Effects of forcing differences and initial conditions on inter-model agreement in the VolMIP volc-pinatubo-full experiment

Davide Zanchettin¹, Claudia Timmreck², Myriam Khodri³, Anja Schmidt^{4,5}, Matthew Toohey⁶, Manabu Abe⁷, Slimane Bekki⁸, Jason Cole⁹, Shih-Wei Fang², Wuhu Feng¹⁰, Gabriele Hegerl¹¹, Ben Johnson¹², Nicolas Lebas³, Allegra N. LeGrande^{13,14}, Graham W. Mann¹⁰, Lauren Marshall⁵, Landon Rieger⁶, Alan

5 Nicolas Lebas³, Allegra N. LeGrande^{13,14}, Graham W. Mann¹⁰, Lauren Marshall⁵, Landon Rieger⁶, Al Robock¹⁵, Sara Rubinetti¹, Kostas Tsigaridis^{14,13}, Helen Weierbach^{16,17}

¹University Ca' Foscari of Venice, Department of Environmental Sciences, Informatics and Statistics, Via Torino 155, 30172 Mestre, Italy

 ²Max-Planck-Institute for Meteorology, Bundesstr. 53, 20146 Hamburg, Germany
 ³Laboratoire d'Océanographie et du Climat: Expérimentations et Approches Numériques, Institut Pierre-Simon Laplace, Sorbonne Universités /IRD/CNRS/MNHN, Paris, France.
 ⁴Department of Geography, University of Cambridge, Cambridge, U.K.
 ⁵Department of Chemistry, University of Cambridge, Cambridge, U.K.

⁶Institute of Space and Atmospheric Studies, University of Saskatchewan, Canada ⁷Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama 236-0001, Japan ⁸Laboratoire Atmosphères, Milieux, Observations Spatiales, Institut Pierre-Simon Laplace, Sorbonne Université/CNRS/UVSQ, Paris, France

- ⁹Environment and Climate Change Canada, Toronto, ON, Canada
 ¹⁰University of Leeds, Leeds, UK
 ¹¹University of Edinburgh, Edinburgh, U.K.
 ¹²Met Office Fitzroy Road EXETER EX1 3PB, U.K.
 ¹³NASA Goddard Institute for Space Studies, New York, NY, USA
- ¹⁴ Center for Climate Systems Research, Columbia University, New York, NY, USA
 ¹⁵ Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, USA
 ¹⁶Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
 ¹⁷Lamont Doherty Earth Observatory, Columbia University, New York, NY, USA
- 30 Correspondence to: Davide Zanchettin (davidoff@unive.it)

Supplementary information

35 Figure S1 - Stratospheric aerosol optical depth for the Pinatubo period (1990-1996). Time-latitude evolution of monthly zonal-mean stratospheric aerosol optical depth (SAOD) at 550 nm from versions v3 and v4 of the CMIP6 volcanic forcing dataset (Luo, 2018a,b), and their differences.

Figure S2: same as Figure 4, left panels (full sky), but for the short-wave (SW) radiation only.

Figure S3: same as Figure 4, left panels (full-sky), but for the long-wave (LW) radiation only.

45 Figure S4: same as Figure 5, but for the short-wave (SW) radiation only.

Figure S5: same as Figure 5, but for the long-wave (LW) radiation only.

Figure S6: same as Figure 7, but for paired anomalies

Figure S7: same as Figure 8, but for paired anomalies

Figure S8: same as Figure 9, but for anomalies to the climatology of the piControl chunks corresponding to the volc-pinatubo-full simulations.

Figure S9: same as Figure 11, but for the paired anomalies of the second post-eruption boreal summer (1992 JJA).