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Abstract. Atmospheric inversion of carbon dioxide (CO2) measurements to better understand carbon sources and sinks has 

made great progress over the last two decades. However, most of the studies, including four-dimensional variational, ensemble 

Kalman filter, and Bayesian synthesis approaches, directly obtain only fluxes, while CO2 concentration is derived with the 

forward model as part of a post-analysis. Kang et al. (2012) used the local ensemble transform Kalman filter (LETKF), which 20 

updates the CO2, surface carbon flux (SCF), and meteorology fields simultaneously. Following this track, a system with a short 

assimilation window and a long observation window was developed (Liu et al., 2019). However, this data assimilation system 

faces the challenge of maintaining carbon mass conservation. To overcome this shortcoming, here we apply a constrained 

ensemble Kalman filter (CEnKF) approach to ensure the conservation of global CO2 mass. After a standard LETKF procedure, 

an additional assimilation is used to adjust CO2 at each model grid point and to ensure the consistency between the analysis 25 

and the first guess of the global CO2 mass. Compared to an observing system simulation experiment without mass conservation, 

the CEnKF significantly reduces the annual global SCF bias from ~0.2 gigaton to less than 0.06 gigaton and slightly improves 

the seasonal and annual performance over tropical and southern extratropical regions. We show that this system can accurately 

track the spatial distribution of annual mean SCF. And the system reduces the seasonal flux root-mean-square error from a 

priori to analysis by 48-90%, depending on the continental region. Moreover, the 2015-2016 El Niño impact is well captured 30 

with anomalies mainly in the tropics. 

1 Introduction 

Carbon dioxide (CO2) plays a crucial role in climate systems and projected warming (Friedlingstein et al., 2006). 
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Approximately half of the fossil fuel and cement emissions are absorbed by the land and ocean, leaving the remaining half in 

the atmosphere (Friedlingstein et al., 2019). Without effective reduction in those emissions and advanced technologies for 35 

carbon capture and storage, the warming trend may exceed the tipping point with potential adverse impacts on the health of 

the environment, people, and the global economy. Recently, many countries, such as Asia, Europe, and North and South 

America, announced their pledge to achieve carbon-neutral targets by the middle of this century. To successfully implement 

these national pledges, accurate quantification of the spatial and temporal dynamics of earth surface carbon fluxes (SCFs) and 

closing the global carbon budget are essential. There are two principal approaches for SCF estimation: top-down and bottom-40 

up. The bottom-up estimates are obtained from process-based or empirical carbon cycle models (Kondo et al., 2020; Zeng et 

al., 2005; Denning et al., 1996). However, there is still a “missing” or residual carbon sink that is necessary to close the global 

carbon budget with bottom-up approaches because of our limited understanding of the natural carbon cycle and the lack of 

observations to validate the models on a global scale. The top-down approach optimizes the SCF by fusing atmospheric 

CO2 concentration measurements with the modeled CO2 using techniques, such as the Bayesian synthesis approach (e.g., 45 

Rodenbeck et al., 2003; Gurney et al., 2004), data assimilation (DA), such as ensemble Kalman filters (EnKF) (e.g., Peters et 

al., 2005, 2007; Feng et al., 2009; Zupanski et al., 2007; Lokupitiya et al., 2008; Bruhwiler et al., 2005), and variational 

methods (e.g., Baker et al., 2006; Basu et al., 2013; Chevallier et al., 2010; Liu et al., 2014). In recent decades, global CO2 

observation networks from the surface to the air and space have provided large amounts of high-precision atmospheric CO2 

concentration data (Crevoisier et al., 2004; Crisp et al., 2017; Tans et al., 1990; Yang et al., 2018; Yokota et al., 2009), which 50 

greatly enhance the quality of top-down estimates.  

 

Because CO2 is a long-lived tracer gas, remote observations can play an important role in estimating the local SCF. Thus, to 

compromise the sparse and unevenly distributed feature of the global CO2 observation network, most top-down systems do 

not localize the observations and set a very long assimilation window (AW) that ranges from several months to one year 55 

(Chevallier et al., 2010a; Peters et al., 2007; Rodenbeck et al., 2003; Liu et al., 2014). However, the atmospheric transport 

model (ATM)-generated atmospheric CO2 will deviate from a Gaussian distribution with a long AW. Both the EnKF and 

variational methods use the linear hypothesis to constrain the system. To obtain the optimal assimilation, the forecast 

uncertainties are expected to remain linear. It is very difficult to hold the linear perspective with a long AW. Therefore, only 

the SCF is considered a valuable product, while the CO2 concentration is derived with the forward model as part of a post-60 

analysis. 

 

Instead of treating CO2 as a byproduct of the inversion, Kang et al. (2011, 2012) developed a top-down carbon data DA system 

with a short AW (6 hours) to simultaneously estimate SCF and CO2 concentrations. The system includes an online atmospheric 

general circulation model (AGCM) in which meteorological observations (wind, temperature, humidity, and surface pressure) 65 

and CO2 concentration observations are assimilated simultaneously to account for the uncertainties in the meteorological field 

and their impact on the transport of atmospheric CO2. Following this effort, we have developed a LETKF-based carbon DA 
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system (LETKF_C) to generate meaningful CO2 analysis using a combination of a short AW (e.g., 1 day) and a long observation 

window (OW) (e.g., 7 days) (Liu et al., 2019), and the observations within the long OW are assimilated to update the CO2 state 

and SCF parameter at the end of the short AW. Thus, the same observation will be assimilated multiple times. Although the 70 

online estimation of the transport uncertainty is useful and attractive, its computational cost is very high. Furthermore, 

tremendous effort is required for the assimilated meteorological fields to reach the quality of the state-of-the-art reanalysis 

datasets (e.g., MERRA, NCEP, ECWMF). Thus, the LETKF_C system replaces the AGCM with an offline ATM driven by the 

reanalysis data to improve the accuracy of transport and to reduce the expensive computational cost. This approach does not 

include the estimation of transport uncertainties related to the meteorological field, which will lead to additional errors for SCF 75 

estimation in reality. The impact is assumed to be small but remains to be validated in the future. We can include the 

meteorological field uncertainties by driving the ATM using different reanalysis products for different ensemble members. 

Such a capacity is under development. In the context of observation system simulation experiments (OSSE), both systems 

(Kang et al., 2012, 2011; Liu et al., 2019) successfully reproduced the global SCF seasonal cycle and annual SCF pattern at 

grid-point resolution without direct a priori SCF information.  80 

 

Based on the LETKF_C system, we developed a new system named Carbon in Ocean-Land-Atmosphere (COLA) with an 

improved framework. A major improvement for the COLA system is the conservation of carbon mass. Data assimilation (DA) 

systems use observations to statistically constrain the model state. The DA update process could not follow the model dynamic 

principle perfectly, hence leading to a loss of mass and energy conservation and dynamic balances (Zeng et al., 2017, 2021a, 85 

b; Greybush et al., 2011). The impact of such imbalances could be reduced or eliminated by model dynamic adjustment in a 

short period, but the impact of additional mass gain or loss could last for a long time. For example, mass conservation is crucial 

for carbon cycle and hydrological studies (Pan and Wood, 2006). The COLA system follows the same process as the DA 

process to update atmospheric CO2 directly using observations. Therefore, the carbon mass conservation will not hold within 

a DA cycle. To overcome this limitation, a constrained ensemble Kalman filter (CEnKF) step was applied to the COLA system. 90 

The CEnKF was originally used in the hydrological field for DA as a second constraining optimizer (Pan and Wood 2006). 

The basic concept for CEnKF is to constrain the global analysis mass back to the first guess. With the CEnKF, COLA rebuilds 

carbon mass conservation and enhances the CO2 and SCF estimation. 

 

This paper is organized as follows: Section 2 briefly describes the global COLA system and CEnKF. Section 3 describes the 95 

OSSE experimental design. Section 4 presents the results and analysis in the context of observing system simulation 

experiments (OSSE). A summary and discussion are presented in Section 5. 

2 Methods  

2.1 GEOS-Chem model 
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COLA uses GEOS-Chem as the ATM to simulate the global atmospheric CO2 variation (Nassar et al., 2013). In this study, we 100 

use the Modern-Era Retrospective analysis for Research and Applications Version 2 (MERRA2) (Gelaro et al., 2017) 

meteorology reanalysis to drive version 13.0.2 of GEOS-Chem at a 4°×5° horizontal resolution (native resolution of 

0.5°×0.625°) with 47 vertical levels (~30 levels below the stratosphere). The time step interval of GEOS-Chem is set to 30 

minutes for both chemical processes and transport.  

 105 

Since CO2 is a passive tracer in GEOS-Chem and our assimilation system does not consider the uncertainties of metrological 

reanalysis, we treated different CO2 ensemble members as different CO2 tracers in GEOS-Chem. Therefore, we produced the 

ensemble simulations by running a single GEOS-Chem, instead of GEOS-Chem ensembles, which saved significant amounts 

of computational resources (acknowledgment of Dr. Fuqing Zhang for the idea, personal discussion).  

 110 

To simulate the atmospheric CO2 concentration evolution, GEOS-Chem is forced with the SCF, including land-atmosphere 

fluxes (FTA), ocean-atmosphere fluxes (FOA), and fossil fuel emissions (FFE). The total SCF at each model grid point is the 

parameter to be estimated in the COLA system.  

 

2.2 Four-dimensional local ensemble transform Kalman filter (4D-LETKF) 115 

Following Liu et al. (2019), we used the four-dimensional local ensemble transform Kalman filter (LETKF) as the DA 

algorithm. The LETKF algorithm is an ensemble square root Kalman filter developed by Hunt et al. (2005, 2007). This 

algorithm is widely used for DA, including several operational centers, and it has been applied in joint state and parameter DA 

problems (Ruiz et al., 2013), such as carbon data assimilation (Kang et al., 2012, 2011). Similar to the other EnKF algorithms, 

LETKF combines background (model forecast) and observations statistically based on their error covariance to generate an 120 

analysis with reduced uncertainties. The background and analysis error uncertainties are represented by the perturbations of 

background (𝐱! = 𝐱"! − 𝐱%"	! )and analysis (𝐱$ = 𝐱"$ − 𝐱%"	$ ) ensembles, respectively. 𝐱"! and 𝐱% 	! are the background and its 

mean, respectively; 𝐱𝐤𝐚  and 𝐱%	𝐚  are the analysis ensemble and its mean, respectively; and 𝐲"!  and 𝐲%	!  are the forecast 

observations and their mean, respectively. 𝐲"! = 𝐡(𝐱"!) projects the background from the model space to the observation space 

with the observation operator 𝐡. In this study, 𝐡 is a linear interpolation operator that projects the modeled CO2 concentration 125 

to the spatiotemporal locations of 𝐲	'. The overall LETKF algorithm is summarized as follows: 

𝐱% 	$ = 𝐱%	! + 𝐗	!𝐰. 	                    (1) 

𝐰.	 = 𝐏0	$1𝐘	!3
(𝐑	)*1𝐲	' − 𝐲%	!3                  (2) 

𝐏0	𝐚 = [1𝐘	!3
(𝐑	)*1𝐘	!3+(K − 1)𝐈])*                 (3) 

𝐗	𝐚 = 𝐗	![(K − 1)𝐏0	$]
!
"                   (4) 130 
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Here 𝐗	!𝐰.	 is the ensemble mean analysis increment applied to each ensemble member, with R denoting the observation error 

covariance, 𝐏0	$ is the analysis error covariance, K is the number of ensemble members, and 𝐈 is the identity matrix. LETKF 

simultaneously assimilates all observations within a certain distance at each model grid point, which defines the localization 

scale. Hunt et al. (2005) introduced a four-dimensional version, and Hunt et al. (2007) provided detailed documentation of the 

4-D LETKF that we use in this study. 135 

 

Previous work has shown that the LETKF can be successfully applied to estimate SCFs and CO2 concentrations simultaneously 

using atmospheric CO2 observations (Kang et al., 2012, 2011; Liu et al., 2012; Liu et al., 2019). The SCFs (𝐟) are treated as 

parameters augmenting the state vector 𝐜 (the prognostic variable of atmospheric CO2), 𝐗 = [𝐜, 𝐟]𝐓 . An EnKF usually 

assumes the estimated parameters to be special variables that are stationary during model integration. Therefore, the first guess 140 

of the parameter is the persistence of their analysis from the last analysis cycle (Fig. 1). Although the SCFs evolve with time, 

parameter estimation can still produce decent estimation if the SCFs are slowly evolving and the AW is short enough (Ruiz et 

al., 2013). To accelerate the spin-up and reduce the high-frequency noise generated from atmospheric synoptic variabilities, 

our system uses a unique setting of LETKF with a short AW of 1 day and a long observation window (OW) of 7 days, therefore 

we update the atmospheric CO2 and SCF on a daily basis using the observations within the time window of 7 days (Fig. 1). 145 

Please see Liu et al. (2019) for the details of this LETKF configuration. 

 

 
Figure 1: Flowchart of the COLA system. 
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2.3 Constrained Ensemble Kalman Filter (CEnKF) 150 

As previously discussed, the LETKF and most of the ensemble-based Kalman filters do not maintain the physical bounds of 

the state and conservation of the physical laws of state dynamics (Zeng et al., 2017). Since the LETKF process destroys the 

mass conservation (Fig. 2), we applied a CEnKF to constrain the global mass of state 𝐜 after the LETKF process (Fig. 1). The 

concept was based on Pan and Wood (2006), who applied the CEnKF to balance the water budget for each ensemble member. 

In our system, we choose to only rebuild the mass balance on the ensemble mean instead of on each ensemble member because 155 

the inflation step can destroy the balance within each ensemble member. Moreover, the computational cost can be significantly 

reduced. 

 

The mass conservation is destroyed by adding or reducing mass during DA updating. We can rebuild the mass conservation 

by moving the mass back to its original values (before the DA update). Our target is to retain the global mass conservation,   160 

m$ −m! = 0                     (5) 

where m$ and m! are the expected analysis and the first guess global CO2 mass, respectively. The transformation from the 

CO2 concentration at each grid to a global CO2 mass can be expressed as 

m = 𝐡,𝐜̅                      (6) 

where 𝐡, is the linear “observation” operator that transforms the global 3D CO2 concentration to the global CO2 mass. At 165 

each grid, the operator is proportional to the air mass. Now the question becomes how to distribute the expected global total 

mass adjustment to each model grid point. CEnKF achieves this distribution by applying an EnKF step with the m! as 

“observations” and takes the constraint as the “observation” equation. We add the constraint to the common EnKF formula as 

𝐜̅$- = 𝐜̅$ + 𝐄$(𝐡,𝐄$)((𝐡,𝐄𝐚(𝐡,𝐄$)( + r))*1𝐡,𝐜̅! − 𝐡,𝐜̅$3            (7) 

where 𝐜̅$- is the CEnKF CO2 ensemble mean. 𝐜̅$ is the LETKF ensemble mean of CO2. 𝐄$ is the ensemble perturbation 170 

of CO2 after the LETKF process. CEnKF defines the “observations” as the truth with r = 0 to meet the mass conservation 

purpose. Therefore, the EnKF equation is written as 

𝐜̅$- = 𝐜̅$ + 𝐄$(𝐡,𝐄$)((𝐡,𝐄𝐚(𝐡,𝐄$)())*1𝐡,𝐜̅! − 𝐡,𝐜̅$3             (8) 

which is the original EnKF algorithm (Evensen, 1994). The perturbed observation step is not needed with r = 0. Note that we 

are not using LETKF here because it cannot handle the condition of r = 0 (Eq. 3). Generally, the CEnKF distributes the 175 

global mass adjustment to each grid point by taking advantage of the ensemble perturbation 𝐄$ given by the LETKF. The 

grid with a larger ensemble spread will likely get more mass constraints. 
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Figure 2: Schematic illustration of the mass imbalance problem. 180 

 

2.4 Inflation 

Inflation and localization are commonly used techniques to improve the filter performance for EnKF applications. The 

ensemble is expected to underestimate the forecast uncertainties because of the error sources, such as limited ensemble size 

and model deficiencies. The reduced ensemble variance can degrade the filter performance and, in severe cases, can lead to 185 

filter divergence where the filter will reject the observations. Inflation plays an important role in compensating for the reduced 

ensemble variance, which can be separated into three categories: multiplicative inflation, relaxation inflation, and additive 

inflation (Anderson, 2007; Mitchell and Houtekamer, 2000; Zhang et al., 2004; Whitaker et al., 2008; Whitaker and Hamill, 

2012; Miyoshi, 2011). We update our inflation strategy from Liu et al. (2019) to better fit the mass conservation requirement. 

The original additive inflation for CO2 in Liu et al. (2019) does not preserve the carbon mass conservation in the atmosphere. 190 

Therefore, for CO2, we apply the relaxation to prior spread (RTPS) scheme from Whitaker and Hamill (2012), which combines 

the relaxation to prior perturbation (RTPP) logic from Zhang et al. (2004) into the multiplicative inflation approach, 

𝐜"$ = 𝐜$%%% + 𝛄 ∙ (𝐜"$ − 𝐜$%%%)                    (9) 

𝛄 = 𝟏 + α ∙ 𝛔
#)𝛔$

𝛔$
                    (10) 

where 𝛔 is the ensemble spread and α is the scaling factor. In this study, we set α to 0.7. 195 

 

We retained the additive inflation for the SCFs as in Liu et al. (2019) with a slight adjustment. We treat the SCFs as the 

parameter for estimation in our system. However, the SCFs are the boundary forcing with temporal evolution that is missing 

in our dynamic model. The additive inflation scheme was designed to add the missing uncertainties into the system, which 

prevents the effective ensemble dimension from collapsing toward the dominant directions of error growth (Whitaker et al., 200 
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2008). Since we do not know about the SCF uncertainty globally or at each grid, we use the a priori SCF annual cycle as the 

benchmark. For FTA, the added perturbation fields are selected randomly from SiB3 (Denning et al., 1996). After each LETKF 

process, the ensemble spread at each point is inflated back to the predefined uncertainty by adding random fields selected from 

prior SCF within one year centered at the assimilation time (Kang et al., 2012; Liu et al., 2019). Instead of randomly perturbing 

the ensembles based on a distance-decaying model (Wu et al., 2013), the additive inflation takes advantage of the a priori 205 

randomness, 

𝐟"$ = 𝐟"$ + 𝛕 ∙ 1𝐟"
/ − 𝐟/. 3                   (11) 

where the subscript k denotes the kth ensemble member, and the superscript p denotes the sampled a priori SCF. 𝛕 is the 

factor that rescales the sample spread to the predefined magnitude. We retain the same localization scheme and ensemble size 

of 20 as in Liu et al. (2019). 210 

3 Design of the Observing System Simulation Experiment (OSSE) 

3.1 Prescribed fluxes and initial conditions 

The experiments span from 1 October 2014 to 1 January 2018. In this paper, we only focused on the FTA. The FFE and FOA 

are treated as background fluxes that are the same in the assimilation run and nature run (Table. 1). The FFE is based on the 

monthly Open-source Data Inventory of Anthropogenic CO2 emissions (ODIAC) (Oda and Maksyutov, 2011). It is 215 

disaggregated from monthly to hourly based on the TIMES method (Nassar et al., 2013). We use a monthly pCO2 interpolated 

FOA product (Gruber et al., 2019). We use the daily FTA simulated by the VEGAS model (Zeng et al., 2005) as the true FTA 

in the nature run. In contrast, we used the daily FTA modeled by SiB3 in 2008 as a priori for all of the years in the control and 

assimilation runs (Denning et al., 1996). Moreover, the annual mean of SiB3 is subtracted. Thus, there is no interannual 

variation or mean source-sink information coming from the a priori FTA. As mentioned in Sec. 2.4, the a priori SCF is used to 220 

inflate the SCF ensembles. 

 

The nature run and control run are initialized on 1 January 2014 with a globally uniform 3-D concentration of 397.51 ppm 

based on the NOAA-ERSL global monthly mean averaged concentration over marine surface sites (Tans et al., 1989). To 

create the initial ensemble CO2 and FTA conditions for assimilation runs on 1 October 2014, we randomly select 20 225 

nonrepeating CO2 and FTA pairs from the control run between 15 September and 15 October 2014. The ensemble mean initial 

SCF and CO2 conditions are significantly larger than the truth over most of the northern extratropic regions (Fig. A1). Moreover, 

since the initial CO2 state shows a clear bias pattern, constraining the mass at the initial time can degrade the flux estimation. 

Thus, we spin up the assimilation runs from 1 October 2014 to 1 January 2015 to obtain a jointly stable CO2 state and SCF 

parameter without applying the CEnKF. 230 
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3.2 Pseudo-observations 

The pseudo-observations are sampled from the true CO2 field generated by the nature run at the specific time and location of 

the real surface and satellite observations, and then random errors are added based on the error scale of the real observations. 

The CO2 GLOBALVIEWplus v6.0 ObsPack is the main source of surface data (Schuldt et al., 2020). Since there are few 235 

stations over Siberia, we included several tower observations obtained by the National Institute for Environmental Studies 

(Sasakawa et al., 2010). For satellite data, we used Orbiting Carbon Observatory-2 (OCO-2) data (Crisp et al., 2017). Since 

we are focusing on the CEnKF impact, we considered only the experiments that are based on both surface and OCO-2 

observations, and the influence of the two different observation networks is not considered. We plan to address the potential 

effects of such differences in future studies. 240 

 

The observation error is an essential part of the assimilation. Generally, the error is the sum of the instrument error (RI) and 

representative error (RR). For the surface observations, to estimate RR at each site, we followed Chevallier et al. (2010a), who 

used the standard deviation of the detrended and deseasonalized data as a proxy. Overall, the error ranged from less than 0.1 

ppm near the south pole stations to over 10 ppm at some northern midlatitude tower stations (Fig. 3).  245 

 

The original OCO-2 sampling pixel is relatively small (~3 km) compared with the model grid size. Moreover, there are 

approximately four hundred soundings along every latitude. Thus, appropriate data thinning and filtering are necessary. In 

addition, the retrieval error needs to be estimated. We used postprocessed OCO-2 level 2 data based on a new exponentially-

decaying error correlation model with a length scale computed from airborne lidar measurements (Baker et al., 2021). Since 250 

ocean glint observations have system bias compared with land observations (Crowell et al., 2019), only the land nadir and land 

glint data are assimilated (Fig. 4). 

 

 
Figure 3: The location of the surface pseudo-observations. The dots are the locations of the GLOBALVIEW-CO2 255 

observations, and the pentagram is the location of the AMES tower observations. The colors indicate the 
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representative errors assigned to each station. 
 

 
Figure 4: The daily pseudo OCO-2 land-nadir and land-glint observation numbers along the 4-degree latitude band. 260 

4 OSSE Results 

In this section, we present the seasonal cycle (SC) and interannual variation (IAV) in the FTA estimated by the COLA system. 

Then, we systematically investigate the impact of CEnKF on the estimation of FTA and CO2 on the annual scale by comparison 

with an experiment without CEnKF (Table. 1). 

 265 

Table 1: Summary of the nature run, control run, and assimilation run experimental setup. We conducted three 
different assimilation experiments using LETKF (L), LETKF together with CEnKF applied to ensemble mean (LC), 
and LETKF together with CEnKF applied to ensemble members (LCE). Note that the interannual variation and annual 
mean source and sink information in the SiB3 is subtracted. 

 Nature run Control run 
Assimilation run 

EXP-LC EXP-L EXP-LCE 

DA scheme 

 

LETKF+CEnKF 
ensemble mean 

constrained 
LETKF 

LETKF+CEnKF 
ensemble member 

constrained 

Assimilation window 1 day 

Observation window 7 days 

Ensemble size 20 

FTA VEGAS SiB3 SiB3 (as inflation samples) 
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FOA MPI-SOM-FNN_v2016 

FFE ODIAC+TIMES 

 270 
 

4.1 Seasonal Cycle and Interannual Variation 

As in Liu et al. 2019, only the global scale analysis is presented, and the regional analysis is not discussed. Thus, before 

discussing the CEnKF impacts on flux and CO2 estimation, we would like to show the overall performance of the COLA 

system with improved algorithms from the global to regional seasonal cycle (SC) using EXP-LC as an example. Here, EXP-L 275 

is not directly shown because the difference between EXP-L and EXP-LC is not visible at the seasonal scale. The main reason 

is that CEnKF is applied to CO2 but not the flux, and the flux is constrained indirectly using the covariance between CO2 and 

flux. Another reason is that the magnitude of the FTA SC amplitude is much larger than the annual mean. One would expect a 

clearer impact of CEnKF if the SC amplitude is small. 

 280 

Globally, the larger a priori SC amplitude is corrected, and the SC phase is also fixed (Fig. 5a). The global or regional analysis 

root-mean-square error (RMSE) for FTA is calculated as follows: 

RMSE012$ = LE(((FTA012$ (T) − FTA0123 (T))4),               (12) 

where reg and T indicate the region and time, respectively. FTA012$ (T) and FTA0123 (T) indicate the regional total analysis and 

true FTA at a given time T, respectively. E( is the temporal average. The RMSE of the a priori FTA, RMSE012
/ , can be 285 

calculated using a similar formula. Furthermore, we define the root-mean-square-error reduction (RMSER) reduction from a 

priori to analysis as follows, 

RMSER012$ =
5678%&'

( )5678%&'$

5678%&'
(                   (13) 

The RMSER of the global daily FTA is 28% (Fig. 5b). While zooming into the continental regions monthly, the RMSE over 

all these regions significantly decreases (Figs. 6, 7). This reduction ranges from 43% to 90% (Fig. A2). Over the northern 290 

extratropical regions, where there are dense observations, the reduction exceeds 71%. The most significant error reduction 

occurs over the Eurasia boreal region. Over the tropical and southern extratropical regions, the RMSER is smaller (Fig. A2). 

Since there are fewer observations, obtaining an accurate estimation over those regions is more challenging. However, the SC 

amplitude and phase are corrected. Over Northern Africa, the analysis FTA is close to the a priori FTA during the growing 

season. Over southern tropical South America, the SC phase shows a one-month lag, while the SC amplitude is fixed. Such a 295 

temporal lag is not well understood but is likely due to the sparse observations over tropical South America. 

 

Focusing on the grid scale, the bias of EXP-LC compared with the a priori is significantly reduced during all the seasons (Fig. 
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8). The largest difference in the a priori compared with the truth occurred over the northern hemisphere forest region, where 

the SC amplitude is large. A significant bias can also be observed from the regional total time series (Fig. 5). Over the tropical 300 

region, the a priori distribution is also significantly biased, especially for Tropical South America and Northern Africa. In 

contrast, the bias of EXP-LC is much smaller and evenly distributed. In addition, the bias is comparatively larger during 

summer than in the other seasons. 

 

Furthermore, we analyze the IAV in the FTA, which is calculated using the 12-month moving average method. Since the OSSE 305 

period covers the 2015-2016 El Niño event, the tropical FTA of truth shows a large IAV. In contrast, it is smaller over the 

Northern Hemisphere. The EXP-LC showed that the IAV is well reproduced with anomalies mainly in the tropics (Figs. 6, 7). 

However, the IAV may leak between adjacent large continental regions. For example, the EXP-LC shows an upward trend 

compared with the truth over the Eurasia boreal region and a downward trend over Europe from January 2017 to June 2017. 

Since there is no IAV originating from the a priori FTA, we hypothesize that the IAV estimation could be improved using a 310 

better a priori FTA with IAV. 

 

  
Figure 5: a) The global daily FTA of truth (black), a priori (gray), and analysis of EXP-LC (red). The vertical line on 
1 January 2015 indicates the start of assimilation. Before 1 January 2015, the system spin-up lasted for three months. 315 

The pale gray and pale red shadings are the ensemble spread of the a priori and analysis, respectively. b) The 
difference compared with the truth. The RMSE at the right-bottom corner is the root-mean-square error of the 

analysis (red) and the a priori (gray) calculated based on Eq. 12. 
 

 320 
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Figure 6: The FTA seasonal cycle (SC) and interannual variation (IAV) in truth (black), a priori (gray), and analysis 
of EXP-LC (red) over the Northern Hemisphere regions and Australia. The solid lines marked with open circles are 
the SC. The dashed lines are the IAV calculated from the original SC using a 12-month moving average method. The 
RMSE in the right-up corner is the SC root-mean-square error of the analysis (red) and the a priori (gray) calculated 325 
based on Eq. 12. The correlation (CORR) in the right-bottom corner is the IAV correlation between the analysis and 
the truth (the red dashed line and the black dashed line). Note that there is no IAV in the a priori. Thus, there is no 

IAV correlation between the a priori and the truth. 
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 330 
Figure 7: Same as in Figure 6 but for the tropical regions. 
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Figure 8: The top three columns are the FTA climatological seasonal cycle of the truth, a priori, and EXP-LC from 

December to February (DJF), March to May (MAM), June to August (JJA), and September to November (SON). The 335 
bottom two columns are the difference between the a priori and truth (P–T) and between the EXP-LC and truth (E–

T). 
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4.2 The Impact of CEnKF on Flux Estimation 

The improvement in CEnKF manifested while averaging to the global annual scale. To illustrate its impact, we conduct a 340 

contrast experiment without CEnKF (EXP-L). For EXP-L, the accumulation of the annual global imbalances is 0.154, 0.173, 

and 0.024 GtC for 2015, 2016, and 2017, respectively (Fig. 9). Such an imbalance is not negligible compared with the annual 

mean FTA of approximately -1.2 GtC. Moreover, the bias compared with the truth is -0.191, -0.267, and -0.024 GtC for 2015, 

2016, and 2017, respectively. Compared to EXP-L, EXP-LC significantly reduces the annual global SCF bias from ~0.2 

gigaton to less than 0.06 gigaton (Fig. 9). The significantly reduced bias indicates that the CEnKF could efficiently improve 345 

the global flux estimation. 

 

Regionally, EXP-LC does not significantly outperform EXP-L (Fig. 10). For both EXP-LC and EXP-L, the source or sink is 

well consistent with the truth. However, EXP-LC shows slightly better estimation over tropical and southern extratropical 

regions except the South American Temperate region. For EXP-L, the FTA is reversed from a source to a small sink in Northern 350 

Tropical Asia. Such slightly better performance over the tropical and southern extratropical regions is also supported by the 

seasonal RMSER analysis in section 4.1. 

 

  
Figure 9: The global annual total FTA, imbalance, and bias of EXP-LC (red), EXP-L (orange), and EXP-LCE (green) 355 
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compared with the truth (black) in 2015, 2016, and 2017. The imbalance is the mass loss for each year. The bias is the 
analysis of EXP-L and EXP-LC compared with the truth for each year. Note that there is no imbalance problem for 

EXP-LC and EXP-LCE. The error bar of the annual total is the uncertainty. 

 

   360 
Figure 10: The total regional FTA of EXP-LC, EXP-L, EXP-LCE, and the truth from January 2015 to December 

2017. The error bar of EXP-LC, EXP-L, and EXP-LCE is the uncertainty. 
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Figure 11: The spatial distribution of FTA for the truth (a), EXP-LC (b), EXP-L (c), and EXP-LCE (d) averaged from 365 
January 2015 to December 2017. The annual mean of the prior FTA is not shown because it is zero at each grid. The 
bias of EXP-LC compared with the truth (e), EXP-L compared with the truth (f), and EXP-LCE compared with the 

truth (g).  

 

For both EXP-LC and EXP-L, the FTA pattern is well reproduced at the grid scale (Fig. 11b, c). The widespread carbon sink 370 

over the northern extratropics and carbon source over the tropics and southern extratropics are reproduced. Furthermore, the 

carbon source over Indochina and the carbon sink over southern South America are captured. However, over North America, 

EXP-LC shows a clearer west-east dipole pattern than EXP-L. Over northern tropical Africa, EXP-LC successfully captures 

the carbon source at the side and the carbon sink at the center. The improved fine-scale FTA estimation is not significant but 
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indicates that the CEnKF does not degrade the pattern estimation of the annual mean FTA. For both experiments, the carbon 375 

sink over central Russia is shifted northward (Fig. 11d, e). 

 

Since we simplified the CEnKF to constrain the ensemble mean only, the potential effects need to be discussed. We conducted 

an experiment with the ensemble member constrained (EXP-LCE). We compared the regional RMSERs of the three 

experiments (Fig. A2). We find that all the experiments show comparable RMSERs over the northern extratropical regions and 380 

the differences appear over the tropical and southern extratropical regions. EXP-LC shows slightly better performance 

compared with EXP-L over all the tropical and southern extratropical regions, which indicates that the additional mass 

constraint may have a positive effect on the performance over poorly observed regions. Comparing EXP-LC and EXP-LCE, 

EXP-LC shows a larger RMSER over Australia, northern tropical South America, and southern Africa and EXP-LCE shows a 

larger RMSER over South America Template and northern tropical Asia. Notably, EXP-LCE shows worse performance than 385 

EXP-L over Australia and Northern Tropical Asia. Thus, the simplified CEnKF scheme does not degrade the overall 

performance at the seasonal and regional scales. 

 

4.3 The Impact of CEnKF on CO2 Estimation 

Since the CEnKF is applied to the state CO2, we further analyze the impact of CEnKF on the state CO2. From the DA increment 390 

perspective (Fig. 12), the CO2 tracers are redistributed horizontally (Fig. 12a, d) and vertically after the LETKF process. Then, 

the CEnKF process conducts another redistribution that counterbalances the superfluous LETKF increment (Fig. 12b, e). 

Finally, the global mass increment becomes to zero. Horizontally, the increment of both LETKF and CEnKF is larger over the 

land region. However, the magnitude of the CEnKF increment is much smaller than that of LETKF, which indirectly suggests 

that the CEnKF assists in improving the flux estimation without overriding the LETKF increment. The comparison between 395 

EXP-L and EXP-LC further suggests that the CEnKF does not degrade the long-term CO2 forecast (Fig. A3). 

 

The time series of the global imbalance shows that it is less than 0.03 GtC at every assimilation time (Fig. 13a). The imbalance 

is smaller from September to May than in the other months, and there is no significant positive or negative bias. From June to 

August, the imbalance is usually positive and more significant than that in the other months. At the start of the spin-up period, 400 

the imbalance is out of the image range. Because of the significantly biased initial CO2 and FTA conditions (Fig. A1), the CO2 

state is not consistent with the SCF, which leads to a large imbalance. The spatial patterns of the LETKF increment and CEnKF 

increment are opposite in most regions on 15 December 2015. There is a weak negative temporal mean correlation between 

the two increments. The correlation may be weakly positive or moderately negative at some assimilation times (Fig. 13b). We 

further find that the magnitude of the increment correlation has a moderate relationship with the absolute global LETKF mass 405 

imbalance (Fig. 13c). Generally, a larger mass loss/gain may lead to a higher correlated LETKF and CEnKF increment pattern. 
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Figure 12: The ensemble mean LETKF and CEnKF increments of the surface CO2 on 15 June 2015 (a~c) and 15 

December 2015 (d~f) for EXP-LC.  410 

 



 

 21 

 
Figure 13: (a) The global mass imbalance caused by LETKF. The red line is the ensemble mean of the global mass 

imbalance. The gray shading indicates the imbalance ensemble variance. (b) The sky-blue line is the surface spatial 
correlation between the CEnKF increment and the LETKF increment at each assimilation time. The blue line is 415 

calculated from the sky-blue line using the 30-day moving average method. Note that during the spin-up period, the 
CEnKF is not applied. Thus, there are no correlations. (c) The red dots indicate the relationship between the 

increment correlation (sky-blue line in (b)) and the absolute LETKF imbalance (abosulute value of red line in (a)) at 
each assimilation time. The gray line is the linear least squares regression fits to the scatter dots. The correlation is 

shown in the upper right corner. 420 
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5 Summary and Discussion 

In this study, we described the development of the COLA system using the CEnKF which was implemented in a carbon cycle 

study for the first time. We present the performance of the COLA system at mutispatiotemporal scale and show the positive 

effects of the CEnKF in the context of OSSE. By assimilating the pseudo surface and OCO-2 observations, the LETKF could 

effectively estimate the spatial pattern of the annual mean FTA. The biased seasonal cycle amplitude and phase from the a 425 

priori are corrected over most of the continental regions. The estimation is relatively better over the northern extratropics, 

where there are denser observations compared with other regions. However, without mass conservation, the annual global FTA 

is significantly biased. After the CEnKF process, the CO2 mass is constrained without disrupting the LETKF CO2 increment. 

More importantly, the constrained CO2 state significantly helps improve the estimation of global annual FTA and slightly 

improves the seasonal and annual FTA estimation over the tropics and southern extratropics. In this study, we simplified the 430 

original CEnKF to constrain the ensemble mean only, which does not degrade the performance compared with the original 

CEnKF while significantly reducing the computational cost. 

 

Over the tropics, there are many fewer surface stations and the satellite retrievals are usually contaminated by the cloulds and 

aerosols. Thus, most inversion systems use a very long OW (3 months to 1 year) to track the tropical fluxes from the remote 435 

observations on a weekly or monthly basis. However, we show that COLA can accurately infer the tropical fluxes from only 

7 days of observations. We summarize four potential reasons as follows: 1) Using a very short AW of one day, the problem of 

lacking a dynamic SCF model is alleviated as the ensembles can evolve as linearly as possible and remain Gaussian. The 

persistent forecast model is reasonable using an AW that is as short as possible. 2) Instead of abandoning the error transport 

property of EnKF and using the a priori SCF as the first guess in each AW, the SCF ensembles could be transported to the next 440 

AW, indicating that LETKF could sequentially learn from the previous AWs and give a more precise first guess for the current 

AW without iteration. 3) The COLA system perturbs the ensembles using the additive inflation method based on the a priori 

SCF, which introduces appropriate spatial correlation based on the a priori randomness, which also reduces the dependence of 

large ensemble size. In contrast, most ensemble-based CO2 inversion systems perturb the ensembles based on the distance-

decaying model by assigning a correlation length. 4) Most inversion systems do not update the CO2 state, and the update to 445 

CO2 at each assimilation time could reduce the error from the previous AWs and make the flux signal of the current AW clearer 

and more sensitive. In summary, the additional observations in the OW, the rapid update with ensemble transport from the 

previous AW, the additively introduced a priori randomness, and the update to the CO2 state reduce the dependency of a very 

long OW in COLA. 

 450 

In terms of computational cost, COLA is very efficient mainly because of the small ensemble size and short OW. For example, 

the computational time required in our OSSE is approximately one and half minutes per assimilation cycle using 20 cores of 

Intel Xeon E5-2650 (Table. A1). Thus, the three years of OSSE only used less than one and half days of computational time. 
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As denser observations will be available in the future, increasing the horizontal resolution of ATM becomes urgently needed. 

However, this will be limited by the increased computational cost. The method proposed in this study and Liu et al. (2019) has 455 

the potential to break through this limitation. 

 

The transport model error is always a major issue in CO2 inversion studies. Several model intercomparison projects have found 

that the transport model uncertainty is at least on the same order of magnitude as the flux uncertainty (Baker et al., 2006a; 

Basu et al., 2018; Crowell et al., 2019; Schuh et al., 2019; Chevallier et al., 2010b). Therefore, quantitative transport uncertainty 460 

estimation is needed to obtain a robust estimate of SCF and provide information to policymakers. The EnKF can efficiently 

estimate the transport uncertainty online by perturbing the meteorological state (Kang et al., 2011; Liu et al., 2011; Chen et al., 

2019), which requires close collaboration between the weather forecast community and CO2 inversion community. Moreover, 

the estimation of transport uncertainty needs to update the CO2 state and meteorology state together, which will inevitably 

cause the mass imbalance problem. The CEnKF method proposed here overcomes this limitation and offers a computationally 465 

efficient way of constraining global mass. 

Appendix: 

Table A1: The computational cost for one assimilation cycle (7 days observation window). Each component is running 
in parallel using 20 cores of Intel Xeon E5-2650. Note that the cost of the CEnKF with ensemble member constrained 

exceeds the cost of GEOS-Chem while increasing the horizontal resolution to 2×2.5. 470 

Resolution GEOS-Chem LETKF 
CEnKF 

ensemble mean 

CEnKF 

ensemble member 

4×5 55s 30s 1s 10s 

2×2.5 570s 180s 4s 900s 

 

 

Table A2: List of the major abbreviations and their corresponding full names. 
Abbreviation Full name 

SCF Surface carbon flux 

FTA Land-atmosphere fluxes 

FOA Ocean-atmosphere fluxes 

FFE Fossil fuel emissions 

SC Seasonal cycle 

IAV interannual variation 

DA Data assimilation 

LETKF Local ensemble transform Kalman filter 
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CEnKF Constrained ensemble Kalman filter 

OSSE Observing system simulation experiment 

AW Assimilation window 

OW Observation window 

AGCM Atmospheric general circulation model 

ATM Atmospheric transport model 

 

 475 
Figure A1: The initial FTA and surface CO2 condition of the truth (a, c) and the ensemble mean first guess (b, c) on 1 

October 2014. 
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Figure A2: The RMSER in EXP-LC, EXP-L, and EXP-LCE. 480 
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Figure A3: The top four columns are the CO2 climatological seasonal cycle of the nature run, control run, EXP-LC, 

and EXP-L from December to February (DJF), March to May (MAM), June to August (JJA), and September to 
November (SON). The bottom three columns are the difference between the control run and nature run (C–T), 

between EXP-LC and nature run (LC-T), and between the EXP-L and nature run (L–T). 485 
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Code and data availability. The code for CEnKF can be accessed from https://doi.org/10.5281/zenodo.5746140. The related 

codes for GEOS-Chem and LETKF can be accessed from http://wiki.seas.harvard.edu/geos-chem and https://github.com/ 

takemasa-miyoshi/letkf, respectively. 
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