The authors appreciate the reviewers for the effort to review our manuscript and
to provide constructive comments. As suggested, we carefully revised the manuscript
thoroughly according to the valuable advices. Listed below are our point-by-point
responses in blue to the reviewer’s comments in black. The modifications
corresponding to the comments and the revised language and grammars in the

manuscript are marked in red.
Anonymous Referee #1

General comments: This paper describes a chemistry-transport model that is
implemented with a data assimilation compartment using the Parallel Data Assimilation
Framework. First of all, I would admit that I don’t expertise in the atmosphere chemistry
area, all my comments are from the data assimilation with PDAF. As for as I know, the
online data assimilation approach with PDAF is first thoroughly described in Nerger et
al., (2019) GMD paper, where the structure, the algorithm, the implementation are
shown based on a climate model AWI-CM. Actually, such implementation has been
widely used also for other ocean models such as FESOM, MITgcm etc. Another group
like C-Coupler (Liu et al., 2020 GMD) provides similar data assimilation functions as
well. I found this research is comprehensive with both technical and experimental
perspectives. The results are clearly present and well organized. I would recommend
acceptance after minor revisions. In general, I think the paper is well written with
adequate evidence for their results.

Reply: We thank the reviewer for the positive assessment and constructive
suggestions of our manuscript.

Comment 1: As for the paper structure, [ would suggest the authors rephrase 2.3.1
and 2.3.2, i.e., the technical parts. Most of these implementation details are already well
described in Nerger et al., 2019. I didn’t see too many differences compared to Nerger’s.
Currently, it’s rather a repetition. Please cite this paper directly and show your
differences to condense the context. For 2.3.2, again, not necessarily a repetition of
these algorithm details, which are well-known in amount of studies. The authors should

concentrate on things that are distinguishable from others” work. For example,



localization radius, whether it is sensitive to your configuration (I see the authors cite
two other researches, but actually these are different stories if the configuration changes
based on my practices), are you using same localization radius for different
observations; forgetting factor, which value is set, why is that; things like that.

Reply:

Firstly, we agree with that our manuscript should focus on the differences
compared to other studies. The first part of Sec. 2.3.1 is the implementation of two level
of parallelization based on MPI. We have cut out redundant descriptions but not deleted
the content altogether because it is the first time to introduce PDAF into the study area
of CTM. The second part of Sec. 2.3.1 is the main program flow. The third part of Sec.
2.3.1 is the description of the dimension of the state vectors used in PDAF which is
specially redesigned in our work. The fourth part of Sec. 2.3.1 is two modules dealing
with the data transfer before and after the time loop of the NAQPMS-PDAF which are
also designed in our work. In Sec. 2.3.2, we have cited the literature about description
of forecast step. The analysis step of ESTKF is retained because ESTKF is recently
developed especially used in the area of CTM and the difference between ESTKF and
other deterministic ensemble filter is mainly the computation of the ensemble
transformation in the error subspace. Another anonymous reviewer wants more
information about the PDAF and the ESTKF algorithm, so the revision above is the
result of both considering two reviewers’ comments.

Secondly, two kinds of observations (surface PM2.5 mass concentration and
vertical profiles of aerosol extinction coeftficients measured by ground-based lidar) are
assimilated into NAQPMS-PDAF in this study. We set the localization radius as 200
km for both observations. For surface PM2.5 concentration, we follow Kong et al.
(2020) and set the localization radius as 200 km, because the kind of observation, the
atmospheric chemistry-transport model (NAQPMS) as well as the ensemble filter
algorithm of this study is same as their work. Therefore, we here focus the localization
radius of ground-based lidar and forgetting factor of the data assimilation system, which
are set as 200 km and 0.96 in this study. The setting of forgetting factor is omitted in

the original manuscript and have been revised.



The several sensitivity tests have been made to supplement the setting of these two
data assimilation parameters in this study. We refer to Gillet-Chaulet (2020) about the
period chosen for sensitivity tests when assimilating real observation under limited
computational resources. For sensitivity tests, we choose the study period from 00:00
UTC 23 April to 05:00 UTC 23 April 2019 with abundant pollution plume measured
by the ground-based lidar. A series of sensitivity tests are performed with the
localization radius (5 km, 50 km, 100 km, 150 km, 200 km, 250 km, 300 km and 400
km) and forgetting factor (0.6, 0.7, 0.8, 0.9, 0.92, 0.94, 0.96, 0.98 and 1.0). The
configuration of data assimilation is same as the NP-LIDAR-PM25 experiment in the
manuscript expect for the study period. The results of sensitivity tests are evaluated by
the VE sites (the ground-based lidar measurements not assimilated) of model domain.
Following Nerger (2015) and Nerger (2021), Figure S1 and Figure S2 show the time-
mean RMSE and Pearson correlation coefficient for the sensitivity tests, respectively.
As we can see in Figure S1, RMSE of aerosol extinction coefficients converges for all
combinations of localization radius and forgetting factor. The minimum RMSE of 0.36
1/km is obtained for localization radius of 200 km and forgetting factor of 0.96, 0.98
and 1.0. The maximum Pearson correlation coefficient of 0.75 is obtained for
localization radius of 150 km and 200 km and is not sensitive to forgetting factor when
forgetting factor is larger than 0.9. Forgetting factor is used to inflate the forecast
covariance matrix to reduce under-sampling issues, especially in the long run (Pham et
al., 1998). Although the statistical results vary slightly with forgetting factor due to
relatively short run time, the combined results of RMSE and Pearson correlation
coefficient can provide the optimal parameters in the series of sensitivity tests. To sum
up, the forgetting factor of 0.96 and localization radius of ground-based lidar of 200 km
is the most optimal parameters. Moreover, the setting of localization radius is same as
Cheng et al. (2019) performing ensemble filter to assimilating lidar measurements, and
is also close to Ma et al. (2020) performing ensemble filter to assimilating aerosol
extinction coefficient profiles measured by ground-based lidar.

Changes in manuscript: Changes have been made in Sec. 2.3.1 in Line 176-183

of the revised manuscript and revised text is “As the NAQPMS described in Section
3



2.1 is well written and its source code is available, this study chooses the online method
to couple the PDAF with the NAQPMS in order to gain the best performance. The core
modification in the coupling is parallelization for ensemble simulations. Message
Passing Interface standard (MPI; Gropp et al., 1994) both used in NAQPMS and PDAF
allows each process to handle distributed parts of a program and data exchange. The
communicator MPI_ COMM_WORLD is used in NAQPMS as one-level parallelization
to improve computational efficiency and the distribution of processes is exemplified in
Fig. 1a.”.

Also, changes have been made in Line 306-307 and revised text is “We set the
horizontal localization radius and forgetting factor to 200 km and 0.96 according to a
series of sensitivity tests in the Supplement and other related studies (Kong et al., 2020;

Zhao et al., 2020; Cheng et al., 2019b; Ma et al., 2020)”.
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Figure S1. RMSE for sensitivity tests with localization radius of ground-based
lidar (5 km, 50 km, 100 km, 150 km, 200 km, 250 km, 300 km and 400 km) and
forgetting factor of NAQPMS-PDAF (0.6, 0.7, 0.8, 0.9, 0.92, 0.94, 0.96, 0.98 and 1.0).
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Comment 2: Please use a larger fontsize for Figure 10 and 11. The caption tells
“the increments in the RMSEs of the surface PM2.5 forecasts (g, h, i) and the
increments in the RMSEs of the surface PM2.5 forecast (j, k, 1)”. Something goes wrong
there?

Reply: We agree with the comment. The size of font in Figure 10 and Figure 11 is
small as well as the dpi, and these two figures have been revised. “increments in the”
in the caption is superfluous and has been removed.

Changes in manuscript: Changes have been made in Line 1291-1295 of the
revised manuscript and revised text is “the RMSEs of the surface PM; s forecasts (g, h,
1) and the increments in the RMSEs of the surface PM; s forecast (j, k, 1)”.

Comment 3: Taking Figure 14 and 15, the authors found that the system seems
not well constrained by DA in high level. Could the authors add some discussions about
the physical reason or other aspects behind this problem?

Reply: Atmospheric chemistry-transport model (CTM) is an approximate
representation of the evolution of air pollutants, which contains several physical and
chemical processes such as direct emission, advection, diffusion, dry deposition, wet
deposition, aqueous chemistry, gas-phase chemistry, heterogeneous chemical processes
and so on. The concentration variability of gases and aerosols are not only affected by
the above processes and are also constrained by meteorological input, initial conditions
and boundary conditions. Emission is one of the most significant uncertainty sources.
Studies on the analysis and forecast of air pollutants with CTM usually perturbed the
initial emission to create initial ensemble (Tang et al., 2011; Kong et al., 2020; Dai et
al., 2019; Cheng et al., 2019). The inversion estimation of emissions with CTM data
assimilation is even a research hotspot (Kong et al., 2019; Wu et al., 2020; Feng et al.,
2020; Tang et al., 2013; Ma et al., 2019; Dai et al., 2021), which is not the focus in our
work.

Emission which is one of input of CTM can be divided into emission from
agriculture, biomass burning, industry, power plant, resident, transportation. However,
the most kinds of emissions mainly concentrated around the surface. Only biogenic

emission, industrial emission and emission from power plant can emit air pollutants at
7



a certain altitude. As a result, after perturbing initial emission to create initial ensemble,
the error character (represented by the ensemble spread) of extinction coefficient
profiles on the background simulations with a clear decreasing from the surface to a
certain altitude (blue curve in Figure 15a). It means that the analysis increment of each
assimilation cycle tends to apportion more aerosol concentration (which can transform
to extinction coefficient with observation operator) near surface. Therefore, the
significant adjustment of aerosol extinction coefficients mainly occurs below the
altitude of 3 km (Figure 14). The averaged extinction profiles (red curve in Figure 14)
show a maximum value around the altitude of 600 m, which is in the planetary boundary
layer (PBL). The most polluted plume occurs in PBL (usually 1 ~ 2 km) and affects the
concentration of surface PM» 5 (Yang et al., 2010; Lei et al., 2021).

In summary, the limited altitude of emission which is the perturbed to create
ensemble limits the constraint of DA in high level. However, it is well constrained the
aerosol profiles in the PBL which can significantly affect the surface.

Changes in manuscript: Changes have been made in Line 676-680 of the revised
manuscript and revised text is “It means that the analysis increment of each assimilation

cycle tends to apportion more aerosol concentration near the surface”.
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