
Automating Finite Element Methods for Geodynamics via Firedrake
D. Rhodri Davies1, Stephan C. Kramer2, Sia Ghelichkhan1, and Angus Gibson1

1Research School of Earth Sciences, The Australian National University, Canberra, ACT, Australia.
2Department of Earth Science and Engineering, Imperial College London, London, UK.

Correspondence: Rhodri Davies (Rhodri.Davies@anu.edu.au)

Abstract. Firedrake is an automated system for solving partial differential equations using the finite element method. By ap-

plying sophisticated performance optimisations through automatic code-generation techniques, it provides a means to create

accurate, efficient, flexible, easily extensible, scalable, transparent and reproducible research software, that is ideally suited to

simulating a wide-range of problems in geophysical fluid dynamics. Here, we demonstrate the applicability of Firedrake for

geodynamical simulation, with a focus on mantle dynamics. The accuracy and efficiency of the approach is confirmed via com-5

parisons against a suite of analytical and benchmark cases of systematically increasing complexity, whilst parallel scalability

is demonstrated up to 12288 compute cores, where the problem size and the number of processing cores are simultaneously

increased. In addition, Firedrake’s flexibility is highlighted via straightforward application to different physical (e.g. complex

nonlinear rheologies, compressibility) and geometrical (2-D and 3-D Cartesian and spherical domains) scenarios. Finally, a

representative simulation of global mantle convection is examined, which incorporates 230 Myr of plate motion history as a10

kinematic surface boundary condition, confirming Firedrake’s suitability for addressing research problems at the frontiers of

global mantle dynamics research.

1 Introduction

Since the advent of plate tectonic theory, there has been a long and successful history of research software development

within the geodynamics community. The earliest modelling tools provided fundamental new insight into the process of mantle15

convection, its sensitivity to variations in viscosity, and its role in controlling Earth’s surface plate motions and heat transport

(e.g. McKenzie, 1969; Minear and Toksoz, 1970; Torrance and Turcotte, 1971; McKenzie et al., 1973). Although transformative

at the time, computational and algorithmic limitations dictated that these tools were restricted to a simplified approximation of

the underlying physics and, excluding some notable exceptions (e.g. Baumgardner, 1985; Glatzmaier, 1988), to 2-D Cartesian

geometries. They were specifically designed to address targeted scientific questions. As such, they offered limited flexibility,20

were not easily extensible, and were not portable across different platforms. Furthermore, since they were often developed for

use by one or two expert practitioners, they were poorly documented: details of the implementation could only be determined

by analysing the underlying code, which was often a non-trivial and specialised task.

Growing computational resources and significant theoretical and algorithmic advances have since underpinned the develop-

ment of more advanced research software, which incorporate, for example, better approximations to the fundamental physical25

principles, including compressibility (e.g. Jarvis and McKenzie, 1980; Bercovici et al., 1992; Tackley, 1996; Bunge et al., 1997;

1

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

Gassmoller et al., 2020), mineralogical phase transformations (e.g. Tackley et al., 1993; Nakagawa et al., 2009), multi-phase

flow (e.g. Katz and Weatherley, 2012; Wilson et al., 2014), variable and nonlinear rheologies (e.g. Moresi and Solomatov,

1995; Bunge et al., 1996; Trompert and Hansen, 1998; Tackley, 2000; Moresi et al., 2002; Stadler et al., 2010; Alisic et al.,

2011; Le Voci et al., 2014; Garel et al., 2014), and feedbacks between chemical heterogeneity and buoyancy (e.g. van Keken,30

1997; Tackley and Xie, 2002; Davies et al., 2012). In addition, these more recent tools can often be applied in more represen-

tative 2-D cylindrical and/or 3-D spherical geometries (e.g. Baumgardner, 1985; Bercovici et al., 1989; Jarvis, 1993; Bunge

et al., 1997; van Keken and Ballentine, 1998; Zhong et al., 2000, 2008; Tackley, 2008; Wolstencroft et al., 2009; Stadler et al.,

2010; Davies et al., 2013). The user-base of these tools has rapidly increased, with software development teams emerging

to enhance their applicability and ensure their ongoing functionality. These teams have done so by adopting best-practices in35

modern software development, including version control, unit and regression testing across a range of platforms, and validation

of model predictions against a suite of analytical and benchmark solutions (e.g. Blankenbach et al., 1989; Busse et al., 1994;

King et al., 2009; Tosi et al., 2015; Kramer et al., 2021a).

Nonetheless, given rapid and ongoing improvements in algorithmic design and software engineering, alongside the develop-

ment of robust and flexible scientific computing libraries that provide access to much of the low-level numerical functionality40

required by geodynamical models, a next-generation of open-source and community driven geodynamical research software

has emerged, exploiting developments from the forefront of computational engineering. This includes ASPECT (e.g. Kron-

bichler et al., 2012; Heister et al., 2017; Bangerth et al., 2020), built on the deal.II (Bangerth et al., 2007), p4est (Burstedde

et al., 2011) and Trilinos (Heroux et al., 2005; Trilinos Project Team) libraries, Fluidity (e.g. Davies et al., 2011; Kramer et al.,

2012, 2021a, b), which is underpinned by the PETSc (Balay et al., 1997, 2021a, b) and Spud libraries (Ham et al., 2009),45

Underworld2 (e.g. Moresi et al., 2007; Beucher et al., 2019), core aspects of which are built on the St Germain (Quenette et al.,

2007) and PETSc libraries, and TerraFERMA (Wilson et al., 2017), which has foundations in the FEniCS (Logg et al., 2012;

Alnes et al., 2014), PETSc and Spud libraries. By building on existing computational libraries that are highly-efficient, exten-

sively tested and validated, modern geodynamical research software is becoming increasingly reliable and reproducible. Its

modular design also facilitates the addition of new features and provides a degree of confidence about the validity of previous50

developments, as evidenced by growth in the use and applicability of ASPECT over recent years.

However, even with these modern research software frameworks, some fundamental development decisions, such as the

core physical equations, numerical approximations and general solution strategy, have been integrated into the basic building

blocks of the code. Whilst there remains some flexibility within the context of a single problem, modifications to include

different physical approximations or components, which can affect nonlinear coupling and associated solution strategies, often55

require extensive and time-consuming development and testing, using either separate code forks or increasingly complex

options systems. This makes reproducibility of a given simulation difficult, resulting in a lack of transparency – even with

detailed documentation, specific details of the implementation are sometimes only available by reading the code itself, which,

as noted previously, is non-trivial, particularly across different forks or with increasing code complexity (Wilson et al., 2017).

This makes scientific studies into the influence of different physical or geometrical scenarios, using a consistent code-base,60

extremely challenging. Those software frameworks that try to maintain some degree of flexibility often do so at the compromise

2

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

of performance: the flexibility to configure different equations, numerical discretisations and solver strategies, in different

dimensions and geometries, requires implementation compromises in the choice of optimal algorithms and specific low-level

optimisations for all possible configurations.

A challenge that remains central to research software development in geodynamics, therefore, is the need to provide accurate,65

efficient, flexible, easily extensible, scalable, transparent and reproducible research software that can be applied to simulating

a wide-range of scenarios, including problems in different geometries and those incorporating different approximations of the

underlying physics (e.g. Wilson et al., 2017). However, this requires a large time commitment and knowledge that spans sev-

eral academic disciplines. Arriving at a physical description of a complex system, such as global mantle convection, demands

expertise in geology, geophysics, geochemistry, fluid mechanics and rheology. Discretising the governing partial differential70

equations (PDEs) to produce a suitable numerical scheme, requires proficiency in mathematical analysis, whilst its translation

into efficient code for massively parallel systems demands advanced knowledge in low-level code optimisation and computer

architectures (e.g. Rathgeber et al., 2016). The consequence of this is that the development of research software for geodynam-

ics has now become a multi-disciplinary effort and its design must enable scientists across several disciplines to collaborate

effectively, without requiring each of them to comprehend all aspects of the system.75

Key to achieving this is to abstract, automate, and compose the various processes involved in numerically solving the PDEs

governing a specific problem (e.g. Logg et al., 2012; Alnes et al., 2014; Rathgeber et al., 2016; Wilson et al., 2017), to enable a

separation of concerns between developing a technique and employing it. As such, software projects involving automatic code

generation have become increasingly popular, as these help to separate different aspects of development. Such an approach

facilitates collaboration between computational engineers with expertise in hardware and software, computer scientists and80

applied mathematicians with expertise in numerical algorithms, and domain specific scientists, such as geodynamicists.

In this study, we introduce Firedrake to the geodynamical modelling community: a next-generation automated system for

solving PDEs using the finite element method (e.g. Rathgeber et al., 2016; Gibson et al., 2019). As we will show, the finite

element method is well-suited to automatic code-generation techniques: a weak formulation of the governing PDEs, together

with a mesh, initial and boundary conditions, and appropriate discrete function spaces, is sufficient to fully represent the85

problem. The purpose of this manuscript is to demonstrate the applicability of Firedrake for geodynamical simulation, whilst

also highlighting its advantages over existing geodynamical research software. We do so via comparisons against a suite of

analytical and benchmark cases of systematically increasing complexity.

The remainder of the manuscript is structured as follows. In Section 2, we provide a background to the Firedrake project

and the various dependencies of its software stack. In Section 3 we introduce the equations governing mantle convection which90

will be central to the examples developed herein, followed, in Section 4, by a description of their discretisation via the finite

element method and the associated solution strategies. In Section 5 we introduce a series of benchmark cases in Cartesian

and spherical geometries. These are commonly examined within the geodynamical modelling community, and we describe the

steps involved with setting up these cases in Firedrake. Parallel performance is analysed in Section 6, with a representative

example of global mantle convection described and analysed in Section 7. The latter case confirms Firedrake’s suitability for95

3

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

addressing research problems at the frontiers of global mantle dynamics research. Other components of Firedrake, which have

not been showcased in this manuscript but may be beneficial to various future research endeavours, are discussed in Section 8.

2 Firedrake

The Firedrake project is an automated system for solving partial differential equations using the finite element method (e.g.

Rathgeber et al., 2016). Using a high-level language that reflects the mathematical description of the governing equations100

(e.g. Alnes et al., 2014), the user specifies the finite element problem symbolically. The high-performance implementation of

assembly operations for the discrete operators is then generated ‘automatically’ by a sequence of specialised compiler passes

that apply symbolic mathematical transformations to the input equations to ultimately produce C (and C++) code (Rathgeber

et al., 2016; Homolya et al., 2018). Firedrake compiles and executes this code to create linear or nonlinear systems, which are

solved by PETSc (Balay et al., 1997, 2021b, a). As stated by Rathgeber et al. (2016), in comparison with conventional finite105

element libraries, and even more so with handwritten code, Firedrake provides a higher productivity mechanism for solving

finite element problems whilst simultaneously applying sophisticated performance optimisations that few users would have the

resources to code by hand.

Firedrake builds on the concepts and some of the code of the FEniCS project (e.g. Logg et al., 2012), particularly its

representation of variational problems via the Unified Form Language (UFL) (Alnes et al., 2014). We note that the applicability110

of FEniCS for geodynamical problems has already been demonstrated (e.g. Vynnytska et al., 2013; Wilson et al., 2017). Both

frameworks have the goal of saving users from manually writing low-level code for assembling the systems of equations that

discretise their model physics. An important architectural difference is that while FEniCS has components written in C++ and

Python, Firedrake is completely written in Python, including its run-time environment (it is only the automatically generated

assembly code that is in C/C++, although it does leverage the PETSc library, written in C, to solve the assembled systems,115

albeit through its Python interface). This provides a highly flexible user interface with ease of introspection of data structures.

We note that the Python environment also allows deploying of hand written C kernels should the need arise to perform discrete

mesh-based operations that cannot be expressed in the finite element framework, such as sophisticated slope limiters or bespoke

sub-grid physics.

Firedrake offers several highly-desirable features rendering it well-suited to problems in geophysical fluid dynamics. As will120

be illustrated through a series of examples below, of particular importance in the context of this manuscript are Firedrake’s

support for a range of different finite-element discretisations, including a highly efficient implementation of those based on

extruded meshes, programmable nonlinear solvers and composable operator aware solver preconditioners. As the importance of

reproducibility in the computational geosciences is increasingly recognized, we note that Firedrake integrates with Zenodo and

GitHub to provide users with the ability to generate a set of DOIs corresponding to the exact set of Firedrake components used125

to conduct a particular simulation, in full compliance with FAIR (Findable, Accessible, Interoperable, Reusable) principles.

4

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

2.1 Dependencies

Firedrake treats finite element problems as a composition of several abstract processes, using separate packages for each.

The framework imposes a clear separation of concerns between the definition of the problem (UFL, Firedrake Language), the

generation of computational kernels used to assemble the coefficients of the discrete equations (TSFC, FInAT), the parallel130

execution of this kernel (PyOP2) over a given mesh topology (DMPlex), and the solution of the resulting linear or nonlinear

systems (PETSc). These layers allow various types of optimisation to be applied at different stages of the solution process. The

key components of this software stack are next described.

1. Unified Form Language (UFL) – as we will see in the examples below, a core part of finite element problems is the

specification of the weak form of the governing PDEs. UFL, a domain-specific symbolic language with well-defined and135

mathematically consistent semantics that is embedded in Python, provides an elegant solution to this problem. It was

pioneered by the FEniCS project (Logg et al., 2012), although Firedrake has added several extensions.

2. Firedrake Language – in addition to the weak form of the PDEs, finite element problems require the user to select

appropriate finite elements, specify the mesh to be employed, set field values for initial and boundary conditions and

specify the sequence in which solves occur. Firedrake implements its own language for these tasks, which was designed140

to be to a large extent compatible with DOLFIN (Logg et al., 2012), the runtime API of the FEniCS project. We note that

Firedrake implements various extensions to DOLFIN, whilst some features of DOLFIN are not supported by Firedrake.

3. FInAT (Kirby and Mitchell, 2019) – incorporates all information required to evaluate the basis functions of the different

finite element families supported by Firedrake. In earlier versions of Firedrake this was done through tabulation of the

basis functions evaluated at Gauss points (FIAT: Kirby, 2004). FInAT, however, provides this information to the form145

compiler as a combination of symbolic expressions and numerical values, allowing for further optimisations. FInAT

allows Firedrake to support a wide-range of finite elements, including continuous, discontinuous, H(div) and H(curl)

discretisations, and elements with continuous derivatives such as the Argyris and Bell elements.

4. Two-Stage Form Compiler (TSFC) – a form compiler takes a high-level description of the weak form of PDEs (here

in UFL) and produces low-level code that carries out the finite element assembly. Firedrake uses TSFC, which was150

developed specifically for the Firedrake project (Homolya et al., 2018), to generate its local assembly kernels. TSFC

invokes two stages, where in the first stage UFL is translated to an intermediate symbolic tensor algebra language,

before translating this into assembly kernels written in C. In comparison with the form compilers of FEniCS (FFC and

UFLACS), TSFC aims to maintain the algebraic structure of the input expression for longer, which opens up additional

opportunities for optimisation.155

5. PyOP2 – a key component of Firedrake’s software stack is PyOP2, a high-level framework that optimises the parallel

execution of computational kernels on unstructured meshes (Rathgeber et al., 2012; Markall et al., 2013). Where the local

assembly kernels generated by TSFC calculate the values of a local tensor from local input tensors, all associated with

5

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

the degrees of freedom of a single element, PyOP2 wraps this code in an additional layer responsible for the extraction

and addition of these local tensors out of/into global structures such as vectors and sparse matrices. It is also responsible160

for the maintenance of halo layers, the overlapping regions in a parallel decomposed problem. PyOP2 allows for a clean

separation of concerns between the specification of the local kernel functions, in which the numerics of the method are

encoded, and their efficient parallel execution. More generally, this separation of concerns is the key novel abstraction

that underlies the design of the Firedrake system.

6. DMPlex – PyOP2 has no concept of the topological construction of a mesh. Firedrake derives the required maps through165

DMPlex, a data management abstraction that represents unstructured mesh data, which is part of the PETSc project

(Knepley and Karpeev, 2009). This allows Firedrake to leverage the DMPlex partitioning and data migration interfaces to

perform domain decomposition at run-time, whilst supporting multiple mesh file formats. Moreover, Firedrake reorders

mesh entities to ensure computational efficiency (Lange et al., 2016).

7. Linear and nonlinear solvers – Firedrake passes solver problems on to PETSc (Balay et al., 1997, 2021a, b), a well-170

established, high-performance solver library that provides access to several of its own and third-party implementations of

solver algorithms. The Python interface to PETSc (Dalcin et al., 2011) makes integration with Firedrake straightforward.

We note that employing PETSc for both its solver library and for DMPlex has the additional advantage that the set of

library dependencies required by Firedrake is kept small (Rathgeber et al., 2016).

3 Governing Equations175

Our focus here is on mantle convection, the slow creeping motion of Earth’s mantle over geological timescales. The equations

governing mantle convection are derived from the conservation laws of mass, momentum and energy. The simplest mathe-

matical formulation assumes incompressibility and the Boussinesq approximation (McKenzie et al., 1973), under which the

non–dimensional momentum and continuity equations are given by:

∇ · ¯̄σ+Ra0T k̂ = 0, (1)180

∇ ·u= 0, (2)

where ¯̄σ is the stress tensor, u is the velocity and T temperature. k̂ is the unit vector in the direction opposite to gravity and

Ra0 denotes the Rayleigh number, a dimensionless number that quantifies the vigor of convection:

Ra0 =
ρ0α∆Tgd3

µ0κ
. (3)

Here, ρ0 denotes reference density, α the thermal expansion coefficient, ∆T the characteristic temperature change across the185

domain, g the gravitational acceleration, d the characteristic length, µ0 the reference dynamic viscosity and κ the thermal

diffusivity. Note that the above non–dimensional equations are obtained through the following characteristic scales: length d;

time d2 / κ; and temperature ∆T .

6

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

When simulating incompressible flow, the full stress tensor, ¯̄σ, is decomposed into deviatoric and volumetric components:

¯̄σ = ¯̄τ − pI, (4)190

where ¯̄τ is the deviatoric stress tensor, p is dynamic pressure and I is the identity matrix. Substituting Eq. (4) into Eq. (1) and

utilizing the constituative relation

¯̄τ = 2µε̇= 2µsym(∇u) = µ
[
∇u+ (∇u)T

]
, (5)

which relates the deviatoric stress tensor, ¯̄τ , to the strain-rate tensor, ε̇= sym(∇u), yields:

∇ ·µ
[
∇u+ (∇u)T

]
−∇p+Ra0T k̂ = 0. (6)195

The viscous flow problem can thus be posed in terms of pressure, p, velocity, u, and temperature, T . The evolution of the

thermal field is controlled by an advection–diffusion equation:

∂T

∂t
+u · ∇T −∇ · (κ∇T) = 0 (7)

These governing equations are sufficient to solve for the three unknowns, together with adequate boundary and initial condi-

tions.200

4 Finite Element Discretisation and Solution Strategy

For the derivation of the finite element discretisation of Equations (6), (2), and (7) we start by writing these in their weak form.

We select appropriate function spaces V, W, and Q that contain, respectively, the solution fields for velocity u, pressure p, and

temperature T , and also contain the test functions v,w and q. The weak form is then obtained by multiplying these equations

with the test functions and integrating over the domain Ω,205
∫

Ω

(∇v) : µ
[
∇u + (∇u)T

]
dx+

∫

Ω

v · ∇p dx−
∫

Ω

Ra0Tv · k̂ dx= 0 for all v ∈ V, (8)

−
∫

Ω

(∇w) ·u dx= 0 for all w ∈W, (9)

∫

Ω

q
∂T

∂t
dx+

∫

Ω

qu · ∇T dx+
∫

Ω

(∇q) · (κ∇T) dx= 0 for all q ∈Q. (10)

Note that we have integrated by parts the viscosity term in (6), the divergence term in (2), and the diffusion term in (7), but

have omitted the corresponding boundary terms, which will be considered in the following section.210

Equations (8-10) are a more general, mathematically rigorous representation of the continuous PDEs in strong form (Equa-

tions 6, 2 and 7), provided suitable function spaces with sufficient regularity are chosen (see, for example Zienkiewicz and

Taylor, 1991; Elman et al., 2005). Galerkin finite element discretisation proceeds by restricting these function spaces to

7

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

finite-dimensional subspaces. These are typically constructed by dividing the domain into cells or elements, and restricting

to piecewise polynomial subspaces with various continuity requirements between cells. In all examples presented in this paper,215

we use Continuous Galerkin (CG) finite elements, specifically the Q2-Q1 element pair for velocity and pressure and the Q2

discretisation for temperature.

We note that there are many other choices of finite element function spaces available in Firedrake, although they are not

considered herein (see Gibson et al., 2019, for an overview). All that is required for their implementation is that a basis can be

found for the function space such that each solution can be written as a linear combination of basis functions. For example, if220

we have a basis φi of the finite dimensional function space Qh of temperature solutions, then we can write each temperature

solution as

T (x) =
∑

i

Tiφi(x) (11)

where Ti represents the coefficients that we can collect into a discrete solution vector T. Using a Lagrangian polynomial basis

the coefficients Ti correspond to values at the nodes, where each node i is associated with one basis function φi, but this is not225

generally true for other choices of finite element bases.

In curved domains, boundaries can only be approximated with a finite number of triangles, tetrahedrals, quadrilaterals or

hexahedrals. In a sense, this can be seen as a piecewise linear (or bi/tri-linear) approximation where the domain is approximated

by straight lines (edges) between vertices. A more accurate representation of the domain is obtained by allowing higher order

polynomials that describe the physical embedding of the element within the domain. A typical choice is to use a so-called230

isoparametric representation in which the polynomial order of the embedding is the same as that of the discretised functions

that are solved for.

Finally, we note that it is common to use a subscript h for the discrete, finite-dimensional function subspaces and Ωh for the

discretised approximation by the mesh of the domain Ω, but since the remainder of this manuscript focusses on the details and

implementation of this discretisation, we simply drop the h subscripts from here on.235

4.1 Boundary conditions

In the Cartesian examples considered below, zero-slip and free-slip boundary conditions for (8) and (9) are imposed through

strong Dirichlet boundary conditions for velocity u. This is achieved by restricting the velocity function space V to a subspace

V0 of vector functions for which all components (zero-slip) or only the normal component (free-slip) are zero at the boundary.

Since this restriction also applies to the test functions v, the weak form only needs to be satisfied for all test functions v ∈ V0240

that satisfy the homogeneous boundary conditions. Therefore, the omitted boundary integral

−
∫

∂Ω

v ·
(
µ
[
∇u+ (∇u)T

])
·n ds (12)

that was required to obtain the integrated by parts viscosity term in Equation (8), automatically vanishes for zero-slip boundary

conditions as v = 0 at the domain boundary, ∂Ω. In the case of a free-slip boundary condition for which the tangential com-

ponents of v are non-zero, the boundary term does not vanish, but by omitting that term in (8) we weakly impose a zero shear245

8

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

stress condition. The boundary term obtained by integrating the divergence term in (2) by parts,
∫

∂Ω

wn ·u ds, (13)

vanishes for both zero-slip and free-slip boundary conditions because of the no-outflow boundary condition.

Similarly, in the examples presented below, we impose strong Dirichlet boundary conditions for temperature at the top and

bottom boundaries of our domain. The test functions are restricted to Q0 which consists of temperature functions that satisfy250

homogeneous boundary conditions at these boundaries, and thus
∫

∂Ω

qn ·κ∇T ds, (14)

the boundary term associated with integrating by parts of the diffusion term, vanishes. In Cartesian domains the boundary term

does not vanish for the lateral boundaries, but by omitting this term from (10) we weakly impose a homogeneous Neumann

(zero-flux) boundary condition at these boundaries. The temperature solution itself is found in Q0 + {Tinhom} where Tinhom is255

any representative temperature function that satisfies the required inhomogenous boundary conditions.

In curved domains, such as the 2-D cylindrical and 3-D spherical cases examined below, imposing free-slip boundary con-

ditions is complicated by the fact that it is not straightforward to decompose the degrees of freedom of the velocity space V

into tangential and lateral components for many finite element discretisations. For Lagrangian based discretisations we could

define normal vectors at the Lagrangian nodes on the surface and decompose accordingly, but these normal vectors would have260

to be averaged due to the piecewise approximation of the curved surface. To avoid such complications for our examples in

cylindrical and spherical geometries, we employ a symmetric Nitsche penalty method (Nitsche, 1971) where the velocity space

is not restricted and, thus, retains all discrete solutions with a non-zero normal component. This entails adding the following

three surface integrals to Equation (8):

−
∫

∂Ω

v ·n n ·
(
µ
[
∇u+ (∇u)T

])
·n ds−

∫

∂Ω

n ·
(
µ
[
∇v+ (∇v)T

])
·n u ·n ds+

∫

∂Ω

CNitscheµv ·n u ·n ds . (15)265

The first of these corresponds to the normal component of Equation (12) associated with integration by parts of the viscosity

term. The tangential component, as before, is omitted and weakly imposes a zero shear stress condition. The second term

ensures symmetry of Equation (8) with respect to u and v. The third term penalizes the normal component of u and involves

a penalty parameter CNitsche > 0 that should be sufficiently large to ensure coercivity of FStokes as a bilinear form in u and

v. Lower bounds for CNitsche,f on each face f can be derived for simplicial (Shahbazi, 2005) and quadrilateral/hexahedral270

(Hillewaert, 2013) meshes, respectively:

Triangular (d= 2) / Tetrahedral (d= 3) meshes: CNitsche,f >Cip
p(p+ d− 1)

d

Af
Vcf

, (16)

Quadrilateral/Hexahedral meshes: CNitsche,f >Cip(p+ 1)2 Af
Vcf

, (17)

where Af is the facet area of face f , Vcf
the cell volume of the adjacent cell cf , and p is the polynomial degree of the velocity

discretisation. Here, we introduce an additional factor, Cip, to account for spatial variance of the viscosity µ in the adjacent cell,275

9

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

and domain curvature, which are not taken into account in the standard lower bounds (using Cip = 1). In all free-slip cylindrical

and spherical examples presented below, we use Cip = 100.

4.2 Temporal discretisation and solution process for temperature

For temporal integration, we apply a simple θ scheme to the energy equation (10):

Fenergy(q;Tn+1) :=
∫

Ω

q
Tn+1−Tn

∆t
dx+

∫

Ω

qu · ∇Tn+θ dx+
∫

Ω

(∇q) ·
(
κ∇Tn+θ

)
dx= 0 for all q ∈Q, (18)280

where

Tn+θ = θTn+1 + (1− θ)Tn (19)

is interpolated between the temperature solutions Tn and Tn+1 at the beginning and end of the n+ 1-th time step using a

parameter 0≤ θ ≤ 1. In all examples that follow, we use a Crank-Nicholson scheme, where θ = 0.5. To simplify we will solve

for velocity and pressure, u and p, in a separate step before solving for the new temperature Tn+1.285

Because Fenergy is linear in q, if we expand the test function q as a linear combination of basis functions φi of Q

Fenergy(q;Tn+1) = Fenergy(
∑

i

qiφi;Tn+1) =
∑

i

qiFenergy(φi;Tn+1) =:
∑

i

qiF(Tn+1)i, (20)

where F(Tn+1) is the vector with coefficients Fenergy(φi;Tn+1) (i.e. the energy equation tested with the basis functions φi).

Thus, to satisfy Equation (18) we need to solve for a temperature T for which the entire vector F(Tn+1) is zero.

In the general, nonlinear case, this can be solved using a Newton solver, but here the system of equations F(Tn+1) is also290

linear in Tn+1 and, accordingly, if we also expand the temperature with respect to the same basis: Tn+1 =
∑
j T

n+1
j φj where

we store the coefficients Tn+1
j in a vector T, we can write it in the usual form as a linear system of equations

AT = b, (21)

with A the matrix that represents the Jacobian ∂F
∂T with respect to the basis φi, and the right-hand side vector b containing all

terms in (18) that do not depend on Tn+1, specifically:295

Aij =
∂Fenergy(φi;Tn+1)

∂Tn+1
j

=
∫

Ω

φi
φj
∆t

dx+
∫

Ω

φiu · θ∇φj dx+
∫

Ω

(∇φi) · (κθ∇φj) dx= 0 (22)

bj = Fenergy(φi;0) =
∫

Ω

φi
Tn

∆t
dx−

∫

Ω

φiu · (1− θ)∇Tn dx−
∫

Ω

(∇φi) · (κ(1− θ)∇Tn) dx= 0 (23)

In the nonlinear case, every Newton iteration requires the solution of such a linear system with a Jacobian matrix Aij =

∂Fenergy/∂T
n+1
j and right-hand side vector based on the residual bi = Fenergy(φi,Tn+1) that both need to be reassembled

every iteration as Tn+1 is iteratively improved. For the 2-D cases presented in this paper, this asymmetric linear system is300

solved with a direct solver, and in 3-D using a combination of the GMRES Krylov subspace method with a symmetric SOR

(SSOR) preconditioner.

10

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

4.3 Solving for velocity and pressure

In a separate step, we solve Equations (8) and (9) for velocity and pressure. Since these weak equations need to hold for all test

functions v ∈ V and w ∈W we can equivalently write, using a single residual functional FStokes:305

FStokes(v,w;u,p) =
∫

Ω

(∇v) : µ
[
∇u+ (∇u)T

]
dx+

∫

Ω

v · ∇p dx

−
∫

Ω

Ra0Tv · k̂ dx+
∫

Ω

(∇w) ·u dx= 0 for all v ∈ V,w ∈W, (24)

where we have multiplied the continuity equation with−1 to ensure symmetry between the∇p and∇·u terms. This combined

weak form that we simultaneously solve for a velocity u ∈ V and pressure p ∈W is referred to as a mixed problem, and the310

combined solution (u,p) is said to be found in the mixed function space V ⊕W .

As before, we expand the discrete solutions u and p, and test functions v and w in terms of basis functions for V and W

u=
∑

i

uiψi, v =
∑

i

viψi, span{ψi}= V (25)

p=
∑

k

pkχk, w =
∑

k

wkχk, span{χk}=W (26)

For isoviscous cases, where FStokes is linear in u and p, we then derive a linear system of the following form315

K G

GT 0




u

p


=


f

0


 (27)

where

Kij =
∂FStokes(ψi,0;u,p)

∂uj
=
∫

Ω

(∇ψi) : µ
[
∇ψj +

(
∇ψj

)T] dx (28)

Gik =
∂FStokes(ψi,0;u,p)

∂pk
=
∫

Ω

ψi · ∇χk dx=−∂FStokes(0,χk;u,p)
∂ui

(29)

fi =Ra0

∫

Ω

Tψi · k̂ dx (30)320

For cases with more general rheologies, in particular those with a strain-rate dependent viscosity, the system FStokes(u,p) = 0

is nonlinear and can be solved using Newton’s method. This requires the solution in every Newton iteration of a linear system

of the same form as in Equation (27) but with an additional term in K associated with ∂µ/∂u.

There is a wide literature on iterative methods for solving saddle point systems of the form in Equation (27). For an overview

of the methods commonly used in geodynamics, see May and Moresi (2008). Here we employ the Schur complement approach,325

where pressure p is determined by solving

GTK−1Gp =GTK−1f . (31)

11

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

It should be noted thatK−1 is not assembled explicitly. Rather, in a first step we obtain y =K−1f by solvingKy = f so that we

can construct the right-hand side of the equation. We subsequently apply an iterative method to the linear system as a whole,

in which each iteration requires matrix-vector multiplication with the matrix GTK−1G that again involves the solution of a330

linear system with matrix K. In addition to this matrix-vector multiplication we also need a suitable preconditioner. Here we

follow the inverse scaled-mass matrix approach which uses the following approximation

GTK−1G≈M, Mij =
∫

Ω

µψiψj (32)

Finally, after solving Equation (31) for p, we obtain u in a final solve Ku = f−Gp.

Since this solution process involves multiple solves with the matrix K, we also need an efficient algorithm to solve that335

system. For this, we combine the conjugate gradient method with an algebraic multigrid approach, specifically the Geometric

Algebraic Multigrid (GAMG) method implemented in PETSc (Balay et al., 1997, 2021a, b).

Depending on boundary conditions, the linearised Stokes system admits a number of null modes. In the absence of open

boundaries, which is the case for all cases examined here, the pressure admits a constant null mode, where any arbitrary

constant can be added to the pressure solution and remain a valid solution to the equations. In addition, the cylindrical and340

spherical cases with free-slip boundary conditions at both boundaries examined in Section 5, admit, respectively, one and

three independent rotational null modes in velocity. These null modes result in indefinite matrices and preconditioned iterative

methods typically require the null vectors to be provided so that they can be projected out during iteration.

In the absence of any Dirichlet conditions on velocity, the nullspace of the velocity block K also consists of a further

two independent translational modes in 2D, and three in 3D. Even if, as for the cases here, the boundary conditions do not345

admit all rotational and translational modes, these solutions are still associated with low energy modes of the matrix, and

some multigrid methods use this information to improve their performance by ensuring that these near-nullspace modes are

accurately represented at the coarser levels (Vanek et al., 1996). We make use of this in several of the examples considered

below.

5 Examples: Benchmark Cases and Validation350

Firedrake provides a complete framework for solving finite element problems, highlighted in this section through a series of

examples. We start in Section 5.1 with the most basic problem – isoviscous, incompressible convection, in an enclosed 2-D

Cartesian box – and systematically build complexity, initially moving into more realistic physical approximations (Section 5.2)

and, subsequently, geometries that are more representative of Earth’s mantle (Section 5.3).

5.1 Basic Example: 2-D Convection in a Square Box355

A simple 2-D square convection problem, from Blankenbach et al. (1989), for execution in Firedrake, is displayed in Listing

1. The problem is incompressible, isoviscous, heated from below and cooled from above, with closed, free-slip boundaries,

on a unit square mesh. Solutions are obtained by solving the Stokes equations for velocity and pressure, alongside the energy

12

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

1 from firedrake import *
2
3 # Mesh - use a built in meshing function:
4 mesh = UnitSquareMesh(40, 40, quadrilateral=True)
5
6 # Function spaces:
7 V = VectorFunctionSpace(mesh, "CG", 2) # Velocity function space (vector)
8 W = FunctionSpace(mesh, "CG", 1) # Pressure function space (scalar)
9 Q = FunctionSpace(mesh, "CG", 2) # Temperature function space (scalar)

10 Z = MixedFunctionSpace([V, W]) # Mixed function space
11
12 # Test functions and functions to hold solutions:
13 v, w = TestFunctions(Z)
14 q = TestFunction(Q)
15 z = Function(Z)
16 u, p = split(z) # Returns symbolic UFL expression for u and p
17 Told, Tnew = Function(Q, name="OldTemp"), Function(Q, name="NewTemp")
18 Ttheta = 0.5 * Tnew + 0.5 * Told # Temporal discretisation through Crank-Nicholson
19
20 # Initialise temperature field:
21 X = SpatialCoordinate(mesh)
22 Told.interpolate(1.0 - X[1] + 0.05 * cos(pi * X[0]) * sin(pi * X[1]))
23 Tnew.assign(Told)
24
25 # Important constants:
26 Ra = Constant(1e4) # Rayleigh number
27 mu = Constant(1.0) # Viscosity - constant for this isoviscous case
28 kappa = Constant(1.0) # Thermal diffusivity
29 delta_t = Constant(1e-4) # Time-step
30 k = Constant((0, 1)) # Unit vector (in direction opposite to gravity)
31
32 # Stokes equations in UFL form:
33 stress = 2 * mu * sym(grad(u))
34 F_stokes = inner(grad(v), stress) * dx + dot(v, grad(p)) * dx - (dot(v, k) * Ra * Ttheta) * dx
35 F_stokes += dot(grad(w), u) * dx # Continuity equation
36 # Energy equation in UFL form:
37 F_energy = q * (Tnew - Told) / delta_t * dx + q * dot(u, grad(Ttheta)) * dx + dot(grad(q), kappa *

grad(Ttheta)) * dx
38
39 # Set up boundary conditions and deal with nullspaces:
40 bcvx, bcvy = DirichletBC(Z.sub(0).sub(0), 0, (1, 2)), DirichletBC(Z.sub(0).sub(1), 0, (3, 4))
41 bctb, bctt = DirichletBC(Q, 1.0, 3), DirichletBC(Q, 0.0, 4)
42 p_nullspace = MixedVectorSpaceBasis(Z, [Z.sub(0), VectorSpaceBasis(constant=True)])
43
44 # Initialise output:
45 output_file = File(’output.pvd’) # Create output file
46 u, p = z.split()
47 u.rename("Velocity"), p.rename("Pressure")
48
49 # Solver dictionary:
50 solver_parameters = {
51 "mat_type": "aij",
52 "snes_type": "ksponly",
53 "ksp_type": "preonly",
54 "pc_type": "lu",
55 "pc_factor_mat_solver_type": "mumps",
56 }
57
58 # Setup problem and solver objects so we can reuse (cache) solver setup
59 stokes_problem = NonlinearVariationalProblem(F_stokes, z, bcs=[bcvx, bcvy])
60 stokes_solver = NonlinearVariationalSolver(stokes_problem, solver_parameters=solver_parameters,

nullspace=p_nullspace, transpose_nullspace=p_nullspace)
61 energy_problem = NonlinearVariationalProblem(F_energy, Tnew, bcs=[bctb, bctt])
62 energy_solver = NonlinearVariationalSolver(energy_problem, solver_parameters=solver_parameters)
63
64 for timestep in range(0, 1000): # Perform time loop for 1000 steps
65 if timestep % 10 == 0:
66 output_file.write(u, p, Tnew)
67 stokes_solver.solve()
68 energy_solver.solve()
69 Told.assign(Tnew)

Listing 1. Firedrake code required to reproduce 2-D Cartesian incompressible isoviscous benchmark cases from Blankenbach et al. (1989).

equation for temperature. The initial temperature distribution is prescribed as follows:

T (x,y) = (1− y) +Acos(πx)sin(πy), (33)360

13

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

where A= 0.05 is the amplitude of the initial perturbation.

We have set up the problem using a bilinear quadrilateral element pair (Q2-Q1) for velocity and pressure, with Q2 elements

for temperature. Firedrake user code is written in Python, so the first step, illustrated on line 1 of Listing 1, is to import the

Firedrake module. We next need a mesh: for simple domains such as the unit square, Firedrake provides built-in meshing

functions. As such, line 4 defines the mesh, with 40 quadrilateral elements in x and y directions. We also need function spaces,365

which is achieved by associating the mesh with the relevant finite element on lines 7-9: V , W and Q are symbolic variables

representing function spaces. They also contain the function space’s computational implementation, recording the association

of degrees of freedom with the mesh and pointing to the finite element basis. The user does not usually need to pay any attention

to this: the function space just behaves as a mathematical object (Rathgeber et al., 2016). Function spaces can be combined

in the natural way to create mixed function spaces, as we do on line 10, combining the velocity and pressure function spaces370

to form a function space for the mixed Stokes problem, Z. Note that although we use continuous Lagrange elements (CG)

in all examples presented herein, Firedrake offers a range of different options, including discontinuous elements (DG). Test

functions, v, w and q are subsequently defined (lines 13-14) and we also specify functions to hold our solutions (lines 15-18):

z in the mixed function space, noting that a symbolic representation of the two parts – velocity and pressure – is obtained with

split on line 16, and Told and Tnew (line 17), required for the Crank-Nicholson scheme used for temporal discretisation in our375

energy equation (see Equations 18 and 19 in Section 4.2), where Tθ is defined on line 18.

We obtain symbolic expressions for coordinates in the physical mesh (line 21) and subsequently use these to initialize the

old temperature field, via Equation (33), on line 22. This is where Firedrake transforms a symbolic operation into a numerical

computation for the first time: the interpolate method generates C code that evaluates this expression at the nodes of Told,

and immediately executes it to populate the values of Told. We initialize Tnew with the values of Told, on line 23, via the assign380

function. Important constants in this problem (Rayleigh Number, Ra; viscosity, µ; thermal diffusivity, κ), in addition to the

constant timestep (∆t) and unit vector (k), are defined on lines 26-30. We note that viscosity could also be a Function, if we

wanted spatial variation.

We are now in a position to define the variational problems expressed in Equations (24) and (18). Although in this test case

the problems are linear, we maintain the more general nonlinear residual form FStokes(v,u) = 0 and Fenergy(q,T) = 0, to allow385

for straightforward extension to nonlinear problems below. The symbolic expressions for FStokes and FEnergy in the UFL are

given on lines 33-37: the resemblance to the mathematical formulation is immediately apparent. Integration over the domain is

indicated by multiplication with dx.

Strong Dirichlet boundary conditions for velocity (bcvx, bcvy) and temperature (bctb, bctt) are specified on lines 40-41. A

Dirichlet boundary condition is created by constructing a Python DirichletBC object, where the user must provide the function390

space the condition applies to, the value, and the part of the mesh at which it applies. The latter uses integer mesh markers

which are commonly used by mesh generation software to tag entities of meshes. Boundaries are automatically tagged by the

built-in meshes supported by Firedrake. For the UnitSquareMesh being used here, tag 1 corresponds to the plane x= 0; 2 to

x= 1; 3 to y = 0; and 4 to y = 1. Note how boundary conditions are being applied to the velocity part of the mixed finite

element space Z, indicated by Z.sub(0). Within Z.sub(0) we can further subdivide into Z.sub(0).sub(0) and Z.sub(0).sub395

14

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

Ra
 =

 1
06

Ra
 =

 1
05

Ra
 =

 1
04

(a)

(c)

(e)

(b)

(d)

(f)

Figure 1. Results from 2-D incompressible isoviscous square convection benchmark cases: (a) Nusselt number versus number of pressure

and velocity degrees of freedom (DOF), at Ra = 1× 104 (Case 1a - Blankenbach et al., 1989), for a series of uniform, structured meshes;

(b) RMS velocity versus number of pressure and velocity DOF, at Ra = 1× 104; (c, d) as in panels a and b, but at Ra = 1× 105 (Case 1b -

Blankenbach et al., 1989); (e, f) at Ra = 1× 106 (Case 1c - Blankenbach et al., 1989). Benchmark values are denoted by dashed red lines.

In panels e and f, we also display results from simulations where temperature is represented through a Q1 discretisation (Q2Q1_Q1), for

comparison with our standard Q2 temperature discretisations (Q2Q1_Q2).

(1) to apply boundary conditions to the x and y components of the velocity field only. To apply conditions to the pressure

space, we would use Z.sub(1). This problem has a constant pressure nullspace and we must ensure that our solver removes

this space. To do so, we build a nullspace object on line 42, which will subsequently be passed to the solver, and PETSc will

seek a solution in the space orthogonal to the provided nullspace.

15

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

(a) (b)

Temperature0 1

Figure 2. Final steady-state temperature field, in 2-D and 3-D, from Firedrake simulations, designed to match: (a) Case 1a from (Blankenbach

et al., 1989), with contours spanning temperatures of 0 to 1, at 0.05 intervals; (b) Case 1a from (Busse et al., 1994), with transparent

isosurfaces plotted at T = 0.3, 0.5 and 0.7.

We finally come to solving the variational problem, with problems and solver objects created on lines 59–62. We pass in the400

residual functions FStokes and FEnergy, solution fields (z, Tnew), boundary conditions and, for the Stokes system, the nullspace

object. Solution of the two variational problems is undertaken by the PETSc library (Balay et al., 1997), guided by the solver pa-

rameters specified on lines 50–56 (see Balay et al., 2021a, b, for comprehensive documentation of all PETSc options). The first

option on line 51, instructs the Jacobian to be assembled in PETSc’s default aij sparse matrix type. Although the Stokes and

energy problem in this example are linear, for consistency with latter cases, we use Firedrake’s NonlinearVariationalSolver405

which makes use of PETSc’s Scalable Nonlinear Equations Solvers (SNES) interface. However, since we do not actually need

a nonlinear solver for this case, we choose the ksponly method on line 52 indicating that only a single linear solve needs to be

performed. The linear solvers are configured through PETSc’s Krylov Subspace (KSP) interface, where we can request a direct

solver by choosing the preonly KSP method, in combination with lu as the ‘preconditioner’ (PC) type (lines 53–54). The

specific implementation of the LU-decomposition based direct solver is selected on line 55, as the MUMPS library (Amestoy410

et al., 2001, 2019). As we shall see through subsequent examples, the solution process is fully programmable, enabling the

creation of sophisticated solvers by combining multiple layers of Krylov methods and preconditioners (Kirby and Mitchell,

2018).

The time-loop is initiated on line 64, with the Stokes system solved on line 67 and the energy equation on line 68. These

solve calls once again convert symbolic mathematics into computation. The linear systems for both problems are based on the415

Jacobian matrix, and a right-hand side vector based on the residual, as indicated in Equations (21), (22) and (23) for the energy

16

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

equation, and Equations (27), (28), (29) and (30) for the Stokes equation. Note, however, that the symbolic expression for the

Jacobian is derived automatically in UFL. Firedrake’s TSFC (Homolya et al., 2018) subsequently converts the UFL into highly

optimised assembly code, which is then executed to create the matrix and vectors, with the resulting system passed to PETSc

for solution. Finally, we note that output is written on line 66, to a .pvd file, initialised on line 45, for visualisation in software420

such as ParaView (e.g. Ahrens et al., 2005).

In < 70 lines of Python, we are able to produce a model that can be executed and quantitatively compared with benchmark

results from Blankenbach et al. (1989). To do so, we have computed the RMS velocity andsurface Nusselt number at a range of

different mesh resolutions and Rayleigh numbers, with results presented in Figure 1. Results converge towards the benchmark

solutions, with increasing resolution. The final steady-state temperature field, at Ra= 1× 106, is illustrated in Figure 2(a).425

To further highlight the flexibility of Firedrake, we have also simulated these cases using a Q1 discretisation for the tem-

perature field. The modifications necessary are minimal: on line 9, the polynomial order is changed from 2 to 1. Results, at

Ra= 1× 106, are presented in Figure 1(e,f), again converging towards benchmark values with increasing resolution. We find

that, as expected, a Q2 temperature discretisation leads to more accurate results, although results converge towards the bench-

mark solutions from different directions. For the remainder of the examples considered herein, we use a Q2 discretisation for430

temperature.

5.2 Extension: more realistic physics

We next highlight the ease at which simulations can be updated to incorporate more realistic physical approximations. We

first account for compressibility, under the Anelastic Liquid Approximation (e.g. Schubert et al., 2001), simulating a well-

established benchmark case from King et al. (2009) (Section 5.2.1). We subsequently focus on a case with a more Earth-like435

approximation of the rheology (Section 5.2.2), simulating another well-established benchmark case from Tosi et al. (2015).

All cases are set up in an enclosed 2-D Cartesian box with free-slip boundary conditions, with the required changes discussed

relative to the base case presented in Section 5.1.

5.2.1 Compressibility

The governing equations applicable for compressible mantle convection, under the Anelastic Liquid Approximation (ALA),440

are presented in Appendix A (based on, for example, Schubert et al., 2001). Their weak forms are derived by multiplying these

equations with appropriate test functions and integrating over the domain, as we did with their incompressible counterparts

in Section 4. They differ appreciably from the incompressible approximations that have been utilised thus far, with important

updates to all three governing equations. Despite this, the changes required to incorporate these equations, within UFL and

Firedrake, are minimal.445

Although King et al. (2009) examined a number of cases, we focus on one illustrative example here, at Ra= 105 and a

dissipation number Di= 0.5. This allows us to demonstrate the ease at which these cases can be configured within Firedrake.

The required changes, relative to the base case, are displayed in Listing 2. They can be summarised as follows:

17

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

1 # Additional constants and definition of compressible reference state:
2 Ra = Constant(1e5) # Rayleigh number
3 Di = Constant(0.5) # Dissipation number
4 T0 = Constant(0.091) # Non-dimensional surface temperature
5 tcond = Constant(1.0) # Thermal conductivity
6 rho_0, alpha, cpr, cvr, gruneisen = 1.0, 1.0, 1.0, 1.0, 1.0
7 rhobar = Function(Q, name="CompRefDensity").interpolate(rho_0 * exp(((1.0 - X[1]) * Di) / alpha))
8 Tbar = Function(Q, name="CompRefTemperature").interpolate(T0 * exp((1.0 - X[1]) * Di) - T0)
9 alphabar = Function(Q, name="IsobaricThermalExpansivity").assign(1.0)

10 cpbar = Function(Q, name="IsobaricSpecificHeatCapacity").assign(1.0)
11 chibar = Function(Q, name="IsothermalBulkModulus").assign(1.0)
12 FullT = Function(Q, name="FullTemperature").assign(Tnew+Tbar)
13
14 ---
15 # Equations in UFL:
16 I = Identity(2)
17 stress = 2 * mu * sym(grad(u)) - 2./3.*I*mu*div(u)
18 F_stokes = inner(grad(v), stress) * dx + dot(v, grad(p)) * dx - (dot(v,k) * (Ra * Ttheta * rhobar

* alphabar - (Di/gruneisen) * (cpr/cvr)*rhobar*chibar*p) * dx)
19 F_stokes += dot(grad(w), rhobar*u) * dx # Mass conservation
20 F_energy = q * rhobar * cpbar * ((Tnew - Told) / delta_t) * dx + q * rhobar * cpbar * dot(u, grad(

Ttheta)) * dx + dot(grad(q), tcond * grad(Tbar + Ttheta)) * dx + q * (alphabar * rhobar * Di *
u[1] * Ttheta) * dx - q * ((Di/Ra) * inner(stress, grad(u))) * dx

21
22 ---
23 # Temperature boundary conditions:
24 bctb, bctt = DirichletBC(Q, 1.0 - (T0*exp(Di) - T0), bottom_id), DirichletBC(Q, 0.0, top_id)
25
26 ---
27 # Pressure nullspace:
28 stokes_solver = NonlinearVariationalSolver(stokes_problem, solver_parameters=solver_parameters,

transpose_nullspace=p_nullspace)

Listing 2. Difference in Firedrake code required to reproduce compressible ALA cases from King et al. (2009) relative to our base case.

1. Definition and initialisation of additional constants and the 1-D reference state, derived here via an Adams-Williamson

equation of state (lines 1-12). In this benchmark example, several of the key constants and parameters required for450

compressible convection are assigned values of 1 and could be removed. However, to ensure consistency between the

governing equations presented in Appendix A and the UFL, we chose not to omit these constants in Listing 2.

2. The UFL for the momentum, mass conservation and energy equations is updated, emphasising once again the resem-

blance to the mathematical formulation (lines 16-20). The key changes are as follows: (i) the stress tensor is updated

to account for a non-zero velocity divergence (line 17), where Identity represents a unit matrix of a given size (2 in455

this case) and div represents the symbolic divergence of a field; (ii) the Stokes equations are further modified to account

for dynamic pressure’s influence on buoyancy (final term on line 18); (iii) the mass conservation equation includes the

depth-dependent reference density, ρ̄ (line 19); and (iv) the energy equation is updated to incorporate adiabatic heating

and viscous dissipation terms (final 2 terms on line 20).

3. Temperature boundary conditions are updated, noting that we are solving for deviatoric temperature rather than the full460

temperature, which also includes the reference state.

4. In our Stokes solver, we only specify the transpose_nullspace option (as opposed to both nullspace and transpose_nullspace

options for our base case): the incorporation of dynamic pressure’s impact on buoyancy implies that the (right-hand side)

pressure nullspace is no longer the same as the (left-hand side) transpose nullspace. The transpose nullspace remains the

same space of constant pressure solutions, and is used to project out these modes from the initial residual vector to ensure465

18

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

(a)

(c)

(b)

0.0

1.0

Te
m
pe

ra
tu
re

Figure 3. Results from Firedrake simulations configured to reproduce 2-D compressible benchmark case from King et al. (2009) at Ra = 105

and Di = 0.5: (a) final steady-state (full) temperature field, with contours spanning temperatures of 0 to 1, at 0.05 intervals; (b) Nusselt

number versus number of pressure and velocity DOF, for a series of uniform, structured meshes; (c) RMS velocity versus number of pressure

and velocity DOF. The range of solutions provided by different codes in the King et al. (2009) benchmark study are bounded by dashed red

lines.

that the linear system is well-posed. The right-hand side nullspace now consists of different modes, which can be found

through integration. However, this nullspace is only required for iterative linear solvers in which the modes are projected

out from the solution vector at each iteration to prevent its unbounded growth.

We note that in setting up the Stokes solver as we have, we incorporate the pressure effect on buoyancy implicitly, as advocated

by Leng and Zhong (2008). As this term depends on the pressure that we are solving for, an extra term is required in addition470

to the pressure gradient matrix G in the Jacobian matrix in Equation (27). The inclusion of ρ̄ in the continuity constraint also

means that this term is no longer simply represented by the transpose of G. Such changes are automatically incorporated by

Firedrake, highlighting a major benefit of the automatic assembly approach that is utilised. To ensure the validity of our ap-

proach, we have computed the RMS velocity and Nusselt number at a range of different mesh resolutions, for direct comparison

with King et al. (2009), with results presented in Figure 3, alongside the final steady-state (full) temperature field. As expected,475

results converge towards the benchmark solutions, with increasing resolution, demonstrating the applicability and accuracy of

Firedrake for compressible simulations of this nature.

19

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

1 # Stokes solver dictionary:
2 stokes_solver_parameters = {
3 "mat_type": "aij",
4 "snes_type": "newtonls",
5 "snes_linesearch_type": "l2",
6 "snes_max_it": 100,
7 "snes_atol": 1e-10,
8 "ksp_type": "preonly",
9 "pc_type": "lu",

10 "pc_factor_mat_solver_type": "mumps",
11 }
12
13 # Energy solver dictionary:
14 energy_solver_parameters = {
15 "mat_type": "aij",
16 "snes_type": "ksponly",
17 "ksp_type": "preonly",
18 "pc_type": "lu",
19 "pc_factor_mat_solver_type": "mumps",
20 }
21
22 ---
23 # Viscosity calculation and Rayleigh number:
24 Ra = Constant(100.) # Rayleigh number
25 gamma_T, gamma_Z = Constant(ln(10**5)), Constant(ln(10))
26 mu_star, sigma_y = Constant(0.001), Constant(1.0)
27 epsilon = 0.5 * (grad(u)+transpose(grad(u))) # strain-rate
28 epsii = sqrt(inner(epsilon,epsilon) + 1e-20) # 2nd invariant (with tolerance to ensure stability)
29 mu_lin = exp(-gamma_T*Tnew + gamma_Z*(1 - X[1]))
30 mu_plast = mu_star + (sigma_y / epsii)
31 mu = (2. * mu_lin * mu_plast) / (mu_lin + mu_plast)
32
33 ---
34 # Updated solver:
35 stokes_solver = NonlinearVariationalSolver(stokes_problem, solver_parameters=

stokes_solver_parameters, nullspace=p_nullspace, transpose_nullspace=p_nullspace)
36 energy_solver = NonlinearVariationalSolver(energy_problem, solver_parameters=

energy_solver_parameters)

Listing 3. Difference in Firedrake code required to reproduce viscoplastic rheology cases from Tosi et al. (2015) relative to our base case.

5.2.2 Viscoplastic Rheology

To illustrate the changes necessary to incorporate a viscoplastic rheology, which is more representative of deformation within

Earth’s mantle and lithosphere, we examine a case from Tosi et al. (2015), a benchmark study intended to form a straightforward480

extension to Blankenbach et al. (1989). Indeed, aside from the viscosity and reference Rayleigh Number (Ra0 = 102), all other

aspects of this case are identical to the case presented in Section 5.1. The viscosity field, µ, is calculated as the harmonic mean

between a linear component, µlin and a nonlinear, plastic component, µplast, which is dependent on the strain-rate, as follows:

µ(T,z, ε̇) = 2
(1
µlin(T,z)

+
1

µplast(ε̇)

)−1

. (34)

The linear part is given by an Arrhenius law (the so-called Frank-Kamenetskii approximation):485

µlin(T,z) = exp(−γTT + γzz), (35)

where γT = ln(∆µT) and γz = ln(∆µz) are parameters controlling the total viscosity contrast due to temperature and depth,

respectively. The nonlinear component is given by:

µplast(ε̇) = µ? +
σy√
ε̇ : ε̇

(36)

20

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

(b)

0.0 1.0
Temperature

(c)

(d)

(a)

(c)

2e-4 2.0

Viscosity

(b)

Figure 4. Results from 2-D benchmark case from Tosi et al. (2015), with a viscoplastic rheology, at Ra0 = 102: (a) Nusselt number versus

number of pressure and velocity DOF, for a series of uniform, structured meshes; (b) final steady-state temperature field, with contours

spanning temperatures of 0 to 1, at 0.05 intervals; (c) RMS velocity versus number of pressure and velocity DOF; (d) final steady-state

viscosity field (note logarithmic scale). In panels a and c, the range of solutions provided by different codes in the Tosi et al. (2015) benchmark

study are bounded by dashed red lines.

where µ? is a constant representing the effective viscosity at high stresses and σy is the yield stress. The denominator of the490

second term in Equation (36) represents the second invariant of the strain-rate tensor. The viscoplastic flow law (Eq. 34) leads

to linear viscous deformation at low stresses and plastic deformation at stresses that exceed σy , with the decrease in viscosity

limited by the choice of µ?.

21

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

Although Tosi et al. (2015) examined a number of cases, we focus on one here (Case 4: Ra0 = 102, ∆µT = 105, ∆µy = 10

and µ? = 10−3), which allows us to demonstrate how a temperature-, depth- and strain-rate dependent viscosity is incorporated495

within Firedrake. The changes required to simulate this case, relative to our base case, are displayed in Listing 3. These are:

1. Linear solver options are no longer applicable, given the dependence of of viscosity on the flow field, through the strain-

rate. Accordingly, the solver dictionary is updated to account for the nonlinear nature of our Stokes system (lines 2-11).

For the first time, we fully-exploit the SNES, using a setup based on Newton’s method ("snes_type": "newtonls")

with a secant line search over the L2-norm of the function ("snes_linesearch_type": "l2"). As we target a steady-500

state solution, an absolute tolerance is specified for our nonlinear solver ("snes_atol": 1e-10).

2. Solver options differ between the (nonlinear) Stokes and (linear) energy systems. As such, a separate solver dictionary

is specified for solution of the energy equation (lines 13-20). Consistent with our base case, we use a direct solver for

solution of the energy equation, based on the Mumps library.

3. Viscosity is calculated as a function of temperature, depth (µlin - line 29) and strain-rate (µplast - line 30), using constants505

specified on lines 25-26. Linear and nonlinear components are subsequently combined via a harmonic mean (line 31).

4. Updated solver dictionaries are incorporated into their respective solvers on lines 35 and 36, noting that for this case

both the nullspace and transpose_nullspace options are provided for the Stokes system, consistent with the base case.

We note that even though the UFL for the Stokes and energy systems remains identical to our base case, assembly of addi-

tional terms in the Jacobian, associated with the nonlinearity in this system, is once again handled automatically by Firedrake.510

To compare our results to those of Tosi et al. (2015) we have computed the RMS velocity and Nusselt number at a range of

different mesh resolutions. These are presented in Figure 4 and, once again, results converge towards the benchmark solutions,

with increasing resolution. Final steady-state temperature and viscosity fields are also illustrated to allow for straightforward

comparison with those presented by Tosi et al. (2015), illustrating that viscosity varies by roughly four orders of magnitude

across the computational domain.515

Taken together, our compressible and viscoplastic rheology results demonstrate the accuracy and applicability of Firedrake

for problems incorporating a range of different approximations to the underlying physics. They have allowed us to illustrate

Firedrake’s flexibility: by leveraging UFL and PETSc, the framework is easily extensible, allowing for straightforward appli-

cation to scenarios involving different physical approximations, even if they require distinct solution strategies.

5.3 Extension: Dimensions and Geometry520

In this section we highlight the ease at which simulations can be examined in different dimensions and geometries, by modi-

fying our basic 2-D case. We primarily simulate benchmark cases that are well-known within the geodynamical community,

initially matching the steady-state, isoviscous simulation of Busse et al. (1994) in a 3-D Cartesian domain. There is currently

no published community benchmark for simulations in the 2-D cylindrical domain. As such, we next compare results for

an isoviscous, steady-state case, in a 2-D cylindrical domain, with those of the Fluidity computational modelling framework525

22

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

(Davies et al., 2011), which has been carefully validated against the extensive set of analytical solutions introduced by Kramer

et al. (2021a), in both cylindrical and spherical geometries. Finally, we analyze an isoviscous 3-D spherical benchmark case

from Zhong et al. (2008). Once again, the changes required to run these cases are discussed relative to our base case (Section

5.1), unless noted otherwise.

5.3.1 3-D Cartesian Domain530

We first examine and validate our setup in a 3-D Cartesian domain, for a steady-state, isoviscous case – specifically Case 1a

from Busse et al. (1994). The domain is a box of dimensions 1.0079×0.6283×1. The initial temperature distribution, chosen

to produce a single ascending and descending flow, at x= y = 0 and (x= 1.0079,y = 0.6283), respectively, is prescribed as:

T (x,y,z) =
[erf(4(1− z)) + erf(−4z) + 1

2

]
+A[cos(πx/1.0079) + cos(πy/0.6283)]sin(πz), (37)

where A= 0.2 is the amplitude of the initial perturbation. Boundary conditions for temperature are T = 0 at the surface (z =535

1) and T = 1 at the base (z = 0), with insulating (homogeneous Neumann) sidewalls. No-slip velocity boundary conditions are

specified at the top surface and base of the domain, with free-slip boundary conditions on all sidewalls. The Rayleigh number

Ra= 3× 104.

In comparison to Listing 1, the changes required to simulate this case, using trilinear (Q2-Q1) elements for velocity and

pressure, are minimal. The key differences, summarised in Listing 4, are:540

1. The creation of the underlying mesh (lines 1-5), which we generate by extruding a 2-D quadrilateral mesh in the z-

direction to a layered 3-D hexahedral mesh. Our final mesh has 20× 12× 20 elements, in x-, y- and z-directions, re-

spectively. For extruded meshes, top and bottom boundaries are tagged by top and bottom, respectively, whilst boundary

markers from the base mesh can be used to set boundary conditions on the relevant side of the extruded mesh. We note

that Firedrake exploits the regularity of extruded meshes to enhance performance.545

2. Specification of the initial condition for temperature, following Equation (37), updated values for Ra, and definition of

the 3-D unit vector (lines 9-11).

3. The inclusion of Python dictionaries that define iterative solver parameters for the Stokes and energy systems (lines 15-

47). Although direct solves provide robust performance in the 2-D cases examined above, in 3-D the computational (CPU

and memory) requirements quickly become intractable. PETSc’s fieldsplit pc_type provides a class of preconditioners550

for mixed problems that allows one to apply different preconditioners to different blocks of the system. Here we configure

the Schur complement approach as described in Section 4.3.

The fieldsplit_0 entries configure solver options for the first of these blocks, the K matrix. The linear systems asso-

ciated with this matrix are solved using a combination of the Conjugate Gradient method (cg, line 23) and an algebraic

multigrid preconditioner (gamg, line 27). We also specify two options (gamg_threshold and gamg_square_graph) that555

23

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

1 # Mesh Generation:
2 a, b, c, nx, ny, nz = 1.0079, 0.6283, 1.0, 20, int(0.6283/1.0 * 20), 20
3 mesh2d = RectangleMesh(nx, ny, a, b, quadrilateral=True) # Rectangular 2D mesh
4 mesh = ExtrudedMesh(mesh2d, nz)
5 bottom_id, top_id, left_id, right_id, front_id, back_id = "bottom", "top", 1, 2, 3, 4
6
7 ---
8 # Initial condition and constants:
9 Told.interpolate(0.5*(erf((1-X[2])*4)+erf(-X[2]*4)+1) + 0.2*(cos(pi*X[0]/a)+cos(pi*X[1]/b))*sin(pi

*X[2]))
10 Ra = Constant(3e4) # Rayleigh number
11 k = Constant((0, 0, 1)) # Unit vector (in direction opposite to gravity).
12
13 ---
14 # Stokes Equation Solver Parameters:
15 stokes_solver_parameters = {
16 "mat_type": "matfree",
17 "snes_type": "ksponly",
18 "ksp_type": "preonly",
19 "pc_type": "fieldsplit",
20 "pc_fieldsplit_type": "schur",
21 "pc_fieldsplit_schur_type": "full",
22 "fieldsplit_0": {
23 "ksp_type": "cg",
24 "ksp_rtol": 1e-7,
25 "pc_type": "python",
26 "pc_python_type": "firedrake.AssembledPC",
27 "assembled_pc_type": "gamg",
28 "assembled_pc_gamg_threshold": 0.01,
29 "assembled_pc_gamg_square_graph": 100,
30 },
31 "fieldsplit_1": {
32 "ksp_type": "fgmres",
33 "ksp_rtol": 1e-6,
34 "pc_type": "python",
35 "pc_python_type": "firedrake.MassInvPC",
36 "Mp_ksp_rtol": 1e-5,
37 "Mp_ksp_type": "cg",
38 "Mp_pc_type": "sor",
39 } }
40
41 # Energy Equation Solver Parameters:
42 energy_solver_parameters = {
43 "mat_type": "aij",
44 "snes_type": "ksponly",
45 "ksp_type": "gmres",
46 "ksp_rtol": 1e-7,
47 "pc_type": "sor", }
48
49 ---
50 # Set up boundary conditions:
51 bcvfb = DirichletBC(Z.sub(0).sub(1), 0, (front_id, back_id))
52 bcvlr = DirichletBC(Z.sub(0).sub(0), 0, (left_id, right_id))
53 bcvbt = DirichletBC(Z.sub(0), 0, (bot_id,top_id))
54 bctb, bctt = DirichletBC(Q, 1.0, bot_id), DirichletBC(Q, 0.0, top_id)
55
56 ---
57 # Generating near_nullspaces for GAMG:
58 x_rotV = Function(V).interpolate(as_vector((0, X[2], -X[1])))
59 y_rotV = Function(V).interpolate(as_vector((-X[2], 0, X[0])))
60 z_rotV = Function(V).interpolate(as_vector((-X[1], X[0], 0)))
61 nns_x = Function(V).interpolate(Constant([1., 0., 0.]))
62 nns_y = Function(V).interpolate(Constant([0., 1., 0.]))
63 nns_z = Function(V).interpolate(Constant([0., 0., 1.]))
64 V_near_nullspace = VectorSpaceBasis([nns_x, nns_y, nns_z, x_rotV, y_rotV, z_rotV])
65 V_near_nullspace.orthonormalize()
66 Z_near_nullspace = MixedVectorSpaceBasis(Z, [V_near_nullspace, Z.sub(1)])
67
68 ---
69 # Updated solve setup:
70 stokes_problem = NonlinearVariationalProblem(F_stokes, z, bcs=[bcvbt, bcvfb, bcvlr])
71 stokes_solver = NonlinearVariationalSolver(stokes_problem, solver_parameters=

stokes_solver_parameters, appctx={"mu": mu}, nullspace=p_nullspace, transpose_nullspace=
p_nullspace, near_nullspace=Z_near_nullspace)

72 energy_problem = NonlinearVariationalProblem(F_energy, Tnew, bcs=[bctb, bctt])
73 energy_solver = NonlinearVariationalSolver(energy_problem, solver_parameters=

energy_solver_parameters)

Listing 4. Changes required to reproduce a 3-D Cartesian case from Busse et al. (1994) relative to Listing 1.

24

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

(a) (b)

Figure 5. Results from 3-D isoviscous simulations in Firedrake, configured to reproduce benchmark results from Case 1a of Busse et al.

(1994): (a) Nusselt number vs. number of pressure and velocity degrees of freedom (DOF), at Ra = 3× 104 , for a series of uniform,

structured meshes; (b) RMS velocity vs. number of pressure and velocity DOF. Benchmark values are denoted by dashed red lines.

control the aggregation method (coarsening strategy) in the GAMG preconditioner, which balance the multigrid effec-

tiveness (convergence rate) with coarse grid complexity (cost per iteration) (Balay et al., 2021a).

The fieldsplit_1 entries contain solver options for the Schur complement solve itself. As explained in Section 4.3 we

do not have explicit access to the Schur complement matrix, GTK−1G, but can compute its action on any vector, at the

cost of a fieldsplit_0 solve with the K matrix, which is sufficient to solve the system using a Krylov method. However,560

for preconditioning, we do need access to the values of the matrix or its approximation. For this purpose we approximate

the Schur complement matrix with a mass matrix scaled by viscosity, which is implemented in MassInvPC (line 35)

with the viscosity provided through the optional appctx argument on line 71. This is a simple example of Firedrake’s

powerful programmable preconditioner interface which, in turn, connects with the Python preconditioner interface of

PETSc (line 34). In more complex cases the user can specify their own linear operator in UFL that approximates the565

true linear operator but is easier to invert. The MassInvPC preconditioner step itself is performed through a linear solve

with the approximate matrix with options prefixed with Mp_ to specify a Conjugate Gradient solver with symmetric SOR

(SSOR) preconditioning (lines 36-38). Note that PETSc’s sor preconditioner type, specified on line 38, defaults to the

symmetric SOR variant. Since this preconditioner step now involves an iterative solve, the Krylov method used for the

Schur complement needs to be of flexible type, and we specify flexible GMRES (fgmres) on line 32.570

Specification of the matrix type matfree (line 16) for the combined system ensures that we do not explicitly assemble

its associated sparse matrix, instead computing the matrix-vector multiplications required by the Krylov iterations as

they arise. Again, for preconditioning in the K-matrix solve we need access to matrix values, which is achieved using

AssembledPC. This explicitly assembles the K-matrix by extracting relevant terms from the F_Stokes form.

25

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

Finally, the energy solve is performed through a combination of the GMRES (gmres) Krylov method and SSOR precon-575

ditioning (lines 42-47). For all iterative solves we specify a convergence criterion based on the relative reduction of the

preconditioned residual (ksp_rtol: lines 24, 33, 36 and 46).

4. Velocity boundary conditions, which must be specified along all 6 faces, are modified on lines 51-53, with temperature

boundary conditions specified on line 54.

5. Generating near-nullspace information for the GAMG preconditioner (lines 58-66), consisting of three rotational (x_rotV,580

y_rotV, z_rotV) and three translational (nns_x, nns_y, nns_z) modes, as outlined in Section 4.3. These are combined in

the mixed function space on line 66.

6. Updating of the Stokes problem (line 70) to account for additional boundary conditions, and the Stokes solver (line 71)

to include the near nullspace options defined above, in addition to the optional appctx keyword argument that passes the

viscosity through to our MassInvPC Schur complement preconditioner. Energy solver options are also updated relative to585

our base case (lines 72-73), using the dictionary created on lines 42-47.

Our model results can be validated against those of Busse et al. (1994). As with our previous examples, we compute the

Nusselt number and RMS velocity at a range of different mesh resolutions, with results presented in Figure 5. We find that

results converge towards the benchmark solutions, with increasing resolution, as expected. The final steady state temperature

field is illustrated in Figure 2(b).590

5.3.2 2-D Cylindrical Shell Domain

We next examine simulations in a 2-D cylindrical domain. The domain is defined by the radii of the inner (rmin) and outer (rmax)

boundaries. These are chosen such that the non–dimensional depth of the mantle, z = rmax−rmin = 1, and the ratio of the inner

and outer radii, f = rmin/rmax = 0.55, thus approximating the ratio between the radii of Earth’s surface and core-mantle-

boundary (CMB). Specifically, we set rmin = 1.22 and rmax = 2.22. The initial temperature distribution, chosen to produce 4595

equidistant plumes, is prescribed as:

T (x,y) = (rmax− r) +Acos(4 atan2(y,x))sin(r− rmin)π) (38)

whereA= 0.02 is the amplitude of the initial perturbation. Boundary conditions for temperature are T = 0 at the surface (rmax)

and T = 1 at the base (rmin). Free-slip velocity boundary conditions are specified on both boundaries, which we incorporate

weakly through the Nitsche approximation (see Section 4.1). The Rayleigh number Ra= 1× 105.600

With a free-slip boundary condition on both boundaries, one can add an arbitrary rotation of the form (−y,x) = rθ̂ to the

velocity solution (i.e. this case incorporates a velocity nullspace, as well as a pressure nullspace). As noted in Section 4,

these lead to null-modes (eigenvectors) for the linear system, rendering the resulting matrix singular. In preconditioned Krylov

methods these null-modes must be subtracted from the approximate solution at every iteration (Kramer et al., 2021a), which

we illustrate through this example. The key changes required to simulate this case, displayed in Listing 5, are:605

26

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

1. Mesh generation: we generate a circular manifold mesh (with 256 elements in this example) and extrude in the radial

direction, using the optional keyword argument extrusion_type, forming 64 layers (lines 2-5). To better represent the

curvature of the domain and ensure accuracy of our quadratic representation of velocity, we approximate the curved

cylindrical domain quadratically, using the optional keyword argument degree= 2 (see Section 4 for further detail).

2. The unit vector, k, points radially, in the direction opposite to gravity, as defined on line 11. The temperature field is610

initialised using Equation (38) on line 12.

3. Boundary conditions are no longer aligned with Cartesian directions. We use the Nitsche method (see Section 4.1) to

impose our free-slip boundary conditions weakly (lines 15-27). The fudge factor in the interior penalty term is set to

100 on line 16, with Nitsche-related contributions to the UFL added on lines 24-27. Note that for extruded meshes in

Firedrake, ds_tb denotes an integral over both the top and bottom surfaces of the mesh (ds_t and ds_b denote integrals615

1 # Mesh Generation:
2 rmin, rmax, ncells, nlayers = 1.22, 2.22, 256, 64
3 mesh1d = CircleManifoldMesh(ncells, radius=rmin, degree=2)
4 mesh = ExtrudedMesh(mesh1d, layers=nlayers, extrusion_type="radial")
5 bottom_id, top_id = "bottom", "top"
6
7 ---
8 # Constants, unit vector, initial condition
9 Ra = Constant(1e5)

10 r = sqrt(X[0]**2 + X[1]**2)
11 k = as_vector((X[0], X[1])) / r
12 Told.interpolate(rmax-r + 0.02*cos(4.*atan_2(X[1],X[0]))*sin((r-rmin)*pi))
13
14 ---
15 # UFL for Stokes equations incorporating Nitsche:
16 C_ip = Constant(100.0) # Fudge factor for interior penalty term used in weak imposition of BCs
17 p_ip = 2 # Maximum polynomial degree of the _gradient_ of velocity
18
19 # Stokes equations in UFL form:
20 stress = 2 * mu * sym(grad(u))
21 F_stokes = inner(grad(v), stress) * dx + dot(v, grad(p)) * dx - (dot(v, k) * Ra * Ttheta) * dx
22 F_stokes += dot(grad(w), u) * dx # Continuity equation
23
24 # nitsche free-slip BCs
25 F_stokes += -dot(v, n) * dot(dot(n, stress), n) * ds_tb
26 F_stokes += -dot(u, n) * dot(dot(n, 2 * mu * sym(grad(v))), n) * ds_tb
27 F_stokes += C_ip * mu * (p_ip + 1)**2 * FacetArea(mesh) / CellVolume(mesh) * dot(u, n) * dot(v, n)

* ds_tb
28
29 ---
30 # Nullspaces and near-nullspaces:
31 x_rotV = Function(V).interpolate(as_vector((-X[1], X[0])))
32 V_nullspace = VectorSpaceBasis([x_rotV])
33 V_nullspace.orthonormalize()
34 p_nullspace = VectorSpaceBasis(constant=True) # Constant nullspace for pressure n
35 Z_nullspace = MixedVectorSpaceBasis(Z, [V_nullspace, p_nullspace]) # Setting mixed nullspace
36
37 # Generating near_nullspaces for GAMG:
38 nns_x = Function(V).interpolate(Constant([1., 0.]))
39 nns_y = Function(V).interpolate(Constant([0., 1.]))
40 V_near_nullspace = VectorSpaceBasis([nns_x, nns_y, x_rotV])
41 V_near_nullspace.orthonormalize()
42 Z_near_nullspace = MixedVectorSpaceBasis(Z, [V_near_nullspace, Z.sub(1)])
43
44 ---
45 # Updated solve calls:
46 stokes_problem = NonlinearVariationalProblem(F_stokes, z) # velocity BC’s handled through Nitsche
47 stokes_solver = NonlinearVariationalSolver(stokes_problem, solver_parameters=

stokes_solver_parameters, appctx={"mu": mu}, nullspace=Z_nullspace, transpose_nullspace=
Z_nullspace, near_nullspace=Z_near_nullspace)

Listing 5. Difference in Firedrake code required to reproduce isoviscous case in a 2-D cylindrical domain.

27

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

0.0 1.0
Temperature

(d)

(b)
(c)

(b)

(a)

Figure 6. (a)/(b) Nusselt number/RMS velocity vs. number of pressure and velocity DOF, at Ra = 1×105, for a series of uniform, structured

meshes in a 2-D cylindrical domain. High-resolution, adaptive mesh, results from the Fluidity computational modelling framework are

delineated by dashed red lines; (c) final steady-state temperature field, with contours spanning temperatures of 0 to 1, at intervals of 0.05.

over the top or bottom surface of the mesh, respectively). FacetArea and CellVolume return, respectively, Af and Vcf

required by Equation 17. Given that velocity boundary conditions are handled weakly through UFL, they are no longer

passed to the Stokes problem as a separate option (line 46).

4. We define the rotational nullspace for velocity and combine this with the pressure nullspace in the mixed finite element

space Z (lines 30-35). Constant and rotational near-nullspaces, utilised by our GAMG preconditioner, are also defined620

on lines 37-42, with this information passed to the solver on line 47. Note that iterative solver parameters identical to

those presented in the previous example are used (see Section 5.3.1).

Our predicted Nusselt numbers converge towards those of Fluidity with increasing resolution (Figure 6), demonstrating the

accuracy of our approach. Predicted RMS velocities exceed those of Fluidity, albeit only by ∼ 0.1%, but lie within the bounds

set by other codes for this case (Wilson, Pers. Comm., using TerraFERMA: Wilson et al., 2017). To further assess the validity625

of our setup, we have confirmed the accuracy of our solutions to the Stokes system in this 2-D cylindrical geometry, through

comparisons with analytical solutions from Kramer et al. (2021a), for both zero-slip and free-slip boundary conditions. These

provide a suite of solutions based upon a smooth forcing term, at a range of wave-numbers n, with radial dependence formed

by a polynomial of arbitrary order k. We study the convergence of our Q2-Q1 discretisation with respect to these solutions.

28

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

Free-Slipk=2 k=4

Zero-Slipk=2 k=4
(a)

(c)

(b)

(d)

(f)(e)

(g) (h)

Figure 7. Convergence for 2-D cylindrical cases with zero-slip (a-d) and free-slip (e-h) boundary conditions, driven by smooth forcing at

a series of different wave-numbers, n, and different polynomial orders of the radial dependence, k, as indicated in the legend (see Kramer

et al., 2021a, for further details). Convergence rate is indicated by dashed lines, with the order of convergence provided in the legend. For

the cases plotted, the series of meshes start at refinement level 1, where the mesh consists of 1024 divisions in the tangential direction and 64

radial layers. At each subsequent level the mesh is refined by doubling resolution in both directions.

29

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

1 # Mesh Generation:
2 rmin, rmax, ref_level, nlayers = 1.22, 2.22, 4, 16
3 mesh2d = CubedSphereMesh(rmin, refinement_level=ref_level, degree=2)
4 mesh = ExtrudedMesh(mesh2d, layers=nlayers, extrusion_type=’radial’)
5
6 ---
7 # Nullspaces and near-nullspaces:
8 x_rotV = Function(V).interpolate(as_vector((0, X[2], -X[1])))
9 y_rotV = Function(V).interpolate(as_vector((-X[2], 0, X[0])))

10 z_rotV = Function(V).interpolate(as_vector((-X[1], X[0], 0)))
11 V_nullspace = VectorSpaceBasis([x_rotV, y_rotV, z_rotV])
12 V_nullspace.orthonormalize()
13 p_nullspace = VectorSpaceBasis(constant=True) # Constant nullspace for pressure
14 Z_nullspace = MixedVectorSpaceBasis(Z, [V_nullspace, p_nullspace]) # Setting mixed nullspace
15
16 nns_x = Function(V).interpolate(Constant([1., 0., 0.]))
17 nns_y = Function(V).interpolate(Constant([0., 1., 0.]))
18 nns_z = Function(V).interpolate(Constant([0., 0., 1.]))
19 V_near_nullspace = VectorSpaceBasis([nns_x, nns_y, nns_z, x_rotV, y_rotV, z_rotV])
20 V_near_nullspace.orthonormalize()
21 Z_near_nullspace = MixedVectorSpaceBasis(Z, [V_near_nullspace, Z.sub(1)])

Listing 6. Difference in Firedrake code required to reproduce 3-D spherical benchmark cases from Zhong et al. (2008).

Convergence plots are illustrated in Figure 7. We observe super-convergence for the Q2-Q1 element pair at fourth- and second-630

order, for velocity and pressure, respectively, with both zero-slip and free-slip boundary conditions, which is higher than the

theoretical (minimum) expected order of convergence of three for velocity and two for pressure (we note that super-convergence

was also observed in Zhong et al., 2008; Kramer et al., 2021a). Cases with lower wave-number, n, show smaller relative error

than those at higher n, as expected. The same observation holds for lower and higher polynomial order, k = 2 and k = 4, for

the radial density profile. Python scripts for these analytical comparisons can be found in the repository accompanying this635

paper.

5.3.3 3-D Spherical Shell Domain

We next move into a 3-D spherical shell geometry, which is required to simulate global mantle convection. We examine a well-

known isoviscous community benchmark case (e.g. Bercovici et al., 1989; Ratcliff et al., 1996; Zhong et al., 2008; Davies et al.,

2013), at a Rayleigh number of Ra= 7× 103, with free-slip velocity boundary conditions. Temperature boundary conditions640

are set to 1 at the base of the domain (rmin = 1.22) and 0 at the surface (rmax = 2.22), with the initial temperature distribution

approximating a conductive profile with superimposed perturbations triggering tetrahedral symmetry at spherical harmonic

degree l = 3 and order m= 2 (see Zhong et al., 2008, for further details).

As illustrated in Listing 6, when compared to the 2-D cylindrical case examined in Section 5.3.2, the most notable change

required to simulate this 3-D case is the generation of the underlying mesh. We use Firedrake’s built-in CubedSphereMesh and645

extrude it radially through 16 layers, forming hexahedral elements. As with our cylindrical example, we approximate the curved

cylindrical domain quadratically, using the optional keyword argument degree= 2. Further required changes, highlighted in

Listing 6, relate to 3-D extensions of the velocity nullspace, and the near-nullspaces required by the GAMG preconditioner, all

of which are simple. We do not show the changes associated with extending the radial unit vector to 3-D, or the initial condition

for temperature, given that they are straightforward, although, as with all examples, a complete Python script for this case can650

be found in the repository accompanying this paper.

30

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

(c)

(b)

(a)

(f)

(e)

(d)

Figure 8. (a)/(b) Nusselt number/RMS velocity vs. number of pressure and velocity DOF, designed to match an isoviscous 3-D spherical

benchmark case at Ra = 7×103, for a series of uniform, structured meshes. The range of solutions predicted in previous studies are bounded

by dashed red lines (Bercovici et al., 1989; Ratcliff et al., 1996; Yoshida and Kageyama, 2004; Stemmer et al., 2006; Choblet et al., 2007;

Tackley, 2008; Zhong et al., 2008; Davies et al., 2013); (c) final steady-state temperature field highlighted through isosurfaces at temperature

anomalies (i.e. away from radial average) of T =−0.15 (blue) and T = 0.15 (orange), with the core-mantle-boundary at the base of the

spherical shell marked by a red surface; (d-f) as in a-c, but for a temperature-dependent-viscosity case, with thermally induced viscosity

contrasts of 102. Fewer codes have published predictions for this case, but results of Zhong et al. (2008) are marked by dashed red lines.

31

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

Free-SlipZero-Slip
(a)

(c)

(b)

(d)

Figure 9. Convergence of velocity and pressure for 3-D spherical cases with zero-slip and free-slip boundary conditions, for perturbations

at a range of spherical harmonic degrees l and orders m. Note that all cases with a smooth forcing are run at k = l +1. Refinement level 3

corresponds to the level specified for our cubed sphere mesh, comprising 386 elements in the tangential direction, which is extruded radially

to 8 layers. Resolution is doubled in all directions at subsequent refinement levels.

Despite the simplicity of our setup, the accuracy of our approach is confirmed via comparison of both Nusselt numbers

and RMS velocities with those of previous studies (e.g. Bercovici et al., 1989; Ratcliff et al., 1996; Yoshida and Kageyama,

2004; Stemmer et al., 2006; Choblet et al., 2007; Tackley, 2008; Zhong et al., 2008; Davies et al., 2013). For completeness,

the final steady-state temperature field is illustrated in Figure 8(c). Furthermore, in line with our 2-D cases, we have confirmed655

the accuracy of our Stokes solver for both zero-slip and free-slip boundary conditions in a 3-D spherical geometry, through

comparisons with analytical solutions from Kramer et al. (2021a), which provide solutions based upon a smooth forcing term

at a range of spherical harmonic degrees, l, and orders, m, with radial dependence formed by a polynomial of arbitrary order

k. As with our 2-D cases, we observe super-convergence for the Q2-Q1 element pair at fourth- and second-order, for velocity

and pressure, respectively, with both zero-slip and free-slip boundary conditions (Figure 9).660

This section has allowed us to highlight a number of Firedrake’s benefits over other codes: (i) the ease at which simulations

can be examined in different geometries, with minimal changes to the Python code, facilitated by Firedrake’s built-in mesh

32

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

generation utilities and extrusion functionality; (ii) the ease at which iterative solver configurations and preconditioners can

be updated and tested, including scenarios incorporating multiple nullspaces, facilitated by Firedrake’s fully-programmable

solver interface, alongside its customisable preconditioner interface, both of which are seamlessly coupled to PETSc; and (iii)665

the convergence properties of our finite element system, in geometries that are representative of Earth’s mantle. Taken together,

these confirm Firedrake’s suitability for simulations of global mantle dynamics, as will be further highlighted in Section 7.

6 Parallel Scaling

We assess parallel scalability using a 3-D spherical case similar to that presented in Section 5.3.3, albeit incorporating a

temperature-dependent viscosity, following the relation:670

µ= exp[E(0.5−T)], (39)

where E is a parameter that controls the temperature dependence of viscosity. In the example considered — Case A4 from

Zhong et al. (2008) — we set E = ln(100), leading to thermally induced viscosity contrasts of 102 across the computational

domain. For completeness, our steady-state results, highlighting the consistency of our results for this case with the predictions

of Zhong et al. (2008), are displayed in Figure 8, although for the purposes of parallel scaling analyses, we run simulations for675

20 time-steps only.

We focus on weak scaling, where the problem size and the number of processing cores are simultaneously increased. Cases

are examined on 24, 192, 1536 and 12288 cores, maintaining 4096 elements per core and ensuring a constant element aspect

ratio across all resolutions examined. Simulations were examined on the Gadi supercomputer at the National Computational

Infrastructure (NCI) in Australia, using compute nodes with 2× 24 core Intel Xeon Platinum 8274 (Cascade Lake) 3.2 GHz680

CPUs, and 192 GB RAM, per node. Linking the nodes is the latest generation HDR InfiniBand technology in a Dragonfly+

topology, capable of transferring data at up to 200 Gb/s.

The most challenging aspect of weak parallel scaling is solver performance as the problem size increases. Whilst the amount

of computation in equation assembly typically scales linearly with the number of DOFs – before taking parallel aspects such

as communication into account – solver scaling is generally worse. In the case of iterative solvers, this is due to a deterioration685

in the conditioning of the matrix, driving an increase in the number of iterations required for convergence. As a result, even if

the cost per iteration scales linearly, the overall cost will not. This implies that for weak scaling, the amount of work per core

may increase rapidly, despite the number of DOFs per core remaining consistent.

The deterioration in conditioning is intimately related to the fact that an increase in resolution increases the ratio between

smallest and largest resolvable length-scales. For elliptic operators, like the viscosity matrix K, the condition number scales690

with the square of that ratio (e.g. Kramer et al., 2010). Multigrid approaches, which separate smaller and larger length scales on

a hierarchy of fine to coarse meshes, are commonly used to address this problem, which motivates the choice of the algebraic

multigrid preconditioner, GAMG, used here. Such approaches aim to maintain a constant, or only slowly increasing number of

iterations and, thus, a near-linear scaling of the overall cost, as the problem size increases. This can be a challenge however as,

33

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

(a)

(c)

(b)

(d)

(e) (f)

Figure 10. Weak scaling analyses for a 20 time-step, temperature-dependent viscosity, spherical shell simulation with free-slip boundary

conditions: (a) mean number of iterations per time-step, for energy (blue), pressure (red) and velocity (green) solves, respectively; (b) time

spent in assembly of finite element systems; (c) time spent setting up algebraic multgird preconditioner; (d) time spent solving the Schur

complement (Stokes) system; (e) cost per velocity solve iterations; (f) total simulation time, which closely mimics the Schur complement

time.

for instance, an increase in resolution will require more multigrid levels, which will lead to an increased setup time and cost695

per iteration. In practice, when configuring the multigrid method, a compromise needs to be found between the effectiveness

of multigrid in limiting the number of iterations, and not allowing the setup and costs per iteration to grow too rapidly. The

34

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

two options, gamg_threshold and gamg_square_graph, specified in our solver setup, ensure a balance between multigrid

effectiveness an coarse grid complexity.

A breakdown of key parallel scaling results are presented in Figure 10. Panel a displays the average number of iterations per700

solve over the 20 timesteps. We find that the number of pressure (the Schur complement solve: fieldsplit_1) and energy solve

iterations remains flat (12 and ∼ 10.5, respectively), whilst the number of velocity solve iterations (inversion of the matrix K,

using the GAMG preconditioner: fieldsplit_0) increases only slowly, from∼ 41 to∼ 51, over a greater than three-orders-of-

magnitude increase in problem size and number of processor cores. This demonstrates algorithmic scalability on up to 12288

cores and ∼ 50× 106 elements (which corresponds to ∼ 1.25× 109 velocity and pressure degrees of freedom).705

Parallel scalability can also be assessed by analysing the growth in CPU-time of the dominant components of our problem:

assembly of finite element systems (Figure 10b), setup of the algebraic multigrid (GAMG) preconditioner (Figure 10c), and

time spent solving the Schur complement system (Figure 10d). We find that the assembly time is a negligible fraction of

this problem. The setup time for our GAMG preconditioner grows from ∼ 240s on 24 cores to ∼ 470s on 12288 cores. This

is understandable, given the large communication costs associated with setting up various multigrid levels, particularly for710

problems incorporating nullspaces and near-nullspaces, as is the case here. We note, however, that this is not a concern: as a

fraction of the entire solution time for the Schur complement solve (Figure 10d), GAMG setup remains small. We do observe

an increase in time required for solution of the Schur Complement (Stokes solve), from ∼ 6500s on 24 cores to ∼ 12100s on

12288 cores. This results primarily from the minor increase in the number of velocity solve iterations and the increased cost per

iteration (Figure 10e), which rises from 155s on 24 cores to 225s on 12288 cores, reflecting costs associated with increasing715

the number of multigrid levels for higher-resolution problems. The total time spent in running this problem mirrors the time

spent in solving the Schur complement system (Figure 10f), indicating where future optimisation efforts should be directed.

We note that the change in gradient, apparent in panels b-f when moving from 24-192 and 192-12288 cores arises due to a

transition from running simulations on a single compute node to multiple nodes.

7 Realistic Application in 3-D spherical geometry: Global Mantle Convection720

In this section, we demonstrate application of Firedrake to a time-dependent simulation of global mantle convection in a 3-

D spherical shell geometry, at a realistic Rayleigh number. As with the examples provided above, calculations are performed

using a hexahedral trilinear Q2-Q1 element pair for velocity and pressure. We use a Q2 discretisation for temperature and, given

the increased importance of advection at higher Rayleigh numbers, incorporate stabilisation through a streamline upwinding

scheme, following Donea and Huerta (2003). Our solution strategy for the Stokes and energy equations is otherwise identical725

to the spherical examples presented above.

For simplicity, we assume an incompressible mantle and a linear temperature- and depth-dependent rheology, following the

relation,

µ= µ0exp[E(0.5−T)] . (40)

35

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

(b)(a)

∆T

-0.3

0.3

0.0

0.1

0.2

-0.1

-0.2

Figure 11. Present-day thermal structure, predicted from our global mantle convection simulation where the geographic distribution of

heterogeneity is dictated by 230 Myr of imposed plate motion history (Muller et al., 2016). Each image includes a radial surface at r = 1.25

(i.e. immediately above the core-mantle boundary), a cross-section, and transparent isosurfaces at temperature anomalies (i.e. away from

the radial average) of T =−0.15 (blue) and T = 0.15 (red), highlighting the location of downwelling slabs and upwelling mantle plumes

(below r = 2.19), respectively. Continental boundaries provide geographic reference. Panel a provides an Africa-centered view, with panel

b centered on the Pacific Ocean, and including glyphs at the surface highlighting the imposed plate velocities.

Here µ0 is a reference viscosity that increases by a factor of 40 below the mantle transition zone, and E = ln(1000) controls730

the sensitivity of viscosity to temperature. We specify a reference (basally heated) Rayleigh number of 2× 107, which is

comparable to estimates of Earth’s mantle (e.g. Davies, 1999), and also include internal heating at a non-dimensional heating

rate of 10. The simulation is spun-up with free-slip and isothermal (T = 0 at base; T = 1 at top) boundaries at both surfaces.

After the model reaches a quasi-steady state (i.e. when the surface and basal Nusselt numbers both change by less than 0.1%

over 10 consecutive time-steps), surface velocities are assimilated through a kinematic boundary condition, according to 230735

Myr of plate motion histories (Muller et al., 2016), using the Python interface to GPlates (e.g. Gurnis et al., 2012; Muller et al.,

2018). Our simulation then runs forward towards the present-day. This case is therefore analogous to the simulations examined

when addressing questions from the very frontiers of geodynamical research (e.g. Schuberth et al., 2009; Davies and Davies,

2009; Davies et al., 2012; Bower et al., 2013; Hassan et al., 2015; Nerlich et al., 2016; Rubey et al., 2017; Koelemeijer et al.,

2018; Ghelichkhan et al., 2018).740

Our results are illustrated in Figure 11. We find that the present-day upper mantle convective planform is dominated by

strong downwellings in regions of plate convergence. In the mid-mantle, cold downwellings are prominent beneath North

America and South-East Asia, whilst remnants of older subduction are visible above the core-mantle-boundary. The location

36

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

of hot upwelling material is strongly modulated by these downwellings, with upwelling plumes concentrating in two clusters

beneath the African continent and the central Pacific ocean (i.e. away from regions that have experienced subduction over the745

past 150 Myr or so). The cluster of plumes in the Pacific is reasonably circular, whilst those beneath Africa extend in a NW-SE

trending structure, which to the north curves eastward under Europe and to the south extends into the Indian Ocean.

Further analysis of this proof-of-concept simulation is beyond the scope of this study. However, when combined with the

benchmark and parallel scaling analyses presented-above, our model predictions, which are consistent with those from a num-

ber of previous studies (e.g. Bunge et al., 2002; Davies et al., 2012; Bower et al., 2013; Davies et al., 2015a), confirm Firedrake’s750

applicability for realistic, time-dependent, global mantle dynamics simulations of this nature.

8 Discussion

Firedrake is a next-generation automated system for solving variational problems using the finite element method (e.g. Rathge-

ber et al., 2016; Gibson et al., 2019). It has a number of features that are ideally suited to simulating geophysical fluid dynamics

problems, as exemplified by its use in application areas such as coastal ocean modelling (Kärnä et al., 2018), numerical weather755

prediction (Shipton et al., 2018), and glacier flow modelling (Shapero et al., 2021). The focus of this manuscript has been to

demonstrate Firedrake’s applicability for geodynamical simulation, with an emphasis on global mantle dynamics. To do so, we

presented, analysed and validated Firedrake against a number of benchmark and analytical cases, of systematically increasing

complexity, building towards a realistic time-dependent global simulation.

In order to introduce the core components and illustrate the elegance of setting up and validating a geodynamical model in760

Firedrake, we started with a simple, incompressible, isoviscous case in an enclosed 2-D Cartesian box. Setting up this problem

was straightforward, requiring only a weak formulation of the governing equations for specification in UFL, together with

a mesh, initial and boundary conditions, and appropriate discrete function spaces. By utilising Firedrake’s built-in meshing

functionality and default direct solver options, we were able to demonstrate the framework’s accuracy for simulations of this

nature: in less than 70 lines of Python, we reproduced results from the well-established benchmark study of Blankenbach et al.765

(1989),

Representative simulations of mantle and lithosphere dynamics, however, incorporate more complicated physics. To demon-

strate Firedrake’s applicability in such scenarios, we next set up 2-D simulations that accounted for compressibility, through

the Anelastic Liquid Approximation (Schubert et al., 2001), and a nonlinear viscosity that depends upon temperature, depth

and strain-rate. Our results were validated through comparison with the benchmark studies of King et al. (2009) and Tosi et al.770

(2015), respectively. For compressible cases, despite the governing equations differing appreciably from their incompressible

counterparts, the modifications required to our setup were minimal, with the most notable change being the UFL describing the

relevant PDEs. For the viscoplastic rheology case, where viscosity varied by several orders of magnitude across the domain,

an appropriate solution strategy was required to deal with nonlinear coupling between strain-rate and viscosity: Firedrake’s

fully-programmable solver interface and seamless coupling to PETSc facilitated the straightforward use of PETSc’s Scalable775

Nonlinear Equation Solvers (SNES) (Kirby and Mitchell, 2018). Taken together, these examples highlight one of Firedrake’s

37

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

key benefits: by leveraging UFL (Alnes et al., 2014), associated strategies for automatic assembly of finite element systems, and

PETSc (Balay et al., 1997, 2021a, b), the framework is easily extensible, allowing for straightforward application to problems

involving different physical approximations, even when they require distinct solution strategies.

This is further highlighted with the transition from 2-D to 3-D. With modifications to only a few lines of Python, the basic 2-D780

Cartesian case described above was easily extended to 3-D, allowing for comparison and validation against the well-established

benchmark results of Busse et al. (1994). However, the direct solvers used for our 2-D cases quickly become computationally

intractable in 3-D, necessitating the use of an iterative approach. Firedrake’s programmable solver interface facilitates the

straightforward inclusion of Python dictionaries that define iterative solver parameters for the Stokes and energy systems. A

number of different schemes have been advocated by the geodynamical modelling community (e.g. May and Moresi, 2008;785

Burstedde et al., 2013), but in all 3-D simulations examined herein, the Schur complement approach was utilised for solution

of our Stokes system, exploiting the fieldsplit preconditioner type to apply preconditioners, including algebraic multigrid, to

different blocks of the system. A Crank-Nicholson scheme was utilised for temporal discretisation of the energy equation, with

a standard GMRES Krylov method with SOR preconditioning used for solution. We have demonstrated that such solution

strategies are effective and scalable, with algorithmic scalability confirmed on up to 12288 cores.790

Cartesian simulations offer a means to better understand the physical mechanisms controlling mantle convection, but a 3-D

spherical shell geometry is required to simulate global mantle dynamics. We have demonstrated how Firedrake’s built-in mesh-

ing and extrusion functionality facilitates the effortless transition to such geometries (in addition to comparable 2-D cylindrical

shell geometries), whilst its Python user-interface allows for the simple inclusion of a radial gravity direction and boundary

conditions that are not aligned with Cartesian directions. The convergence properties and accuracy of our simulations in a 3-D795

spherical geometry have been demonstrated through comparison with the extensive set of analytical solutions introduced by

Kramer et al. (2021a) and a series of low Rayleigh number isoviscous and temperature-dependent viscosity simulations, from

Zhong et al. (2008). We observed super-convergence for the Q2-Q1 element pair at fourth- and second-order, for velocity and

pressure, respectively.

Having validated Firedrake against this broad suite of cases, we finally applied the framework to a realistic simulation of800

global mantle convection. For simplicity, we assumed an incompressible mantle and a linear temperature- and depth-dependent

rheology, assimilating 230 Myr of plate motion histories (Muller et al., 2016) through a kinematic surface boundary condition.

These prescribed plate velocities organize underlying mantle flow, such that the predicted present-day convective planform

is dominated by cold downwellings in regions of plate convergence, with upwellings concentrating elsewhere, particularly

beneath the African and Pacific domains. Our model predictions, which reproduce first-order characteristics of the structure of805

Earth’s mantle imaged through seismology (e.g. Ritsema et al.; French and Romanowicz, 2015), the geographical distribution

of mantle plumes (e.g. Austermann et al., 2014; Davies et al., 2015b), and are consistent with those from a number of previous

studies and the (e.g. Bunge et al., 2002; Davies et al., 2012; Bower et al., 2013; Davies et al., 2015a), serve as a proof-of-

concept, confirming Firedrake’s applicability for realistic, time-dependent, global simulations of this nature and, accordingly,

its suitability for addressing research problems from the very frontiers of geodynamical research.810

38

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

Despite this, several components of Firedrake have not been fully examined in this paper. Many of these will likely be useful

for geodynamical simulation and, accordingly, will be examined in the future. These include:

1. A range of finite elements: in all examples considered herein, we utilised a continuous Q2-Q1 element pair for velocity

and pressure with a Q2 discretisation for temperature (with the exception of one set of examples in Section 5.1, where we

demonstrated the use of a Q1 temperature discretisation). Accordingly, we have not demonstrated Firedrake’s support for815

a wide-range of finite elements, including continuous, discontinuous, H(div) and H(curl) discretisations, and elements

with continuous derivatives such as the Argyris and Bell elements (see Kirby and Mitchell, 2019, for an overview). Some

of these could offer major advantages for geodynamical simulation. For example, a number of studies now advocate

the use of Discontinuous Galerkin (DG) schemes for solution of the energy equation (e.g. Vynnytska et al., 2013; He

et al., 2017). Importantly, Firedrake’s simple API allows a user to escape the UFL abstraction, and implement common820

operations that fall outside of pure variational formulations, such as flux limiters, which are central to DG schemes.

Firedrake also provides the necessary infrastructure for hybridisation strategies (Gibson et al., 2019), which allow for

a reduction of the many extra degrees of freedom introduced by DG schemes in the global system to a smaller subset,

defined on element interfaces through so-called trace elements. This offers the prospect of arriving at more efficient ways

of solving the Stokes system (e.g. Cockburn and Shi, 2014). Such possibilities will be explored in future work, noting825

that Firedrake’s existing support for these elements will facilitate rapid and efficient testing and validation.

2. Fully coupled nonlinear systems: in all examples considered herein, we solve for velocity and pressure in a separate step

to temperature, largely owing to our familiarity with this approach from previous work (e.g. Davies et al., 2011; Kramer

et al., 2021a). However, a number of studies advocate solving for these fields simultaneously (e.g. Wilson et al., 2017),

particularly for strongly coupled, highly-nonlinear, multi-physics problems. By leveraging UFL, in combination with830

PETSc’s fieldsplit preconditioning approach, future work to configure and test such coupled schemes within Firedrake

will be relatively straightforward.

3. Preconditioners: a major benefit of Firedrake for the problems considered herein is access to the wide variety of solution

algorithms and preconditioning strategies provided by the PETSc library, which can be flexibly configured through

the solver parameters dictionary, allowing one to test and apply different strategies with ease. The development of835

preconditioners for the Stokes problem is an active area of research (e.g. May and Moresi, 2008; Burstedde et al., 2013;

Shih et al., 2021). As noted above, Firedrake supports a powerful programmable preconditioner interface which, in

turn, connects with the Python preconditioner interface of PETSc, and allows users to specify their own linear operator

in UFL, thus enabling preconditioning techniques with bespoke operator approximations. We note that in addition to

the complete range of algebraic solvers offered by PETSc, Firedrake also provides access to multilevel solvers with840

geometric hierarchies, opening up the possibility of exploring geometric multigrid approaches in the future.

We note that the automated approach underpinning Firedrake has the potential to revolutionize the use of adjoints and other

inverse schemes in geodynamics. Adjoint models have made an enormous impact in fields such as meteorology and oceanog-

raphy. However, despite significant progress (e.g. Bunge et al., 2003; Liu et al., 2008; Li et al., 2017; Colli et al., 2018;

39

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

Ghelichkhan and Bunge, 2018; Ghelichkhan et al., 2020), their use in other scientific fields, including geodynamics, has been845

hampered by the practical difficulty of their derivation and implementation. In contrast to developing a model directly in For-

tran or C++, high-level systems, such as Firedrake, allow the developer to express the variational problems to be solved in

near-mathematical notation through UFL. As such, these systems have a key advantage: since the mathematical structure of

the problem is preserved, they are more amenable to automated analysis and manipulation, which can be exploited to automate

the derivation of adjoints (e.g. Farrell et al., 2013; Mitush et al., 2019) and the generation of the low-level code for the derived850

models. Exploring the use of such an approach in geodynamics will be an important avenue for future research.

Finally, given that the importance of reproducibility in the computational geosciences is increasingly being recognized, we

note that Firedrake integrates with Zenodo and GitHub to provide users with the ability to generate a set of DOIs corresponding

to the exact set of Firedrake components used to conduct a particular set of simulations. In providing our input scripts and a

DOI for the version of Firedrake used herein, we ensure traceable provenance of model data, in full compliance with FAIR855

(Findable, Accessible, Interoperable, Reusable) principles.

9 Conclusions

Firedrake is a next-generation system for solving variational problems using the finite element method (e.g. Rathgeber et al.,

2016; Gibson et al., 2019). It treats finite element problems as a composition of several abstract processes, using separate and

open-source software components for each. Firedrake’s overarching goal is to save users from manually writing low-level code860

for assembling the systems of equations that discretize their model physics. It is written completely in Python, and exploits

automatic code-generation techniques to apply sophisticated performance optimisations.

In this manuscript, we have confirmed Firedrake’s applicability for geodynamical simulation, by configuring and validating

model predictions against a series of benchmark and analytical cases, of systematically increasing complexity. In all cases,

Firedrake has been shown to be accurate and efficient, and we have also demonstrated that that it is flexible and easily exten-865

sible: by leveraging UFL and PETSc, it can be effortlessly applied to problems involving different physical approximations

(e.g. incompressible and compressible flow; isoviscous and more complex nonlinear rheologies), even if they require distinct

solution strategies. We have illustrated how Firedrake’s built-in mesh generation utilities and extrusion functionality provide

a straightforward mechanism for examining problems in different geometries (2-D and 3-D Cartesian, 2-D cylindrical and

3-D spherical), and how its fully-programmable solver dictionary and customisable preconditioner interface, both of which870

are seamlessly coupled to PETSc, facilitate straightforward configuration of different solution approaches. Parallel scalability

has been demonstrated, on up to 12288 compute cores. Finally, using a realistic simulation of global mantle dynamics, where

the distribution of heterogeneity is governed by imposed plate motion histories (Muller et al., 2016), we have confirmed Fire-

drake’s suitability for tackling challenges from the very forefront of geodynamical research. We note that all simulation data

presented herein has traceable provenance: in providing our input scripts and a DOI for the exact set of Firedrake components875

employed, Firedrake facilitates transparency and reproducibility, in full compliance with FAIR principles.

40

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

Code and data availability. Minor adjustments to the Firedrake code base required to successfully run the cases in this paper have been

merged into the open-source software associated with the Firedrake Project: https://www.firedrakeproject.org/. For the specific components of

the Firedrake project used in this paper, see https://zenodo.org/record/5599102. For the input files of all examples and benchmarks presented,

see https://zenodo.org/record/5644392#.YYNqGL1BxR4.880

Appendix A: Governing Equations under the Anelastic Liquid Approximation

Density changes across Earth’s mantle result primarily from hydrostatic compression, with density increasing by ≈ 65% from

surface to core-mantle-boundary (CMB) (e.g. Schubert et al., 2001). Variations in density associated with local temperature

and pressure perturbations are small in comparison to the spherically averaged density. For a chemically homogeneous mantle,

it is therefore appropriate to assume a linearized equation of state, of the form:885

ρ = ρ̄(T̄, p̄) + ρ′,

= ρ̄(T̄, p̄) + ρ̄(χ̄
T
p′− ᾱT ′). (A1)

Here ρ, p, T , χ
T

and α denote density, pressure, temperature, isothermal compressibility and the coefficient of thermal expan-

sion, respectively, whilst overbars refer to a reference state and primes to departures from it:

T = T̄ +T ′, p= p̄+ p′. (A2)890

It is convenient to take the reference state as motionless and steady. Accordingly, for the purposes of the compressible case

examined herein, we will assume that the reference state varies as a function of depth, z, only. The reference state pressure thus

satisfies the hydrostatic approximation:

∂p̄

∂z
= ρ̄̄g · k̂, (A3)

where g is the acceleration of gravity and k̂ is the unit vector in the direction opposite to gravity. On Earth, g is a function895

of position, however, for simplicity, it will be assumed constant for the compressible case examined herein. Following King

et al. (2009), the reference density and reference temperature are described through an adiabatic Adams–Williamson equation

of state (Birch, 1952), where:

ρ̄(z) = ρ0 exp
(α0g0

γ0cp0
z
)

(A4)

and:900

T̄ (z) = Ts exp
(α0g0

cp0
z
)
. (A5)

Here, cp and Ts represent the specific heat capacity at constant pressure and surface temperature, respectively, whilst γ0 denotes

the Grüneisen parameter, given by:

γ0 =
α0

ρ0cv0χT0

, (A6)

41

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

where cv denotes the specific heat capacity at constant volume. Variables with a sub-script 0 are constants, used in defining the905

reference state. Here, they are defined at the domain’s upper surface.

Assuming a linearised equation of state (Eq. A1), the dimensionless form of the conservation of mass equation under the

Anelastic Liquid Approximation (ALA) can be expressed as (e.g., Schubert et al., 2001):

∇ · (ρ̄u) = 0, (A7)

where u is the velocity. Neglecting inertial terms, the force balance equation becomes:910

∇ ·
[
µ

(
∇u +∇uT − 2

3
∇ ·uI

)]
−∇p′−Raρ̄k̂ᾱT ′− Di

γ0

cp0
cv0

ρ̄k̂χ̄
T
p′ = 0, (A8)

where µ denotes the dynamic viscosity, I the identity tensor, Ra the Rayleigh number, and Di the dissipation number given

by, respectively:

Ra=
ρ0α0∆Tg0d

3

µ0κ0
; Di=

α0g0d

cp0
, (A9)

with κ denoting the thermal diffusivity, d the length scale and ∆T the temperature scale. Note that the final term in Eq. A8 is915

expressed in terms of the temperature perturbation, T ′ (sometimes called the potential temperature). Finally, in the absence of

internal heating, conservation of energy is expressed as:

ρ̄c̄p

(
∂T ′

∂t
+u · ∇T ′

)
−∇ ·

[
k̄∇(T̄ +T ′)

]
+Diᾱρ̄̄g ·uT ′− Di

Ra
Φ = 0, (A10)

where k is the thermal conductivity and Φ denotes viscous dissipation.

Author contributions. DRD and SCK conceived this study, with all authors having significant input on the design, development and validation920

of the examples and cases presented. All authors contributed towards writing the manuscript.

Competing interests. Authors declare that they have no conflict of interest.

Acknowledgements. All authors acknowledge support from the Australian Research Data Commons (ARDC: https://ardc.edu.au/, under the

G-Adopt platform grant: PL031), AuScope, Geosciences Australia and the National Computational Infrastructure (NCI). DRD and SCK

acknowledge support from the Australian Research Council, under grant no. DP170100058. Numerical simulations were undertaken at the925

NCI National Facility in Canberra, Australia, which is supported by the Australian Commonwealth Government. Authors are grateful to the

Firedrake development team, particularly David Ham, for support and advice at various points of this research.

42

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

References

Ahrens, J., Geveci, B., and Law, C.: ParaView: An End-User Tool for Large Data Visualization, Elsevier, 2005.

Alisic, L., Gurnis, M., Stadler, G., Burstedde, C., Wilcox, L. C., and Ghattas, O.: Slab stress and strain rate as constraints on global mantle930

flow, Geophys. Res. Lett., 37, L22 308, https://doi.org/10.1029/2101GL045312, 2011.

Alnes, M. S., Logg, A., Olgaard, K. B., Rognes, M. E., and Wells, G. N.: Unified Form Language: A domain-specific language for weak

formulations of partial differential equations., ACM Transactions on Mathematical Software, 40, 2–9, 2014.

Amestoy, P., Duff, I. S., Koster, J., and L’Excellent, J.-Y.: A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling,

SIAM Journal on Matrix Analysis and Applications, 23, 15–41, 2001.935

Amestoy, P., Buttari, A., L’Excellent, J.-Y., and Mary, T.: Performance and Scalability of the Block Low-Rank Multifrontal Factorization on

Multicore Architectures, ACM Transactions on Mathematical Software, 45, 2:1–2:26, 2019.

Austermann, J., Kaye, B., Mitrovica, J., and Huybers, P.: A statistical analysis of the correlation between large igneous provinces and lower

mantle seismic structure, Geophys. J. Int., 197, 1–9, https://doi.org/10.1093/gji/ggt500, 2014.

Balay, S., Gropp, W. D., McInnes, L. C., and Smith, B. F.: Efficient management of parallelism in object-oriented numerical software940

libraries, in: Modern software tools for scientific computing, pp. 163–202, Birkhauser Boston Inc., 1997.

Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Dener, A., Eijkhout, V., Gropp, W. D., Karpeyev,

D., Kaushik, D., Knepley, M. G., May, D. A., McInnes, L. C., Mills, R. T., Munson, T., Rupp, K., Sanan, P., Smith, B. F., Zampini, S.,

Zhang, H., and Zhang, H.: PETSc Users Manual, Tech. Rep. ANL-95/11 - Revision 3.15, Argonne National Laboratory, https://www.mcs.

anl.gov/petsc, 2021a.945

Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Dener, A., Eijkhout, V., Gropp, W. D., Karpeyev,

D., Kaushik, D., Knepley, M. G., May, D. A., McInnes, L. C., Mills, R. T., Munson, T., Rupp, K., Sanan, P., Smith, B. F., Zampini, S.,

Zhang, H., and Zhang, H.: PETSc Web page, https://www.mcs.anl.gov/petsc, https://www.mcs.anl.gov/petsc, 2021b.

Bangerth, W., Hartmann, R., and Kanschat, G.: deal.II: A general-purpose object-oriented finite element library, ACM Trans. Math. Software,

33, https://doi.org/10.1145/1268776.1268779, 2007.950

Bangerth, W., Dannberg, J., Gassmoeller, R., and Heister, T.: ASPECT v2.2.0, https://doi.org/10.5281/zenodo.3924604, 2020.

Baumgardner, J. R.: Three-dimensional treatment of convective flow in the Earth’s mantle, J. Stat. Phys., 39, 501–511,

https://doi.org/10.1007/BF01008348, 1985.

Bercovici, D., Schubert, G., and Glatzmaier, G. A.: 3-D spherical models of convection in the Earth’s mantle, Science, 244, 950–955, 1989.

Bercovici, D., Schubert, G., and Glatzmaier, G. A.: Three-dimensional convection of an infinite-Prandtl-number compressible fluid in a955

basally heated spherical shell, J. Fluid Mech., 239, 683–719, 1992.

Beucher, R., Moresi, L., Giordani, J., Mansour, J., Sandiford, D., Farrington, R., Mondy, L., Mallard, C., Rey, P., Duclaux, G., Kaluza, O.,

Laik, A., and Morón, S.: UWGeodynamics: A teaching and research tool for numerical geodynamic modelling, Journal of Open Source

Software, 4, 1136, https://doi.org/10.21105/joss.01136, 2019.

Birch, F.: Elasticity and constitution of the Earth’s interior, J. Geophys. Res., 57, 227–286, 1952.960

Blankenbach, B., Busse, F., Christensen, U., Cserepes, L., Gunkel, D., Hansen, U., Harder, H., Jarvis, G., Koch, M., Marquart, G., Moore,

D., Olson, P., Schmeling, H., and Schnaubelt, T.: A benchmark comparison for mantle convection codes, Geophys. J. Int., 98, 23–38,

https://doi.org/10.1111/j.1365-246X.1989.tb05511.x, 1989.

43

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

Bower, D. J., Gurnis, M., and Seton, M.: Lower mantle structure from paleogeographically constrained dynamic Earth models, Geochem.

Geophys. Geosys., 14, 44–63, https://doi.org/10.1029/2012GC004267, 2013.965

Bunge, H., Richards, M. A., and Baumgardner, J. R.: Mantle circulation models with sequential data-assimilation: inferring present-day

mantle structure from plate motion histories, Phil. Trans. R. Soc. London, Set. A, 360, 2545–2567, https://doi.org/10.1098/rsta.2002.1080.,

2002.

Bunge, H.-P., Richards, M. A., and Baumgardner, J. R.: The effect of depth–dependent viscosity on the planform of mantle convection,

Nature, 279, 436–438, https://doi.org/10.1038/379436a0, 1996.970

Bunge, H.-P., Richards, M. A., and Baumgardner, J. R.: A sensitivity study of 3-D-spherical mantle convection at 108 Rayleigh num-

ber: effects of depth-dependent viscosity, heating mode and an endothermic phase change, J. Geophys. Res., 102, 11 991–12 007,

https://doi.org/10.1029/96JB03806, 1997.

Bunge, H.-P., Hagelberg, C. R., and Travis, B. J.: Mantle circulation models with variational data assimilation: inferring past mantle

flow and structure from plate motion histories and seismic tomography, Geophys. J. Int., 152, 280–301, https://doi.org/10.1046/j.1365-975

246X.2003.01823.x, 2003.

Burstedde, C., Wilcox, L. C., and Ghattas, O.: p4est: Scalable Algorithms for Parallel Adaptive Mesh Refinement on Forests of Octrees,

SIAM Journal on Scientific Computing, 33, 1103–1133, https://doi.org/10.1137/100791634, 2011.

Burstedde, C., Stadler, G., Alisic, L., Wilcox, L. C., Tan, E., Gurnis, M., and Ghattas, O.: Large-scale adaptive mantle convection simulation,

Geophys. J. Int., 192, 889–906, https://doi.org/10.1093/gji/ggs070, 2013.980

Busse, F. H., Christensen, U., Clever, R., Cserepes, L., Gable, C., Giannandrea, E., Guillou, L., Houseman, G., Nataf, H. C., Ogawa, M.,

Parmentier, M., Sotin, C., and Travis, B.: 3D convection at infinite Prandtl number in Cartesian geometry - a benchmark comparison,

Geophys. Astrophys. Fluid Dyn., 75, 39–59, https://doi.org/10.1080/03091929408203646, 1994.

Choblet, G., Cadek, O., Couturier, F., and Dumoulin, C.: OEDIPUS: a new tool to study the dynamics of planetary interiors, Geophys. J. Int.,

170, 9–30, https://doi.org/10.1111/j.1365-246X.2007.03419.x, 2007.985

Cockburn, B. and Shi, K.: Devising HDG methods for Stokes flow: An overview, Computers & Fluids, 98, 221–229,

https://doi.org/10.1016/j.compfluid.2013.11.017, 2014.

Colli, L., Ghelichkhan, S., Bunge, H., and Oeser, J.: Retrodictions of Mid Paleogene mantle flow and dynamic topography in the Atlantic

region from compressible high resolution adjoint mantle convection models: Sensitivity to deep mantle viscosity and tomographic input

model, Gondwana Res., 53, 252–272, https://doi.org/10.1029/2018GL077338, 2018.990

Dalcin, L., Kler, P. A., Paz, R. R., and Cosimo, A.: Parallel Distributed Computing using Python, Adv. Water Res., 34,

10.1016/j.advwatres.2011.04.013, 2011.

Davies, D. R. and Davies, J. H.: Thermally–driven mantle plumes reconcile multiple hotspot observations, Earth Planet. Sci. Lett., 278,

50–54, https://doi.org/10.1016/j.epsl.2008.11.027, 2009.

Davies, D. R., Wilson, C. R., and Kramer, S. C.: Fluidity: a fully unstructured anisotropic adaptive mesh computational modeling framework995

for geodynamics, Geochem. Geophys. Geosys., 120, Q06 001, https://doi.org/10.1029/2011GC003551, 2011.

Davies, D. R., Goes, S., Davies, J. H., Schuberth, B. S. A., Bunge, H., and Ritsema, J.: Reconciling dynamic and seis-

mic models of Earth’s lower mantle: the dominant role of thermal heterogeneity, Earth Planet. Sci. Lett., 353–354, 253–269,

https://doi.org/10.1016/j.epsl.2012.08.016, 2012.

Davies, D. R., Davies, J. H., Bollada, P. C., Hassan, O., Morgan, K., and Nithiarasu, P.: A hierarchical mesh refinement technique for global1000

3D spherical mantle convection modelling, Geosci. Mod. Dev., 6, 1095–1107, https://doi.org/10.5194/gmd-6-1095-2013, 2013.

44

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

Davies, D. R., Goes, S., and Lau, H. C. P.: Thermally Dominated Deep Mantle LLSVPs: A Review, in: The Earth’s Heterogeneous Mantle,

edited by Khan, A. and Deschamps, F., pp. 441–477, Springer International Publishing, https://doi.org/10.1007/978-3-319-15627-9_14,

2015a.

Davies, D. R., Goes, S., and Sambridge, M.: On the relationship between volcanic hotspot locations, the reconstructed eruption sites of large1005

igneous provinces and deep mantle seismic structure, Earth Planet. Sci. Lett., 411, 121–130, https://doi.org/10.1016/j.epsl.2014.11.052,

2015b.

Davies, G. F.: Dynamic Earth: plates, plumes and mantle convection, Cambridge University Press, 1999.

Donea, J. and Huerta, A.: Finite element methods for flow problems, John Wiley & Sons, Ltd, 2003.

Elman, H. C., Silvester, D. J., and Wathen, A. J.: Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics,1010

Oxford University Press, 2005.

Farrell, P. E., Ham, D. A., Funke, S. W., and Rognes, M. E.: Automated derivation of the adjoint of high-level transient finite element

programs, SIAM Journal on Scientific Computing, 35, C369–C393, 2013.

French, S. W. and Romanowicz, B.: Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots, Nature, pp. 95–99,

https://doi.org/10.1038/nature14876, 2015.1015

Garel, F., Goes, S., Davies, D. R., Davies, J. H., Kramer, S. C., and Wilson, C. R.: Interaction of subducted slabs with the mantle transition-

zone: A regime diagram from 2-D thermo-mechanical models with a mobile trench and an overriding plate, Geochem. Geophys. Geosys.,

15, 1739–1765, https://doi.org/10.1002/2014GC005257, 2014.

Gassmoller, R., Dannberg, J., Bangerth, W., Heister, T., and Myhill, R.: On formulations of compressible mantle convection, Geophys. J.

Int., 221, 1264–1280, https://doi.org/10.1093/gji/ggaa078, 2020.1020

Ghelichkhan, S. and Bunge, H.: The adjoint equations for thermochemical compressible mantle convection: derivation and verification by

twin experiments, Proc. Roy. Soc. A, 474, 20180 329, https://doi.org/10.1098/rspa.2018.0329, 2018.

Ghelichkhan, S., Murbock, M., Colli, L., Pail, R., and Bunge, H.: On the observability of epeirogenic movement in current and future gravity

missions, Gondwana Research, 53, 273–284, https://doi.org/10.1016/j.gr.2017.04.016, 2018.

Ghelichkhan, S., Bunge, H., and Oeser, J.: Global mantle flow retrodictions for the early Cenozoic using an adjoint method: evolv-1025

ing dynamic topographies, deep mantle structures, flow trajectories and sublithospheric stresses, Geophys. J. Int., 226, 1432–1460,

https://doi.org/10.1093/gji/ggab108, 2020.

Gibson, T. H., McRae, A. T. T., Cotter, C. J., Mitchell, L., and Ham, D. A.: Compatible Finite Element Methods for Geophysical Flows:

Automation and Implementation using Firedrake, Springer International Publishing, https://doi.org/10.1007/978-3-030-23957-2, 2019.

Glatzmaier, G. A.: Numerical simulations of mantle convection-time dependent, 3-dimensional, compressible, spherical-shell, Geophys.1030

Astrophys. Fluid Dyn., 43, 223–264, 1988.

Gurnis, M., Yang, T., Cannon, J., Turner, M., Williams, S., Flament, N., and Muller, R. D.: Global tectonic reconstructions with continuously

deforming and evolving rigid plates, Computers and Geosciences, 116, 32–41, https://doi.org/10.1016/j.cageo.2018.04.007, 2012.

Ham, D. A., Farrell, P. E., Gorman, G. J., Maddison, J. R., Wilson, C. R., Kramer, S. C., Shipton, J., Collins, G. S., Cotter, C. J., and

Piggott, M. D.: Spud 1.0: Generalising and aotumating the user interface of scientific computer models, Geosci. Model Dev., 2, 33–42,1035

https://doi.org/10.5194/gmd-2-33-2009, 2009.

Hassan, R., Flament, N., Gurnis, M., Bowe, D. J., and Muller, D.: Provenance of plumes in global convection models, Geochem. Geophys.

Geosys., 16, 1465–1489, https://doi.org/10.1002/2015GC005751, 2015.

45

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

He, Y., Puckett, E. G., and Billen, M. I.: A Discontinuous Galerkin method with a bound preserving limiter for the advection of non-diffusive

fields in solid Earth geodynamics, Phys. Earth Planet. Int., 263, 23–37, 2017.1040

Heister, T., Dannberg, J., Gassmoller, R., and Bangerth, W.: High accuracy mantle convection simulation through modern numerical methods

– II: Realistic models and problems, Geophys. J. Int., 210, 833–851, https://doi.org/10.1093/gji/ggx195, 2017.

Heroux, M. A., Bartlett, R. A., Howle, V. E., Hoekstra, R. J., Hu, J. J., Kolda, T. G., Lehoucq, R. B., Long, K. R., Pawlowski, R. P., Phipps,

E. T., Salinger, A. G., Thornquist, H. K., Tuminaro, R. S., Willenbring, J. M., Williams, A., and Stanlet, K. S.: An overview of the Trilinos

project, ACM Trans. Math. Software, 31, 397–423, https://doi.org/10.1145/1089014.1089021, 2005.1045

Hillewaert, K.: Development of the discontinuous Galerkin method for high-resolution, large scale CFD and acoustics in industrial geome-

tries, PhD Thesis, Université de Louvain, 2013.

Homolya, M., Mitchell, L., Luporini, F., and Ham., D.: Tsfc: a structure-preserving form compiler, SIAM J. Sci. Comput., 40, 401–428,

https://doi.org/10.1137/17M1130642, 2018.

Jarvis, G. T.: Effects of curvature on two–dimensional models of mantle convection: cylindrical polar coordinates, J. Geophys. Res., 98,1050

4477–4485, 1993.

Jarvis, G. T. and McKenzie, D. P.: Convection in a compressible fluid with infinite Prandtl number, J. Fluid Mech., 96, 515–583,

https://doi.org/10.1017/S002211208000225X, 1980.

Katz, R. F. and Weatherley, S. M.: Consequences of mantle heterogeneity for melt extraction at mid-ocean ridges, Earth Planet. Sci. Lett.,

335, 226–237, https://doi.org/10.1016/j.epsl.2012.04.042, 2012.1055

King, S. D., Lee, C., van Keken, P. E., Leng, W., Zhong, S., Tan, E., Tosi, N., and Kameyama, M. C.: A community benchmark for 2-D

Cartesian compressible convection in Earth’s mantle, Geophys. J. Int., 179, 1–11, 2009.

Kirby, R. C.: Algorithm 839: FIAT, a new paradigm for computing finite element basis functions, ACM Trans. Math. Software, 30, 502–516,

2004.

Kirby, R. C. and Mitchell, L.: Solver Composition Across the PDE/Linear Algebra Barrier, SIAM J. Sci. Comp., 40, 76–98,1060

https://doi.org/10.1137/17M1133208, 2018.

Kirby, R. C. and Mitchell, L.: Code generation for generally mapped finite elements, ACM Trans. Math. Software, 45, 1–23, 2019.

Knepley, M. G. and Karpeev, D. A.: Mesh Algorithms for PDE with Sieve I: Mesh Distribution, Scientific Programming, 17, 215–230, 2009.

Koelemeijer, P. J., Schuberth, B. S. A., Davies, D. R., Deuss, A., and Ritsema, J.: Constraints on the presence of post-perovskite in Earth’s

lowermost mantle from tomographic-geodynamic model comparisons, Geophys. J. Int., 494, 226–238, 2018.1065

Kramer, S. C., Cotter, C. J., and Pain, C. C.: Solving the Poisson equation on small aspect ratio domains using unstructured meshes, Ocean

Mod., 35, 253–263, 2010.

Kramer, S. C., Wilson, C. R., and Davies, D. R.: An implicit free-surface algorithm for geodynamical simulations, Phys. Earth Planet. Int.,

194, 25–37, https://doi.org/10.1016/j.pepi.2012.01.001, 2012.

Kramer, S. C., Davies, D. R., and Wilson, C. R.: Analytical solutions for mantle flow in cylindrical and spherical shells, Geosci. Model Dev.,1070

14, 1899–1919, https://doi.org/10.5194/gmd-14-1899-2021, 2021a.

Kramer, S. C., Wilson, C., Davies, D. R., Mathews, C., Gibson, A., Dubernay, T., Greaves, T., Candy, A., Cotter, C. J., Perci-

val, J., Mouradian, S., Bhutani, G., Avdis, A., Gorman, G., Piggott, M., and Ham, D.: FluidityProject/fluidity: Zenodo release,

https://doi.org/10.5281/zenodo.3924604, 2021b.

Kronbichler, M., Heister, T., and Bangerth, W.: High accuracy mantle convection simulation through modern numerical methods, Geophys.1075

J. Int., 191, 12–29, https://doi.org/10.1111/j.1365-246X.2012.05609.x, 2012.

46

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

Kärnä, T., Kramer, S. C., Mitchell, L., Ham, D. A., Piggott, M. D., and Baptista, A. M.: Thetis coastal ocean model: discontinuous Galerkin

discretization for the three-dimensional hydrostatic equations, 11, 4359–4382, https://doi.org/10.5194/gmd-11-4359-2018, 2018.

Lange, M., Mitchell, L., Knepley, M. G., and Gorman, G. J.: Efficient mesh management in Firedrake using PETSc-DMPlex, SIAM Journal

on Scientific Computing, 38, S143–S155, https://doi.org/10.1137/15M1026092, 2016.1080

Le Voci, G., Davies, D. R., Goes, S., Kramer, S. C., and Wilson, C. R.: A systematic 2-D investigation into the mantle wedge’s transient

flow regime and thermal structure: complexities arising from a hydrated rheology and thermal buoyancy, Geochem. Geophys. Geosys.,

15, 28–51, https://doi.org/10.1002/2013GC005022, 2014.

Leng, W. and Zhong, S.: Viscous heating, adiabatic heating and energetic consistency in compressible mantle convection, Geophys. J. Int.,

173, 693–702, 2008.1085

Li, D., Gurnis, M., and Stadler, G.: Towards adjoint-based inversion of time-dependent mantle convection with nonlinear viscosity, Geophys.

J. Int., 209, 86–105, https://doi.org/10.1093/gji/ggw493, 2017.

Liu, L., Spasojevic, S., and Gurnis, M.: Reconstructing Farallon Plate Subduction Beneath North America Back to the Late Cretaceous,

Science, 322, 934–938, https://doi.org/10.1126/science.1162921, 2008.

Logg, A., Mardal, K.-A., and Wells, G.: Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book,1090

Lecture Notes in Computational Science and Engineering vol. 84, Springer, Berlin, https://doi.org/10.1007/978-3-642-23099-8, 2012.

Markall, G. R., Rathgeber, F., Mitchell, L., Loriant, N., Bertolli, C., Ham, D. A., and Kelly, P. H. J.: Performance-Portable Finite Element

Assembly Using PyOP2 and FEniCS, in: 28th International Supercomputing Conference, ISC, Proceedings, edited by Kunkel, J. M.,

Ludwig, T., and Meuer, H. W., vol. 7905 of Lecture Notes in Computer Science, pp. 279–289, Springer, https://doi.org/10.1007/978-3-

642-38750-0_21, 2013.1095

May, D. and Moresi, L.: Preconditioned iterative methods for Stokes flow problems arising in computational geodynamics, Phys. Earth

Planet. Int., 171, 33–47, https://doi.org/10.1016/j.pepi.2008.07.036, 2008.

McKenzie, D.: Speculations on consequences and causes of plate motions, Geophys. J. R. Astron. Soc., 18, 1–18, 1969.

McKenzie, D. P., Roberts, J. M., and Weiss, N. O.: Numerical models of convection in the Earth’s mantle, Tectonophys., 19, 89–103,

https://doi.org/10.1016/0040-1951(73)90034-6, 1973.1100

Minear, J. and Toksoz, M.: Thermal regime of a downgoing slab and new global tectonics, J. Geophys. Res., 75, 1397–1419, 1970.

Mitush, S. K., Funke, S. W., and Dokken, J. S.: dolfin-adjoint 2018.1: automated adjoints for FEniCS and Firedrake, J. Open Source Softw.,

4, 1292, 2019.

Moresi, L., Dufour, F., and Muhlhaus, H.: Mantle convection modeling with viscoelastic/brittle lithosphere: Numerical methodology and

plate tectonic modeling, Pure & Applied Geophys, 159, 2335–2356, 2002.1105

Moresi, L., Quenette, S., Lemiale, V., Meriaux, C., Appelbe, B., and Muhlhaus, H.-B.: Computational approaches to studying non-linear

dynamics of the crust and mantle, Phys. Earth Planet. Int., 163, 69–82, https://doi.org/10.1016/j.pepi.2007.06.009, 2007.

Moresi, L. N. and Solomatov, V. S.: Numerical investigations of 2D convection with extremely large viscosity variations, Phys. Fluid, 7,

2154–2162, https://doi.org/10.1063/1.868465, 1995.

Muller, R. D., Seton, M., Zahirovic, S., Williams, S. E., Matthews, K. J., Wright, N. M., Shephard, G. E., Maloney, K. T., Barnett-Moore,1110

N., Hosseinpour, M., Bower, D. J., and Cannon, J.: Ocean Basin Evolution and Global-Scale Plate Reorganization Events Since Pangea

Breakup, Ann. Rev. Earth Planet. Sci., 44, 107–138, https://doi.org/10.1146/annurev-earth-060115-012211, 2016.

47

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

Muller, R. D., Cannon, J., Qin, X., Watson, R. J., Gurnis, M., Williams, S., Pfaffelmoser, T., Seton, M., Russell, S. H. J.,

and Zahirovic, S.: GPlates: Building a Virtual Earth Through Deep Time, Geochem. Geophys. Geosys., 19, 2243–2261,

https://doi.org/10.1029/2018GC007584, 2018.1115

Nakagawa, T., Tackley, P. J., Deschamps, F., and Connolly, J. A. D.: Incorporating self–consistently calculated mineral physics into thermo–

chemical mantle convection simulations in a 3-D spherical shell and its influence on seismic anomalies in Earth’s mantle, Geochem.

Geophys. Geosys., 10, Q3304, https://doi.org/10.1029/2008GC002280, 2009.

Nerlich, R., Colli, L., Ghelichkhan, S., B.Schuberth, and Bunge, H.-P.: Constraining entral Neo-Tethys Ocean reconstructions with mantle

convection models, Geophys. Res. Lett., 43, 9595–9603, https://doi.org/10.1002/2016GL070524, 2016.1120

Nitsche, J.: Über ein variationsprinzip zur lösung von dirichlet-problemen bei verwendung von teilräumen, die keinen randbedingungen

unterworfen sind. In Abhandlungen aus dem mathematischen Seminar der Universität Hamburg, vol. 36, 1971.

Quenette, S., Moresi, L., Appelbe, B. F., and Sunter, P. D.: Explaining StGermain: an aspect oriented environment for building extensible

computational mechanics modeling software, IEEE International Parallel and Distributed Processing Symposium, IEEE New York, p.

210pp, https://doi.org/10.1109/IPDPS.2007.370400, 2007.1125

Ratcliff, J. T., Schubert, G., and Zebib, A.: Steady tetrahedral and cubic patterns of spherical shell convection with temperature-dependent

viscosity, J. Geophys. Res., 101, 25 473–25 484, https://doi.org/10.1029/96JB02097, 1996.

Rathgeber, F., Markall, G. R., Mitchell, L., Loriant, N., Ham, D. A., Bertolli, C., and Kelly, P. H. J.: PyOP2: A High-Level Framework

for Performance-Portable Simulations on Unstructured Meshes, in: High Performance Computing, Networking Storage and Analysis, SC

Companion:, pp. 1116–1123, IEEE Computer Society, Los Alamitos, CA, USA, https://doi.org/10.1109/SC.Companion.2012.134, 2012.1130

Rathgeber, F., Ham, D. A., Mitchell, L., Lange, M., Luporini, F., Mcrae, A. T. T., Bercea, G.-T., Markall, G. R., and Kelly, P. H. J.: Firedrake:

Automating the Finite Element Method by Composing Abstractions, ACT Trans. Math. Softw., 43, 1–24, https://doi.org/10.1145/2998441,

2016.

Ritsema, J., Deuss, A., van Heijst, H. J., and Woodhouse, J. H.: S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh

wave dispersion, teleseismic traveltime and normal-mode splitting function measurements.1135

Rubey, M., Brune, S., Heine, C., Davies, D. R., Williams, S. E., and Muller, R. D.: Global patterns in Earth’s dynamic topography since the

Jurassic: the role of subducted slabs, Solid Earth, 8, 899–919, https://doi.org/10.5194/se-8-899-2017, 2017.

Schubert, G., Turcotte, D. L., and Olson, P.: Mantle convection in the Earth and planets, Cambridge University Press, 2001.

Schuberth, B. S. A., H.-P. Bunge, Steinle-Neumann, G., Moder, C., and Oeser, J.: Thermal versus elastic heterogeneity in high-resolution

mantle circulation models with pyrolite composition: high plume excess temperatures in the lowermost mantle, Geochem. Geophy.1140

Geosyst., 10, Q01W01, https://doi.org/10.1029/2008GC002235, 2009.

Shahbazi, K.: An explicit expression for the penalty parameter of the interior penalty method, Journal of Computational Physics, 205, 401–

407, 2005.

Shapero, D., Badgeley, J., Hoffmann, A., and Joughin, I.: icepack: A new glacier flow modeling package in Python, version 1.0, Geoscientific

Model Development Discussions, pp. 1–34, 2021.1145

Shih, Y., Stadler, G., and Wechsung, F.: Robust multigrid techniques for augmented Lagrangian preconditioning of incompressible Stokes

equations with extreme viscosity variations, arXiv:2107.00820, 2021.

Shipton, J., Gibson, T., and Cotter, C.: Higher-order compatible finite element schemes for the nonlinear rotating shallow water equations on

the sphere, 375, 1121–1137, https://doi.org/10.1016/j.jcp.2018.08.027, 2018.

48

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

Stadler, G., Gurnis, M., Burstedde, C., Wilcox, L. C., Alisic, L., and Ghattas, O.: The dynamics of plate tectonics and mantle flow: from local1150

to global scales, Science, 329, 1033–1038, https://doi.org/10.1126/science.1191223, 2010.

Stemmer, K., Harder, H., and Hansen, U.: A new method to simulate convection with strongly temperature- and pressure-dependent viscosity

in a spherical shell: Applications to the Earth’s mantle, Phys. Earth Planet. Int., 157, 223–249, https://doi.org/10.1016/j.pepi.2006.04.007,

2006.

Tackley, P. J.: Effects of strongly variable viscosity on three–dimensional compressible convection in planetary mantles, J. Geophys. Res.,1155

101, 3311–3332, https://doi.org/10.1029/95JB03211, 1996.

Tackley, P. J.: Mantle convection and plate tectonics: towards and integrated physical and chemical theory, Science, 288, 2002–2007, 2000.

Tackley, P. J.: Modelling compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the

Yin-Yang grid, Phys. Earth Planet. Int., 171, 7–18, https://doi.org/10.1016/j.pepi.2008.08.005, 2008.

Tackley, P. J. and Xie, S.: The thermo-chemical structure and evolution of Earth’s mantle: constraints and numerical models, Phil. Trans. R.1160

Soc. Lond. A., 360, 2593–2609, 2002.

Tackley, P. J., Stevenson, D. J., Glatzmaier, G. A., and Schubert, G.: Effects of an endothermic phase transition at 670 km depth in a spherical

model of convection in the Earth’s mantle, Nature, 361, 699–704, https://doi.org/10.1038/361699a0, 1993.

Torrance, K. E. and Turcotte, D. L.: Thermal convection with large viscosity variations, J. Fluid Mech., 47, 113–125, 1971.

Tosi, N., Stein, C., Noack, L., Hüttig, C., Maierová, P., Samuel, H., Davies, D. R., Wilson, C. R., Kramer, S. C., Thieulot, C., Glerum, A.,1165

Fraters, M., Spakman, W., Rozel, A., and Tackley, P. J.: A community benchmark for viscoplastic thermal convection in a 2-D square box,

Geochemistry, Geophysics, Geosystems, 16, 2175–2196, https://doi.org/10.1002/2015GC005807, 2015.

Trilinos Project Team, T.: The Trilinos Project Website.

Trompert, R. and Hansen, U.: Mantle convection simulations with rheologies that generate plate-like behaviour, Nature, 395, 686–689, 1998.

van Keken, P.: Evolution of starting mantle plumes: a comparison between numerical and laboratory models, Earth Planet. Sci. Lett., 148,1170

1–11, https://doi.org/10.1016/S0012-821X(97)00042-3, 1997.

van Keken, P. E. and Ballentine, C. J.: Whole–mantle versus layered mantle convection and the role of a high–viscosity lower mantle in

terrestrial volatile evolution, Earth Planet. Sci. Lett., 156, 19–32, 1998.

Vanek, P., Mandel, J., and Brezina, M.: Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems, Com-

puting, 56, 179–196, https://doi.org/10.1007/BF02238511, 1996.1175

Vynnytska, L., Rognes, M. E., and Clark, S. R.: Benchmarking FEniCS for mantle convection simulations, Computers & Geosciences, 50,

95–105, https://doi.org/10.1016/j.cageo.2012.05.012, 2013.

Wilson, C. R., Spiegelman, M., van Keken, P. E., and R., H. B.: Fluid flow in subduction zones: The role of solid rheology and compaction

pressure, Earth Planet. Sci. Lett., 401, 261–274, https://doi.org/10.1016/j.epsl.2014.05.052, 2014.

Wilson, C. R., Spiegelman, M., and van Keken, P. E.: TerraFERMA: The Transparent Finite Element Rapid Model Assembler for multi-1180

physics problems in Earth sciences, Geochemistry, Geophysics, Geosystems, 18, 769–810, https://doi.org/10.1002/2016GC006702, 2017.

Wolstencroft, M., Davies, J. H., and Davies, D. R.: Nusselt-Rayleigh number scaling for spherical shell Earth mantle simulation up to a

Rayleigh number of 109, Phys. Earth Planet. Int., 176, 132–141, https://doi.org/10.1016/j.pepi.2009.05.002, 2009.

Yoshida, M. and Kageyama, A.: Application of the Yin-Yang grid to a thermal convection of a Boussinesq fluid with infinite Prandtl number

in a three-dimensional spherical shell, Geophys. Res. Lett., 31, L12 609, https://doi.org/10.1029/2004GL019970, 2004.1185

Zhong, S., Zuber, M. T., Moresi, L., and Gurnis, M.: Role of temperature-dependent viscosity and surface plates in spherical shell models of

mantle convection, J. Geophys. Res., 105, PP. 11,063–11,082, https://doi.org/200010.1029/2000JB900003, 2000.

49

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

Zhong, S., McNamara, A., Tan, E., Moresi, L., and Gurnis, M.: A benchmark study on mantle convection in a 3-D spherical shell using

CitcomS, Geochem. Geophys. Geosys., 9, Q10 017, https://doi.org/10.1029/2008GC002048, 2008.

Zienkiewicz, O. C. and Taylor, R. L.: The finite element method, vol. 2, fourth ed., McGraw–Hill, New York, 1991.1190

50

https://doi.org/10.5194/gmd-2021-367
Preprint. Discussion started: 13 January 2022
c© Author(s) 2022. CC BY 4.0 License.

