (e.g. for azimuth, dip, and

lithology). Reasonable metadata standards may help to enforce error quantification, or at the very least provide some informa-

tion about the nature of data collection as to infer where and what magnitude of error may be present, but even these are poorly335
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Figure 16. Comparison of model set histogram dissimilarities across the three scenarios; the left column displays a 2D MDS representation

of histogram dissimilarities computed from lithocode voxets (top row) and from scalar-field voxets (bottom row); samples 0 to 9 belong to

scenario 1, samples 10 to 19 belong to scenario 2 and samples 20 to 29 belong to scenario 3; the middle and right column subplots show

histogram and density, joint density and cross-plot between histogram dissimilarities computed from lithocode voxets or from scalar-field

voxets.

or not recorded. Although repeated independent measurements would provide uncertainty estimates, procedures and limited

time or budget resources are a hindrance. Sometimes, knowing the survey setup and the instrumentation characteristics, such

as their precision and accuracy might avoid repeating field measures and allow for an estimation of measurement uncertainty.

Inversion algorithms used for geophysical data integration can also provide estimates of geophysical data errors.

A second reason is related to the required time and associated costs of modelling. Indeed, the process of data integration only340

uses a very limited amount of automation, thus the generation of a single model consumes already most of the practitioners’

resources. In addition, the complexity of real world data often leads to a substantial number of parameters. Thus for high-

dimensional problems, uncertainty propagation requires sufficiently large model ensembles to be representative, which might

not be compatible with the limited resources available to the practitioners.

A third reason is due to the fact that assumptions, such as choices in geological interpretations, made during the modelling345

process are not always tracked. And when they are, they are often ‘forgotten’ at the next stage of the modelling workflow
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Table 2. Complexity and computing time for local and global measures of uncertainty using a single Intel(R) Core(TM) i7-8550 1.80GHz,

based on an ensemble size of N = 10 geological models.

Measures Number of Total CPU time influential parameters

evaluations (HH:MM:SS)

Cardinality 2 00:00:02 nvoxels, nvoxets

Entropy 2 00:00:05 nvoxels, nvoxets, nbins

Histogram dissimilarity 60 00:00:38 nvoxels, nvoxets

Semi-variogram dissimilarity 60 00:09:42 nvoxels, nvoxets, ncateg , ratesub−sampling

Connectivity dissimilarity 60 00:07:02 nvoxels, nvoxets, ncateg , ratesub−sampling

Multiple-point histogram dissimilarity 870 00:37:45 nvoxels, nvoxets, ratesub−sampling

Wavelet decomposition coefficients dissimilarity 870 00:00:38 nvoxels, nvoxets

Topological distances 870 00:02:49 nvoxels, nvoxets, nbins

(Jessell et al., 2018). When these assumptions or justifications are recorded, they are described in metadata or in distinct

reports. Consequently, conceptual uncertainty, which describes alternative yet plausible stratigraphy, tectonic and geodynamic

settings is also ignored.

Another possible reason is that uncertainty is ignored out of convenience (Ferré, 2017) or by ignorance, lack of knowledge350

or education about the importance of uncertainty quantification. However, the formulation of the collected answers suggest

that it is not the case for the surveyed practitioners, who rather acknowledge the importance and need for tools or algorithm to

integrate uncertainty quantification in their modelling workflow.

While about 11% of the respondents indicate that they perform a quantitative uncertainty quantification, it is limited to

aleatoric uncertainty, i.e. data measurement errors. However, the lack of spatial data samples contribute to epistemic uncer-355

tainty and our limited contextual knowledge adds up to conceptual uncertainty. In addition, it is generally expected that these

sources of uncertainty have a bigger impact on predictive uncertainty (Pirot et al., 2015). Thus, in addition to develop tools to

facilitate aleatoric uncertainty quantification for practitioners, accessible tools integrating epistemic and conceptual uncertainty

quantification need to be developed and promoted in the minerals industry.

Restricting the survey to a few open questions encouraged participants to take the survey and to express their uses, needs360

and opinion with limited perception bias, however it did not allow to quantify the gathered answers, and often requires some

interpretation. Nevertheless, it is a first step in acknowledging the practices and needs of 3D geological modellers in the

minerals industry. Another limitation of the survey is that it does not look at the practice and needs of other fields like the

petroleum industry (Scheidt et al., 2018), geothermal industry (Chen et al., 2015) or hydrogeology (Pirot et al., 2019), though

they share similar scientific problems and also propose interesting solutions to deal with uncertainty quantification.365
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For model ensemble of size n, the calculation of local uncertainty indicators such as cardinality or entropy voxets seem to be

much fasterO(n) to compute than global indicatorsO(n2), in particular when dealing with discrete or categorical variables. In

addition, local indicators are most convenient to visualize uncertainty in 2D or 3D spaces. However, they cannot inform about

the variability of important specific features such as connectivity or topology that can be estimated with global uncertainty

indicators. Thus, depending on modelling objectives and relevant features or characteristics, both local and global uncertainty370

indicator should be considered.

Presumably, the presented indicators are non-exhaustive and remain a subjective choice, even though all of them are already

used rather individually in the geo-modelling community. Pellerin et al. (2015), for instance, propose other specific global

geometric indicators. Here, we have focused on indicators that have shown some usefulness and practicality. Local indicators

could be extended to higher moments of the voxel-valued probability distributions, such as to consider asymmetry for instance.375

Global indicators could be extended to summary metrics of lower dimensional model representations, that could be obtained

from discrete-cosine transform (e.g. Ahmed et al., 1974), (kernel-) principal component analysis (e.g. Schölkopf et al., 1997)

or (kernel-) auto-encoding (e.g. Laforgue et al., 2019) for instance. This could be particularly appealing as it could reduce

indicator computing costs drastically, but might not allow to identify the specific features of interest in a representation space

of lower dimensions.380

Last but not least, one can note that we compared ensemble of models, whose underlying characteristics such as vari-

ous lithological units derived from a shared stratigraphy and scalar-fields generated under similar assumptions are consistent.

However, we must warn that the various indicators are compatible with differences in property ranges or meaning (for categor-

ical variables), and thus it is the responsibility of the user to ensure the coherence of the model ensemble used as input for the

uncertainty computation.385

5 Conclusions

The survey clearly shows that practitioners acknowledge the importance of uncertainty quantification; a majority recognize

that they do not perform uncertainty quantification at all and all would like to do better. From this survey, we have identified

four main factors preventing practitioners to perform uncertainty quantification: lack of data uncertainty quantification, com-

puting requirement to generate one model, poor tracking of assumptions and interpretations, relative complexity of uncertainty390

quantification. Here, as a first response, we have provided the geo-modelling community with loopUI-0.1, an open-source

Python package to compute local and global uncertainty indicators. Then, to increase the confidence in predictions from 3D

geological model, efforts should be made to explore conceptual uncertainty (Laurent and Grose, 2020), as well as towards

the implementation of systematic geological data uncertainty quantification, and the exploration of parametric and epistemic

uncertainty (Pirot et al., 2020). It should be performed appropriately at all scales, across all geoscientific methods, such as the395

extraction of additional lithological data from drillhole databases (Joshi et al., 2021). To encourage uncertainty propagation

among practitioners, accessible and compatible algorithms should be offered 1) to extract automatically geological data from

open-databases (Jessell et al., 2021), 2) to quickly generate plausible geological models from a given dataset (Grose et al.,
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2021) in interaction with geophysical data integration (Giraud et al., (this issue) and at an appropriate resolution (Scalzo et al.,

2021). This special issue (Ailleres, 2020) already provides elements of an answer to these problems and is expected to host400

future advances on these topics.

Code and data availability. The detailed survey questions are available in Appendix A and the gathered anonymized answers are available

on request. The code to compute the uncertainty indicators and a set of illustrative notebooks are available at https://doi.org/10.5281/zenodo.

5656151.

Appendix A: Survey405

For each model scale that you encounter in your work, please answer all the questions of the survey (1-10):

A1 PART I - scale

1. What are the scale and characteristic dimensions (width, length, depth and resolution) of the models that you build or

use?
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Figure 17. Comparison of global normalized dissimilarity measures for an ensemble of 30 lithocode 3D voxets across the three scenarios;

cross-plots and density plots by pair of normalized dissimilarity measures; his - histogram, 2ps - semi-variogram, mph - multiple-point

histogram, cty - connectivity, wvt - wavelet decomposition coefficients, shd - topological structural Hamming distance, lsg - topological

Laplacian spectral distance.
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Figure 18. Comparison of global normalized dissimilarity measures for an ensemble of 30 scalar-field 3D voxets across three scenarios;

cross-plots and density plots by pair of normalized dissimilarity measures; his - histogram, 2ps - semi-variogram, mph - multiple-point

histogram, cty - connectivity, wvt - wavelet decomposition coefficients, shd - topological structural Hamming distance, lsg - topological

Laplacian spectral distance.
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Mine (<1 km dimension, ˜ 10 m resolution)

Brownfields (1-10 km dimension, ˜ 100 m resolution)

Greenfields/regional (>10 km dimension, ˜ 1 km resolution)

2. What are the dimensions and grid cell resolution of your models?410

Model width (m)

Model length (m)

Model depth (m)

Horizontal resolution (m)

Vertical resolution (m)

Main purpose (e.g. resource estimation)

A2 PART II

Output

3. Which objectives do geological models help you to achieve?

4. How are they useful to fulfil other needs (and which ones)?

Input415

5. What kind of input data, and what quantity and quality metrics (if any) are used to build your geological models?

Current modelling

6. How is the uncertainty of input data assessed and taken into account?

7. How is the geologist/modeller’s interpretation recorded into the model (recorded tracks of assumptions, choices and

justifications)?420

8. What is the usual modelling workflow and which tools or algorithms are involved?

9. How are performed data integration and upscaling? Which tools or algorithms are involved?
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Improvements

10. What are the limitations of existing geological models to achieve your current and future objectives? How do you

prioritize them and what kind of solution would you imagine?425
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