
Chemistry Across Multiple Phases (CAMP) version 1.0: An
integrated multi-phase chemistry model
Matthew L Dawson1,4, Christian Guzman1, Jeffrey H Curtis2,3, Mario Acosta1, Shupeng Zhu5,
Donald Dabdub6, Andrew Conley4, Matthew West3, Nicole Riemer2, and Oriol Jorba1

1Barcelona Supercomputing Center, Barcelona, Spain
2Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
3Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
4Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder,
Colorado, USA
5Advanced Power and Energy Program, University of California, Irvine, California, USA
6Department of Mechanical and Aerospace Engineering, University of California, Irvine, California, USA

Correspondence: Oriol Jorba (oriol.jorba@bsc.es) and Nicole Riemer (nriemer@illinois.edu)

Abstract. A flexible treatment for gas- and aerosol-phase chemical processes has been developed for models of diverse scale,

from box models up to global models. At the core of this novel framework is an "abstracted aerosol representation" that allows

a given chemical mechanism to be solved in atmospheric models with different aerosol representations (e.g., sectional, modal,

or particle-resolved). This is accomplished by treating aerosols as a collection of condensed phases that are implemented

according to the aerosol representation of the host model. The framework also allows multiple chemical processes (e.g., gas-5

and aerosol-phase chemical reactions, emissions, deposition, photolysis, and mass-transfer) to be solved simultaneously as a

single system. The flexibility of the model is achieved by (1) using an object-oriented design that facilitates extensibility to

new types of chemical processes and to new ways of representing aerosol systems; (2) runtime model configuration using

JSON input files that permits making changes to any part of the chemical mechanism without recompiling the model; this

widely used, human-readable format allows entire gas- and aerosol-phase chemical mechanisms to be described with as much10

complexity as necessary; and (3) automated comprehensive testing that ensures stability of the code as new functionality

is introduced. Together, these design choices enable users to build a customized multiphase mechanism, without having to

handle pre-processors, solvers or compilers. Removing these hurdles makes this type of modeling accessible to a much wider

community, including modelers, experimentalists, and educators. This new treatment compiles as a stand-alone library and has

been deployed in the particle-resolved PartMC model and in the MONARCH chemical weather prediction system for use at15

regional and global scales. Results from the initial deployment to box models of different complexity and MONARCH will be

discussed, along with future extension to more complex gas–aerosol systems, and the integration of GPU-based solvers.

1 Introduction

Decades of progress in identifying increasingly complex, atmospherically relevant mixed-phase physicochemical processes

have resulted in an advanced understanding of the evolution of atmospheric systems. However, this progress has introduced20

1

https://doi.org/10.5194/gmd-2021-370
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.

a level of complexity that few atmospheric models were originally designed to handle. Most regional and global models

comprise a collection of chemistry and ‘chemistry-adjacent’ software modules (e.g., those for gas-phase chemistry, gas–aerosol

partitioning, surface chemistry, condensed-phase chemistry, partitioning between condensed phases, cloud droplet formation,

cloud chemistry, emissions, deposition, and photolysis) along with ‘support’ modules that calculate parameters needed by these

modules (e.g., vapor pressures, Henry’s law constants, and activity coefficients). Software modules have, in most cases, been25

developed independently and with a focus on computational efficiency that often leads to significant development efforts when

modules are coupled for the first time, or changes to the underlying mechanisms are implemented. Efforts have been made to

standardize Earth science module integration (Jöckel et al., 2005). However, these typically retain the stand-alone nature of

individual modules.

Because of the complexity of atmospheric aerosol systems, the treatment of gas and condensed-phase chemical processes is30

often compartmentalized into a number of sub-modules. When rates for processes occurring in, e.g., the gas phase and aqueous

cloud droplets are similar, this compartmentalization can affect the accuracy of simulations (Nguyen and Dabdub, 2003). In

addition, when several equilibrium-based schemes are employed, their coupling is not always straightforward, particularly

when the systems they describe are related, as is the case for separate inorganic and aqueous organic modules, both of which

can affect pH and water activity. A fully integrated framework is therefore needed for the treatment of mixed-phase chemical35

processes with scalable complexity and applicability to various representations of aerosol systems (e.g., modal, sectional, or

particle-resolved). Such a framework remains to be developed and a first step toward such a comprehensive system is the focus

of this paper.

In this work we present Chemistry Across Multiple Phases (CAMP) version 1.0. CAMP is designed to provide a flexible

framework for incorporating chemical mechanisms into atmospheric host models. CAMP solves one or more mechanisms40

composed of a set of reactions over a time-step specified by the host model. Reactions can take place in the gas phase, in one

of several aerosol phases, or across an interface between phases (gas or aerosol). CAMP is designed to work with any aerosol

representation used by the host model (e.g., sectional, modal, or single particle) by abstracting the chemistry from the aerosol

representation. A set of parameterizations may also be included to calculate properties, such as activity coefficients, needed

to solve the chemical system. CAMP is intended to couple to a variety of external solvers, including those designed for GPU45

accelerators. CAMP v1.0 has been coupled to a CPU-based solver to demonstrate its ability to solve multi-phase chemistry for

a variety of aerosol representations.

Flexible codes for use in atmospheric chemistry modeling have been the focus of several developments in the community.

The implementation and extension of gas-phase mechanisms involve significant effort for complex systems such as Earth Sys-

tem models. Therefore, chemical pre-processors have been developed to ease the modification of gas-phase mechanisms that50

are included in various Earth System models. The Kinetic PreProcessor (KPP) (Damian et al., 2002) has been widely used as a

tool to generate gas-phase chemical mechanisms, for example with the Master Chemical Mechanism (MCM) (Saunders et al.,

2003; Jenkin et al., 2003) and the Regional Atmospheric Chemistry Mechanism gas-phase chemistry mechanism (RACM)

(Stockwell et al., 1997), in both box models (Knote et al., 2015; Sander et al., 2019) and chemical transport models such as

the ECHAM/MESSy Atmospheric Chemistry (EMAC) model (Jöckel et al., 2010), the Global 3-D chemical transport model55

2

https://doi.org/10.5194/gmd-2021-370
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.

for atmospheric composition (GEOS-Chem) (Bey et al., 2001), the Weather Research and Forecast model WRF-Chem (Grell

et al., 2005), the LOTOS-EUROS model (Manders et al., 2017) and the MONARCH model (Badia and Jorba, 2015; Badia

et al., 2017). Similar to KPP, the GenChem chemical pre-processor is used for the EMEP MSC-W chemical transport model

(Simpson et al., 2012) and the CHEMMECH pre-processor is used for the Community Multiscale Air Quality Modeling Sys-

tem (CMAQ) (USEPA, 2020). These pre-processors convert lists of input gas-phase chemical species and gas-phase reactions60

to differential equations in Fortran code.

Going beyond the gas phase, the Aerosol Simulation Program (ASP) (Alvarado, 2008) is an aerosol model that uses ASCII

files for specifying the parameters for the chemical mechanism, aerosol thermodynamics, and other inputs, which are read once

at the beginning of the simulation. ASP is written in Fortran and uses a sectional aerosol representation with the number of

sections adjustable at runtime. The ASP model can be used as a box model, to simulate a plume in the ambient atmosphere or a65

smog-chamber experiment and can be called as a subroutine within spatially-resolved models (Alvarado et al., 2009; Lonsdale

et al., 2020).

More recently, several atmospheric chemistry box models written in languages other than Fortran have become available.

When written in interpreted languages, such models do not require the use of compilers, which makes them easier to use. For

example, KinSim (Peng and Jimenez, 2019) is an Igor-based chemical gas-phase kinetics simulator that is used for teaching70

and research purposes. The PyBox model (Topping et al., 2018) is written in Python. PyBox reads in a chemical equation

file and then creates files that account for the gas-phase chemistry and gas-to-particle partitioning using the UManSysProp

informatics suite (Topping et al., 2016). PyBox is the basis for PyCHAM, a Python box model for simulating aerosol chambers

(O’Meara et al., 2021) and for JlBox (Huang and Topping, 2020), a high-performance community multi-phase atmospheric

0D box-model, written in Julia. JlBox simulates the chemical kinetics of a gas phase and a fully coupled gas–particle model75

with dynamic partitioning to a fully moving sectional size distribution. JlBox also uses chemical mechanism files to provide

parameters required for multi-phase simulations.

The common goal of these models is that the code can be used and modified easily by specifying the chemical mechanism,

which may include multi-phase reactions, in easy-to-modify text files. This is also one of the design principles of CAMP, which

uses JSON files to define the chemical mechanism. However, CAMP goes beyond this in that it is designed to treat the gas phase80

and organic/inorganic aerosol phases as a single system, it provides easy portability across different aerosol representations,

and it allows the full, multi-phase system to be configured at runtime. CAMP is designed to be used in box models and within

3D models, as we will demonstrate in this paper.

For the user, this means that there is no pre-processor involved. Instead, the JSON files can be updated to change the

chemical mechanism at runtime, for example by adding more chemical species, more reactions, or different kinds of reactions.85

This does not require recompiling the code and enables rapid testing and sensitivity analyses. Furthermore, it is easy to change

the underlying aerosol representation (bins, modes or particle-resolved), which is helpful to assess structural uncertainty due

to aerosol representation assumptions and to adjust the computational burden depending on the application. Another important

consideration is that at a time when computer architectures evolve rapidly, only a one-time back-end change is needed when

the code is ported to a new machine, rather than a complete rewrite of the model for each new architecture.90

3

https://doi.org/10.5194/gmd-2021-370
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.

We envision the development of CAMP to proceed in three phases. Phase 1 is described in this paper and consists of a proof-

of-concept flexible multi-phase chemistry package for multiple aerosol representations operating within a box model and a

3-D regional model, prior to any optimization efforts. Phase 2 will address optimization issues, including the use of GPUs and

multi-state solving, targeting the use of CAMP in large-scale models on modern computer architectures. Phase 3 will refactor

the code based on lessons learned during Phases 1 and 2, with a focus on easier porting to different solvers and architectures.95

The overall description of the CAMP framework is presented in Sect. 2. A fundamental feature of CAMP is its applicability

to a wide range of host models. We describe the coupling of CAMP with models of different complexity in Sect. 3. The runtime

configuration is demonstrated in Sect. 4 with examples of solving the same multi-phase chemical system using different aerosol

representations and different host models. Section 5 presents concluding remarks and a future vision for CAMP.

2 Software design100

CAMP has been designed to separate the specification of multi-phase chemical mechanisms from the implementation of spe-

cific solvers, and to be usable by a variety of host models. A high-level picture of how CAMP interacts with a host model

and a solver, and how this differs conceptually from more traditional implementations, is illustrated in Fig. 1. In the traditional

approach (Fig. 1a), individual model components are typically introduced into an atmospheric model by adapting their code to

interact with the host model’s infrastructure and method for describing the model state. Solvers are typically inseparable from105

the representation of the chemical system, and configurations of individual model components are often hard-coded, making

the addition of new species and chemical processes difficult, particularly when these involve an aerosol phase. In contrast,

CAMP is compiled as a library and exposes an application programming interface (API) that is used by a host model to ini-

tialize CAMP for a particular multi-phase chemical system, update rates for processes such as emissions or photolysis that

are typically calculated in separate modules, and solve the multi-phase chemical system at each time step (Fig. 1b). On the110

back-end, CAMP is designed to interact with a variety of external solver packages, thus separating the specification of the

chemical system from the solver.

CAMP has been designed for extensibility to a variety of solver strategies, including GPU-based solvers as illustrated in

Fig. 2. It has also been designed for scalability of chemical complexity through use of a standardized JSON format for specify-

ing multi-phase chemical systems at runtime (Sect. 2.3), and applicability to a variety of aerosol representations (e.g., modal,115

sectional, particle-resolved; Sect. 2.2.3). Here we describe CAMP version 1.0, which uses the CPU-based CVODE solver from

the SUNDIALS package (Cohen et al., 1996) with a configuration described in Sect. 2.4.1, as an initial implementation.

The scalability and extensibility of CAMP is achieved through use of an object-oriented design, and particularly the ab-

straction of various components of the chemical system described throughout this section. Although object-oriented design

has been around for decades, its adoption in atmospheric models has been slow. We therefore provide here a quick descrip-120

tion of some terminology for readers who may not be familiar with object-oriented design (for further background see, e.g.,

Mitchell (2005) or Jacobson (1992)). An ‘object’ is a set of data together with functions that operate on that data. For example,

we will store the reaction process “O3 + NO→NO2 + O2” as an object. The data in this object is a list of reactants and a

4

https://doi.org/10.5194/gmd-2021-370
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.

Host Model

Host Model

transport

deposition

emissions

gas-phase
chemistry

cloud
chemistry

affected by aerosol representation

inorganic
chemistry /
partitioning

organic
chemistry /
partitioning

aerosol
microphysics

photolysis activity
model

activity
model

vapor
pressure

model

transport

photolysis

emissions

deposition

affected by aerosol
representation

aerosol
microphysics

CAMP

CAM
P API

solver API

Solver

CAMP driver

CAM
P core integrated

chemical
mechanism

a)

b)

Figure 1. Interactions of chemistry and related modules in (a) a typical atmospheric model and (b) an atmospheric model using CAMP.

Model components calculate rates or rate constants for physicochemical processes (green), calculate physical parameters (orange), or directly

update the host model state (blue). Some modules that typically directly update the model state—deposition and emissions in (a)—now

provide rates for these processes to CAMP (b). Parameter calculations—activity and vapor pressure models in (a)—are now integrated into

the combined chemical mechanism (purple). Arrows indicate the primary flow of information among components.

5

https://doi.org/10.5194/gmd-2021-370
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.

list of products, and the object has a function that can compute the rate of change of each species given current conditions.

Objects are stored as variables in the code, so we could have an array of process objects, each of which describes a different125

chemical reaction. Every object belongs to a ‘class’, also called ‘type’, which specifies a minimal set of data and functions

that the object must have. For example, we will have a Process class, which specifies that all objects of this type must

have a calculate_derivative_contribution() function to compute the rate of change of each species. Classes

can be organized into a hierarchy, with a ‘base’ class that is ‘extended’ by more specific classes. For example, we will use

Process as a base class and extend it by Arrhenius and Troe classes, which will add functions that are specific to those130

types of reactions. Our “O3 + NO” object would be of type Arrhenius and thus implicitly also have type Process. The

advantage of organizing code in this way is that other subroutines don’t need to know about the details of different processes.

For example, the time stepper code can simply take an array of Process objects and treat them all the same by calling their

calculate_derivative_contribution() functions, without needing to know which of them are actually of type

Arrhenius or Troe.135

A full description of the advantages of object-oriented programming is beyond the scope of this article, but the extensibility

of a code to new problems through abstraction of key software components is of particular benefit to science models. In

Sect. 2.2 we describe in detail how CAMP uses generalized base classes. We will use this language-independent terminology

where possible throughout this paper to focus on the structure rather than the implementation of CAMP.

2.1 CAMP Interface140

The general process for adding CAMP to a model is to create an instance of the CampCore class during model initialization,

passing it a path to the configuration data. Each instance of the CampCore class is configured for one particular chemical

mechanism. Sets of CampCore objects can be created for solving multiple chemical mechanisms. The CampCore object

acts as the interface between the host model and CAMP, handling requests to update species concentrations, rates, rate con-

stants, and other mechanism parameters, solve the chemical system for a given time step, and retrieve updated chemical species145

concentrations. CampCore objects can also pack and unpack themselves onto a memory buffer for parallel computing appli-

cations.

2.2 Abstraction of a chemical mechanism

At the core of the chemistry package is an abstract chemical mechanism made up of instances of classes that extend one of three

base classes: Process, Parameter, and AerosolRepresentation. This approach is well-suited to physicochemical150

systems where components of the system must provide similar information about the current state of the system during solving,

but where they apply different algorithms to calculate this information. In the following sections we describe the functionality

of each of the three base classes, the classes that extend them, and their use.

Some class and function names have been changed here compared to their names in CAMP v1.0 for clarity of their purpose,

and will be updated in the next release of the code. The current naming scheme and detailed descriptions of CAMP v1.0155

software components are described in the CAMP documentation.

6

https://doi.org/10.5194/gmd-2021-370
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.

CPU
Solver

Box
model

CPU
Solver

3D
model

GPU
Solver

{
"reactants" : {

"O3" : {} ,
"NO" : {}

},
"products" : {

"NO2" : {}
},
"type" : "ARRHENIUS",
"A" : 3.0E-12,
"B" : 0.0E+00,
"C" : -1500.0

}

SIMPOLPhaseTransfer

load()
initialize()
…

TroeReaction

load()
initialize()
…

ArrheniusReaction

load()
initialize()
…

UNIFAC

load()
initialize()
…

PDFITE

load()
initialize()
…

MassOnlyBinsModes

load()
initialize()
…

Modeled objects

{
"reactants" : {

"O3" : {} ,
"NO" : {}

},
"products" : {

"NO2" : {}
},
"type" : "ARRHENIUS",
"A" : 3.0E-12,
"B" : 0.0E+00,
"C" : -1500.0

}

{
"reactants" : {

"O3" : {} ,
"NO" : {}

},
"products" : {

"NO2" : {}
},
"type" : "ARRHENIUS",
"A" : 3.0E-12,
"B" : 0.0E+00,
"C" : -1500.0

}

{
"reactants" : {

"O3" : {} ,
"NO" : {}

},
"products" : {

"NO2" : {}
},
"type" : "ARRHENIUS",
"A" : 3.0E-12,
"B" : 0.0E+00,
"C" : -1500.0

}

Modal aerosol Sectional aerosol Particle-resolved aerosol

Host model

CAMP10 reactions

100 reactions

1000 reactionsIn
cr

ea
sin

g
co

m
pl

ex
ity

{
"reactants" : {

"O3" : {} ,
"NO" : {}

},
"products" : {

"NO2" : {}
},
"type" : "ARRHENIUS",
"A" : 3.0E-12,
"B" : 0.0E+00,
"C" : -1500.0

}

{
"reactants" : {

"O3" : {} ,
"NO" : {}

},
"products" : {

"NO2" : {}
},
"type" : "ARRHENIUS",
"A" : 3.0E-12,
"B" : 0.0E+00,
"C" : -1500.0

}

{
"reactants" : {

"O3" : {} ,
"NO" : {}

},
"products" : {

"NO2" : {}
},
"type" : "ARRHENIUS",
"A" : 3.0E-12,
"B" : 0.0E+00,
"C" : -1500.0

}

{
"reactants" : {

"O3" : {} ,
"NO" : {}

},
"products" : {

"NO2" : {}
},
"type" : "ARRHENIUS",
"A" : 3.0E-12,
"B" : 0.0E+00,
"C" : -1500.0

}

{
"reactants" : {

"O3" : {} ,
"NO" : {}

},
"products" : {

"NO2" : {}
},
"type" : "ARRHENIUS",
"A" : 3.0E-12,
"B" : 0.0E+00,
"C" : -1500.0

}

{
"reactants" : {

"O3" : {} ,
"NO" : {}

},
"products" : {

"NO2" : {}
},
"type" : "ARRHENIUS",
"A" : 3.0E-12,
"B" : 0.0E+00,
"C" : -1500.0

}

{
"reactants" : {

"O3" : {} ,
"NO" : {}

},
"products" : {

"NO2" : {}
},
"type" : "ARRHENIUS",
"A" : 3.0E-12,
"B" : 0.0E+00,
"C" : -1500.0

}

{
"reactants" : {

"O3" : {} ,
"NO" : {}

},
"products" : {

"NO2" : {}
},
"type" : "ARRHENIUS",
"A" : 3.0E-12,
"B" : 0.0E+00,
"C" : -1500.0

}

{
"reactants" : {

"O3" : {} ,
"NO" : {}

},
"products" : {

"NO2" : {}
},
"type" : "ARRHENIUS",
"A" : 3.0E-12,
"B" : 0.0E+00,
"C" : -1500.0

}

Figure 2. Schematic overview of the CAMP framework. The multi-phase chemical mechanism is flexibly defined using standardized JSON

files. This is converted into an internal representation of model objects. This interfaces with the aerosol representation (modal, sectional,

particle-resolved) determined by the host model, and can be coupled to solvers that are appropriate for the compute requirements of the

application (CPU or GPU solvers on platforms ranging from personal computers to high-performance supercomputers.)

2.2.1 Processes

The primary responsibility of instances of classes that extend the Process base class is to provide contributions to the rates

of change of chemical species (i.e., the forcing), and to the Jacobian of the forcing, if this is required by the solver, from a

single physicochemical process. These processes include gas- and condensed-phase chemical reactions, the condensation and160

evaporation of condensing species, surface reactions, and any other processes that lead to changes in the state of a chemical

species over time that are included in the CAMP mechanism. The functions of the Process class are shown in Table 1. A

description of Process-extending classes is included in Table 2.

The Jacobian of the forcing calculated by the set of Process objects that make up a chemical mechanism includes param-

eters (described below) as independent variables. This allows the Jacobian for the solver (a square matrix including only solver165

variables) to be calculated as described in Sect. 2.2.2.

7

https://doi.org/10.5194/gmd-2021-370
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.

Table 1. Functions of the Process base class and its extending classes.

Process function Description

get_used_jacobian_elements During initialization, the process indicates which Jacobian elements it will con-

tribute to during solving. (This gives the solver the option of using a sparse

Jacobian maxtrix.)

update_ids During initialization, the solver generates IDs for species to use when providing

contributions to their rates of change, and for Jacobian elements, for use during

solving.

update_for_new_environmental_state During solving, this function is called whenever the environmental state of the

system (temperature, pressure, etc.) changes. This allows each process to re-

calculate environmental state-dependent parameters (e.g., rate constants) only

when necessary.

calculate_derivative_contribution During solving, this function is called to calculate the rate of change for each

of the species that participates in the process based on the current state of the

system and update the Forcing object passed to this function to account for

these changes using the indices saved during the call to update_ids.

calculate_jacobian_contribution During solving, this function is called to calculate the contribution to the Ja-

cobian matrix from this process based on the state of the system and update

the Jacobian object passed to this function to account for these contributions

using the ids saved during the call to update_ids.

All processes listed in Table 2 are regularly tested under simple sets of conditions as described in Sect. 2.5. However, only

those marked with an asterisk in Table 2 have been evaluated thoroughly in the context of a comprehensive mechanism, as

discussed in Sect. 4. Remaining processes are listed in Table 2 for completeness, but should be considered as being under

development.170

2.2.2 Parameters

Parameter-extending classes provide values for properties that can be diagnosed from the system state (e.g., activity coeffi-

cients). These properties are used by Process-extending classes to calculate their contribution to the forcing of the chemical

species, and to the Jacobian of the forcing. An advantage of the abstract mechanism design is that these Parameter-extending

classes can be as complex as needed for a given application. For example, a box model could apply a detailed activity coefficient175

calculation scheme as part of a Parameter-extending class, and a global model may apply a different, simplified scheme

in another Parameter-extending class. No changes to the Process-extending classes that use these activity coefficients

would be required. The functions of the Parameter class are shown in Table 3. A description of the extending classes is

included in Table 4.

8

https://doi.org/10.5194/gmd-2021-370
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.

Table 2. Current implementations of the Process base class. Classes marked with asterisk are used in the CAMP implementation example

presented in Sect. 4.

Process-extending class Description References

Arrhenius∗ A gas-phase Arrhenius-like reaction. Arrhenius-like rate con-

stants are calculated with optional temperature and pressure de-

pendent terms:

k =Aexp

(
− Ea

kbT

)(
T

D

)B

(1.0+EP) ,

where Ea is the activation energy (J), kb is the Boltzmann con-

stant (JK−1), A [(cm−3)−(nr−1)s−1], D (K), B (unitless) and

E (Pa−1) are reaction parameters, nr is the number of reactants,

T is temperature (K), and P is pressure (Pa).

Finlayson-Pitts and Pitts (2000)

Byun and Ching (2019)

AqueousReversible A reversible aqueous reaction defined by a reverse rate constant

kr [(kgm−3)−(np−1)s−1] and an equilibrium constant Keq:

Keq =Aexp

(
C

(
1

T
− 1

298

))
where A [(kgm−3)(np−nr)] and C (K) are reaction parame-

ters, np is the number of products, nr is the number of reactants,

and T (K) is temperature.

CondensedPhaseArrhenius As in Arrhenius, but for condensed-phase reactions. Units

are M for aqueous reactions or mol m−3 otherwise.

CustomH2o2∗ A reaction with a specialized rate constant for HO2 self-

reaction:

k = k1 + k2[M],

where k1 and k2 are Arrhenius rate constants with D = 300

and E = 0, and M is any third-body molecule.

Yarwood et al. (2005)

Burkholder et al. (2019)

CustomOhHno3∗ A reaction with a specialized rate constant for the reaction of

OH and HNO3:

k = k0 +

(
k3[M]

1+ k3[M]/k2

)
,

where k0, k2 and k3 are Arrhenius rate constants with D =

300 and E = 0, and M is any third-body molecule.

Yarwood et al. (2005)

Burkholder et al. (2019)

Emission∗ A process that accounts for sources of gas-phase chemical

species. Emission rates can be specified in the CAMP config-

uration or passed to a CampCore object at runtime if the emis-

sion rates vary during a simulation.

9

https://doi.org/10.5194/gmd-2021-370
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.

Process-extending class Description References

FirstOrderLoss∗ A process that accounts for first-order loss of gas-phase chemi-

cal species. First-order loss rate constants can be specified in the

CAMP configuration or passed to a CampCore object at run-

time if the loss rate constants vary during a simulation. These

can be used, for example, for dry or wet deposition, or wall loss

in simulations of laboratory experiments.

HenrysLawPhaseTransfer Henry’s Law condensation and evaporation, defined by equilib-

rium rate constants of the form:

H(T) =H(298K)exp

(
C

(
1

T
− 1

298

))
where H(298K) is the Henry’s Law constant at 298 K

(M Pa−1), C is a constant (K), and T is temperature (K).

Condensation rate constants kc are calculated according to Za-

veri et al. (2008) as:

kc = 4πreffDgffs(Kn,α)

where reff is the effective radius of the particles (m), Dg is

the diffusion coefficient of the gas-phase species (m2 s−1) and

ffs(Kn,α) is the Fuchs-Sutugin transition regime correction

factor (unitless), Kn is the Knudsen Number (unitless) and α

is the mass accommodation coefficient.

Mass accommodation coefficients (α) are calculated using the

method of Ervens et al. (2003) and references therein.

Ervens et al. (2003)

Zaveri et al. (2008)

Photolysis∗ The photolysis of a gas-phase chemical species. Photolysis rate

constants can be specified in the CAMP configuration or passed

to a CampCore object at runtime if the photolysis rate con-

stants vary during a simulation.

SimpolPhaseTransfer∗ Vapor-pressure based condensation and evaporation based on

the SIMPOL.1 vapor-pressure parameterization of Pankow and

Asher (2008). Condensation rate constants are calculated as in

HenrysLawPhaseTransfer. The SIMPOL.1 vapor pres-

sure is then used to calculate the evaporation rate.

Pankow and Asher (2008)

Ervens et al. (2003)

Zaveri et al. (2008)

10

https://doi.org/10.5194/gmd-2021-370
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.

Process-extending class Description References

Troe∗ A Troe (fall-off) reaction with rate constants of the form:

k =
k0[M]

1+ k0[M]/kinf
F

(1+1/N [log10(k0[M]/kinf)]
2)−1

C

where k0 is the low-pressure limiting rate constant, kinf is

the high-pressure limiting rate constant, M is any third-body

molecule, and FC and N are parameters that determine the

shape of the fall-off curve, and are typically 0.6 and 1.0, respec-

tively (Finlayson-Pitts and Pitts, 2000; Byun and Ching, 2019).

k0 and kinf are Arrhenius rate constants with D = 300 and

E = 0.

Finlayson-Pitts and Pitts (2000)

Byun and Ching (2019)

WennbergNoRo2 Branched reactions with one branch forming alkoxy radicals

plus NO2 and the other forming organic nitrates. The rate con-

stants for each branch are based on an Arrhenius rate constant

and a temperature- and structure-dependent branching ratio cal-

culated as:

knitrate =
(
Xe−Y/T

)(A(T, [M],n)

A(T, [M],n)+Z

)

kalkoxy =
(
Xe−Y/T

)(Z

Z +A(T, [M],n)

)

A(T, [M],n) =
2× 10−22en[M]

1+ 2×10−22en[M]

0.43(T/298)−8

0.41

(
1+

[
log

(
2×10−22en[M]
0.43(T/298)−8

)]2)−1

where T is temperature (K), [M] is the number density of air

(cm−3), X and Y are Arrhenius parameters for the overall re-

action, n is the number of heavy atoms in the RO2 reacting

species (excluding the peroxy moiety), and Z is defined as a

function of two parameters (α0,n):

Z(α0,n) =A(293K,2.45× 1019cm−3,n)
(1−α0)

α0

where α0 is an empirically determined base-line branching ra-

tio.

Wennberg et al. (2018)

11

https://doi.org/10.5194/gmd-2021-370
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.

Process-extending class Description References

WennbergTunneling Reactions with rate constant equations calculated as:

k =Aexp

(
−B
T

)
exp

(
C

T 3

)
where A is the pre-exponential factor ((cm−3)−(n−1)s−1), B

and C are parameters that capture the temperature dependence,

and n is the number of reactants.

Wennberg et al. (2018)

Table 3. Functions of the Parameter base class and its extending classes.

Parameter function Description

get_used_jacobian_elements During initialization, the parameter indicates which elements of a partial-

derivative matrix it will contribute to during solving. (This permits the use of a

sparse partial-derivative matrix.)

update_ids During initialization, the solver provides an ID for the parameter, and for partial

derivatives, for use during solving.

update_for_new_environmental_state During solving, this function is called whenever the environmental state of the

system (temperature, pressure, etc.) changes. This allows each parameter to re-

calculate environmental state-dependent sub-parameters only when necessary.

calculate During solving, this function is called to calculate the parameter based on the

current state of the system and update the parameter array passed to this function

using the index saved during the call to update_ids.

calculate_jacobian_contribution During solving, this function is called to calculate the contribution to the partial-

derivative matrix from this process based on the state of the system and update

the Jacobian object passed to this function to account for these contributions

using the ids saved during the call to update_ids.

In addition to calculating the value(s) of the parameter(s) during solving, a Parameter-extending class must also provide180

the partial derivatives of the parameter with respect to the solver variables. These are assembled into a matrix of partial

derivatives in which the dependent variables are all the calculated parameters used by the processes that make up the chemical

mechanism and the independent variables are the solver variables. This matrix is used with the Jacobian calculated by the set of

processes (which includes the dependence of the forcing of solver variables on calculated parameters) to calculate the Jacobian

that is returned to the solver (a square matrix that includes only the solver variables).185

The Parameter-extending classes shown in Table 4 are included here as examples of how this type of class fits into the

overall CAMP design. These parameterizations are regularly tested under simple sets of conditions as described in Sect. 2.5.

However, they have not yet been thoroughly evaluated in the context of a comprehensive chemical mechanism, and should

therefore be considered as being under development.

12

https://doi.org/10.5194/gmd-2021-370
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.

Table 4. Current implementations of the Parameter base class. These are included here for reference and will be described in more detail

and evaluated in a separate paper.

Parameter-extending class Description References

PdfiteActivity Calculates aerosol-phase species activities using a Taylor series to describe par-

tial derivatives of mean activity coefficients for ternary solutions, as described

in Topping et al. (2009).

Topping et al. (2009)

UnifacActivity Calculates activity coefficients for aerosol-phase species based on the total

aerosol phase composition using functional group contributions.

Marcolli and Peter (2005)

ZSRAerosolWater Calculates the equilibrium aerosol water content based on the Zdanovski–

Stokes–Robinson mixing rule in the following generalized format:

W =
n∑

i=0

1000Mi

MWimi(aw)

where Mi is the concentration of binary electrolyte i with molecular weight

MWi and molality mi at a given water activity aw contributing to the total

aerosol water content W .

Jacobson et al. (1996)

Metzger et al. (2002)

Figure 3. Common structures for aerosol state arrays in three different aerosol representations. Rows of boxes represent arrays used by a host

model to describe the aerosol state during a simulation. Letters indicate unique condensed-phase chemical species concentrations. Colors

indicate unique aerosol phases.

13

https://doi.org/10.5194/gmd-2021-370
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.

2.2.3 Aerosol Representations190

As discussed in the introduction, software packages designed to account for aerosol processes (nucleation, coagulation, con-

densation/evaporation, condensed-phase chemistry, etc.) are often tightly coupled to the way the model represents aerosols

(sectional, modal, or particle-resolved). Therefore, the addition of new condensed-phase species, reactions, and evapora-

tion/condensation typically involves non-trivial modifications of the model code. A primary goal of CAMP is to treat multi-

phase chemical systems (including condensed-phase chemistry and evaporation/condensation) in models with different aerosol195

representations without the need for custom development when new species, reactions, and evaporation/condensation processes

are added. Abstraction of these aerosol representations is how CAMP achieves this goal.

Abstraction of an aerosol representation requires a re-conceptualization of how aerosols are represented in models. Figure 3

shows common structures for three unique ways of representing aerosols in models: sectional, modal, and particle-resolved

approaches. Typically, each entity in the representation (bins, modes, or particles in the example shown in Fig. 3) includes200

a set of chemical species whose concentrations vary during the simulation. However, when gas-phase species condense onto

an aerosol particle, they are typically assumed to condense into a specific ‘phase’ of the aerosol. For example, if a sectional

model includes black carbon and a set of organic species in each section, the condensation of gas-phase organics would usually

be calculated based on physical properties of the aerosol particles (e.g., size) and the chemical composition of the condensed-

phase organics—i.e., the black carbon is assumed to not be mixed with the organics. Although this concept of distinct phases of205

aerosol matter within individual particles is implicitly used in the development of contemporary aerosol models, they usually

are not explicitly treated as such in the software. Thus, the first step in abstracting aerosol representations in CAMP is to

introduce unique aerosol phases in the software using the AerosolPhase class.

Instances of the AerosolPhase class account for specific sets of chemical species that make up an aerosol phase (repre-

sented by colors in Fig. 3): an ‘aqueous sulfate’ AerosolPhase might include water, sulfate, nitrate, ammonia, etc., whereas210

a ‘sea-salt’ AerosolPhase might include these same species along with sodium and chloride. What makes these objects

useful is that the condensed-phase chemistry and the set of species that condense into each AerosolPhase are the same for

every instance of the phase that exists in a particular aerosol representation. For example, if the host model employs a sectional

aerosol scheme with an ‘aqueous sulfate’ phase included in each bin, and an aqueous oxidation reaction is included in the

chemical mechanism for the ‘aqueous sulfate’ phase, this reaction is applied to the ‘aqueous sulfate’ phase in each section.215

Although the specific condensed-phase species, reactions, and condensation/evaporation are the same for all instances of a

particular AerosolPhase, the rates of reaction and of condensation/evaporation will differ among instances of a particular

phase and often depend on physical properties of the aerosol particle in which the phase is present. Thus, the second step in ab-

stracting aerosol representations is to define an AerosolRepresentation base class that defines functionality to provide

these properties based on the host model’s scheme for describing aerosols. The functions of the AerosolRepresentation220

class are shown in Table 5. A description of the extending classes is included in Table 6.

The AerosolRepresentation base class allows specific aerosol representations to calculate the physical parameters

of aerosol particles (number concentration, effective radius, etc.) using whatever algorithm applies to that scheme. The only

14

https://doi.org/10.5194/gmd-2021-370
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.

Table 5. Primary functions of the AerosolRepresentation base class and its extending classes. In addition to returning the property

requested, each of these functions can also return the partial derivatives of the property with respect to the solver variables for use in

calculating the Jacobian of the forcing.

AerosolRepresentation function Description

effective_radius__m During solving, this function can be passed an instance

of an aerosol phase and it will return the effective radius

[m] of the particle(s) in which this phase exists.

number_concentration__n_m3 During solving, this function can be passed an instance

of an aerosol phase and returns the number concentra-

tion [m−3] of the particle(s) in which this phase exists.

aerosol_phase_mass__kg_m3 During solving, this function can be passed an instance

of an aerosol phase and returns the total mass concen-

tration [kgm−3] of the phase.

aerosol_phase_average_molecular_weight__kg_mol During solving, this function can be passed an instance

of an aerosol phase and returns the average molecular

weight [kgmol−1] of the phase.

requirement is that it provides these properties during solving. For example, a single-moment mass-based sectional scheme may

have a fixed effective radius for each section and calculate the number concentration based on the total mass of each species225

in each phase that is present in the section, whereas a particle-resolved scheme may explicitly track number concentration

but calculate the effective radius based on the total mass of each species in each phase that is present in the particle. A

new class extending AerosolRepresentation must be introduced for each new scheme for representing aerosols—e.g.,

a two-moment mass- and number-based sectional scheme could be added as an AerosolRepresentation-extending

class—but once it is introduced into the CAMP code, any multi-phase chemical mechanism supported by CAMP can be used230

with the new aerosol scheme. In this paper, we have two AerosolRepresentation-extending classes, one that is called

MassBasedModalSectional and another called SingleParticle. The class MassBasedModalSectional is

set up to define modes or sections (or a combination of both) with fixed geometric mean diameters (GMD) and standard

deviations (GSD) for modes, and fixed mid-point diameters for sections. This particular choice was made to replicate the

aerosol representation that is currently used in the MONARCH model, but additional AerosolRepresentation classes235

can be added to accommodate other types of modal or sectional representations, e.g., a two-moment mass- and number-based

modal scheme with variable geometric mean diameters.

2.3 JSON mechanism description

Model element classes (described above) are designed to provide the structure of Process, Parameter, and

AerosolRepresentation calculations without being fixed for a particular set of model conditions. Model configura-240

15

https://doi.org/10.5194/gmd-2021-370
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.

Table 6. Current implementations of the AerosolRepresentation base class. Note that many details of these aerosol representations

(e.g., number of modes or sections, mode/bin GMD/GSD, number of computational particles) can be easily configured at runtime.

AerosolRepresentation-extending class Description References

MassBasedModalSectional A mass-based modal/sectional scheme with fixed geo-

metric mean diameters (GMD) and standard deviations

(GSD) for modes, and fixed mid-point diameters for

sections. This can be used to support only modes or only

sections, or to support a combination of modes and sec-

tions.

Spada (2015)

SingleParticle A particle-resolved aerosol scheme in which the aerosol

is represented as a representative sample (typically 103–

106 computational particles) of the total number of

aerosol particles. The state of each particle is based on

the mass of each species present in the particle, and the

number of actual particles the computational particle

represents.

Riemer et al. (2009)

tion files must therefore be able to handle complex data structures (e.g., the functional group contributions or interaction maps

required by Parameter calculations). We use the JSON format for model configuration files. JSON is a widely used for-

mat for semi-structured data, is human readable, and a large number of free tools are available for validating and interacting

with JSON data. This structure allows chemical mechanisms to be fully runtime configurable. Importantly, the JSON structure

coupled with simple interactive tools allows users who are not experts in model development to easily simulate new chem-245

ical processes either in an isolated system (e.g., to simulate a flow-tube or chamber experiment) or as part of an existing

comprehensive atmospheric chemical mechanism.

Figure 4 shows two examples of JSON configuration objects used by CAMP. The first is the relatively simple example

of an Arrhenius reaction. The second is a portion of one of the more complex configuration data sets used in CAMP—that

of the UNIFAC activity model (Fredenslund et al., 1975). Note that the JSON format handles the complex structure of data250

representing functional group parameters and their interaction parameters without imposing artificial constraints on the number

of functional groups or their interaction parameters. These complex data sets are typically hard-coded into model code, and

require recoding whenever a new functional group or interaction is needed. The JSON format allows CAMP to access this data

at runtime. As a result, users can easily modify the UNIFAC model by a simple change to the configuration files.

16

https://doi.org/10.5194/gmd-2021-370
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.

(a) Arrhenius reaction

(b) UNIFAC activity model

Figure 4. Two examples of CAMP configuration data in JSON format: an Arrhenius reaction (a), and a portion of a UNIFAC activity model

configuration (b). Ellipses (...) indicate portions of the data omitted for brevity.

17

https://doi.org/10.5194/gmd-2021-370
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.

2.4 Computational implementation255

Solving the chemical system often accounts for a large fraction of the computational cost of atmospheric models (Christou

et al., 2016). The primary goal of CAMP is to provide a means to configure a full mixed-phase chemical system at runtime,

independent of the specific aerosol representation used by the host model. In its final form, it will provide an infrastructure for

coupling external ODE solvers, which can be optimized for particular chemistry configurations and computational hardware.

In this section, we describe how the Process, Parameter, and AerosolRepresentation interfaces can be used to260

provide information needed by an external ODE solver.

2.4.1 External ODE solver

The design of CAMP allows the user to configure a variety of gas-phase, condensed-phase, or multi-phase chemical mech-

anisms. Regardless of the size or the degree of stiffness of the resulting system of differential equations, CAMP aims to

obtain results for all cases while meeting user specifications of timestep error tolerance, order of solution approximation, and265

convergence tolerance, by eventually coupling to a suite of external solver packages.

In this first phase of development, we coupled CAMP to the external CVODE solver of the SUNDIALS package (Cohen

et al., 1996) using the Backward Differentiation Formulas (BDFs) and Newton iteration. This algorithm is suitable for math-

ematically stiff systems. The variable-order, variable time-step CVODE solver with time-step error control provides accurate

solutions, which is why it was chosen for this initial evaluation (Cohen et al., 1996). This algorithm requires the solution of270

a linear system at each time-step. We chose the KLU sparse solver of the SuiteSparse package, which for chemical systems

typically requires less storage than the dense or banded solvers (Palamadai Natarajan, 2005).

2.4.2 Workflow and CAMP solving functions

Implicit integration of stiff ODEs requires the computation of both the forcing (rates of concentration changes) and the Jacobian

of the forcing. As a result, CAMP computes the forcing as well as the analytical Jacobian of the forcing, placing the values in275

the data structures provided by the solver. This section describes the interactions among a host atmospheric model, CAMP, and

an external ODE solver. Figure 5 illustrates the workflow during model initialization.

First, the user defines the chemical system in the JSON format described in Sect. 2.3. The host model initializes a CampCore

object (Sect. 2.1) with the user-provided JSON files. During initialization, the CampCore creates the set of Process,

Parameter, and AerosolRepresentation objects that describe the chemical system based on the JSON data.280

After the CampCore is initialized, the host model has the option of forming connections to specific Process objects whose

properties will be set from external modules (photolysis, emissions, deposition, etc.). These connections are returned to the

host model as objects from the CampCore, which can be used at runtime by the host model to update Process parameters

(e.g., photolysis or deposition loss rate constants, or emission rates). This allows host models to use modules external to CAMP

for the calculation of rates and rate constants.285

18

https://doi.org/10.5194/gmd-2021-370
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.

in
iti

al
iz

at
io

n
w

or
kfl

ow
.p

df

cr
ea

te
 JS

O
N

m

ec
ha

ni
sm

cr
ea

te
 C

AM
P

co
re

in
st

an
tia

te
 /

in
iti

al
ize

 so
lv

er

da
ta

 st
ru

ct
ur

es

cr
ea

te
 C

AM
P

st
at

e
ob

je
ct

(s
)

fo
r t

as
k

ce
lls

co
nv

er
t J

SO
N

 to

CA
M

P
ob

je
ct

s

al
lo

ca
te

 M
PI

bu

ffe
r

pa
ck

 C
AM

P
co

re

on
to

 M
PI

 b
uf

fe
r

di
st

rib
ut

e
M

PI

bu
ffe

r t
o

co
m

pu
te

 ta
sk

s

cr
ea

te
 C

AM
P

co
re

 fr
om

 b
uf

fe
r

da
ta

un
pa

ck
 C

AM
P

co
re

 fr
om

 M
PI

bu

ffe
r

cr
ea

te
 C

AM
P

st
at

e
ob

je
ct

(s
)

fo
r t

as
k

ce
lls

al
lo

ca
te

 C
AM

P
st

at
e

ob
je

ct
 fo

r
m

ec
ha

ni
sm

sp

ec
ie

s

in
iti

al
ize

 C
AM

P
so

lv
er

in
iti

al
ize

 C
AM

P
so

lv
er

in
iti

al
ize

 O
DE

so

lv
er

User Primary Task Compute Tasks CAMP Solver

Fi
gu

re
5.

C
A

M
P

in
iti

al
iz

at
io

n
w

or
kfl

ow
.

19

https://doi.org/10.5194/gmd-2021-370
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.

ru
nt

im
e

w
or

kfl
ow

.p
df

tr
an

sp
or

t
ch

em
ic

al
 sp

ec
ie

s

User Host Model Task CAMP Solver

co
m

pu
te

 n
ee

de
d

ra
te

 c
on

st
an

ts

(e
.g

.,
ph

ot
ol

ys
is)

ca
ll

CA
M

P
so

lv
in

g
fu

nc
tio

n
fo

r
cu

rr
en

t t
im

e
st

ep

co
py

 C
AM

P
st

at
e

to
 so

lv
er

 d
at

a
st

ru
ct

ur
es

ca
ll

so
lv

er

fu
nc

tio
n

to
 so

lv
e

O
DE

 sy
st

em

in
iti

al
ize

 fo
r n

ew

so
lv

e

ca
lc

ul
at

e
f(y

)

ne
ed

up

da
te

d
f(y

)?

ca
lc

ul
at

e
Ja

co
bi

an

ne
ed

up

da
te

d
Ja

co
bi

an
?

ad
va

nc
e

st
at

e
co

nv
er

ge
d

?

co
py

 so
lv

er

re
su

lts
 to

 C
AM

P
st

at
e

la
st

 ti
m

e
st

ep
?

fin
al

ize
 m

od
el

re
tr

ie
ve

sim

ul
at

io
n

re
su

lts

ye
s

ye
s

no
no

no

ye
s

no

ye
s

up
da

te
 P
r
o
c
e
s
s

ob
je

ct
s w

ith

pr
ov

id
ed

 ra
te

co

ns
ta

nt
s

Fi
gu

re
6.

C
A

M
P

ru
nt

im
e

w
or

kfl
ow

.

20

https://doi.org/10.5194/gmd-2021-370
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.

rate calculation workflow.pdf

request rates

CA
M
P

So
lv
er

is valid
state?

calculate
parameter i

guess new state

Parameter loop Process loop

calculate dyik/dt

receive rates

n_param: number of Parameter objects
n_process: number of Process objects
n_species_k: number of chemical species affected by Process k

i ==
n_species_k?

k ==
n_proceess?i ==

n_param?

k++
i++

i++

yes

no

passes solver state receives rates f(y)

yes yes yes

no no no

Figure 7. CAMP rate calculation workflow. Jacobian calculations follow a similar pattern.

In message passing interface (MPI) or threaded applications, the initialization described above can take place on the primary

task. The initialized CampCore and any Process-connection objects would then be packed into a memory buffer, distributed

to the secondary tasks, and unpacked into new objects for use during the model run. Once a CampCore object exists on each

compute task, it is told to initialize the external ODE solver, including configuring it to use the CAMP functions that calculate

the forcing f(y) and the Jacobian of the forcing.290

During the simulation (Fig. 6), a host model iterates over its domain, using the CampCore to solve the chemical system

for each discrete air mass. For each domain component, the host model uses its Process-connection objects to update any

rates/rate constants for the current time step. It then passes the necessary state data (temperature, pressure, species concentra-

tions, aerosol state data, etc.) along with the timestep over which to solve the chemical system to the CampCore.

When a CampCore is asked to solve chemistry for a given set of initial conditions and time step, it first transfers the state295

data into the data structures of the external ODE solver. It then instructs the external solver to solve the system of ODEs over

the given time step. The ODE solver can call the CAMP functions that calculate f(y) and the Jacobian of f(y) for a particular

set of conditions at any point during the solve.

The workflow of the CAMP function that calculates f(y) is shown in Fig. 7, and the CAMP function that calculates the

Jacobian of f(y) follows the same general workflow. Both functions iterate first over the collection of Parameter objects to300

calculate parameterizations for the current solver state, and then over the collection of Process objects, collecting contribu-

tions from each to either f(y) or the Jacobian of f(y) through functions of the Process interface (row 4 or 5 in Table 1).

Thus, the forcing f(y) for a particular species i is calculated as

fi ≡
dyi

dt
=
∑

k

(
dyi

dt

)

k

,

21

https://doi.org/10.5194/gmd-2021-370
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.

where
(

dyi

dt

)
k

is the forcing of species i due to process k. Similarly, the partial derivative of the forcing of species i with305

respect to species j is

dfi

dyj
=
∑

k

(
dfi

dyj

)

k

.

The way CAMP disentangles the specification of a multi-phase chemical system from the particular way aerosols are

represented is by providing information needed by any particular Process related to aerosols through the Aerosol-

Representation interface. Process objects that affect or depend on aerosol species are always set up to actually operate310

on those species within a particular AerosolPhase (Sect. 2.2.3). The Process is applied equally to every instance of the

AerosolPhase, whether that instance exists in a mode, or a section, or a single particle. A modal scheme may implement

a phase once in a particular mode, or in several modes, and a sectional or particle-resolved scheme may implement this phase

in every section or particle or in only certain sections or particles. In any of these situations, a Process that operates on a

particular AerosolPhase operates on each instance of the AerosolPhase as determined by the aerosol scheme.315

When a Process needs information related to the particle(s) in which a particular phase exists, it accesses this information

through the AerosolRepresentation. For example, as a Henry’s Law processes is calculating contributions to f(y) for a

particular AerosolPhase, it calls the effective_radius__m function of the AerosolRepresentation to obtain

the effective radius of the particle(s) in which the AerosolPhase exists. The way the aerosol scheme stores the dependent

data is hidden from, in this case, the Henry’s Law Process, allowing aerosol schemes to be flexible in their underlying320

representation and the way they calculate, e.g., effective radii. The aerosol functions listed in Table 5 can also return the

partial derivatives of the property they return with respect to the solver state variables. Thus, a Process is able to calculate

its contribution to the Jacobian of f(y), including the dependence of aerosol properties on state variables, without knowing

specifically how the property is being calculated. In a similar way, parameterizations and their partial derivatives with respect

to state variables are accessed through the Parameter interface as described in Sect. 2.2.2.325

After the ODE solver converges on a solution, the final state is returned to the CampCore, which in-turn returns it to the

host model. The host model can then continue to the next time step.

2.5 Testing

When new code is pushed to the CAMP GitHub repository, an automated process (GitHub Actions) builds the library and runs

a suite of tests (both unit and integration tests) to ensure the new code does not break existing functionality. An attempt has330

been made to organize the CAMP source code into short, well-defined functions to which unit tests can be applied (generally

tests of a single function with exact or nearly exact expected results). Integration tests (where the whole CAMP model is run

under prescribed conditions) are also included, which consist of, e.g., simulations of the CB05 mechanism and comparison

with results using a KPP-generated CB05 solver, and an Euler backward iterative solver (Hertel et al., 1993).

In addition to unit tests and integration tests of comprehensive chemical mechanisms, a series of integration tests for simple335

systems (comprising instances of only a single type of process or parameter) is run to test each Process- and Parameter-

extending class. If possible, CAMP simulation results for the simple chemical systems used in tests are compared with an-

22

https://doi.org/10.5194/gmd-2021-370
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.

Table 7. Tests applied to Process- and Parameter-extending classes.

Class Test type Test data reference

Arrhenius Analytic solutiona

AqueousReversible Analytic solutiona

CondensedPhaseArrhenius Analytic solutiona

CustomH2o2 Analytic solutiona

CustomOhHno3 Analytic solutiona

Emission Analytic solutiona

FirstOrderLoss Analytic solutiona

HenrysLawPhaseTransfer Approximate solutionb

Photolysis Analytic solutiona

SimpolPhaseTransfer Approximate solutionb

Troe Analytic solutiona

PdfiteActivity Comparison with hard-coded calculations for H+–NH+
4 –

SO2−
4 –NO−

3 system described in equations 16 and 17 of Top-

ping et al. (2009)

Topping et al. (2009)

UnifacActivity Comparison with hard-coded calculations and published results

for n-butanol/water system

Marcolli and Peter (2005)

ZsrAerosolWater Comparison with hard-coded calculations for the NaCl and

CaCl2 systems using molality calculations from Jacobson et al.

(1996) and Metzger et al. (2002).

Jacobson et al. (1996)

Metzger et al. (2002)

a Analytic solution tests run a simulation of a simple chemical system that can be solved analytically.
b Phase transfer tests run a simulation of a simple system with large initial particle mass relative to the mass available for transfer. Results are compared

approximately assuming the mass transferred has only a small affect on the total particle mass, and thus on calculated uptake rates.

alytical solutions of the system. When systems that can be solved analytically could not be identified for tests of particular

processes, approximate solutions are compared with the CAMP simulation results. For Parameter-extending classes, which

do not require solving, but whose calculations are complex and thus more error-prone, hard-coded calculations for specific340

published systems are compared to CAMP results for the parameterization. The types of tests performed for each Process-

and Parameter-extending class are listed in Table 7.

3 Host models

A key feature of the CAMP framework is its applicability to atmospheric models with diverse ways of representing aerosol

populations. Thus, for this initial evaluation, two models that exist at opposite ends of the aerosol-representation spectrum are345

used as test beds for the CAMP framework. The MONARCH chemical weather prediction system employs a single-moment

23

https://doi.org/10.5194/gmd-2021-370
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.

mass-based representation of aerosols as a mixture of sections and modes (Spada, 2015). The particle-resolved PartMC model

represents aerosol particles as a sample of discrete computational particles, each with a unique chemical composition and

size (Riemer et al., 2009). To demonstrate the universal applicability of CAMP, after the CAMP framework was integrated

into these two models, the chemical gas-phase mechanism traditionally used by the MONARCH model was translated to the350

CAMP input file format (Sect. 2.3) and run in both PartMC and MONARCH. Two gas–aerosol partitioning reactions that

form secondary organic aerosol (SOA) and that are part of the traditional MONARCH model were also added. Importantly,

once CAMP was integrated into the MONARCH and PartMC models, the application of this specific mechanism required no

changes to the source code of CAMP or either host model, and required no recompilation of the models. A brief description of

the MONARCH and PartMC models follows.355

3.1 MONARCH atmospheric chemistry model

The Multiscale Online AtmospheRe CHemistry (MONARCH) model (Pérez et al., 2011; Haustein et al., 2012; Jorba et al.,

2012; Badia and Jorba, 2015; Badia et al., 2017; Spada, 2015; Klose et al., 2021) is a fully online integrated system for meso-

to global-scale applications developed at the Barcelona Supercomputing Center (BSC). The model provides operational re-

gional mineral dust forecasts for the World Meteorological Organization (WMO; https://dust.aemet.es/), and participates in the360

WMO Sand and Dust Storm Warning Advisory and Assessment System for Northern Africa-Middle East-Europe (http://sds-

was.aemet.es/). Since 2012, the system has contributed global aerosol forecasts to the multi-model ensemble of the ICAP

initiative (Xian et al., 2019) and since 2019, it has been a candidate model of CAMS—Air Quality Regional Production

(https://www.regional.atmosphere.copernicus.eu).

A gas-phase module combined with a hybrid sectional–bulk multi-component mass-based aerosol module is implemented365

in the MONARCH model that uses the Nonhydrostatic Multiscale Model on the B-grid (NMMB; Janjic and Gall, 2012) as the

meteorological core driver. The gas-phase scheme used in MONARCH is the Carbon Bond 2005 chemical mechanism (CB05;

Yarwood et al., 2005) extended with chlorine chemistry (Sarwar et al., 2012). The CB05 mechanism is well formulated for

urban to remote tropospheric conditions. It considers 51 chemical species, and solves 156 reactions. The photolysis scheme

used is the Fast-J scheme (Wild et al., 2000). It is coupled with physics of each model layer (e.g., aerosols, clouds, absorbers370

such as ozone), and it considers grid-scale clouds from the atmospheric driver. The aerosol module in MONARCH describes

the lifecycle of dust, sea-salt, black carbon, organic matter (both primary and secondary), sulfate and nitrate aerosols (Spada,

2015). While a sectional approach is used for dust and sea-salt, a bulk description of the other aerosol species is adopted.

A simplified gas–aqueous-aerosol mechanism accounts for sulfur chemistry. The production of secondary nitrate–ammonium

aerosol is solved using the thermodynamic equilibrium model EQSAM. A two-product scheme is used for the formation375

of SOA from biogenic gas-phase precursors. Meteorology-driven emissions are computed within MONARCH. Mineral dust

emissions can be calculated using one of the schemes described in Pérez et al. (2011) and Klose et al. (2021), several source

functions are available to compute sea salt aerosol emissions (Spada et al., 2013), and biogenic emissions use the MEGANv2.04

model (Guenther et al., 2006).

24

https://doi.org/10.5194/gmd-2021-370
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.

In this work, the model was configured for a regional domain covering Europe and part of northern Africa. A rotated380

latitude–longitude projection was used, with a regular horizontal grid spacing of 0.2 degrees. The top of the atmosphere was

set at 50 hPa with 48 vertical layers. Figure 10a displays the domain of study. Meteorological initial and boundary conditions

were obtained from the ECMWF global model forecasts at 0.125 degrees (ECMWF, 2020) and chemical boundary conditions

from the CAMS global model forecasts at 0.4 degrees (Flemming et al., 2015). The applied anthropogenic emissions are based

on the CAMS-REG-APv3.1 database (Kuenen et al., 2014; Granier et al., 2019) and the biomass burning emissions (forest,385

grassland and agricultural waste fires) are from the GFASv1.2 analysis (Kaiser et al., 2012). Both datasets were processed

using the HERMESv3 system, an open source, stand-alone multi-scale atmospheric emission modelling framework developed

at the BSC that computes gaseous and aerosol emissions for use in atmospheric chemistry models (Guevara et al., 2019).

The HERMESv3 system was used to remap the original datasets and to derive hourly and speciated emissions. Aggregated

annual emissions were broken down into hourly resolution using the emission temporal profiles reported by van der Gon et al.390

(2011). The speciation of NMVOC and PM emissions was performed using the split factors reported by Kuenen et al. (2014).

The autosubmit workflow manager was used for efficient execution of the MONARCH modelling chain (Manubens-Gil et al.,

2016).

3.2 PartMC

PartMC is a stochastic, particle-resolved aerosol box model, which resolves the composition of many individual aerosol parti-395

cles within a well-mixed volume of air. Riemer et al. (2009), DeVille et al. (2011), Curtis et al. (2016), and DeVille et al. (2019)

describe in detail the numerical methods used in PartMC. To summarize, the particle-resolved approach uses a large number

of discrete computational particles (104 to 106) to represent the particle population of interest. Each particle is represented by

a “composition vector”, which stores the mass of each constituent species within each particle and evolves over the course of

a simulation according to various chemical or physical processes. The processes of coagulation, particle emissions, dilution400

with the background, and losses due to dry deposition are simulated with a stochastic Monte Carlo approach by generating a

realization of a Poisson process. The “weighted flow algorithm” (DeVille et al., 2011, 2019) improves the model efficiency and

reduces ensemble variance.

We initialized the simulations shown in this paper with 104 computational particles. This number changes over the course

of the simulation due to particle emissions and particle loss processes, but is kept within the range of 5× 103 and 2× 104 by405

“doubling/halving,” which is a common Monte-Carlo particle modeling approach to maintain accuracy (Liffman, 1992). If the

number of computational particles drops below half of the initial number, the number of computational particles is doubled by

duplicating each particle; if the number of computational particles exceeds twice the initial number, then the particle population

is down-sampled by a factor of two. These operations correspond to a doubling or halving of the computational volume.

PartMC typically uses the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) (Zaveri et al., 2008) to410

account for multi-phase chemical process. However, for this paper, the MOSAIC chemistry was disabled in PartMC, replaced

by the CAMP framework, and simulations were performed with coagulation disabled for easier comparison with the box model

runs that used sections and modes, as described in Sect. 4.1.

25

https://doi.org/10.5194/gmd-2021-370
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.

Table 8. Specification aerosol representation for the CAMP box model set up

Name Aerosol representation Comments

CAMP-bins 8 logarithmically spaced sections Partitioning of secondary aerosol changes mass in sec-

tions, but mass is not transferred between sections. No

coagulation

CAMP-modes three log-normal modes Partitioning of secondary aerosol changes mass in

modes, but geometric mean diameters/standard devia-

tion of modes does not change. No coagulation.

CAMP-part 10 000 computational particles, poly-

disperse distribution

Partitioning of secondary aerosol changes mass and size

of particles. No coagulation.

4 Results

4.1 CAMP box model set up415

To evaluate the CAMP framework, we set up three box model simulations that shared the same gas-phase chemistry and

aerosol–gas partitioning, but differed in their aerosol representation. The gas-phase chemistry was the CB05 mechanism with

extended chemistry for chlorine (Yarwood et al., 2005; Sarwar et al., 2012), and photolysis reaction rates were kept constant in

time. Gas-phase initial conditions and gas-phase emissions are listed in Table 10. Environmental conditions were set to an air

temperature of 290 K and air pressure of 1000 hPa. The mechanism was further extended with secondary aerosol production420

from isoprene using the model as shown in Table 9. The partitioning of the isoprene products to the aerosol phase was allowed

on primary and secondary organic aerosols.

The aerosol representations consisted of the following (Table 8): (1) “CAMP-modes” used three log-normal modes, (2)

“CAMP-bins” used eight logarithmically spaced sections, and (3) “CAMP-part” used 10 000 discrete computational particles.

The initial aerosol distribution consisted of three log-normal modes (Table 11), and was taken from Seinfeld and Pandis425

(2016), Ch. 8. The CAMP-modes simulation was directly initialized with these three modes. For the CAMP-bin simulation, we

discretized the three modes into 8 logarithmically spaced sections between 6.57 nm and 24.85 µm. The first section was defined

at minus three standard deviations of the geometric mean diameter of the fine mode and the last section at plus three standard

deviations of the geometric mean diameter of the coarse mode. The mass of the three modes was distributed accordingly

into the eight sections. For the CAMP-part simulation, we sampled the initial aerosol distributions with 10 000 computational430

particles.

Only the CAMP-part simulations considered particle growth due to the condensation process of gas-phase precursors. The

CAMP-modes and CAMP-bins representations mimic the approach taken in the MONARCH model (see Sect. 3.1), where

effective radii and geometric standard deviations of the modes are fixed over the course of a simulation, and secondary aerosol

mass does not move between sections, i.e., aerosol growth is not represented. In contrast, the CAMP-part representation does435

include aerosol growth. The microphysical process of aerosol growth could be easily included for the modal and sectional

26

https://doi.org/10.5194/gmd-2021-370
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.

representations if desired, and would not interfere with the already existing implementation of particle growth for the particle-

resolved representation. Coagulation is not included in the CAMP-bins and CAMP-modes implementation. While coagulation

is available in the CAMP-part simulations, it was disabled for the CAMP-part simulation to allow for an easier comparison of

all simulations.440

Table 9. Gas–aerosol partition mechanism. Phase-transfer reactions are based on the SIMPOL.1 model calculations of vapor pressure de-

scribed by Pankow and Asher (2008).

gas-phase (mass-based stoichiometry)

reaction rate constant reference

ISOP + OH→ 0.192 ISOP-P1 2.54× 10−11 exp(407.6/T) Yarwood et al. (2005);

Tsigaridis and Kanaki-

dou (2007)

ISOP + O3→ 0.215 ISOP-P2 7.86× 10−15 exp(−1912/T) Yarwood et al. (2005);

Tsigaridis and Kanaki-

dou (2007)

gas-aerosol partitioning reactions and SIMPOL B parameters

reaction B1 B2 B3 and B4

ISOP-P1
 SOA1(a) 3.81× 103 −2.13× 101 0.

ISOP-P2
 SOA2(a) 3.81× 103 −2.09× 101 0.

T stands for air temperature.

4.2 Box model results

The purpose of this section is to demonstrate that all three CAMP implementations yield the same results when given identical

inputs. The results also reveal important structural differences between the modal implementation and the bin and particle-

resolved representation. Starting with the example of a gas-phase species, Fig. 8(a) shows the simulated gas-phase mixing ratios

of O3 for the three cases (CAMP-modes, CAMP-bins and CAMP-part) for the 24-hour simulation period. Since the CAMP445

modeling framework allows for flexibility in aerosol representation while maintaining an identical chemistry mechanism, the

results for ozone mixing ratios are nearly identical for all three cases.

Figure 8(b) shows the evolution of gas-phase species involved in SOA formation: the precursor isoprene (ISOP) and the

semi-volatile products in the gas phase, ISOP-P1 and ISOP-P2, where P1 is the product of ISOP reacting with OH and P2 is

the product of ISOP reacting with O3. All three cases apply the same set of reactions, which yields the same production of SOA450

gas species. The particle-resolved and sectional case show somewhat higher ISOP-P1 mixing ratios compared to the modal

case. Concurrently, the particle-resolved and sectional solutions for the ISOP-P1_aero mass concentration are comparable

whereas the modal solution produces greater amounts of ISOP-P1_aero, shown in Fig. 8(c). The reason for the modal model

27

https://doi.org/10.5194/gmd-2021-370
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.

Table 10. Initial conditions and emission fluxes for gas-phase species for box model simulations.

Gas species Initial (ppb) Emission rate (molm−3 s−1)

NO 0.1 1.44 ×10−10

NO2 1.0 7.56 ×10−12

HNO3 1.0

O3 5.0 ×101

H2O2 1.1

CO 2.1 ×102 1.96 ×10−9

SO2 0.8 1.06 ×10−9

NH3 0.5 8.93 ×10−9

HCL 0.7

CH4 2.2 ×103

ETHA 1.0

FORM 1.2 1.02 ×10−11

MEOH 1.2 ×10−01 5.92 ×10−13

MEPX 0.5

ALD2 1.0 4.25 ×10−12

PAR 2.0 4.27 ×10−10

ETH 0.2 4.62 ×10−11

OLE 2.3 ×10−2 1.49 ×10−11

IOLE 3.1×10−4 1.49 ×10−11

TOL 0.1 1.53 ×10−11

XYL 0.1 1.40 ×10−11

NTR 0.1

PAN 0.8

AACD 0.2

ROOH 2.5 ×10−2

ISOP 5.0 6.03 ×10−12

O2 2.095 ×108

N2 7.8 ×108

H2 5.6 ×102

M 1.0 ×109

28

https://doi.org/10.5194/gmd-2021-370
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.

0 6 12 18 24
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

M
ix

in
g

ra
tio

(p
pm

)

(a)

O3 CAMP-part
O3 CAMP-modes
O3 CAMP-bins

0 6 12 18 24
0.000

0.001

0.002

0.003

0.004

0.005

M
ix

in
g

ra
tio

(p
pm

)

(b)

ISOP CAMP-part
ISOP CAMP-modes
ISOP CAMP-bins
ISOP-P1 CAMP-part
ISOP-P1 CAMP-modes

ISOP-P1 CAMP-bins
ISOP-P2 CAMP-part
ISOP-P2 CAMP-modes
ISOP-P2 CAMP-bins

0 6 12 18 24
Simulation time (h)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
as

s
co

nc
en

tra
tio

n
(µ

g
m
−

3
)

(c)

ISOP-P1 aero CAMP-part
ISOP-P1 aero CAMP-modes
ISOP-P1 aero CAMP-bins

Figure 8. Comparison between CAMP-modes, CAMP-bins, and CAMP-part for (a) ozone mixing ratio, (b) ISOP, ISOP-P1 and ISOP-P2

mixing ratios, and (c) ISOP-P1_aero mass concentration for the 24-hour simulation period.
29

https://doi.org/10.5194/gmd-2021-370
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.

Table 11. Initial aerosol-phase conditions for box model simulations (“remote continental” case in Seinfeld and Pandis (2016), Ch. 8). POA

stands for primary organic aerosol.

Mode Number concentration (m−3) Geometric mean diameter (m) Geometric standard deviation Composition

Aitken 3.2× 108 2.0× 10−8 1.45 100% POA

Accumulation 2.9× 108 1.16× 10−7 1.65 100% POA

Coarse 3.0× 105 1.8× 10−6 2.40 100% POA

giving somewhat different results to the other two cases is that the rate of condensation is driven by particle size with smaller

particles reaching equilibrium more quickly than larger particles. The modal representation assumes one effective particle455

radius for each of the three modes, while the sectional model assumes effective radii for each bin, and the particle-resolved

method tracks 10 000 individual particle diameters. The bin and particle methods more closely resemble one another and

therefore have similar results. They both represent larger particles resulting in ISOP-P1_aero condensing more slowly, and,

conversely, more ISOP-P1 remaining in the gas-phase for the CAMP-bins and CAMP-part cases (Fig. 8(b)). Since we can be

confident that all three simulations share the identical chemistry mechanism, we can attribute the differences entirely to the460

aerosol representation.

4.3 3D Eulerian model results

As a final demonstration case, the 3D Eulerian model MONARCH was run using the CAMP framework to solve the same gas-

phase chemistry and gas-aerosol partitioning used in the box model simulations. The main difference between the MONARCH

configuration and the box models is the aerosol representation configuration. Using CAMP configuration files, only organic465

aerosols were considered in the run with two primary modes, hydrophobic and hydrophilic, where the gas-aerosol partitioning

may occur. As described previously, the size of the mode is kept fixed during the simulation and no aerosol growth is considered.

A period of 20 days was simulated starting 21 July 2016 with initial concentrations of all gases and organic aerosols set to zero.

General model configuration details (i.e., domain, meteorology, chemistry, emissions and boundary conditions) are described

in Sect. 3.1.470

Figure 9 shows the simulation results for O3, ISOP and total isoprene SOA surface concentration at 12 UTC 9 August 2016.

Results are consistent with the box model runs, where regions with high O3 and ISOP concentrations rapidly produce 0.5 to

5 µg m−3 of SOA. This is particularly clear in central Portugal where biomass burning emissions inject large amounts of pri-

mary organic aerosols during the day. To provide some insights on the accuracy of the model results, surface O3 concentrations

have been evaluated with observations of the European Environment Agency (EEA). The mean bias for all rural and urban-475

background stations below 1000 m above sea level is shown in Fig. 10a for the period 28 July to 9 August 2016. Most stations

in Western and Central Europe have a bias below 5 ppbv. Figure 10b presents the time series of the EEA O3 station-average.

Overall, model results are in reasonably good agreement with observations.

30

https://doi.org/10.5194/gmd-2021-370
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.

(a)

(b)

(c)

Figure 9. Surface concentration of (a) ozone, (b) isoprene and (c) total isoprene secondary organic aerosol for 9 August 2016 at 12UTC.

31

https://doi.org/10.5194/gmd-2021-370
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.

(a)

(b)

Figure 10. Evaluation of ozone surface concentration [ppbv] at the European Environment Agency (EEA) measurement sites: (a) Mean bias

at rural and urban-background EEA sites below 1000 m above sea level for the period 28 July to 9 August 2016, (b) time series of ozone

concentrations averaged over EEA sites (black dots: observations, red dots: model results).

32

https://doi.org/10.5194/gmd-2021-370
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.

5 Conclusions and future perspectives

5.1 Summary480

This paper presents results from the first phase of a three-part development plan for CAMP: a flexible treatment for multi-

phase chemistry in atmospheric models. The software package compiles as a library that can be linked to by models of vari-

ous scale, from box models to regional/global atmosphere models. Gas- and condensed-phase chemistry along with evapora-

tion/condensation, photolysis, emissions, and loss processes are solved as a single system, which is fully runtime-configurable

(i.e., no preprocessing or recompilation of code is necessary when modifying the chemical system). Importantly, this multi-485

phase chemistry treatment is independent of a host model’s aerosol representation, such as modal, sectional, or particle-resolved

schemes.

We demonstrate the applicability of CAMP for models that use different aerosol representations by coupling the CAMP

library to the particle-resolved PartMC model as well as to the regional/global MONARCH model with a mixed modal/sectional

scheme. Box model results using modal, sectional, and particle-resolved aerosol schemes indicate that CAMP consistently490

solves the multi-phase chemical system for each aerosol representation. Differences in results for the time evolution of SOA

formation between the modal representation on the one hand, and the particle-resolved and sectional representations on the

other hand, can be entirely attributed to the chosen aerosol representation. Results from a regional MONARCH simulation over

Europe are consistent with expectations and demonstrate that CAMP is applicable to large-scale atmospheric models.

Several design choices facilitate achievement of the product goals for CAMP:495

– CAMP compiles into a stand-alone library; no modifications to the CAMP source code are necessary when porting to a

new host model. This means that only a single CAMP code needs to be maintained, improving product sustainability.

– An object-oriented design, and specifically abstraction of physicochemical processes, diagnostic parameter calculations,

and aerosol representations, allows CAMP to be extensible to new chemistry and physics, to be portable to models with

diverse ways of representing aerosol systems, and in its final form to be portable to a variety of solvers and computational500

architectures.

– Runtime JSON-based configuration eliminates the need for complicated preprocessing steps and recompilation of the

model code when modifying the chemical system.

– A comprehensive testing strategy applying both unit and integration testing, automated using GitHub Actions continuous

integration, ensures the stability of the code as new chemical processes and aerosol representations are added.505

Stability, portability to new models, and extensibility to new chemistry and physics are generally accepted as best practices

for designing chemistry models. However, the runtime configurability of CAMP, which allows users to modify the chemical

system without recompiling the model, has potential usefulness for a variety of applications where such changes are made

frequently, such as data assimilation and sensitivity analyses. Additionally, runtime configuration means that CAMP can be

integrated into tools designed for users interested in simulating new or modified chemical systems who do not have a modeling510

33

https://doi.org/10.5194/gmd-2021-370
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.

or software-development background. One such tool, an atmospheric chemistry box model with a browser-based interface for

configuring, running, and analyzing results from the model, which uses CAMP to solve the chemical system, is currently being

tested (https://github.com/NCAR/music-box).

5.2 Optimization, porting to GPUs, and future development

Development of CAMP is planned to occur in three phases. Phase 1 (this paper) entails a proof-of-concept library for solv-515

ing multi-phase chemistry that is fully runtime configurable, applicable to models of various scale and ways of represent-

ing aerosols, and extensible to new physicochemical processes. In parallel with the planned development of the CAMP

infrastructure, extension to new physicochemical processes will occur to support, e.g., aerosol surface reactions, deliques-

cence/efflorescence, and novel gas- and condensed-phase chemical reactions.

In Phase 2 (currently underway), the CAMP library is being coupled to a GPU-based ODE solver and optimized for large-520

scale models where efficiency is critical. For even moderately complex chemical mechanisms, solving the chemical system

can account for a significant fraction of the computational expense of an atmospheric model. Thus, for CAMP to be suitable

for weather, air quality, and climate models, efficient solving strategies are critical. Additionally, computational architectures

evolve rapidly. Atmospheric models that are responsive to new hardware advances will provide more efficient, affordable

simulations and open the door to including more complex chemistry and physics that would otherwise be unfeasible. Thus, a525

key design goal of CAMP is to be portable to new solvers and computational architecture.

Preliminary results for Phase-2 work is available in Guzman-Ruiz et al. (2020). The optimized GPU-based strategy simulta-

neously solves multiple instances of a chemical system, represented in 3D models as grid cells or points. As part of the prelimi-

nary results, we compared a GPU version of the f(y) function with an MPI simulation using the maximum number of physical

cores available in a node. The GPU version showed a computational time three times lower than the CPU-based MPI execu-530

tion. The tests were performed on the CTE-POWER cluster provided by BSC (https://www.bsc.es/user-support/power.php). In

addition, the final version of the GPU-based ODE solver is being designed for heterogeneous computing with CPUs. A detailed

description of the methods is available in Guzman-Ruiz et al. (2020) and is expected to be presented in future publications.

Phase-3 development is planned as future work and will involve a refactoring of the code based on lessons learned in Phases 1

and 2, with a focus on improving the porting of CAMP to a variety of solving strategies and computational architectures.535

Code availability. CAMP is available at https://github.com/open-atmos/camp. CAMP v1.0 is archived at https://doi.org/10.5281/zenodo.

5602154. The CAMP User Guide and BootCAMP Tutorial are available at https://open-atmos.github.io/camp. PartMC is available at https:

//github.com/compdyn/partmc. PartMC v2.6.0 is archived at https://dx.doi.org/10.5281/zenodo.5644422. The MONARCH code is available

at https://earth.bsc.es/gitlab/es/monarch (last access: September 2021) (https://doi.org/10.5281/zenodo.5215467).

34

https://doi.org/10.5194/gmd-2021-370
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.

Data availability. The source code and configuration JSON files for the modal and binned box model experiments are available in the CAMP540

repository (https://github.com/open-atmos/camp) in the data/CAMP_v1_paper folder. Box models and MONARCH outputs are available in

https://doi.org/10.13012/B2IDB-8012140_V1.

Author contributions. All authors contributed to writing, reviewing, and editing the draft. MD contributed to the conceptualization, design,

and the development of the CAMP library. CG and MA contributed to the development of the CAMP library. JHC conducted box model

simulations. SZ contributed to testing the CAMP library. NR contributed to conceptualizing the paper, acquiring funding, and project admin-545

istration. OJ contributed to conceptualizing the paper, acquiring funding, and conducted box model and MONARCH runs.

Competing interests. The authors do not have any competing interests.

Acknowledgements. MD received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie

Skłodowska-Curie grant agreement no. 747048. MD, OJ, CG acknowledge the support from the Ministerio de Ciencia, Innovación y Univer-

sidades (MICINN) as part of the BROWNING project RTI2018-099894-B-I00. CG acknowledges funding from the AXA Research Fund.550

BSC co-authors also acknowledge the computer resources at MareNostrum and the technical support provided by Barcelona Supercom-

puting Center (AECT-2020-1-0007, AECT-2021-1-0027). NR, MW, and JHC acknowledge funding from grant NSF-AGS 19-41110. The

National Center for Atmospheric Research is sponsored by the National Science Foundation. Any opinions, findings and conclusions or

recommendations expressed in the publication are those of the author(s) and do not necessarily reflect the views of the National Science

Foundation555

35

https://doi.org/10.5194/gmd-2021-370
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.

References

Alvarado, M.: Formation of ozone and growth of aerosols in young smoke plumes from biomass burning, Ph.D. thesis, Massachusetts

Institute of Technology, Cambridge, MA, USA, 2008.

Alvarado, M. J., Wang, C., and Prinn, R. G.: Formation of ozone and growth of aerosols in young smoke plumes from biomass burning: 2.

Three-dimensional Eulerian studies, Journal of Geophysical Research: Atmospheres, 114, 2009.560

Badia, A. and Jorba, O.: Gas-phase evaluation of the online NMMB/BSC-CTM model over Europe for 2010 in the framework of the

AQMEII-Phase2 project, Atmospheric Environment, 115, 657 – 669, https://doi.org/https://doi.org/10.1016/j.atmosenv.2014.05.055, http:

//www.sciencedirect.com/science/article/pii/S1352231014004026, 2015.

Badia, A., Jorba, O., Voulgarakis, A., Dabdub, D., Pérez García-Pando, C., Hilboll, A., Gonçalves, M., and Janjic, Z.: Description and eval-

uation of the Multiscale Online Nonhydrostatic AtmospheRe CHemistry model (NMMB-MONARCH) version 1.0: gas-phase chemistry565

at global scale, Geoscientific Model Development, 10, 609–638, https://doi.org/10.5194/gmd-10-609-2017, https://gmd.copernicus.org/

articles/10/609/2017/, 2017.

Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G.: Global

modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, Journal of Geophysical Research:

Atmospheres, 106, 23 073–23 095, 2001.570

Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Cappa, C., Crounse, J. D., Dibble, T. S., Huie, R. E., Kolb, C. E., Kurylo, M. J.,

Orkin, V. L., Percival, C. J., Wilmouth, D. M., , and Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric

Studies, Evaluation No. 19, JPL Publication 19-5, http://jpldataeval.jpl.nasa.gov, 2019.

Byun, D. W. and Ching, J. S.: Science algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) modeling system,

https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=63400&Lab=NERL, 2019.575

Christou, M., Christoudias, T., Morillo, J., Alvarez, D., and Merx, H.: Earth system modelling on system-level heterogeneous archi-

tectures: EMAC (version 2.42) on the Dynamical Exascale Entry Platform (DEEP), Geoscientific Model Development, 9, 3483–

3491, https://doi.org/https://doi.org/10.5194/gmd-9-3483-2016, https://gmd.copernicus.org/articles/9/3483/2016/, publisher: Copernicus

GmbH, 2016.

Cohen, S. D., Hindmarsh, A. C., and Dubois, P. F.: CVODE, A Stiff/Nonstiff ODE Solver in C, Comput. Phys., 10, 138,580

https://doi.org/10.1063/1.4822377, http://scitation.aip.org/content/aip/journal/cip/10/2/10.1063/1.4822377, 1996.

Curtis, J. H., Michelotti, M. D., Riemer, N., Heath, M. T., and West, M.: Accelerated simulation of stochastic particle removal processes in

particle-resolved aerosol models, J. Comput. Phys., 322, 21–32, 2016.

Damian, V., Sandu, A., Damian, M., Potra, F., and Carmichael, G. R.: The kinetic preprocessor KPP - A software environment for solving

chemical kinetics, Computers and Chemical Engineering, 26, 1567–1579, https://doi.org/10.1016/S0098-1354(02)00128-X, 2002.585

DeVille, L., Riemer, N., and West, M.: Convergence of a generalized Weighted Flow Algorithm for stochastic particle coagulation, Journal

of Computational Dynamics, pp. 1–18, https://doi.org/10.3934/jcd.2019003, 2019.

DeVille, R. E. L., Riemer, N., and West, M.: Weighted Flow Algorithms (WFA) for stochastic particle coagulation, J. Comput. Phys., 230,

8427–8451, 2011.

ECMWF: Documentation of the Integrated Forecasting System, Tech. rep., Tech. rep., ECMWF, https://www.ecmwf.int/en/publications/590

ifs-documentation, 2020.

36

https://doi.org/10.5194/gmd-2021-370
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.

Ervens, B., George, C., Williams, J. E., Buxton, G. V., Salmon, G. A., Bydder, M., Wilkinson, F., Dentener, F., Mirabel, P., Wolke, R.,

and Herrmann, H.: CAPRAM 2.4 (MODAC mechanism): An extended and condensed tropospheric aqueous phase mechanism and its

application, Journal of Geophysical Research: Atmospheres, 108, https://doi.org/https://doi.org/10.1029/2002JD002202, https://agupubs.

onlinelibrary.wiley.com/doi/abs/10.1029/2002JD002202, 2003.595

Finlayson-Pitts, B. J. and Pitts, J. N.: Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications, Academic

Press, google-Books-ID: tU5NnwEACAAJ, 2000.

Flemming, J., Huijnen, V., Arteta, J., Bechtold, P., Beljaars, A., Blechschmidt, A.-M., Diamantakis, M., Engelen, R. J., Gaudel, A., Inness,

A., Jones, L., Josse, B., Katragkou, E., Marecal, V., Peuch, V.-H., Richter, A., Schultz, M. G., Stein, O., and Tsikerdekis, A.: Tropospheric

chemistry in the Integrated Forecasting System of ECMWF, Geoscientific Model Development, 8, 975–1003, https://doi.org/10.5194/gmd-600

8-975-2015, https://gmd.copernicus.org/articles/8/975/2015/, 2015.

Fredenslund, A., Jones, R. L., and Prausnitz, J. M.: Group-contribution estimation of activity coefficients in nonideal liquid mixtures, AIChE

Journal, 21, 1086–1099, 1975.

Granier, C., Darras, S., Denier van der Gon, H. A. C., Doubalova, J., Elguindi, N., Galle, B., Gauss, M., Guevara, M., Jalkanen, J.-P.,

Kuenen, J., Liousse, C., Quack, B., Simpson, D., , and Sindelarova, K.: The Copernicus Atmosphere Monitoring Service global and605

regional emissions (April 2019 version), Tech. rep., Copernicus Atmosphere Monitoring Service (CAMS) report, https://doi.org/10.24380/

d0bn-kx16, 2019.

Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., and Eder, B.: Fully coupled "online" chemistry

within the WRF model, Atmospheric Environment, 39, 6957–6975, 2005.

Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene emissions610

using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmospheric Chemistry and Physics, 6, 3181–3210,

https://doi.org/10.5194/acp-6-3181-2006, 2006.

Guevara, M., Tena, C., Porquet, M., Jorba, O., and Pérez García-Pando, C.: HERMESv3, a stand-alone multi-scale atmo-

spheric emission modelling framework – Part 1: global and regional module, Geoscientific Model Development, 12, 1885–1907,

https://doi.org/10.5194/gmd-12-1885-2019, https://gmd.copernicus.org/articles/12/1885/2019/, 2019.615

Guzman-Ruiz, C., Acosta, M. C., Dawson, M., Jorba, O., Pérez, C., and Serradell, K.: Accelerating Chemistry Modules in Atmospheric

Models using GPUs, in: NVIDIA’s GPU Technology Conference (GTC), 2020.

Haustein, K., Pérez, C., Baldasano, J. M., Jorba, O., S., B., Miller, R., Janjic, Z., Black, T., Nickovic, S., Todd, M., and Washington, R.:

Atmospheric dust modeling from meso to global scales with the online NMMB/BSC-Dust model - Part 2: Experimental campaigns in

Northern Africa, Atmos. Chem. Phys., 12, 2933–2958, https://doi.org/10.5194/acp-12-2933-2012., 2012.620

Hertel, O., Berkowicz, R., Christensen, J., and Øystein Hov: Test of two numerical schemes for use in atmospheric transport-chemistry

models, Atmospheric Environment. Part A. General Topics, 27, 2591–2611, https://doi.org/https://doi.org/10.1016/0960-1686(93)90032-

T, https://www.sciencedirect.com/science/article/pii/096016869390032T, 1993.

Huang, L. and Topping, D.: JlBox v1. 0: A Julia based mixed-phase atmospheric chemistry box-model, Geoscientific Model Development

Discussions, pp. 1–22, 2020.625

Jacobson, I.: Object-Oriented Software Engineering: A Use Case Driven Approach, chap. 3, Addison–Wesley, Boston, USA, 4 edn., 1992.

Jacobson, M. Z., Tabazadeh, A., and Turco, R. P.: Simulating equilibrium within aerosols and nonequilibrium between gases and aerosols, J.

Geophys. Res., 101, 9079–9091, 1996.

37

https://doi.org/10.5194/gmd-2021-370
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.

Janjic, Z. and Gall, I.: Scientific documentation of the NCEP nonhydrostatic multiscale model on the B grid (NMMB). Part 1 Dy-

namics, Tech. rep., Tech. rep., NCAR/TN-489+STR, https://doi.org/http://dx.doi.org/10.5065/D6WH2MZX10.5065/D6WH2MZX, http:630

//nldr.library.ucar.edu/repository/collections/TECH-NOTE-000-000-000-857, 2012.

Jenkin, M., Saunders, S., Wagner, V., and Pilling, M.: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part B):

tropospheric degradation of aromatic volatile organic compounds, Atmospheric Chemistry and Physics, 3, 181–193, 2003.

Jöckel, P., Sander, R., Kerkweg, A., Tost, H., and Lelieveld, J.: Technical Note: The Modular Earth Submodel System (MESSy) -

a new approach towards Earth System Modeling, Atmos. Chem. Phys., 5, 433–444, https://doi.org/10.5194/acp-5-433-2005, https:635

//www.atmos-chem-phys.net/5/433/2005/, 2005.

Jöckel, P., Kerkweg, A., Pozzer, A., Sander, R., Tost, H., Riede, H., Baumgaertner, A., Gromov, S., and Kern, B.: Development cycle 2 of the

Modular Earth Submodel System (MESSy2), Geoscientific Model Development, 3, 717–752, https://doi.org/10.5194/gmd-3-717-2010,

https://gmd.copernicus.org/articles/3/717/2010/, 2010.

Jorba, O., Dabdub, D., Blaszczak-Boxe, C., Pérez, C., Janjic, Z., Baldasano, J. M., Spada, M., Badia, A., and Gonçalves, M.: Potential640

significance of photoexcited NO2 on global air quality with the NMMB/BSC chemical transport model, Journal of Geophysical Research:

Atmospheres, 117, https://doi.org/10.1029/2012JD017730, http://dx.doi.org/10.1029/2012JD017730, 2012.

Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N., Jones, L., Morcrette, J.-J., Razinger, M., Schultz, M. G., Suttie, M.,

and van der Werf, G. R.: Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative

power, Biogeosciences, 9, 527–554, https://doi.org/10.5194/bg-9-527-2012, https://www.biogeosciences.net/9/527/2012/, 2012.645

Klose, M., Jorba, O., Gonçalves Ageitos, M., Escribano, J., Dawson, M. L., Obiso, V., Di Tomaso, E., Basart, S., Montané Pinto, G.,

Macchia, F., Ginoux, P., Guerschman, J., Prigent, C., Huang, Y., Kok, J. F., Miller, R. L., and Pérez García-Pando, C.: Mineral dust cycle

in the Multiscale Online Nonhydrostatic AtmospheRe CHemistry model (MONARCH) Version 2.0, Geoscientific Model Development

Discussions, 2021, 1–59, https://doi.org/10.5194/gmd-2021-32, https://gmd.copernicus.org/preprints/gmd-2021-32/, 2021.

Knote, C., Tuccella, P., Curci, G., Emmons, L., Orlando, J. J., Madronich, S., Baró, R., Jiménez-Guerrero, P., Luecken, D., Hogrefe, C., et al.:650

Influence of the choice of gas-phase mechanism on predictions of key gaseous pollutants during the AQMEII phase-2 intercomparison,

Atmospheric Environment, 115, 553–568, 2015.

Kuenen, J. J. P., Visschedijk, A. J. H., Jozwicka, M., and Denier van der Gon, H. A. C.: TNO-MACC II emission inventory; a multi-year

(2003–2009) consistent high-resolution European emission inventory for air quality modelling, Atmospheric Chemistry and Physics, 14,

10 963–10 976, https://doi.org/10.5194/acp-14-10963-2014, https://www.atmos-chem-phys.net/14/10963/2014/, 2014.655

Liffman, K.: A direct simulation Monte-Carlo method for cluster coagulation, J. Comput. Phys., 100, 116–127, 1992.

Lonsdale, C. R., Alvarado, M. J., Hodshire, A. L., Ramnarine, E., and Pierce, J. R.: Simulating the forest fire plume dispersion, chemistry,

and aerosol formation using SAM-ASP version 1.0, Geoscientific Model Development, 13, 4579–4593, 2020.

Manders, A. M. M., Builtjes, P. J. H., Curier, L., Denier van der Gon, H. A. C., Hendriks, C., Jonkers, S., Kranenburg, R., Kuenen, J. J. P.,

Segers, A. J., Timmermans, R. M. A., Visschedijk, A. J. H., Wichink Kruit, R. J., van Pul, W. A. J., Sauter, F. J., van der Swaluw, E.,660

Swart, D. P. J., Douros, J., Eskes, H., van Meijgaard, E., van Ulft, B., van Velthoven, P., Banzhaf, S., Mues, A. C., Stern, R., Fu, G., Lu,

S., Heemink, A., van Velzen, N., and Schaap, M.: Curriculum vitae of the LOTOS–EUROS (v2.0) chemistry transport model, Geoscien-

tific Model Development, 10, 4145–4173, https://doi.org/10.5194/gmd-10-4145-2017, https://gmd.copernicus.org/articles/10/4145/2017/,

2017.

38

https://doi.org/10.5194/gmd-2021-370
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.

Manubens-Gil, D., Vegas-Regidor, J., Prodhomme, C., Mula-Valls, O., and Doblas-Reyes, F. J.: Seamless management of ensemble climate665

prediction experiments on HPC platforms, in: 2016 International Conference on High Performance Computing Simulation (HPCS), pp.

895–900, 2016.

Marcolli, C. and Peter, T.: Water activity in polyol/water systems: new UNIFAC parameterization, Atmos. Chem. Phys., 5, 1545–1555, 2005.

Metzger, S., Dentener, F., Pandis, S., and Lelieveld, J.: Gas/aerosol partitioning: 1. A computationally efficient model, J. Geophys. Res., 107,

2002.670

Mitchell, J. C.: Concepts in Programming Languages, Cambridge University Press, New York, USA, 2005.

Nguyen, K. and Dabdub, D.: Development and analysis of a non-splitting solution for three-dimensional air quality models, Atmospheric

Environment, 37, 3741–3748, 2003.

O’Meara, S. P., Xu, S., Topping, D., Alfarra, M. R., Capes, G., Lowe, D., Shao, Y., , and McFiggans, G.: PyCHAM (v2.1.1): a Python box

model for simulating aerosol chambers, Geoscientific Model Development, 14, 675–702, 2021.675

Palamadai Natarajan, E.: KLU—A high performance sparse linear solver for circuit simulation problems, 2005.

Pankow, J. F. and Asher, W. E.: SIMPOL.1: A simple group contribution method for predicting vapor pressures and enthalpies of va-

porization of multifunctional organic compounds, Atmos. Chem. Phys., 8, 2773–2796, https://doi.org/10.5194/acp-8-2773-2008, http:

//www.atmos-chem-phys.net/8/2773/2008/, 2008.

Peng, Z. and Jimenez, J. L.: KinSim: A Research-Grade, User-Friendly, Visual Kinetics Simulator for Chemical-Kinetics and Environmental-680

Chemistry Teaching, J. Chem. Educ., 96, 806–811, 2019.

Pérez, C., Haustein, K., Janjic, Z., Jorba, O., Huneeus, N., Baldasano, J. M., Black, T., Basart, S., Nickovic, S., Miller, R. L., Perl-

witz, J. P., Schulz, M., and Thomson, M.: Atmospheric dust modeling from meso to global scales with the online NMMB/BSC-

Dust model Part 1: Model description, annual simulations and evaluation, Atmospheric Chemistry and Physics, 11, 13 001–13 027,

https://doi.org/10.5194/acp-11-13001-2011, 2011.685

Riemer, N., West, M., Zaveri, R. A., and Easter, R. C.: Simulating the evolution of soot mixing state with a particle-resolved aerosol model,

J. Geophys. Res., 114, 2009.

Sander, R., Baumgaertner, A., Cabrera-Perez, D., Frank, F., Gromov, S., Grooß, J.-U., Harder, H., Huijnen, V., Jöckel, P., Karydis,

V. A., Niemeyer, K. E., Pozzer, A., Riede, H., Schultz, M. G., Taraborrelli, D., and Tauer, S.: The community atmospheric chem-

istry box model CAABA/MECCA-4.0, Geoscientific Model Development, 12, 1365–1385, https://doi.org/10.5194/gmd-12-1365-2019,690

https://gmd.copernicus.org/articles/12/1365/2019/, 2019.

Sarwar, G., Simon, H., Bhave, P., and Yarwood, G.: Examining the impact of heterogeneous nitryl chloride production on air quality across

the United States, Atmospheric Chemistry and Physics, 12, 6455–6473, https://doi.org/10.5194/acp-12-6455-2012, https://acp.copernicus.

org/articles/12/6455/2012/, 2012.

Saunders, S. M., Jenkin, M. E., Derwent, R., and Pilling, M.: Protocol for the development of the Master Chemical Mechanism, MCM v3695

(Part A): tropospheric degradation of non-aromatic volatile organic compounds, Atmospheric Chemistry and Physics, 3, 161–180, 2003.

Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics: from air pollution to climate change, John Wiley & Sons, 2016.

Simpson, D., Benedictow, A., Berge, H., Bergström, R., Emberson, L. D., Fagerli, H., Flechard, C. R., Hayman, G. D., Gauss, M., Jonson,

J. E., Jenkin, M. E., Nyíri, A., Richter, C., Semeena, V. S., Tsyro, S., Tuovinen, J.-P., Valdebenito, A., and Wind, P.: The EMEP MSC-W

chemical transport model; technical description, Atmospheric Chemistry and Physics, 12, 7825–7865, https://doi.org/10.5194/acp-12-700

7825-2012, https://acp.copernicus.org/articles/12/7825/2012/, 2012.

39

https://doi.org/10.5194/gmd-2021-370
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.

Spada, M.: Development and evaluation of an atmospheric aerosol module implemented within the NMMB/BSC-CTM, Ph.D. thesis, Uni-

versitat Politecnica de Catalunya, 2015.

Spada, M., Jorba, O., Pérez García-Pando, C., Janjic, Z., and Baldasano, J. M.: Modeling and evaluation of the global sea-salt aerosol

distribution: sensitivity to size-resolved and sea-surface temperature dependent emission schemes, Atmospheric Chemistry and Physics,705

13, 11 735–11 755, https://doi.org/10.5194/acp-13-11735-2013, https://acp.copernicus.org/articles/13/11735/2013/, 2013.

Stockwell, W. R., Kirchner, F., Kuhn, M., and Seefeld, S.: A new mechanism for regional atmospheric chemistry modeling, Journal of

Geophysical Research: Atmospheres, 102, 25 847–25 879, 1997.

Topping, D., Lowe, D., and McFiggans, G.: Partial Derivative Fitted Taylor Expansion: An efficient method for calculating gas-liquid equi-

libria in atmospheric aerosol particles: 1. Inorganic compounds, J. Geophys. Res., 114, 1–13, https://doi.org/10.5194/gmd-5-1-2012, 2009.710

Topping, D., Barley, M., Bane, M. K., Higham, N., Aumont, B., Dingle, N., and McFiggans, G.: UManSysProp v1. 0: an online and open-

source facility for molecular property prediction and atmospheric aerosol calculations, Geoscientific Model Development, 9, 899–914,

2016.

Topping, D., Connolly, P., and Reid, J.: PyBox: An automated box-model generator for atmospheric chemistry and aerosol simulations.,

Journal of Open Source Software, 3, 755, 2018.715

Tsigaridis, K. and Kanakidou, M.: Secondary organic aerosol importance in the future atmosphere, Atmospheric Environ-

ment, 41, 4682–4692, https://doi.org/https://doi.org/10.1016/j.atmosenv.2007.03.045, https://www.sciencedirect.com/science/article/pii/

S1352231007002865, 2007.

USEPA: Community Multiscale Air Quality Modeling System (CMAQ Version 5.3.2) [Software], United States Environmental Protection

Agency, https://doi.org/10.5281/zenodo.107987, https://www.cmascenter.org/cmaq/, 2020.720

van der Gon, D. H. A. C., Hendriks, C., Kuenen, J., Segers, A., and Visschedijk, A. J. H.: Description of current temporal emission patterns

and sensitivity of predicted AQ for temporal emission patterns , 2011.

Wennberg, P. O., Bates, K. H., Crounse, J. D., Dodson, L. G., McVay, R. C., Mertens, L. A., Nguyen, T. B., Praske, E., Schwantes, R. H.,

Smarte, M. D., St Clair, J. M., Teng, A. P., Zhang, X., and Seinfeld, J. H.: Gas-Phase Reactions of Isoprene and Its Major Oxidation Prod-

ucts, Chemical Reviews, 118, 3337–3390, https://doi.org/10.1021/acs.chemrev.7b00439, https://doi.org/10.1021/acs.chemrev.7b00439,725

pMID: 29522327, 2018.

Wild, O., Zhu, X., and Prather, M. J.: Fast-J: Accurate Simulation of In- and Below-Cloud Photolysis in Tropospheric Chemical Models,

Journal of Atmospheric Chemistry, 37, 245–282, https://doi.org/10.1023/A:1006415919030, 2000.

Xian, P., Reid, J. S., Hyer, E. J., Sampson, C. R., Rubin, J. I., Ades, M., Asencio, N., Basart, S., Benedetti, A., Bhattacharjee, P. S., Brooks,

M. E., Colarco, P. R., da Silva, A. M., Eck, T. F., Guth, J., Jorba, O., Kouznetsov, R., Kipling, Z., Sofiev, M., Perez Garcia-Pando, C., Prad-730

han, Y., Tanaka, T., Wang, J., Westphal, D. L., Yumimoto, K., and Zhang, J.: Current state of the global operational aerosol multi-model

ensemble: An update from the International Cooperative for Aerosol Prediction (ICAP), Quarterly Journal of the Royal Meteorological

Society, 145, 176–209, https://doi.org/10.1002/qj.3497, https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3497, 2019.

Yarwood, G., Rao, S., Yocke, M., and Whitten, G.: Updates to the Carbon Bond Chemical Mechanism: CB05. Final Report to the US EPA,

RT-0400675, http://www.camx.com/publ/pdfs/CB05_Final_Report_120805.pdf, 2005.735

Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for simulating aerosol interactions and chemistry (MOSAIC), J. Geophys.

Res., 113, D13 204, 2008.

40

https://doi.org/10.5194/gmd-2021-370
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.

