
Automating
:::::::::::::
Towards

::::::::::::::::
Automatic

:
Finite Element Methods for

Geodynamics via Firedrake
D. Rhodri Davies1, Stephan C. Kramer2, Sia Ghelichkhan1, and Angus Gibson1

1Research School of Earth Sciences, The Australian National University, Canberra, ACT, Australia.
2Department of Earth Science and Engineering, Imperial College London, London, UK.

Correspondence: Rhodri Davies (Rhodri.Davies@anu.edu.au)

Abstract. Firedrake is an automated system for solving partial differential equations using the finite element method. By ap-

plying sophisticated performance optimisations through automatic code-generation techniques, it provides a means to create

accurate, efficient, flexible, easily extensible, scalable, transparent and reproducible research software, that is ideally suited to

simulating a wide-range of problems in geophysical fluid dynamics. Here, we demonstrate the applicability of Firedrake for

geodynamical simulation, with a focus on mantle dynamics. The accuracy and efficiency of the approach is confirmed via com-5

parisons against a suite of analytical and benchmark cases of systematically increasing complexity, whilst parallel scalability

is demonstrated up to 12288 compute cores, where the problem size and the number of processing cores are simultaneously

increased. In addition, Firedrake’s flexibility is highlighted via straightforward application to different physical (e.g. complex

nonlinear rheologies, compressibility) and geometrical (2-D and 3-D Cartesian and spherical domains) scenarios. Finally, a

representative simulation of global mantle convection is examined, which incorporates 230 Myr of plate motion history as a10

kinematic surface boundary condition, confirming its
:::::::::
Firedrake’s

:
suitability for addressing research problems at the frontiers

of global mantle dynamics research.

1 Introduction

Since the advent of plate tectonic theory, there has been a long and successful history of research software development

within the geodynamics community. The earliest modelling tools provided fundamental new insight into the process of mantle15

convection, its sensitivity to variations in viscosity, and its role in controlling Earth’s surface plate motions and heat transport

(e.g. ????). Although transformative at the time, computational and algorithmic limitations dictated that these tools were

restricted to a simplified approximation of the underlying physics and, excluding some notable exceptions (e.g. ??), to 2-D

Cartesian geometries. They were specifically designed to address targeted scientific questionsand, accordingly, .
:::
As

:::::
such,

::::
they

offered limited flexibility, were not easily extensible, and were not portable across different platforms. Furthermore, since they20

were often developed for use by one or two expert practitioners, they were poorly documented: details of the implementation

could only be determined by analysing the underlying code, which was often a non-trivial and specialised task.

Growing computational resources and significant theoretical and algorithmic advances have since underpinned the devel-

opment of more advanced research software, which incorporate, for example, better approximations to the fundamental phys-

1

ical principles, including compressibility (e.g. ?????), mineralogical phase transformations (e.g. ??)
::::::::
(e.g. ???), multi-phase25

flow (e.g. ??), variable and nonlinear rheologies (e.g. ?????????)
::::::::::::::::
(e.g. ???????????), and feedbacks between chemical het-

erogeneity and buoyancy (e.g. ???). In addition, these more recent tools can often be applied in more representative 2-D

cylindrical and/or 3-D spherical
::::
shell

:
geometries (e.g. ???????????). The user-base of these tools has rapidly increased,

with software development teams emerging to enhance their applicability and ensure their ongoing functionality. These teams

have exploited
::::
done

:::
so

::
by

::::::::
adopting

::::::::::::
best-practices

::
in modern software developmentbest-practices, including version control,30

unit and regression testing across a range of platforms, and validation of model predictions against a suite of analytical

and benchmark solutions (e.g. ?????). This has been facilitated, in part, by the expansion of community driven efforts for

software development, such as the Computational Infrastructure for Geodynamics (CIG: https://www.geodynamics.org) and

the Simulation and Modelling (SAM) arm of AuScope (https://www.auscope.org.au/sam).
::::::::::
(e.g. ?????).

Nonetheless, given rapid and ongoing improvements in algorithmic design and software engineering, alongside the develop-35

ment of robust and flexible scientific computing libraries that provide access to much of the low-level numerical functionality

required by geodynamical models, a next-generation of open-source and community driven geodynamical research software

has emerged, exploiting developments from the forefront of computational engineering. This includes ASPECT (e.g. ???),

built on the deal.II (?), p4est (?) and Trilinos (??) libraries, Fluidity (e.g. ????), built on
:::::
which

::
is

::::::::::
underpinned

:::
by the PETSc

(???) and Spud libraries (?), Underworld2 (e.g. ??),
:::
core

:::::::
aspects

::
of

:::::
which

:::
are built on the St Germain (?) and PETSc libraries,40

and TerraFERMA (?), built on
:::::
which

:::
has

::::::::::
foundations

::
in

:
the FEniCS (??), PETSc and Spud libraries. By building on existing

computational libraries that are highly-efficient, extensively tested and validated, modern geodynamical research software is

becoming increasingly reliable and reproducible. Its modular design also allows new features to be added with some
::::::::
facilitates

::
the

:::::::
addition

:::
of

:::
new

:::::::
features

::::
and

:::::::
provides

:
a
:
degree of confidence about the validity of previous developments, as evidenced by

growth in the use and applicability of ASPECT over recent years.45

However, even with these modern research software frameworks, some fundamental development decisions, such as the core

physical equations, numerical approximations and general solution strategy, have been integrated into the basic building blocks

of the code. Whilst there remains some flexibility within the context of a single problem, modifications to include different

physical approximations or components, which can affect nonlinear coupling and associated solution strategies, often require

extensive and time-consuming development and testing, using either separate code forks or increasingly complex options50

systems(?). This can make basic
:
.
::::
This

:::::
makes

:
reproducibility of a given run difficultand results

::::::::
simulation

:::::::
difficult,

::::::::
resulting in

a lack of transparency – even with detailed documentation, specific details of the implementation are sometimes only available

by reading the code itself, which, as noted previously, is non-trivial, particularly across different forks or with increasing code

complexity
:::
(?). This makes scientific studies into the influence of different physical or geometrical scenarios, using a consistent

code-base, extremely challenging. Those software frameworks that try to maintain some degree of flexibility often do so at the55

compromise of performance: the flexibility to configure different equations, numerical discretisations and solver strategies, in

different dimensions and geometries, requires implementation compromises in the choice of optimal algorithms and specific

low-level optimisations for all possible configurations.

2

https://www.geodynamics.org
https://www.auscope.org.au/sam

A challenge that remains central to research software development in geodynamics, therefore, is the need to provide accurate,

efficient, flexible, easily extensible, scalable, transparent and reproducible research software that can be applied to simulating60

a wide-range of scenarios, including problems in different geometries and those incorporating different approximations of

the underlying physics
:::::
(e.g. ?). However, this requires a large time investment

::::::::::
commitment

:
and knowledge that spans several

academic disciplines. Arriving at a physical description of a complex system, such as global mantle convection, demands acute

awareness of domain sciences:
:::::::
expertise

::
in

:
geology, geophysics, geochemistry, fluid mechanics and rheology. Discretising the

governing partial differential equations (PDEs) to produce a suitable numerical scheme , requires expertise
::::::
requires

::::::::::
proficiency65

in mathematical analysis, whilst its translation into efficient code for massively parallel systems demands advanced knowledge

in low-level code optimisation and computer architectures
:::::
(e.g. ?). The consequence of this is that the development of research

software for geodynamics has now become a multi-disciplinary effort and its design must enable scientists across several

disciplines to collaborate effectively, without requiring each of them to understand every aspect
::::::::::
comprehend

::
all

:::::::
aspects of the

systemin detail.70

Key to achieving this is to abstract, automate, and compose the various processes involved in numerically solving the PDEs

governing a specific problem (e.g. ????), to enable a separation of concerns between developing a technique and employing

::::
using

:
it. As such, software projects involving automatic code generation have become increasingly popular, as these help to

separate different aspects of development. Such an approach allows for agile
:::::::
facilitates

:
collaboration between computational

engineers with expertise in hardware and software, computer scientists and applied mathematicians with expertise in numerical75

algorithms, and domain specific scientists, such as geodynamicists.

In this study, we introduce Firedrake (e.g. ??) to the geodynamical modelling community: a next-generation automated sys-

tem for solving PDEs using the finite element method
:::::::
(e.g. ??). As we will show, the finite element method is highly amenable

:::::::::
well-suited to automatic code-generation techniques: a weak formulation of the relevant

::::::::
governing PDEs, together with a mesh,

boundary conditions
:::::
initial

:::
and

::::::::
boundary

::::::::::
conditions, and appropriate discrete function spaces, is sufficient to characterise the80

problemcompletely
:::
fully

::::::::
represent

:::
the

:::::::
problem. The purpose of this manuscript is to demonstrate the applicability of Firedrake

for geodynamical simulation, whilst also highlighting its advantages over existing geodynamical research software. We do so

via comparisons against a suite of analytical and benchmark cases of systematically increasing complexity.

The remainder of the manuscript is structured as follows. In Section 2, we provide a background to the Firedrake project and

the various dependencies of its software stack. In Section 3 we introduce the equations governing mantle convection which will85

be central to the examples developed herein, followed, in Section 4, by a description of their discretisation via the finite element

method and the associated solution strategies. In Section 5 we introduce a series of benchmark cases in Cartesian and spherical

::::
shell geometries. These are commonly examined within the geodynamical modelling community, and we describe the steps

involved with setting up these cases in Firedrake
:
,
:::::::
allowing

:::
us

::
to

:::::::
highlight

:::
its

::::
ease

::
of

:::
use. Parallel performance is analysed in

Section ??, with a representative example of global mantle convection described and analysed in Section ??. The latter case90

confirms Firedrake’s suitability for addressing research problems at the frontiers of global mantle dynamics research. Other

components of Firedrake, which have not been showcased in this manuscript but may be beneficial to various future research

endeavours, are discussed in Section ??.

3

2 Firedrake

The Firedrake project is an automated system for solving partial differential equations using the finite element method (e.g. ?).95

‘Automated’, in this context, means that the user specifies the finite element problem symbolically using
:::::
Using a high-level

language that reflects the mathematical description of the governing equations (e.g. ?),
:::
the

::::
user

::::::::
specifies

:::
the

:::::
finite

:::::::
element

:::::::
problem

:::::::::::
symbolically. The high-performance implementation of the assembly operations for the discrete operators is then

generated
::::::::::::
‘automatically’ by a sequence of specialised compiler passes that apply symbolic mathematical transformations

to the input equations to ultimately produce C (and C++) code (?)
::::
(??). Firedrake compiles and executes this code to create100

linear or nonlinear systems, which are solved by PETSc (???). As noted
::::
stated

:
by ?, in comparison with conventional finite

element libraries, and even more so with handwritten code, Firedrake provides a higher productivity mechanism for solving

finite element problems whilst simultaneously applying sophisticated performance optimisations that few users would have the

resources to code by hand.

Firedrake builds on the concepts and some of the code of the FEniCS project (e.g. ?), particularly its representation of105

variational problems via the Unified Form Language (UFL) (?). We note that the applicability of FEniCS for geodynamical

problems has already been demonstrated (e.g. ??). Both frameworks have the goal of saving users from manually writing low-

level code for assembling the systems of equations that discretise their model physics. An important architectural difference

is that while FEniCS has components written in C++ and Python, Firedrake is completely written in Python, including its

run-time environment (it is only the automatically generated assembly code that is in C/C++, although it does leverage the110

PETSc library, written in C, to solve the assembled systems, albeit through its Python interface
:
–
:
petsc4py). This provides a

highly flexible user interface with ease of introspection of data structures. We note that the Python environment also allows

deploying of hand written C kernels should the need arise to perform discrete mesh-based operations that cannot be expressed

in the finite element framework, such as sophisticated slope limiters or bespoke sub-grid physics.

Firedrake offers several highly-desirable features rendering it well-suited to problems in geophysical fluid dynamics. As will115

be illustrated through a series of examples below, of particular importance in the context of this manuscript are Firedrake’s

support for a range of different finite-element discretisations, including a highly efficient implementation of those based on

extruded meshes, programmable nonlinear solvers and composable operator aware solver preconditioners. As the importance of

reproducibility in the computational geosciences is increasingly recognized, we note that Firedrake integrates with Zenodo and

GitHub to provide users with the ability to generate a set of DOIs corresponding to the exact set of Firedrake components used120

to conduct a particular simulation, in full compliance with FAIR (Findable, Accessible, Interoperable, Reusable) principles.

2.1 Dependencies

Firedrake treats finite element problems as a composition of several abstract processes, using separate packages for each. The

framework imposes a clear separation of concerns between the definition of the problem (UFL, Firedrake Language
::::::::
language),

the generation of computational kernels used to assemble the coefficients of the discrete equations (TSFC, FInAT), the parallel125

execution of this kernel (PyOP2) over a given mesh topology (DMPlex), and the solution of the resulting linear or nonlinear

4

systems (PETSc). These layers allow various types of optimisation to be applied at different stages of the solution process. The

key components of this software stack are next described.

1. Unified Form Language (UFL) – as we will see in the examples below, a core part of finite element problems is the

specification of the weak form of the governing PDEs. UFL, a domain-specific symbolic language with well-defined and130

mathematically consistent semantics that is embedded in Python, provides an elegant solution to this problem. It was

pioneered by the FEniCS project (?), although Firedrake has added several extensions.

2. Firedrake Language
:::::::
language

:
– in addition to the weak form of the PDEs, finite element problems require the user to

select appropriate finite elements, specify the mesh to be employed, set field values for initial and boundary conditions

and specify the sequence in which solves occur. Firedrake implements its own language for these tasks, which was135

designed to be to a large extent compatible with DOLFIN (?), the runtime API of the FEniCS project. We note that

Firedrake implements various extensions to DOLFIN, whilst some features of DOLFIN are not supported by Firedrake.

3. FInAT (?) – incorporates all information required to evaluate the basis functions of the different finite element families

supported by Firedrake. In earlier versions of Firedrake this was done through tabulation of the basis functions evaluated

at Gauss points (FIAT: ?). FInAT, however, provides this information to the form compiler as a combination of symbolic140

expressions and numerical values, allowing for further optimisations. FInAT allows Firedrake to support a wide-range of

finite elements, including continuous, discontinuous, H(div) and H(curl) discretisations, and elements with continuous

derivatives such as the Argyris and Bell elements.

4. Two-Stage Form Compiler (TSFC) – a form compiler takes a high-level description of the weak form of PDEs (here

in UFL) and produces low-level code that carries out the finite element assembly. Firedrake uses TSFC, which was145

developed specifically for the Firedrake project (?), to generate its local assembly kernels. TSFC invokes two stages,

where in the first stage UFL is translated to an intermediate symbolic tensor algebra language, before translating this

into assembly kernels written in C. In comparison with the form compilers of FEniCS (FFC and UFLACS), TSFC

aims to maintain the algebraic structure of the input expression for longer, which opens up additional opportunities for

optimisation.150

5. PyOP2 – a key component of Firedrake’s software stack is PyOP2, a high-level framework that optimises the parallel

execution of computational kernels on unstructured meshes (??). Where the local assembly kernels generated by TSFC

calculate the values of a local tensor from local input tensors, all associated with the degrees of freedom of a single

element, PyOP2 wraps this code in an additional layer responsible for the extraction and addition of these local tensors

out of/into global structures such as vectors and sparse matrices. It is also responsible for the maintenance of halo layers,155

the overlapping regions in a parallel decomposed problem. PyOP2 allows for a clean separation of concerns between

the specification of the local kernel functions, in which the numerics of the method are encoded, and their efficient

parallel execution. More generally, this separation of concerns is the key novel abstraction that underlies the design of

the Firedrake system.

5

6. DMPlex – PyOP2 has no concept of the topological construction of a mesh. Firedrake derives the required maps through160

DMPlex, a data management abstraction that represents unstructured mesh data, which is part of the PETSc project (?).

This allows Firedrake to leverage the DMPlex partitioning and data migration interfaces to perform domain decompo-

sition at run-time, whilst supporting multiple mesh file formats. Moreover, Firedrake reorders mesh entities to ensure

computational efficiency (?).

7. Linear and nonlinear solvers – Firedrake passes solver problems on to the established,
::::::
PETSc

:::::
(???),

::
a
::::::::::::::
well-established,165

high-performance solver library , PETSc (???), which
:::
that

:
provides access to several of its own and third-party imple-

mentations of solver algorithms. The Python interface to PETSc (?) makes its integration with Firedrake straightforward.

We note that employing PETSc for both its solver library and for DMPlex has the additional advantage that the set of

library dependencies required by Firedrake is kept small (?).

3 Governing Equations170

Our focus here is on mantle convection, the slow creeping motion of Earth’s mantle over geological timescales. The equations

governing mantle convection are derived from the conservation laws of mass, momentum and energy. The simplest mathe-

matical formulation assumes incompressibility
:
a
:::::
single

:::::::::::::
incompressible

:::::::
material

:
and the Boussinesq approximation (?), under

which the non–dimensional momentum and continuity equations are given by:

∇ · ¯̄σ+Ra0T k̂ = 0, (1)175

∇ ·u= 0, (2)

where ¯̄σ is the stress tensor, u is the velocity and T temperature. k̂ is the unit vector in the direction opposite to gravity and

Ra0 denotes the Rayleigh number, a dimensionless number that quantifies the vigor of convection:

Ra0 =
ρ0α∆Tgd3

µ0κ
. (3)

Here, ρ0 denotes reference density, α the thermal expansion coefficient, ∆T the characteristic temperature change across the180

domain, g the gravitational acceleration, d the characteristic length, µ0 the reference dynamic viscosity and κ the thermal

diffusivity. Note that the above non–dimensional equations are obtained through the following characteristic scales: length d;

time d2 / κ; and temperature ∆T .

When simulating incompressible flow, the full stress tensor, ¯̄σ, is decomposed into deviatoric and volumetric components:

¯̄σ = ¯̄τ − pI, (4)185

where ¯̄τ is the deviatoric stress tensor, p is dynamic pressure and I is the identity matrix. Substituting Eq. (4) into Eq. (1) and

utilizing the constituative
:::::::::
constitutive

:
relation

¯̄τ = 2µε̇= 2µsym(∇u) = µ
[
∇u+ (∇u)

T
]
, (5)

6

which relates the deviatoric stress tensor, ¯̄τ , to the strain-rate tensor, ε̇= sym(∇u), yields:

∇ ·µ
[
∇u+ (∇u)

T
]
−∇p+Ra0T k̂ = 0. (6)190

The viscous flow problem can thus be posed in terms of pressure, p, velocity, u, and temperature, T . The evolution of the

thermal field is controlled by an advection–diffusion equation:

∂T

∂t
+u · ∇T −∇ · (κ∇T) = 0 (7)

These governing equations are sufficient to solve for the three unknowns, together with adequate boundary and initial condi-

tions.195

4 Finite Element Discretisation and Solution Strategy

For the derivation of the finite element discretisation of Equations (6), (2), and (7) we start by writing these in their weak form.

We select appropriate function spaces V, W, and Q that contain, respectively, the solution fields for velocity u, pressure p, and

temperature T , and also contain the test functions v,w and q. The weak form is then obtained by multiplying these equations

with the test functions and integrating over the domain Ω,200 ∫
Ω

(∇v) : µ
[
∇u+ (∇u)

T
]

dx+−
:

∫
Ω

·
(
∇·v

)
p dx−

∫
Ω

Ra0Tv · k̂ dx= 0 for all v ∈ V, (8)

−
∫
Ω

∇w∇
:
·u dx= 0 for all w ∈W, (9)

∫
Ω

q
∂T

∂t
dx+

∫
Ω

qu · ∇T dx+

∫
Ω

(∇q) · (κ∇T) dx= 0 for all q ∈Q. (10)

Note that we have integrated by parts the viscosity term
:::
and

:::::::
pressure

::::::::
gradient

:::::
terms in (6), the divergence term in , and the

diffusion term in (7), but have omitted the corresponding boundary terms, which will be considered in the following section.205

Equations (8-10) are a more general , mathematically rigorous representation of the continuous PDEs in strong form (Equa-

tions 6, 2 and 7), provided suitable function spaces with sufficient regularity are chosen (see, for example ??). Galerkin finite

:::::
Finite element discretisation proceeds by restricting these function spaces to finite-dimensional subspaces. These are typically

constructed by dividing the domain into cells or elements, and restricting to piecewise polynomial subspaces with various

continuity requirements between cells. In all examples presented in
::::::::
Firedrake

:::::
offers

:
a
::::
very

:::::
wide

:::::
range

::
of

::::
such

:::::
finite

:::::::
element210

:::::::
function

:::::
spaces

::::::::::::::::::::
(see ?, for an overview).

::
It

:::::
should

:::
be

:::::
noted

:::::::
however

::::
that,

:
in
::::::::
practice,

:::
this

::::::
choice

:
is
::::::
guided

:::
by

::::::::
numerical

:::::::
stability

::::::::::::
considerations

::
in

:::::::
relation

::
to

:::
the

:::::::
specific

::::::::
equations

::::
that

:::
are

:::::
being

:::::::
solved.

::
In

:::::::::
particular,

:::
the

::::::
choice

:::
of

:::::::
velocity

:::
and

::::::::
pressure

:::::::
function

:::::
spaces

::::
used

::
in

:::
the

::::::
Stokes

::::::
system

:
is
::::::::
restricted

:::
by

::
the

:::::
LBB

::::::::
condition

::
(see ?, for an overview of common choices for geodynamical flow).

::
In this paper, we use Continuous Galerkin (CG) finite elements, specifically the Q2-Q1

:::::
focus

::
on

:::
the

:::
use

:::
of

::
the

:::::::
familiar

::::::
Q2Q1

element pair for velocity and pressureand the ,
::::::
which

:::::::
employs

:::::::::
piecewise

:::::::::
continuous

::::::::::
bi-quadratic

::::
and

:::::::
bi-linear

:::::::::::
polynomials215

::
on

:::::::::::
quadrilaterals

:::
or

::::::::
hexahedra

:::
for

:::::::
velocity

::::
and

::::::::
pressure,

::::::::::
respectively.

::
In

::::::::
addition,

::
to

::::::::
showcase

::::::::::
Firedrake’s

:::::::::
flexibility,

::
we

::::
use

7

::
the

::::
less

:::::::
familiar,

:::::::
Q2P1DG::::

pair
::
in

:
a
:::::::
number

::
of

:::::
cases,

::
in

::::::
which

:::::::
pressure

::
is

:::::::::::
discontinuous

::::
and

::::::::
piecewise

:::::
linear

::::
(but

:::
not

::::::::
bilinear).

:::
For

::::::::::
temperature,

:::
we

::::::::
primarily

::::
use

:
a
:
Q2 discretisation for temperature.

:::::::::::
discretisation,

:::
but

::::
also

:::::
show

::::
some

::::::
results

:::::
using

::
a

:::
Q1

:::::::::::
discretisation.

:

We note that there are many other choices of finite element function spaces available in Firedrake, although they are not220

considered herein (see ?, for an overview). All that is required for their implementation
:::
the

:::::::::::::
implementation

::
of

::::
these

:::::::
choices is

that a basis can be found for the function space such that each solution can be written as a linear combination of basis functions.

For example, if we have a basis φi of the finite dimensional function space Qh of temperature solutions, then we can write

each temperature solution as

T (x) =
∑
i

Tiφi(x) (11)225

where Ti represents the coefficients that we can collect into a discrete solution vector T. Using a Lagrangian polynomial basis

the coefficients Ti correspond to values at the nodes, where each node i is associated with one basis function φi, but this is not

generally true for other choices of finite element bases.

In curved domains, boundaries can only be approximated with a finite number of triangles, tetrahedrals, quadrilaterals or

hexahedrals. In a sense, this can be seen as a piecewise linear (or bi/tri-linear) approximation where the domain is approximated230

by straight lines (edges) between vertices. A more accurate representation of the domain is obtained by allowing higher order

polynomials that describe the physical embedding of the element within the domain. A typical choice is to use a so-called

isoparametric representation in which the polynomial order of the embedding is the same as that of the discretised functions

that are solved for.

Finally, we note that it is common to use a subscript h for the discrete, finite-dimensional function subspaces and Ωh for the235

discretised approximation by the mesh of the domain Ω, but since the remainder of this manuscript focusses on the details and

implementation of this discretisation, we simply drop the h subscripts from here on.

4.1 Boundary conditions

In the Cartesian examples considered below, zero-slip and free-slip boundary conditions for
::::::::
Equations (8) and (9) are imposed

through strong Dirichlet boundary conditions for velocity u. This is achieved by restricting the velocity function space V to240

a subspace V0 of vector functions for which all components (zero-slip) or only the normal component (free-slip) are zero at

the boundary. Since this restriction also applies to the test functions v, the weak form only needs to be satisfied for all test

functions v ∈ V0 that satisfy the homogeneous boundary conditions. Therefore, the omitted boundary integral

−
∫
∂Ω

v ·
(
µ
[
∇u+ (∇u)

T
])
·n ds (12)

that was required to obtain the integrated by parts viscosity term in Equation (8), automatically vanishes for zero-slip boundary245

conditions as v = 0 at the domain boundary, ∂Ω. In the case of a free-slip boundary condition for which the tangential compo-

nents of v are non-zero, the boundary term does not vanish, but by omitting that term in
:::::::
Equation

:
(8) we weakly impose a zero

8

shear stress condition. The boundary term obtained by integrating the divergence term in
::::::
pressure

:::::::
gradient

:::::
term

::
in

::::::::
Equation

(2) by parts,∫
∂Ω

wv ·np
:

ds, (13)250

vanishes for both
::::
also

:::::::
vanishes

::
as

::::::::
v ·n= 0

:::
for

::::::
v ∈ V0::

in
::::
both

:::
the

:
zero-slip and free-slip boundary conditions because of the

no-outflow boundary condition
::::
cases.

Similarly, in the examples presented below, we impose strong Dirichlet boundary conditions for temperature at the top and

bottom boundaries of our domain. The test functions are restricted to Q0 which consists of temperature functions that satisfy

homogeneous boundary conditions at these boundaries, and thus255 ∫
∂Ω

qn ·κ∇T ds, (14)

the boundary term associated with integrating by parts of the diffusion term, vanishes. In Cartesian domains the boundary term

does not vanish for the lateral boundaries, but by omitting this term from
::::::::
Equation (10) we weakly impose a homogeneous

Neumann (zero-flux) boundary condition at these boundaries. The temperature solution itself is found in Q0 + {Tinhom} where

Tinhom is any representative temperature function that satisfies the required inhomogenous boundary conditions.260

In curved domains, such as the 2-D cylindrical
::::
shell and 3-D spherical

::::
shell cases examined below, imposing free-slip

boundary conditions is complicated by the fact that it is not straightforward to decompose the degrees of freedom of the velocity

space V into tangential and lateral components for many finite element discretisations. For Lagrangian based discretisations

we could define normal vectors at the Lagrangian nodes on the surface and decompose accordingly, but these normal vectors

would have to be averaged due to the piecewise approximation of the curved surface. To avoid such complications for our265

examples in cylindrical and spherical geometries, we employ a symmetric Nitsche penalty method (?) where the velocity space

is not restricted and, thus, retains all discrete solutions with a non-zero normal component. This entails adding the following

three surface integrals to Equation (8):

−
∫
∂Ω

v ·n n ·
(
µ
[
∇u+ (∇u)

T
])
·n ds−

∫
∂Ω

n ·
(
µ
[
∇v+ (∇v)

T
])
·n u ·n ds+

∫
∂Ω

CNitscheµv ·n u ·n ds . (15)

The first of these corresponds to the normal component of Equation (12) associated with integration by parts of the viscosity270

term. The tangential component, as before, is omitted and weakly imposes a zero shear stress condition. The second term

ensures symmetry of Equation (8) with respect to u and v. The third term penalizes the normal component of u and involves

a penalty parameter CNitsche > 0 that should be sufficiently large to ensure coercivity of
::
the

:::::::
bilinear

:::::
form FStokes as a bilinear

form in u and v
:::::::::
introduced

::
in

:::::::
Section

:::
4.3. Lower bounds for CNitsche,f on each face f can be derived for simplicial (?) and

quadrilateral/hexahedral (?) meshes, respectively:275

Triangular (d= 2) / Tetrahedral (d= 3) meshes: CNitsche,f >Cip
p(p+ d− 1)

d

Af
Vcf

, (16)

Quadrilateral/Hexahedral meshes: CNitsche,f >Cip(p+ 1)2 Af
Vcf

, (17)

9

where Af is the facet area of face f , Vcf the cell volume of the adjacent cell cf , and p is the polynomial degree of the

velocity discretisation. Here, we introduce an additional factor, Cip, to account for spatial variance of the viscosity µ in the

adjacent cell, and domain curvature, which are not taken into account in the standard lower bounds (using Cip = 1). In all280

free-slip cylindrical and spherical
:::
shell

:
examples presented below, we use Cip = 100.

::::::
Finally,

:::::::
because

:::
the

::::::
normal

::::::::::
component

::
of

:::::::
velocity

::
is

:::
not

::::::::
restricted

::
in

:::
the

::::::::
velocity

:::::::
function

:::::
space,

::::
the

::::::::
boundary

::::
term

:
(13)

::
no

::::::
longer

::::::::
vanishes,

:::
and

:::
we

::::
also

::::
need

:::
to

::::::
weakly

::::::
impose

:::
the

:::::::::
no-normal

::::
flow

::::::::
condition

::
on

:::
the

:::::::::
continuity

:::::::
equation

:::
by

::::::
adding

:::
the

::::::::
following

:::::::
integral

::
to

:::::::
Equation

:
(9)

:
:

−
∫
∂Ω

wn ·u ds.

::::::::::::

(18)

4.2 Temporal discretisation and solution process for temperature285

For temporal integration, we apply a simple θ scheme to the energy equation (10):

Fenergy(q;Tn+1) :=

∫
Ω

q
Tn+1−Tn

∆t
dx+

∫
Ω

qu · ∇Tn+θ dx+

∫
Ω

(∇q) ·
(
κ∇Tn+θ

)
dx= 0 for all q ∈Q, (19)

where

Tn+θ = θTn+1 + (1− θ)Tn (20)

is interpolated between the temperature solutions Tn and Tn+1 at the beginning and end of the n+ 1-th time step using290

a parameter 0≤ θ ≤ 1. In all examples that follow, we use a Crank-Nicholson
:::::::::::::
Crank-Nicolson

:
scheme, where θ = 0.5. To

simplify we will solve
:
It

::::::
should

::
be

:::::
noted

::::
that

:::
the

:::::::::::::
time-dependent

::::::
energy

:::::::
equation

::
is

:::::::
coupled

::::
with

:::
the

::::::
Stokes

::::::
system

:::::::
through

::
the

:::::::::
buoyancy

::::
term

::::
and,

::
in

:::::
some

::::::
cases,

:::
the

::::::::::::::::::::
temperature-dependence

::
of

::::::::
viscosity

::::
and.

:::
At

:::
the

::::
same

:::::
time,

:::
the

::::::
Stokes

::::::::
equation

::::::
couples

::
to
::::

the
::::::
energy

:::::::
equation

:::::::
through

:::
the

:::::::::
advective

:::::::
velocity.

:::::
These

:::::::::
combined

::::::::
equations

::::
can

::::::::
therefore

::
be

::::::::::
considered

::
as

::
a

::::::
coupled

::::::
system

::::
that

::::::
should

::
be

:::::::
iterated

::::
over.

::::
The

:::::::
solution

::::::::
algorithm

:::::
used

::::
here

::::::
follows

:
a
::::::::

standard
:::::::::::
time-splitting

:::::::::
approach.

:::
We295

::::
solve

:::
the

::::::
Stokes

:::::::
system for velocity and pressure , u and p, in a separate step before solving

::::
with

::::::::
buoyancy

::::
and

::::::::
viscosity

:::::
terms,

:::::
based

:::
on

:
a
:::::
given

:::::::::
prescribed

:::::
initial

::::::::::
temperature

:::::
field.

::
In

:
a
:::::::
separate

::::
step,

:::
we

:::::
solve

:
for the new temperature Tn+1 .

:::::
using

::
the

::::
new

::::::::
velocity,

:::::::
advance

::
in

::::
time

:::
and

::::::
repeat.

::::
The

::::
same

::::
time

::::
loop

::
is

::::
used

::
to

::::::::
converge

:::
the

:::::::
coupling

::
in
::::::::::
steady-state

::::::
cases.

Because Fenergy is linear in q, if we expand the test function q as a linear combination of basis functions φi of Q

Fenergy(q;Tn+1) = Fenergy(
∑
i

qiφi;T
n+1) =

∑
i

qiFenergy(φi;T
n+1) =:

∑
i

qiF(Tn+1)i, (21)300

where F(Tn+1) is the vector with coefficients Fenergy(φi;T
n+1) (i.e. the energy equation tested with the basis functions φi).

Thus, to satisfy Equation (19) we need to solve for a temperature T for which the entire vector F(Tn+1) is zero.

In the general , nonlinear case ,
::::::::
nonlinear

::::
case

:::
(for

::::::::
example,

::
if
:::
the

:::::::
thermal

:::::::::
diffusivity

::
is

::::::::::
temperature

::::::::::
dependent), this can

be solved using a Newton solver, but here the system of equations F(Tn+1) is also linear in Tn+1 and, accordingly, if we also

expand the temperature with respect to the same basis: Tn+1 =
∑
j T

n+1
j φj where we store the coefficients Tn+1

j in a vector305

10

T, we can write it in the usual form as a linear system of equations

AT = b, (22)

with A the matrix that represents the Jacobian ∂F
∂T with respect to the basis φi, and the right-hand side vector b containing all

terms in (19) that do not depend on Tn+1, specifically:

Aij =
∂Fenergy(φi;T

n+1)

∂Tn+1
j

=

∫
Ω

φi
φj
∆t

dx+

∫
Ω

φiu · θ∇φj dx+

∫
Ω

(∇φi) · (κθ∇φj) dx= 0 (23)310

bj = F−F
:::energy(φi;0) =

∫
Ω

φi
Tn

∆t
dx−

∫
Ω

φiu · (1− θ)∇Tn dx−
∫
Ω

(∇φi) · (κ(1− θ)∇Tn) dx= 0 (24)

In the nonlinear case, every Newton iteration requires the solution of such a linear system with a Jacobian matrix Aij =

∂Fenergy/∂T
n+1
j and

:
a
:
right-hand side vector based on the residual bi = Fenergy(φi,T

n+1) that both need
::::
both

::
of

::::::
which

:::
are

to be reassembled every iteration as Tn+1 is iteratively improved. For the 2-D cases presented in this paper, this asymmetric

linear system is solved with a direct solver, and in 3-D using a combination of the GMRES Krylov subspace method with a315

symmetric SOR (SSOR) preconditioner.

4.3 Solving for velocity and pressure

In a separate step, we solve Equations (8) and (9) for velocity and pressure. Since these weak equations need to hold for all test

functions v ∈ V and w ∈W we can equivalently write, using a single residual functional FStokes:
320

FStokes(v,w;u,p) =

∫
Ω

(∇v) : µ
[
∇u+ (∇u)

T
]

dx+−
:

∫
Ω

·
(
∇·v

)
p dx

−
∫
Ω

Ra0Tv · k̂ dx+−
:

∫
Ω

∇w∇
:
·u dx= 0 for all v ∈ V,w ∈W, (25)

where we have multiplied the continuity equation with −1 to ensure symmetry between the ∇p and ∇ ·u
::::
∇ ·u

:
terms. This

combined weak form that we simultaneously solve for a velocity u ∈ V
:::::
u ∈ V

:
and pressure p ∈W is referred to as a mixed

problem, and the combined solution (u,p)
:::::
(u,p) is said to be found in the mixed function space V ⊕W .325

As before, we expand the discrete solutions u and p, and test functions v and w in terms of basis functions for V and W

u=
∑
i

uiψi, v =
∑
i

viψi, span{ψi}= V (26)

p=
∑
k

pkχk, w =
∑
k

wkχk, span{χk}=W (27)

For isoviscous cases, where FStokes is linear in u and p, we then derive a linear system of the following formK G

GT 0

u

p

=

f

0

 (28)330

11

where

Kij =
∂FStokes(ψi,0;u,p)

∂uj

∂FStokes(ψi,0;u,p)

∂uj
::::::::::::::::

=

∫
Ω

(∇ψi) : µ
[
∇ψj +

(
∇ψj

)T]
dx (29)

Gik =
∂FStokes(ψi,0;u,p)

∂pk
=−

:

∫
Ω

(
∇·
::
ψi·
)
∇χk dx=−∂FStokes(0,χk;u,p)

∂ui

∂FStokes(0,χk;u,p)

∂ui
::::::::::::::::

(30)

fi =Ra0

∫
Ω

Tψi · k̂ dx (31)

For cases with more general rheologies, in particular those with a strain-rate dependent viscosity, the system FStokes(u,p) = 0335

is nonlinear and can be solved using Newton’s method. This requires the solution in every Newton iteration of a linear system

of the same form as in Equation (28) but with an additional term in K associated with ∂µ/∂u.
:::
For

:::
the

:::::::::
strain-rate

:::::::::
dependent

::::
cases

::::::::
presented

::
in
::::
this

:::::
paper

:::
this

:::::
takes

:::
the

::::::::
following

::::
form

:

Kij =
∂FStokes(ψi,0;u,p)

∂uj
=

∫
Ω

(∇ψi) : µ

[
∇ψj
::::

+
(
∇ψj

)T]
dx+

∫
Ω

(∇ψi) : (∇u)
∂µ(ε̇)

∂ε̇
:

[
∇ψj
::::

+
(
∇ψj

)T]
dx

:::

(32)

::::
Note

:::
that

:::
the

:::::::::
additional

::::
term

:::::
makes

:::
the

::::::
matrix

::::::::
explicitly

::::::::
dependent

:::
on

::
the

:::::::
solution

::
u

:::::
itself,

:::
and

::
is

::::::::::
asymmetric.

:::::
Here,

:::
for

::::::
brevity340

::
we

:::::
have

:::
not

::::::::
expanded

:::
the

:::::::::
derivative

::
of

::
µ

::::
with

::::::
respect

::
to
:::

the
:::::::::

strain-rate
::::::
tensor

::
ε̇.

::::
Such

:::::::::
additional

:::::
terms

::::::
require

::
a
:::::::::
significant

::::::
amount

::
of

:::::
effort

::
to

:::::::::
implement

::
in

:::::::::
traditional

:::::
codes

:::
and

::::
need

::::::::
adapting

::
to

:::
the

::::::
specific

::::::::::
rheological

::::::::::::
approximation

:::
that

::
is

:::::
used,

:::
but

:::
this

::
is

::
all

:::::::
handled

:::::::::::
automatically

::::
here

:::::::
through

:::
the

:::::::::::
combination

::
of

::::::::
symbolic

:::::::::::
differentiation

::::
and

::::
code

:::::::::
generation

::
in

:::::::::
Firedrake.

There is a wide literature on iterative methods for solving saddle point systems of the form in Equation (28). For an overview

of the methods commonly used in geodynamics, see ?. Here we employ the Schur complement approach, where pressure p is345

determined by solving

GTK−1Gp =GTK−1f . (33)

It should be noted that K−1 is not assembled explicitly. Rather, in a first step we obtain y =K−1f by solving Ky = f so that

we can construct the right-hand side of the equation. We subsequently apply an
:::
the

::::::
flexible

::::::::
GMRES

:::
(?) iterative method to the

linear system as a whole, in which each iteration requires matrix-vector multiplication with the matrix GTK−1G that again350

involves the solution of a linear system with matrix K. In addition to this matrix-vector multiplication we
:::
We also need a

suitable preconditioner. Here we follow the inverse scaled-mass matrix approach which uses the following approximation

GTK−1G≈M, Mij =

∫
Ω

µψiψj (34)

Finally, after solving Equation (33) for p, we obtain u in a final solve Ku = f−Gp.

Since this solution process involves multiple solves with the matrix K, we also need an efficient algorithm to solve that355

system. For this, we combine the conjugate gradient method with an algebraic multigrid approach, specifically the Geometric

Algebraic Multigrid (GAMG) method implemented in PETSc (???).

12

Depending on boundary conditions, the linearised Stokes system admits a number of null modes. In the absence of open

boundaries, which is the case for all cases examined here, the pressure admits a constant null mode, where any arbitrary

constant can be added to the pressure solution and remain a valid solution to the equations. In addition, the cylindrical and360

spherical
::::
shell cases with free-slip boundary conditions at both boundaries examined in Section 5, admit, respectively, one

and three independent rotational null modes in velocity. These
:::
As

::::
these

:
null modes result in indefinite matricesand

:::::::
singular

:::::::
matrices,

:
preconditioned iterative methods typically require

:::::
should

::::::::
typically

::
be

::::::::
provided

::::
with

:
the null vectorsto be provided

so that they can be projected out during iteration.

In the absence of any Dirichlet conditions on velocity, the nullspace of the velocity block K also consists of a further two365

independent translational modes in 2D, and three in 3D. Even if, as for the cases here, the
::
in

::::::::::
simulations

:::::
where

:
boundary

conditions do not admit all
:::
any

:
rotational and translational modes, these solutions are still

:::::
remain

:
associated with low energy

modes of the matrix, and some
:
.
:::::
Some

:
multigrid methods use this information to improve their performance by ensuring that

these near-nullspace
:::::::
so-called

:::::::::::::
near-nullspace modes are accurately represented at the coarser levels (?). We make use of this

in several of the examples considered below.370

5 Examples: Benchmark Cases and Validation

Firedrake provides a complete finite element problem-solving environment
::::::::
framework

:::
for

:::::::
solving

:::::
finite

:::::::
element

::::::::
problems,

highlighted in this section through a series of examples. We start in Section 5.1 with the most basic problem – isoviscous,

incompressible convection, in an enclosed 2-D Cartesian box – and systematically build complexity, initially moving into more

realistic physical approximations (Section 5.2) and, subsequently, geometries that are more representative of Earth’s mantle375

(Section 5.3).
:::
The

:::::
cases

:::::::::
examined,

:::
and

:::
the

:::::::::
challenges

:::::::::
associated

::::
with

:::::
each,

:::
are

::::::::::
summarised

::
in

:::::
Table

::
1.

5.1 Basic Example: 2-D Convection in a Square Box

A simple 2-D square convection problem, from ?, for execution in Firedrake, is displayed in Listing 1. The problem is in-

compressible, isoviscous, heated from below and cooled from above, with closed, free-slip boundaries, on a unit square mesh.

::::
Name

:::::
Source

:::::::
Geometry

::::::
Rheology

::::::::
Additional

:::::::::
Functionality

:::
Base

:::
Case

: :
?

::
2-D

:::::::
Cartesian

:::::::
Isoviscous

:
–

:::
2-D

:::::::::
Compressible

:
?

::
2-D

:::::::
Cartesian

:::::::
Isoviscous

:::
UFL

::::::
changes,

:::::::
reference

:::
state,

:::::::
boundary

:::::::
conditions

::::
(BCs)

::
2-D

:::::::::
Viscoplastic

:
?

::
2-D

:::::::
Cartesian

:::::::
µ(T,z, ε̇)

:
µ
::::::::
calculation,

::::::
nonlinear

:::::
solvers

:::::
(SNES)

:

::
3-D

:::::::
Cartesian

:
?

::
3-D

:::::::
Cartesian

:::::::
Isoviscous

:::::
Iterative

:::::
solvers,

:::::::::::
near-nullspaces

::::
(NNS)

:

:::
2-D

:::::::
Cylindrical

::::
Shell

:
–

:::
2-D

:::::::
Cylindrical

::::
Shell

:::::::
Isoviscous

::::
Radial

::
g,

:::::
Nitsche

::::
BCs,

:::::::
nullspaces,

::::
NNS,

::::::
iterative

:::::
solvers

::
3-D

:::::::
Spherical

:::
Shell

: :
?

::
3-D

:::::::
Spherical

:::
Shell

: :::::::
Isoviscous

::::
Radial

::
g,

:::::
Nitsche

::::
BCs,

:::::::
nullspaces,

::::
NNS,

::::::
iterative

:::::
solvers

:::::
Global

:::::::
Circulation

: :
–

::
3-D

:::::::
Spherical

:::
Shell

: :::::::
µ(T,z, ε̇)

::::
Radial

:
g,
::::

BCs
::::::
(Nitsche,

::::::
GPlates),

::::
NNS,

::::::
iterative

:::::
solvers

Table 1.
:::::::

Summary
::
of

::::
cases

:::::::
examined

::::
here,

:::::
which

:::::::::::
systematically

::::::
increase

::
in
:::::::::
complexity.

:::
The

:::
key

:::::::::
differences

:::
and

::::::::
challenges

:::::::::::
differentiating

:::
each

::::
case

::::
from

::
the

::::
base

::::
case

::
are

:::::::::
highlighted

::
in

::
the

::::
final

::::::
column.

13

1 from firedrake import *
2
3 # Mesh - use a built in meshing function:
4 mesh = UnitSquareMesh(40, 40, quadrilateral=True)
5 left, right, bottom, top = 1, 2, 3, 4 # Boundary IDs
6 n = FacetNormal(mesh) # Normals, required for Nusselt number
7 domain_volume = assemble(1.*dx(domain=mesh)) # Required for RMS velocity
8
9 # Function spaces:

10 V = VectorFunctionSpace(mesh, family="CG", degree=2) # Velocity function space (vector)
11 W = FunctionSpace(mesh, family="CG", degree=1) # Pressure function space (scalar)
12 Q = FunctionSpace(mesh, family="CG", degree=2) # Temperature function space (scalar)
13 Z = MixedFunctionSpace([V, W]) # Mixed function space
14
15 # Test functions and functions to hold solutions:
16 v, w = TestFunctions(Z)
17 q = TestFunction(Q)
18 z = Function(Z)
19 u, p = split(z) # Returns symbolic UFL expression for u and p
20 Told, Tnew = Function(Q, name="OldTemp"), Function(Q, name="NewTemp")
21 Ttheta = 0.5 * Tnew + 0.5 * Told # Temporal discretisation through Crank-Nicholson
22
23 # Initialise temperature field:
24 X = SpatialCoordinate(mesh)
25 Told.interpolate(1.0 - X[1] + 0.05 * cos(pi * X[0]) * sin(pi * X[1]))
26 Tnew.assign(Told)
27
28 # Important constants:
29 Ra, mu, kappa, delta_t = Constant(1e4), Constant(1.0), Constant(1.0), Constant(1e-6)
30 k = Constant((0, 1)) # Unit vector (in direction opposite to gravity)
31
32 # Stokes equations in UFL form:
33 stress = 2 * mu * sym(grad(u))
34 F_stokes = inner(grad(v), stress) * dx - div(v) * p * dx - (dot(v, k) * Ra * Ttheta) * dx
35 F_stokes += -w * div(u) * dx # Continuity equation
36 # Energy equation in UFL form:
37 F_energy = q * (Tnew - Told) / delta_t * dx + q * dot(u, grad(Ttheta)) * dx + dot(grad(q), kappa * grad(Ttheta))

* dx
38
39 # Set up boundary conditions and deal with nullspaces:
40 bcvx, bcvy = DirichletBC(Z.sub(0).sub(0), 0, sub_domain=(left, right)), DirichletBC(Z.sub(0).sub(1), 0,

sub_domain=(bottom, top))
41 bctb, bctt = DirichletBC(Q, 1.0, sub_domain=bottom), DirichletBC(Q, 0.0, sub_domain=top)
42 p_nullspace = MixedVectorSpaceBasis(Z, [Z.sub(0), VectorSpaceBasis(constant=True)])
43
44 # Initialise output:
45 output_file = File(’output.pvd’) # Create output file
46 u_, p_ = z.split()
47 u_.rename("Velocity"), p_.rename("Pressure")
48
49 # Solver dictionary:
50 solver_parameters = {
51 "mat_type": "aij",
52 "snes_type": "ksponly",
53 "ksp_type": "preonly",
54 "pc_type": "lu",
55 "pc_factor_mat_solver_type": "mumps"}
56
57 # Setup problem and solver objects so we can reuse (cache) solver setup
58 stokes_problem = NonlinearVariationalProblem(F_stokes, z, bcs=[bcvx, bcvy])
59 stokes_solver = NonlinearVariationalSolver(stokes_problem, solver_parameters=solver_parameters, nullspace=

p_nullspace, transpose_nullspace=p_nullspace)
60 energy_problem = NonlinearVariationalProblem(F_energy, Tnew, bcs=[bctb, bctt])
61 energy_solver = NonlinearVariationalSolver(energy_problem, solver_parameters=solver_parameters)
62
63 # Timestepping aspects
64 no_timesteps, target_cfl_no = 2000, 1.0
65 ref_u = Function(V, name="Reference_Velocity")
66
67
68 def compute_timestep(u):
69 """Return the timestep, using CFL criterion"""
70 tstep = (1. / ref_u.interpolate(dot(JacobianInverse(mesh), u)).dat.data.max()) * target_cfl_no
71 return tstep
72
73
74 for timestep in range(0, no_timesteps):
75 if timestep > 0:
76 delta_t.assign(compute_timestep(u))
77 if timestep % 10 == 0:
78 output_file.write(u_, p_, Tnew)
79 stokes_solver.solve()
80 energy_solver.solve()
81 vrms = sqrt(assemble(dot(u, u) * dx)) * sqrt(1./domain_volume)
82 nu_top = -1. * assemble(dot(grad(Tnew), n) * ds(top))
83 Told.assign(Tnew)

Listing 1. Firedrake code required to reproduce 2-D Cartesian incompressible isoviscous benchmark cases from ?.

14

Solutions are obtained by solving the Stokes equations for velocity and pressure, alongside the energy equation for temperature.380

The initial temperature distribution is prescribed as follows:

T (x,y) = (1− y) +Acos(πx)sin(πy), (35)

where A= 0.05 is the amplitude of the initial perturbation.

We have set up the problem using a bilinear quadrilateral element pair (Q2-Q1
:::::
Q2Q1) for velocity and pressure, with Q2

elements for temperature. Firedrake user code is written in Python, so the first step, illustrated on line 1 of Listing 1, is to385

import the Firedrake module. We next need a mesh: for simple domains such as the unit square, Firedrake provides built-

in meshing functions. As such, line 4 defines the mesh, with 40 quadrilateral elements in x and y directions. We also need

function spaces, which is achieved by associating the mesh with the relevant finite element on lines 7-9
:::::
10-12: V , W and

Q are symbolic variables representing function spaces. They also contain the computational implementation of the function

space
:::::::
function

:::::::
space’s

::::::::::::
computational

:::::::::::::
implementation, recording the association of degrees of freedom with the mesh and390

pointing to the finite element basis. The user does not usually need to pay any attention to this: the function space just behaves

as a mathematical object
::
(?). Function spaces can be combined in the natural way to create mixed function spaces, as we do on

line 10
::
13, combining the velocity and pressure function spaces to form a function space for the mixed Stokes problem, Z. Note

that although we use
::::
Here

:::
we

::::::
specify

:
continuous Lagrange elements (CG) in all examples presented herein, Firedrake offers

a range of different options, including discontinuous elements (DG)
:
of

::::::::::
polynomial

::::::
degree

::
2

:::
and

::
1

:::
for

:::::::
velocity

:::
and

::::::::
pressure395

::::::::::
respectively,

:::
on

:
a
:::::::::::

quadrilateral
::::::
mesh,

:::::
which

:::::
gives

:::
us

:::
the

:::::
Q2Q1

:::::::
element

::::
pair. Test functions, v, w and q are subsequently

defined (lines 13-14
:::::
16-17) and we also specify functions to hold our solutions (lines 15-18

::::
18-21): z in the mixed function

space, noting that a symbolic representation of the two parts – velocity and pressure – is obtained with split on line 16
::
19, and

Told and Tnew (line 17
::
20), required for the Crank-Nicholson

:::::::::::::
Crank-Nicolson

:
scheme used for temporal discretisation in our

energy equation (see Equations 19 and 20 in Section 4.2), where Tθ is defined on line 18.
::
21.

:
400

We obtain symbolic expressions for coordinates in the physical mesh (line 21
::
24) and subsequently use these to initialize the

old temperature field, via Equation (35), on line 22. This is the first point at which
::
25.

::::
This

::
is
::::::
where Firedrake transforms a

symbolic operation into a numerical computation . The
::
for

:::
the

::::
first

::::
time:

:::
the

:
interpolate method generates C code which

:::
that

evaluates this expression at the nodes of
::
in

:::
the

:::::::
function

:::::
space

:::::::::
associated

::::
with Told, and immediately executes it to populate the

::::::::
coefficient

:
values of Told. We initialize Tnew with the values of Told, on line 23

::
26, via the assign function. Important constants405

in this problem (Rayleigh Number, Ra; viscosity, µ; thermal diffusivity, κ), in addition to the constant timestep (∆t) and unit

vector (k
:
k̂), are defined on lines 26-30.

:::::
29-30.

::
In

:::::::
addition

:::
we

:::::
define

::
a
:::::::
constant

:::
for

:::::::
timestep

::::
(∆t)::::

with
:::
an

:::::
initial

::::
value

:::
of

:::::
10−6.

Constant
::::::
objects

:::::
define

::::::
spatial

::::::::
constants,

::::
with

::
a
:::::
value

:::
that

:::
can

:::
be

:::::::::
overwritten

::
in

::::
later

:::::::::
timesteps,

::
as

:::
we

::
do

::
in

::::
this

:::::::
example

:::::
using

::
an

:::::::
adaptive

::::::::
timestep. We note that viscosity could also be a Function, if we wanted spatial variation.

We are now in a position to define the variational problems expressed in Equations (25) and (19). Although in this test case410

the problems are linear, we maintain the more general nonlinear residual form FStokes(v,u) = 0 and Fenergy(q,T) = 0, to allow

for straightforward extension to nonlinear problems below. The symbolic expressions for FStokes and FEnergy in the UFL are

15

given on lines 33-37: the resemblance to the mathematical formulation is immediately apparent. Integration over the domain is

indicated by multiplication with dx.

Results from 2-D incompressible isoviscous square convection benchmark cases: (a) Nusselt number versus number of415

pressure and velocity degrees of freedom (DOF), at Ra= 1× 104 (Case 1a - ?), for a series of uniform, structured meshes; (b)

RMS velocity versus number of pressure and velocity DOF, at Ra= 1× 104; (c, d) as in panels a and b, but at Ra= 1× 105

(Case 1b - ?); (e, f) at Ra= 1× 106 (Case 1c - ?). Benchmark values are denoted by dashed red lines. In panels e and f, we

also display results from simulations where temperature is represented through a Q1 discretisation (Q2Q1_Q1), for comparison

with our standard Q2 temperature discretisations (Q2Q1_Q2).420

Strong Dirichlet boundary conditions for velocity (bcvx, bcvy) and temperature (bctb, bctt) are specified on lines 40-41.

A Dirichlet boundary condition is created by constructing a Python DirichletBC object, where we
::
the

::::
user

:
must provide the

function space the condition applies to, the
:::
with

:::
the

::::::::
boundary

:::::::::
condition value, and the part of the mesh at which it applies.

The latter uses integer mesh markers which are commonly used by mesh generation software to tag entities of meshes. The

:::::::::
Boundaries

:::
are

::::::::::::
automatically

::::::
tagged

:::
by

:::
the built-in meshes supported by Firedrake(such as .

::::
For

:
the UnitSquareMesh being425

used here) automatically tag the boundary. For this mesh, tag 1 corresponds to the plane x= 0; 2 to x= 1; 3 to y = 0; and

4 to y = 1
:::::
(these

::::::
integer

::::::
values

:::
are

::::::::
assigned

::
to

::::
left,

:::::
right,

::::::
bottom

::::
and

:::
top

::
on

::::
line

::
5). Note how we are applying boundary

conditions
:::::::
boundary

:::::::::
conditions

:::
are

:::::
being

:::::::
applied to the velocity part of the mixed finite element space Z, indicated by Z.sub

(0). Within Z.sub(0) we can further subdivide into Z.sub(0).sub(0) and Z.sub(0).sub(1) to apply boundary conditions to the x

and y components of the velocity field only. To apply conditions to the pressure space, we would use Z.sub(1). This problem430

has a nullspace of all functions of constant pressure , so we need to
:::::::
constant

:::::::
pressure

::::::::
nullspace

::::
and

:::
we

::::
must

:
ensure that our

solver removes this space. To do so, we build a nullspace object on line 42, which will subsequently be passed to the solver,

and PETSc will take care of seeking
::::
seek

:
a solution in the space orthogonal to the provided nullspace.

We finally come to solving the variational problem, with problems and solver objects created on lines 59–62
:::::
58–61. We

pass in the residual functions FStokes and FEnergy, solution fields (z, Tnew), boundary conditions and, for the Stokes system,435

the nullspace object. Solution of the two variational problems is undertaken by the PETSc library (?), guided by the solver

parameters specified on lines 50–56
::::
50-55

:
(see ??, for comprehensive documentation of all PETSc options). The first option

on line 51, instructs the Jacobian to be assembled in PETSc’s default aij sparse matrix type. Although the Stokes and energy

problem in this example are linear, for consistency with latter cases, we use Firedrake’s NonlinearVariationalSolver which

makes use of PETSc’s Scalable Nonlinear Equations Solvers (SNES) interface. However, since we do not actually need a440

nonlinear solver for this case, we choose the ksponly method on line 52 indicating that only a single linear solve needs to be

performed. The linear solvers are configured through PETSc’s Krylov Subspace (KSP) interface, where we can request a direct

solver by choosing the preonly KSP method, in combination with lu as the ‘preconditioner’ (PC) type (lines 53–54
:::::
53-54). The

specific implementation of the LU-decomposition based direct solver is selected on line 55 , as the MUMPS library (??). As

we shall see through subsequent examples, the solution process is fully programmable, enabling the creation of sophisticated445

solvers by composing together
:::::::::
combining multiple layers of Krylov methods and preconditioners

:::
(?).

16

Final steady-state temperature field, in 2-D and 3-D, from Firedrake simulations, designed to match: (a) Case 1a from (?),

with contours spanning temperatures of 0 to 1, at 0.05 intervals; (b) Case 1a from (?), with transparent isosurfaces plotted at

T = 0.3, 0.5 and 0.7.

The time-loop is initiated on line 64
::::::
defined

::
in

:::::
lines

:::::
74-83, with the Stokes system solved on line 67

::
79

:
and the energy450

equation on line 68.
::
80.

:
These solve calls once again convert symbolic mathematics into computation. The linear systems for

both problems are based on the Jacobian matrix, and a right-hand side vector based on the residual, as indicated in Equations

(22), (23) and (24) for the energy equation, and Equations (28), (29), (30) and (31) for the Stokes equation. Note, however,

that the symbolic expression for the Jacobian is derived automatically in UFL. Firedrake’s TSFC (?) subsequently converts the

UFL into highly optimised assembly code. This code ,
::::::
which is then executed to create the matrix and vectors, and

::::
with the455

resulting system is passed back
::::::
passed to PETSc for solution. Finally, we note that output

::::::
Output is written on line 66

::::
lines

:::::
77-78, to a .pvd file, initialised on line 45, for visualisation in software such as ParaView (e.g. ?).

In < 70

::::
After

:::
the

::::
first

:::::::
timestep

:::
the

::::::::
timestep

:::
size

:::
∆t

::
is
:::::::

adapted
:::::
(lines

::::::
75-76)

::
to
::
a
:::::
value

::::::::
computed

::
in
:::
the

:
compute_timestep

:::::::
function

::::
(lines

:::::::
68-71).

:::::
This

:::::::
function

:::::::::
computes

:
a
:::::::::::

CFL-bound
:::::::
timestep

:::
by

::::
first

:::::::::
computing

::::
the

:::::::
velocity

::::::::::
transformed

:::::
from

::::::::
physical460

:::::::::
coordinates

::::
into

:::
the

::::
local

::::::::::
coordinates

::
of

:::
the

:::::::
reference

::::::::
element.

::::
This

::::::::::::
transformation

::
is

::::::::
performed

:::
by

::::::::::
multiplying

::::::
velocity

:::
by

:::
the

::::::
inverse

::
of

:::
the

:::::::
Jacobian

::
of

:::
the

:::::::
physical

:::::::::
coordinate

:::::::::::::
transformation,

:::
and

:::::::::::
interpolating

::::
this

:::
into

::
a

::::::::
predefined

::::::
vector

:::::::
function

:
u_ref

::::
(line

:::
70).

:::::
Since

:::
the

::::::::::
dimensions

::
of

:::
all

::::::::::::::::::::
quadrilaterals/hexahedra

::
in

::::
local

::::::::::
coordinates

::::
have

::::
unit

:::::
length

::
in

::::
each

:::::::::
direction,

:::
the

::::
CFL

::::::::
condition

:::
now

:::::::::
simplifies

::
to

:::::::::::
uref ∗∆t≤ 1,

:::::
which

:::::
needs

::
to
:::
be

:::::::
satisfied

:::
for

::
all

::::::::::
components

:::
of

:::
uref.::::

The
::::::::
maximum

:::::::::
allowable

::::
time

:::
step

::::
can

:::
thus

:::
be

::::::::
computed

:::
by

::::::::
extracting

:::
the

::::::::
reference

:::::::
velocity

::::::
vectors

::
at

:::
all

:::::
nodal

::::::::
locations,

:::::::
obtained

:::
by

:::::
taking

:::
the

:::::::::
maximum465

::
of

:::
the .dat.data

:::::::
property

::
of

:::
the

::::::::::
interpolated

::::::::
function.

:::
The

:::::::::
advantage

::
of

:::
this

:::::::
method

::
of

:::::::::
computing

:::
the

:::::::
timestep

::::
over

::::
one

:::::
based

::
on

:::
the

:::::::::
traditional

::::
CFL

::::::::
condition

::
in

:::
the

::::
form

::
of

::::::::::::
u∆t/∆x≤ 1,

::
is

:::
that

::
it
:::::::::
generalizes

::
to
:::::::::::
non-uniform

:::
and

::::::
curved

::::::::::::::
(iso-parametric)

::::::
meshes.

:

::
In

::
83

:
lines of Python

::
(56

:::::::::
excluding

:::::::::
comments

:::
and

:::::
blank

:::::
lines), we are able to produce a model that can be executed and

quantitatively compared with benchmark results from ?. To do so, we have computed the RMS velocity andsurface Nusselt470

number
:::
(line

:::
81,

:::::
using

:::
the

::::::
domain

:::::::
volume

:::::::
specified

:::
on

:::
line

:::
7)

:::
and

::::::
surface

:::::::
Nusselt

::::::
number

::::
(line

:::
82,

:::::
using

::
a

:::
unit

::::::
normal

::::::
vector

::::::
defined

::
on

::::
line

:::
6), at a range of different mesh resolutions and Rayleigh numbers, with results presented in Figure 1. Results

converge towards the benchmark solutions, with increasing resolution. The final steady-state temperature field, atRa= 1×106,

is illustrated in Figure 2(a).

To further highlight the flexibility of Firedrake, we have also simulated
:::::
some

::
of these cases using a

:::::::
Q2P1DG:::::::::::

discretisation
:::
for475

::
the

::::::
Stokes

::::::
system

::::
and

:
a
:
Q1 discretisation for the temperature field. The modifications necessary are minimal:

::
for

:::
the

:::::::
former,

on line 9, the polynomial order is
::::
finite

:::::::
element

::::::
family

:
is
::::::::
specified

::
as

::::::
‘DPC’,

::::::
which

:::::::
instructs

::::::::
Firedrake

::
to

:::
use

::
a

::::::::::::
discontinuous,

::::::::
piecewise

:::::
linear

:::::::::::
discretisation

:::
for

::::::::
pressure.

::::
Note

::::
that

:::
this

::::::
choice

::
is

::::::
distinct

:::::
from

:
a
::::::::::::
discontinuous,

:::::::::
piecewise

::::::
bilinear

::::::::
pressure

:::::
space,

::::::
which,

::
in

:::::::::::
combination

::::
with

::::
Q2

::::::::
velocities,

::
is
::::

not
::::
LBB

::::::
stable,

:::::::
whereas

::::
the

:::::::
Q2P1DG ::::

pair
::
is

:::
(?).

::::
For

:::::::::::
temperature,

:::
the

:::::
degree

::::::::
specified

:::
on

:::
line

:::
10

::
is

:
changed from 2 to 1. Results , at

:::::
using

:
a
::::::::::::

discontinuous
:::::
linear

::::::::
pressure,

::
at
:::::::::::::
Ra= 1× 105,

:::
are480

::::::::
presented

::
in

::::::
Figure

:::::
1(c,d),

::::::::
showing

:
a
::::::
similar

:::::
trend

::
to

:::::
those

::
of

:::
the

:::::
Q2Q1

:::::::
element

::::
pair,

:::::
albeit

::::
with

:::::
RMS

::::::::
velocities

::::::::::
converging

17

Ra
 =

 1
06

Ra
 =

 1
05

Ra
 =

 1
04

(a)

(c)

(e)

(b)

(d)

(f)

Figure 1.
::::::
Results

::::
from

:::
2-D

::::::::::::
incompressible

::::::::
isoviscous

:::::
square

::::::::
convection

:::::::::
benchmark

:::::
cases:

::
(a)

::::::
Nusselt

::::::
number

:::::
versus

::::::
number

::
of

:::::::
pressure

:::
and

::::::
velocity

::::::
degrees

::
of

::::::
freedom

::::::
(DOF),

::
at

::::::::::
Ra= 1× 104

:::::::::::
(Case 1a - ?),

::
for

:
a
:::::

series
::
of

:::::::
uniform,

:::::::
structured

:::::::
meshes;

::
(b)

::::
RMS

:::::::
velocity

:::::
versus

:::::
number

::
of
:::::::
pressure

:::
and

::::::
velocity

::::
DOF,

::
at

:::::::::::
Ra= 1× 104;

::
(c,

::
d)
::
as
::
in

:::::
panels

:
a
:::
and

::
b,

:::
but

:
at
:::::::::::
Ra= 1× 105

::::::::::
(Case 1b - ?);

:::
(e,

:
f)
::
at

:::::::::::
Ra= 1× 106

::::::::::
(Case 1c - ?).

::::::::
Benchmark

:::::
values

:::
are

::::::
denoted

::
by

::::::
dashed

::
red

::::
lines.

::
In
:::::
panels

:
c
:::
and

::
d,
:::
we

:::
also

::::::
display

:::::
results

::::
from

::::::::
simulations

:::::
where

:::
the

:::::
Stokes

:::::
system

::::
uses

::
the

::::::
Q2P1DG:::::

finite
::::::
element

:::
pair

::::::::::::
(Q2P1DG :Q2),

:::
and

::
in

:::::
panels

:
e
:::
and

:
f
:::::
where

:::::::::
temperature

::
is

::::::::
represented

:::::
using

:
a
:::
Q1

::::::::::
discretisation

:::::::::
(Q2Q1:Q1),

::
for

:::::::::
comparison

::::
with

:::
our

::::::
standard

::::::::
Q2Q1:Q2

:::::::::::
discretisations.

::::::
towards

::::::::::
benchmark

:::::
values

::::
from

:::::
above

::::::
rather

:::
than

::::::
below.

::::::
Results

:::::
using

:
a
:::
Q1

:::::::::::
discretisation

:::
for

::::::::::
temperature,

::
at
:
Ra= 1×106, are

presented in Figure 1(e,f), again converging towards benchmark values with increasing resolution. We find that, as expected, a

Q2 temperature discretisation leads to more accurate results, although results converge towards the benchmark solutions from

18

(a) (b)

Temperature0 1

Figure 2.
:::

Final
:::::::::
steady-state

:::::::::
temperature

:::::
field,

::
in

:::
2-D

:::
and

::::
3-D,

::::
from

:::::::
Firedrake

::::::::::
simulations,

:::::::
designed

::
to

:::::
match:

:::
(a)

::::
Case

::
1a

::::
from

:::
(?),

::::
with

::::::
contours

:::::::
spanning

::::::::::
temperatures

::
of

:
0
::
to

::
1,

:
at
::::
0.05

:::::::
intervals;

::
(b)

::::
Case

::
1a

::::
from

:::
(?),

::::
with

::::::::
transparent

:::::::::
isosurfaces

:::::
plotted

::
at

:::::::
T = 0.3,

::
0.5

:::
and

::::
0.7.

different directions. For the remainder of the examples considered herein, we use a
:::::
Q2Q1

:::::::::::
discretisation

:::
for

:::
the

::::::
Stokes

::::::
system485

:::
and

:
a
:
Q2 discretisation for temperature.

5.2 Extension: more realistic physics

We next highlight the ease at which simulations can be updated to incorporate more realistic physical approximations. We

first account for compressibility, under the Anelastic Liquid Approximation (e.g. ?), simulating a well-established benchmark

case from ?
:
? (Section 5.2.1). We subsequently focus on a case with a more Earth-like approximation of the rheology (Section490

5.2.2), simulating another well-established benchmark case from ?. All cases are set up in an enclosed 2-D Cartesian box with

free-slip boundary conditions, with the required changes discussed relative to the base case presented in Section 5.1.

5.2.1 Compressibility

The governing equations applicable for compressible mantle convection, under the Anelastic Liquid Approximation (ALA),

are presented in Appendix ?? (based on, for example, ?). Their weak forms are derived by multiplying these equations with495

appropriate test functions and integrating over the domain, as we did with their incompressible counterparts in Section 4. They

differ appreciably from the incompressible approximations that have been utilised thus far, with important updates to all three

governing equations. Despite this, the changes required to incorporate these equations, within UFL and Firedrake, are minimal.

19

Results from Firedrake simulations configured to reproduce 2-D compressible benchmark case from ? at Ra= 105 and

Di= 0.5: (a) final steady-state (full) temperature field, with contours spanning temperatures of 0 to 1, at 0.05 intervals; (b)500

Nusselt number versus number of pressure and velocity DOF, for a series of uniform, structured meshes; (c) RMS velocity

versus number of pressure and velocity DOF. The range of solutions provided by different codes in the ? benchmark study are

bounded by dashed red lines.

Although ?
::::::::
Although

::
? examined a number of cases, we focus on one illustrative example here, atRa= 105 and a dissipation

numberDi= 0.5. This allows us to demonstrate the ease at which these cases can be configured within Firedrake. The required505

changes, relative to the base case, are displayed in Listing 2. They can be summarised as follows:

1. Definition and initialisation of additional constants and the 1-D reference state, derived here via an Adams-Williamson

equation of state (lines 1-12). In this benchmark example, several of the key constants and parameters required for

compressible convection are assigned values of 1 and could be removed. However, to ensure consistency between the

governing equations presented in Appendix ?? and the UFL, we chose not to omit these constants in Listing 2.510

2. The UFL for the momentum, mass conservation and energy equations is updated, emphasising once again the resem-

blance to the mathematical formulation (lines 16-20). The key changes are as follows: (i) the stress tensor is updated to

account for a non-zero velocity divergence (line 17), where Identity represents a unit matrix of a given size (2 in this

case) and div represents the symbolic divergence of a field; (ii) the Stokes equations are further modified to account

for dynamic pressure’s influence on buoyancy (final term on line 18); (iii) the mass conservation equation includes the515

depth-dependent reference density, ρ̄ (line 19); and (iv) the energy equation is updated to incorporate adiabatic heating

and viscous dissipation terms (final 2 terms on line 20).

1 # Additional constants and definition of compressible reference state:
2 Ra = Constant(1e5) # Rayleigh number
3 Di = Constant(0.5) # Dissipation number
4 T0 = Constant(0.091) # Non-dimensional surface temperature
5 tcond = Constant(1.0) # Thermal conductivity
6 rho_0, alpha, cpr, cvr, gruneisen = 1.0, 1.0, 1.0, 1.0, 1.0
7 rhobar = Function(Q, name="CompRefDensity").interpolate(rho_0 * exp(((1.0 - X[1]) * Di) / alpha))
8 Tbar = Function(Q, name="CompRefTemperature").interpolate(T0 * exp((1.0 - X[1]) * Di) - T0)
9 alphabar = Function(Q, name="IsobaricThermalExpansivity").assign(1.0)

10 cpbar = Function(Q, name="IsobaricSpecificHeatCapacity").assign(1.0)
11 chibar = Function(Q, name="IsothermalBulkModulus").assign(1.0)
12 FullT = Function(Q, name="FullTemperature").assign(Tnew+Tbar)
13
14 ---
15 # Equations in UFL:
16 I = Identity(2)
17 stress = 2 * mu * sym(grad(u)) - 2./3.*I*mu*div(u)
18 F_stokes = inner(grad(v), stress) * dx - div(v) * p * dx - (dot(v, k) * (Ra * Ttheta * rhobar * alphabar - (Di/

gruneisen) * (cpr/cvr)*rhobar*chibar*p) * dx)
19 F_stokes += -w * div(rhobar*u) * dx # Mass conservation
20 F_energy = q * rhobar * cpbar * ((Tnew - Told) / delta_t) * dx + q * rhobar * cpbar * dot(u, grad(Ttheta)) * dx +

dot(grad(q), tcond * grad(Tbar + Ttheta)) * dx + q * (alphabar * rhobar * Di * u[1] * Ttheta) * dx - q * (
(Di/Ra) * inner(stress, grad(u))) * dx

21
22 ---
23 # Temperature boundary conditions:
24 bctb, bctt = DirichletBC(Q, 1.0 - (T0*exp(Di) - T0), bottom), DirichletBC(Q, 0.0, top)
25
26 ---
27 # Pressure nullspace:
28 stokes_solver = NonlinearVariationalSolver(stokes_problem, solver_parameters=solver_parameters,

transpose_nullspace=p_nullspace)

Listing 2. Difference in Firedrake code required to reproduce compressible ALA cases from ? relative to our base case.

20

(a)

(c)

(b)

0.0

1.0
Te
m
pe

ra
tu
re

Figure 3.
::::::
Results

:::
from

::::::::
Firedrake

:::::::::
simulations

::::::::
configured

:
to
::::::::
reproduce

:::
2-D

::::::::::
compressible

:::::::::
benchmark

:::
case

::::
from

:::
? at

::::::::
Ra= 105

:::
and

::::::::
Di= 0.5:

::
(a)

::::
final

:::::::::
steady-state

::::
(full)

:::::::::
temperature

:::::
field,

:::
with

:::::::
contours

:::::::
spanning

::::::::::
temperatures

::
of
::

0
::
to

::
1,

::
at

:::
0.05

::::::::
intervals;

::
(b)

::::::
Nusselt

:::::::
number

:::::
versus

:::::
number

::
of
:::::::

pressure
:::
and

::::::
velocity

:::::
DOF,

::
for

::
a

::::
series

::
of

:::::::
uniform,

::::::::
structured

::::::
meshes;

::
(c)

:::::
RMS

::::::
velocity

:::::
versus

::::::
number

::
of

::::::
pressure

:::
and

:::::::
velocity

::::
DOF.

:::
The

:::::
range

::
of

:::::::
solutions

::::::
provided

:::
by

::::::
different

:::::
codes

::
in

::
the

::::::::::
? benchmark

::::
study

:::
are

:::::::
bounded

::
by

:::::
dashed

:::
red

::::
lines.

3. Temperature boundary conditions are updated, noting that we are solving for deviatoric temperature rather than the full

temperature, which also includes the reference state.

4. In our Stokes solver, we only specify the transpose_nullspace option (as opposed to both nullspace and transpose_nullspace520

options for our base case): the incorporation of dynamic pressure’s impact on buoyancy implies that the (right-hand side)

pressure nullspace is no longer the same as the (left-hand side) transpose nullspace. The transpose nullspace remains the

same space of constant pressure solutions, and is used to project out these modes from the initial residual vector to ensure

that the linear system is well-posed. The right-hand side nullspace now consists of different modes, which can be found

through integration. However, this nullspace is only required for iterative linear solvers in which the modes are projected525

out from the solution vector at each iteration to prevent its unbounded growth.

We note that in setting up the Stokes solver as we have, we incorporate the pressure effect on buoyancy implicitly, as

advocated by ?. As this term depends on the pressure that we are solving for, an extra term is required in addition to the

pressure gradient matrix G in the Jacobian matrix in Equation (28). The inclusion of ρ̄ in the continuity constraint also means

that this term is no longer simply represented by the transpose of G. Such changes are automatically incorporated by Firedrake,530

21

1 # Stokes solver dictionary:
2 stokes_solver_parameters = {
3 "mat_type": "aij",
4 "snes_type": "newtonls",
5 "snes_linesearch_type": "l2",
6 "snes_max_it": 100,
7 "snes_atol": 1e-10,
8 "ksp_type": "preonly",
9 "pc_type": "lu",

10 "pc_factor_mat_solver_type": "mumps",
11 }
12
13 # Energy solver dictionary:
14 energy_solver_parameters = {
15 "mat_type": "aij",
16 "snes_type": "ksponly",
17 "ksp_type": "preonly",
18 "pc_type": "lu",
19 "pc_factor_mat_solver_type": "mumps",
20 }
21
22 ---
23 # Viscosity calculation and Rayleigh number:
24 Ra = Constant(100.) # Rayleigh number
25 gamma_T, gamma_Z = Constant(ln(10**5)), Constant(ln(10))
26 mu_star, sigma_y = Constant(0.001), Constant(1.0)
27 epsilon = sym(grad(u)) # Strain-rate
28 epsii = sqrt(inner(epsilon,epsilon) + 1e-20) # 2nd invariant (with tolerance to ensure stability)
29 mu_lin = exp(-gamma_T*Tnew + gamma_Z*(1 - X[1]))
30 mu_plast = mu_star + (sigma_y / epsii)
31 mu = (2. * mu_lin * mu_plast) / (mu_lin + mu_plast)
32
33 ---
34 # Updated solver:
35 stokes_solver = NonlinearVariationalSolver(stokes_problem, solver_parameters=stokes_solver_parameters, nullspace=

p_nullspace, transpose_nullspace=p_nullspace)
36 energy_solver = NonlinearVariationalSolver(energy_problem, solver_parameters=energy_solver_parameters)

Listing 3. Difference in Firedrake code required to reproduce viscoplastic rheology cases from ? relative to our base case.

highlighting a major benefit of the automatic assembly approach that is utilised. To ensure the validity of our approach, we have

computed the RMS velocity and Nusselt number at a range of different mesh resolutions, for direct comparison with ?
:
?, with

results presented in Figure 3, alongside the final steady-state (full) temperature field. As expected, results converge towards the

benchmark solutions, with increasing resolution, demonstrating the applicability and accuracy of Firedrake for compressible

simulations of this nature.535

5.2.2 Viscoplastic Rheology

Results from 2-D benchmark case from ?, with a viscoplastic rheology, at Ra0 = 102: (a) Nusselt number versus number of

pressure and velocity DOF, for a series of uniform, structured meshes; (b) final steady-state temperature field, with contours

spanning temperatures of 0 to 1, at 0.05 intervals; (c) RMS velocity versus number of pressure and velocity DOF; (d) final

steady-state viscosity field (note logarithmic scale). In panels a and c, the range of solutions provided by different codes in the540

? benchmark study are bounded by dashed red lines.

To illustrate the changes necessary to incorporate a viscoplastic rheology, which is more representative of deformation within

Earth’s mantle and lithosphere, we examine a case from ?, a benchmark study intended to form a straightforward extension to

?. Indeed, aside from the viscosity and reference Rayleigh Number (Ra0 = 102), all other aspects of this case are identical to

the case presented in Section 5.1. The viscosity field, µ, is calculated as the harmonic mean between a linear component, µlin545

22

and a nonlinear, plastic component, µplast, which is dependent on the strain-rate, as follows:

µ(T,z, ε̇) = 2

(
1

µlin(T,z)
+

1

µplast(ε̇)

)−1

. (36)

The linear part is given by an Arrhenius law (the so-called Frank-Kamenetskii approximation):

µlin(T,z) = exp(−γTT + γzz), (37)

where γT = ln(∆µT) and γz = ln(∆µz) are parameters controlling the total viscosity contrast due to temperature and depth,550

respectively. The nonlinear component is given by:

µplast(ε̇) = µ? +
σy√
ε̇ : ε̇

(38)

where µ? is a constant representing the effective viscosity at high stresses and σy is the yield stress. The denominator of the

second term in Equation (38) represents the second invariant of the strain-rate tensor. The viscoplastic flow law (Eq. 36) leads

to linear viscous deformation at low stresses and plastic deformation at stresses that exceed σy , with the decrease in viscosity555

limited by the choice of µ?.

Although ? examined a number of cases, we focus on one here (Case 4:Ra0 = 102, ∆µT = 105, ∆µy = 10 and µ? = 10−3),

which allows us to demonstrate how a temperature-, depth- and strain-rate dependent viscosity is incorporated within Firedrake.

The changes required to simulate this case, relative to our base case, are displayed in Listing 3. These are:

1. Linear solver options are no longer applicable, given the dependence of of viscosity on the flow field, through the strain-560

rate. Accordingly, the solver dictionary is updated to account for the nonlinear nature of our Stokes system (lines 2-11).

For the first time, we fully-exploit the SNES, using a setup based on Newton’s method ("snes_type": "newtonls") with a

secant line search over the L2-norm of the function ("snes_linesearch_type": "l2"). As we target a steady-state solution,

an absolute tolerance is specified for our nonlinear solver ("snes_atol": 1e-10).

2. Solver options differ between the (nonlinear) Stokes and (linear) energy systems. As such, a separate solver dictionary565

is specified for solution of the energy equation (lines 13-20). Consistent with our base case, we use a direct solver for

solution of the energy equation, based on the Mumps
:::::::
MUMPS

:
library.

3. Viscosity is calculated as a function of temperature, depth (µlin - line 29) and strain-rate (µplast - line 30), using constants

specified on lines 25-26. Linear and nonlinear components are subsequently combined via a harmonic mean (line 31).

4. Updated solver dictionaries are incorporated into their respective solvers on lines 35 and 36, noting that for this case570

both the nullspace and transpose_nullspace options are provided for the Stokes system, consistent with the base case.

We note that even though the UFL for the Stokes and energy systems remains identical to our base case, assembly of addi-

tional terms in the Jacobian, associated with the nonlinearity in this system, is once again handled automatically by Firedrake.

To compare our results to those of ? we have computed the RMS velocity and Nusselt number at a range of different mesh

23

(b)

0.0 1.0
Temperature

(c)

(d)

(a)

(c)

2e-4 2.0

Viscosity

(b)

Figure 4.
:::::
Results

::::
from

::::
2-D

::::::::
benchmark

::::
case

::::
from

::
?,
::::
with

::
a

:::::::::
viscoplastic

:::::::
rheology,

::
at

:::::::::
Ra0 = 102:

:::
(a)

::::::
Nusselt

::::::
number

:::::
versus

:::::::
number

::
of

::::::
pressure

:::
and

:::::::
velocity

::::
DOF,

:::
for

::
a
:::::
series

::
of

:::::::
uniform,

::::::::
structured

::::::
meshes;

:::
(b)

::::
final

:::::::::
steady-state

:::::::::
temperature

:::::
field,

::::
with

:::::::
contours

:::::::
spanning

:::::::::
temperatures

::
of

::
0

:
to
::

1,
::
at

::::
0.05

:::::::
intervals;

::
(c)

:::::
RMS

::::::
velocity

:::::
versus

::::::
number

::
of

::::::
pressure

:::
and

::::::
velocity

:::::
DOF;

:::
(d)

:::
final

:::::::::
steady-state

:::::::
viscosity

::::
field

::::
(note

:::::::::
logarithmic

:::::
scale).

::
In

:::::
panels

::
a
:::
and

::
c,

:::
the

::::
range

::
of

:::::::
solutions

:::::::
provided

:::
by

:::::::
different

::::
codes

::
in
:::

the
::::::::::
? benchmark

:::::
study

::
are

:::::::
bounded

:::
by

:::::
dashed

:::
red

::::
lines.

resolutions. These are presented in Figure 4 and, once again, results converge towards the benchmark solutions, with increasing575

resolution. Final steady-state temperature and viscosity fields are also illustrated to allow for straightforward comparison with

those presented by ?, illustrating that viscosity varies by roughly four orders of magnitude across the computational domain.

Taken together, our compressible and viscoplastic rheology results demonstrate the accuracy and applicability of Firedrake

for problems incorporating a range of different approximations to the underlying physics. They have allowed us to illustrate

Firedrake’s flexibility: by leveraging UFL and PETSc, the framework is easily extensible, allowing for straightforward appli-580

cation to scenarios involving different physical approximations, even if they require distinct solution strategies.

24

5.3 Extension: Dimensions and Geometry

In this section we highlight the ease at which simulations can be examined in different dimensions and geometries, by modi-

fying our basic 2-D case. We primarily simulate benchmark cases that are well-known within the geodynamical community,

initially matching the steady-state, isoviscous simulation of ? in a 3-D Cartesian domain. There is currently no published com-585

munity benchmark for simulations in the 2-D cylindrical
::::
shell domain. As such, we next compare results for an isoviscous,

steady-state case, in a 2-D cylindrical
:::
shell

:
domain, with those of the Fluidity computational modelling framework (?), which

:::
and

::::::::
ASPECT

::::::::::::
computational

::::::::
modelling

:::::::::::
frameworks,

::::::
noting

:::
that

:::::::
Fluidity has been carefully validated against the extensive set

of analytical solutions introduced by ?, in both cylindrical and spherical
::::
shell

:
geometries. Finally, we analyze an isoviscous

3-D spherical
::::
shell

:
benchmark case from ?. Once again, the changes required to run these cases are discussed relative to our590

base case (Section 5.1), unless noted otherwise.

5.3.1 3-D Cartesian Domain

We first examine and validate our setup in a 3-D Cartesian domain, for a steady-state, isoviscous case – specifically Case 1a

from ?. The domain is a box of dimensions 1.0079×0.6283×1. The initial temperature distribution, chosen to produce a single

ascending and descending flow, at x= y = 0 and (x= 1.0079,y = 0.6283), respectively, is prescribed as:595

T (x,y,z) =
[erf(4(1− z)) + erf(−4z) + 1

2

]
+A[cos(πx/1.0079) + cos(πy/0.6283)]sin(πz), (39)

whereA= 0.2 is the amplitude of the initial perturbation.
::
We

::::
note

::::
that

:::
this

:::::
initial

::::::::
condition

:::::
differs

::
to
::::
that

:::::::
specified

::
in

::
?,

:::::::
through

::
the

:::::::
addition

::
of
::::::::
boundary

::::::
layers

:
at
:::
the

::::::
bottom

::::
and

:::
top

::
of

:::
the

::::::
domain

:::::::
(through

:::
the

:::
erf

::::::
terms),

:::::::
although

::
it
:::::
more

::::::::::
consistently

:::::
drives

:::::::
solutions

:::::::
towards

:::
the

::::
final

::::::::
published

::::::::::
steady-state

:::::::
results. Boundary conditions for temperature are T = 0 at the surface (z = 1)

and T = 1 at the base (z = 0), with insulating (homogeneous Neumann) sidewalls. No-slip velocity boundary conditions are600

specified at the top surface and base of the domain, with free-slip boundary conditions on all sidewalls. The Rayleigh number

Ra= 3× 104.

In comparison to Listing 1, the changes required to simulate this case, using trilinear (Q2-Q1)
:::::
Q2Q1

:
elements for velocity

and pressure, are minimal. The key differences, summarised in Listing 4, are:

1. The creation of the underlying mesh (lines 1-5), which we generate by extruding a 2-D quadrilateral mesh in the z-605

direction to a layered 3-D hexahedral mesh. Our final mesh has 20× 12× 20 elements, in x-, y- and z-directions,

respectively
::::::
(noting

::::
that

:::
the

::::::
default

:::::
value

:::
for

::::
layer

::::::
height

::
is

:
1
::
/
:::
nz). For extruded meshes, top and bottom boundaries

are tagged by top and bottom, respectively, whilst boundary markers from the base mesh can be used to set boundary

conditions on the relevant side of the extruded mesh. We note that Firedrake exploits the regularity of extruded meshes

to enhance performance.610

2. Specification of the initial condition for temperature, following Equation (39), updated values for Ra, and definition of

the 3-D unit vector (lines 9-11).

25

1 # Mesh Generation:
2 a, b, c, nx, ny, nz = 1.0079, 0.6283, 1.0, 20, int(0.6283/1.0 * 20), 20
3 mesh2d = RectangleMesh(nx, ny, a, b, quadrilateral=True) # Rectangular 2D mesh
4 mesh = ExtrudedMesh(mesh2d, nz)
5 bottom, top, left, right, front, back = "bottom", "top", 1, 2, 3, 4
6
7 ---
8 # Initial condition and constants:
9 Told.interpolate(0.5*(erf((1-X[2])*4)+erf(-X[2]*4)+1) + 0.2*(cos(pi*X[0]/a)+cos(pi*X[1]/b))*sin(pi*X[2]))

10 Ra = Constant(3e4) # Rayleigh number
11 k = Constant((0, 0, 1)) # Unit vector (in direction opposite to gravity).
12
13 ---
14 # Stokes Equation Solver Parameters:
15 stokes_solver_parameters = {
16 "mat_type": "matfree",
17 "snes_type": "ksponly",
18 "ksp_type": "preonly",
19 "pc_type": "fieldsplit",
20 "pc_fieldsplit_type": "schur",
21 "pc_fieldsplit_schur_type": "full",
22 "fieldsplit_0": {
23 "ksp_type": "cg",
24 "ksp_rtol": 1e-7,
25 "pc_type": "python",
26 "pc_python_type": "firedrake.AssembledPC",
27 "assembled_pc_type": "gamg",
28 "assembled_pc_gamg_threshold": 0.01,
29 "assembled_pc_gamg_square_graph": 100,
30 },
31 "fieldsplit_1": {
32 "ksp_type": "fgmres",
33 "ksp_rtol": 1e-6,
34 "pc_type": "python",
35 "pc_python_type": "firedrake.MassInvPC",
36 "Mp_ksp_rtol": 1e-5,
37 "Mp_ksp_type": "cg",
38 "Mp_pc_type": "sor",
39 } }
40
41 # Energy Equation Solver Parameters:
42 energy_solver_parameters = {
43 "mat_type": "aij",
44 "snes_type": "ksponly",
45 "ksp_type": "gmres",
46 "ksp_rtol": 1e-7,
47 "pc_type": "sor", }
48
49 ---
50 # Set up boundary conditions:
51 bcvfb = DirichletBC(Z.sub(0).sub(1), 0, (front, back))
52 bcvlr = DirichletBC(Z.sub(0).sub(0), 0, (left, right))
53 bcvbt = DirichletBC(Z.sub(0), 0, (bot,top))
54 bctb, bctt = DirichletBC(Q, 1.0, bot), DirichletBC(Q, 0.0, top)
55
56 ---
57 # Generating near_nullspaces for GAMG:
58 x_rotV = Function(V).interpolate(as_vector((0, X[2], -X[1])))
59 y_rotV = Function(V).interpolate(as_vector((-X[2], 0, X[0])))
60 z_rotV = Function(V).interpolate(as_vector((-X[1], X[0], 0)))
61 nns_x = Function(V).interpolate(Constant([1., 0., 0.]))
62 nns_y = Function(V).interpolate(Constant([0., 1., 0.]))
63 nns_z = Function(V).interpolate(Constant([0., 0., 1.]))
64 V_near_nullspace = VectorSpaceBasis([nns_x, nns_y, nns_z, x_rotV, y_rotV, z_rotV])
65 V_near_nullspace.orthonormalize()
66 Z_near_nullspace = MixedVectorSpaceBasis(Z, [V_near_nullspace, Z.sub(1)])
67
68 ---
69 # Updated solve setup:
70 stokes_problem = NonlinearVariationalProblem(F_stokes, z, bcs=[bcvbt, bcvfb, bcvlr])
71 stokes_solver = NonlinearVariationalSolver(stokes_problem, solver_parameters=stokes_solver_parameters, appctx={"

mu": mu}, nullspace=p_nullspace, transpose_nullspace=p_nullspace, near_nullspace=Z_near_nullspace)
72 energy_problem = NonlinearVariationalProblem(F_energy, Tnew, bcs=[bctb, bctt])
73 energy_solver = NonlinearVariationalSolver(energy_problem, solver_parameters=energy_solver_parameters)
74
75 ---
76 # Updated diagnostics:
77 nusselt_number_top = -1. * assemble(dot(grad(Tnew), n) * ds_t) * (1./assemble(Tnew * ds_b))

Listing 4. Changes required to reproduce a 3-D Cartesian case from ? relative to Listing 1.

3. The inclusion of Python dictionaries that define iterative solver parameters for the Stokes and energy systems (lines 15-

47). Although direct solves provide robust performance in the 2-D cases examined above, in 3-D the computational (CPU

and memory) requirements quickly become intractable. PETSc’s fieldsplit pc_type provides a class of preconditioners615

for mixed problems that allows one to apply different preconditioners to different blocks of the system.
::::
This

:::::
opens

:::
up

26

(a) (b)

Figure 5. Results from 3-D isoviscous simulations in Firedrake, configured to reproduce benchmark results from Case 1a of ?: (a) Nusselt

number vs. number of pressure and velocity degrees of freedom (DOF), at Ra= 3× 104 , for a series of uniform, structured meshes; (b)

RMS velocity vs. number of pressure and velocity DOF. Benchmark values are denoted by dashed red lines.

:
a
::::
large

:::::
array

::
of

::::::::
potential

:::::
solver

::::::::
strategies

:::
for

:::
the

::::::
Stokes

::::::
saddle

::::
point

::::::
system

:::::::::::::::::::::::::::::::::::
(e.g. many of the methods described in ?).

Here we configure the Schur complement approach as described in Section 4.3.
:::
We

::::
note

:::
that

:::
this

:
fieldsplit

::::::::::
functionality

:::
can

::::
also

::
be

::::
used

:::
to

::::::
provide

::
a
:::::::
stronger

::::::::
coupling

:::::::
between

:::
the

::::::
Stokes

::::::
system

::::
and

::::::
energy

:::::::
equation

::
in
::::::::
strongly

::::::::
nonlinear

::::::::
problems,

:::::
where

:::
the

::::::
Stokes

:::
and

::::::
energy

::::::
system

:::
are

::::::
solved

:::::::
together

::
in

:::::
single

:::::::
Newton

:::::
solve

:::
that

::
is
:::::::::::
decomposed

::::::
through

::
a620

:::::
series

::
of

::::::::::::
preconditioner

::::::
stages.

The fieldsplit_0 entries configure solver options for the first of these blocks, the K matrix. The linear systems associ-

ated with this matrix are solved using a combination of the Conjugate Gradient method (cg, line 23) and an algebraic

multigrid preconditioner (gamg, line 27). We also specify two options (gamg_threshold and gamg_square_graph) that control

the aggregation method (coarsening strategy) in the GAMG preconditioner, which balance the multigrid effectiveness625

(convergence rate) with coarse grid complexity (cost per iteration) (?).

The fieldsplit_1 entries contain solver options for the Schur complement solve itself. As explained in Section 4.3 we

do not have explicit access to the Schur complement matrix, GTK−1G, but can compute its action on any vector, at the

cost of a fieldsplit_0 solve with the K matrix, which is sufficient to solve the system using a Krylov method. However,

for preconditioning, we do need access to the values of the matrix or its approximation. For this purpose we approximate630

the Schur complement matrix with a mass matrix scaled by viscosity, which is implemented in MassInvPC (line 35)

with the viscosity provided through the optional appctx argument on line 71. This is a simple example of Firedrake’s

powerful programmable preconditioner interface which, in turn, connects with the Python preconditioner interface of

PETSc (line 34). In more complex cases the user can specify their own linear operator in UFL that approximates the

true linear operator but is easier to invert. The MassInvPC preconditioner step itself is performed through a linear solve635

with the approximate matrix with options prefixed with Mp_ to specify a Conjugate Gradient solver with symmetric SOR

27

(SSOR) preconditioning (lines 36-38). Note that PETSc’s sor preconditioner type, specified on line 38, defaults to the

symmetric SOR variant. Since this preconditioner step now involves an iterative solve, the Krylov method used for the

Schur complement needs to be of flexible type, and we specify flexible GMRES (fgmres) on line 32.

Specification of the matrix type matfree (line 16) for the combined system ensures that we do not explicitly assemble its640

associated sparse matrix, instead computing the matrix-vector multiplications required by the Krylov iterations as they

arise.
:::
For

:::::::
example

:::
the

:::::
action

::
of

:::
the

:::::::::
submatrix

::
G

::
on

::
a

::::::::
subvector

:
p
::::
can

::
be

::::::::
evaluated

::
as

::::
(cf.

::::::::
Equations

:::
28,

::::
30):

Gp=
∑
k

Gikpk =−
∫
Ω

(∇ ·ψi)p dx

::::::::::::::::::::::::::::::

(40)

:::::
which

::
is

::::::::
assembled

:::
by

::::::::
Firedrake

:::::::
directly

::::
from

:::
the

::::::::
symbolic

:::::::::
expression

:::
into

:
a
:::::::
discrete

::::::
vector. Again, for preconditioning

in the K-matrix solve we need access to matrix values, which is achieved using AssembledPC. This explicitly assembles645

the K-matrix by extracting relevant terms from the F_Stokes form.

Finally, the energy solve is performed through a combination of the GMRES (gmres) Krylov method and SSOR precon-

ditioning (lines 42-47). For all iterative solves we specify a convergence criterion based on the relative reduction of the

preconditioned residual (ksp_rtol: lines 24, 33, 36 and 46).

4. Velocity boundary conditions, which must be specified along all 6 faces, are modified on lines 51-53, with temperature650

boundary conditions specified on line 54.

5. Generating near-nullspace information for the GAMG preconditioner (lines 58-66), consisting of three rotational (x_rotV,

y_rotV, z_rotV) and three translational (nns_x, nns_y, nns_z) modes, as outlined in Section 4.3. These are combined in

the mixed function space on line 66.

6. Updating of the Stokes problem (line 70) to account for additional boundary conditions, and the Stokes solver (line 71)655

to include the near nullspace options defined above, in addition to the optional appctx keyword argument that passes the

viscosity through to our MassInvPC Schur complement preconditioner. Energy solver options are also updated relative to

our base case (lines 72-73), using the dictionary created on lines 42-47.

Our model results can be validated against those of ?. As with our previous examples, we compute the Nusselt number and

RMS velocity at a range of different mesh resolutions, with results presented in Figure 5. We find that results converge towards660

the benchmark solutions, with increasing resolution, as expected. The final steady state temperature field is illustrated in Figure

2(b).

5.3.2 2-D Cylindrical Shell Domain

We next examine simulations in a 2-D cylindrical domain. The domain is
::::
shell

:::::::
domain, defined by the radii of the inner (rmin)

and outer (rmax) boundaries. These are chosen such that the non–dimensional depth of the mantle, z = rmax−rmin = 1, and the665

ratio of the inner and outer radii, f = rmin/rmax = 0.55, thus approximating the ratio between the radii of Earth’s surface and

28

core-mantle-boundary (CMB). Specifically, we set rmin = 1.22 and rmax = 2.22. The initial temperature distribution, chosen to

produce 4 equidistant plumes, is prescribed as:

T (x,y) = (rmax− r) +Acos(4 atan2(y,x))sin(r− rmin)π) (41)

whereA= 0.02 is the amplitude of the initial perturbation. Boundary conditions for temperature are T = 0 at the surface (rmax)670

and T = 1 at the base (rmin). Free-slip velocity boundary conditions are specified on both boundaries, which we incorporate

weakly through the Nitsche approximation (see Section 4.1). The Rayleigh number Ra= 1× 105.

(a)/(b) Nusselt number/RMS velocity vs. number of pressure and velocity DOF, at Ra= 1× 105, for a series of uniform,

structured meshes in a 2-D cylindrical domain. High-resolution, adaptive mesh, results from the Fluidity computational modelling

framework are delineated by dashed red lines; (c) final steady-state temperature field, with contours spanning temperatures of675

0 to 1, at intervals of 0.05.

Convergence for 2-D cylindrical cases with zero-slip (a-d) and free-slip (e-h) boundary conditions, driven by smooth forcing

at a series of different wave-numbers, n, and different polynomial orders of the radial dependence, k, as indicated in the legend

(see ?, for further details). Convergence rate is indicated by dashed lines, with the order of convergence provided in the legend.

1 # Mesh Generation:
2 rmin, rmax, ncells, nlayers = 1.22, 2.22, 256, 64
3 mesh1d = CircleManifoldMesh(ncells, radius=rmin, degree=2)
4 mesh = ExtrudedMesh(mesh1d, layers=nlayers, extrusion_type="radial")
5
6 ---
7 # Constants, unit vector, initial condition
8 Ra = Constant(1e5)
9 r = sqrt(X[0]**2 + X[1]**2)

10 k = as_vector((X[0], X[1])) / r
11 Told.interpolate(rmax-r + 0.02*cos(4.*atan_2(X[1],X[0]))*sin((r-rmin)*pi))
12
13 ---
14 # UFL for Stokes equations incorporating Nitsche:
15 C_ip = Constant(100.0) # Fudge factor for interior penalty term used in weak imposition of BCs
16 p_ip = 2 # Maximum polynomial degree of the _gradient_ of velocity
17
18 # Stokes equations in UFL form:
19 stress = 2 * mu * sym(grad(u))
20 F_stokes = inner(grad(v), stress) * dx - div(v) * p * dx + dot(n, v) * p * ds_tb - (dot(v, k) * Ra * Ttheta) * dx
21 F_stokes += -w * div(u) * dx + w * dot(n, u) * ds_tb # Continuity equation
22
23 # nitsche free-slip BCs
24 F_stokes += -dot(v, n) * dot(dot(n, stress), n) * ds_tb
25 F_stokes += -dot(u, n) * dot(dot(n, 2 * mu * sym(grad(v))), n) * ds_tb
26 F_stokes += C_ip * mu * (p_ip + 1)**2 * FacetArea(mesh) / CellVolume(mesh) * dot(u, n) * dot(v, n) * ds_tb
27
28 ---
29 # Nullspaces and near-nullspaces:
30 x_rotV = Function(V).interpolate(as_vector((-X[1], X[0])))
31 V_nullspace = VectorSpaceBasis([x_rotV])
32 V_nullspace.orthonormalize()
33 p_nullspace = VectorSpaceBasis(constant=True) # Constant nullspace for pressure n
34 Z_nullspace = MixedVectorSpaceBasis(Z, [V_nullspace, p_nullspace]) # Setting mixed nullspace
35
36 # Generating near_nullspaces for GAMG:
37 nns_x = Function(V).interpolate(Constant([1., 0.]))
38 nns_y = Function(V).interpolate(Constant([0., 1.]))
39 V_near_nullspace = VectorSpaceBasis([nns_x, nns_y, x_rotV])
40 V_near_nullspace.orthonormalize()
41 Z_near_nullspace = MixedVectorSpaceBasis(Z, [V_near_nullspace, Z.sub(1)])
42
43 ---
44 # Updated solve calls:
45 stokes_problem = NonlinearVariationalProblem(F_stokes, z) # velocity BC’s handled through Nitsche
46 stokes_solver = NonlinearVariationalSolver(stokes_problem, solver_parameters=stokes_solver_parameters, appctx={"

mu": mu}, nullspace=Z_nullspace, transpose_nullspace=Z_nullspace, near_nullspace=Z_near_nullspace)

Listing 5. Difference in Firedrake code required to reproduce isoviscous case in a 2-D cylindrical shell domain.

29

For the cases plotted, the series of meshes start at refinement level 1, where the mesh consists of 1024 divisions in the tangential680

direction and 64 radial layers. At each subsequent level the mesh is refined by doubling resolution in both directions.

With a free-slip boundary condition on both boundaries, one can add an arbitrary rotation of the form (−y,x) = rθ̂ to the

velocity solution (i.e. this case incorporates a velocity nullspace, as well as a pressure nullspace). As noted in Section 4,

these lead to null-modes (eigenvectors) for the linear system, rendering the resulting matrix singular. In preconditioned Krylov

methods these null-modes must be subtracted from the approximate solution at every iteration (?)
:::::
(e.g. ?), which we illustrate685

through this example. The key changes required to simulate this case, displayed in Listing 5, are:

1. Mesh generation: we generate a circular manifold mesh (with 256 elements in this example) and extrude in the ra-

dial direction, using the optional keyword argument extrusion_type, forming 64 layers (lines 2-5
::
2-4). To better repre-

sent the curvature of the domain and ensure accuracy of our quadratic representation of velocity, we approximate the

curved cylindrical
::::
shell domain quadratically, using the optional keyword argument degree= 2 (see Section 4 for further690

detail
::::::
details).

2. The unit vector, k
::
k̂, points radially, in the direction opposite to gravity, as defined on line 11.

:::
10. The temperature field

is initialised using Equation (41) on line 12.
::
11.

:

3. Boundary conditions are no longer aligned with Cartesian directions. We use the Nitsche method (see Section 4.1) to

impose our free-slip boundary conditions weakly (lines 15-27). The fudge factor in the interior penalty term is set to695

100 on line 16, with Nitsche-related contributions to the UFL added on lines 24-27. Note that for extruded meshes in

Firedrake, ds_tb denotes an integral over both the top and bottom surfaces of the mesh (ds_t and ds_b denote integrals

over the top or bottom surface of the mesh, respectively). FacetArea and CellVolume return, respectively, Af and Vcf

required by Equation 17. Given that velocity boundary conditions are handled weakly through UFL, they are no longer

passed to the Stokes problem as a separate option (line 46).
:::
Note

::::
that

::
in

:::::::
addition

::
to

:::
the

:::::::
Nitsche

:::::
terms,

:::
the

:::::
UFL

:::
for

:::
the700

:::::
Stokes

::::::::
equations

::::
now

::::
also

:::::::
includes

::::::::
boundary

:::::
terms

:::::::::
associated

::::
with

:::
the

:::::::
pressure

:::::::
gradient

:::
and

:::::::
velocity

:::::::::
divergence

::::::
terms,

:::::
which

::::
were

:::::::
omitted

::
in

::::::::
Cartesian

:::::
cases

:::
(for

::::::
details,

:::
see

:::::::
Section

::::
4.1).

:

4. We define the rotational nullspace for velocity and combine this with the pressure nullspace in the mixed finite element

space Z (lines 30-35
::::
30-34). Constant and rotational near-nullspaces, utilised by our GAMG preconditioner, are also de-

fined on lines 37-42
::::
37-41, with this information passed to the solver on line 47.

:::
46. Note that iterative solver parameters

:
,705

identical to those presented in the previous example
:
, are used (see Section 5.3.1).

Our predicted Nusselt numbers
:::
and

:::::
RMS

::::::::
velocities

:
converge towards those of Fluidity

::::::
existing

:::::
codes

:
with increasing reso-

lution (Figure ??), demonstrating the accuracy of our approach. Predicted RMS velocities exceed those of Fluidity, albeit only

by∼ 0.1%, but lie within the bounds set by other codes for this case (Wilson, Pers. Comm., using TerraFERMA: ?). To further

assess the validity of our setup, we have confirmed the accuracy of our solutions to the Stokes system in this 2-D cylindrical710

::::
shell geometry, through comparisons with analytical solutions from ?, for both zero-slip and free-slip boundary conditions.

These provide a suite of solutions based upon a smooth forcing term, at a range of wave-numbers n, with radial dependence

30

0.0 1.0
Temperature

(d)

(b)
(c)

(b)

(a)

Figure 6.
:::::
(a)/(b)

::::::
Nusselt

::::::::::
number/RMS

::::::
velocity

::
vs.

::::::
number

::
of

::::::
pressure

:::
and

::::::
velocity

:::::
DOF,

:
at
::::::::::::
Ra= 1× 105,

::
for

:
a
:::::
series

::
of

::::::
uniform,

::::::::
structured

:::::
meshes

::
in
::

a
:::
2-D

::::::::
cylindrical

::::
shell

:::::::
domain.

::::::::::::
High-resolution,

:::::::
adaptive

:::::
mesh,

:::::
results

::::
from

:::
the

::::::
Fluidity

:::::::::::
computational

::::::::
modelling

:::::::::
framework

:::::
(?) are

::::::::
delineated

::
by

:::::
dashed

:::
red

::::
lines,

::::
with

:::::
results

::::
from

::::::::
ASPECT

:::::::
delineated

:::
by

:::::
dotted

::
red

::::
lines

:::
(?);

:::
(c)

::::
final

:::::::::
steady-state

:::::::::
temperature

::::
field,

:::
with

:::::::
contours

:::::::
spanning

::::::::::
temperatures

:
of
::

0
::
to

:
1,
::

at
:::::::
intervals

::
of

::::
0.05.

formed by a polynomial of arbitrary order k. We study the convergence of our Q2-Q1
:::::
Q2Q1 discretisation with respect to these

solutions. Convergence plots are illustrated in Figure ??. We observe super-convergence for the Q2-Q1
:::::
Q2Q1

:
element pair at

fourth- and second-order, for velocity and pressure, respectively, with both zero-slip and free-slip boundary conditions, which715

is higher than the theoretical (minimum) expected order of convergence of three for velocity and two for pressure (we note

that super-convergence was also observed in ??). Cases with lower wave-number, n, show smaller relative error than those

at higher n, as expected. The same observation holds for lower and higher polynomial order, k = 2 and k = 4, for the radial

density profile.
::
To

::::::::::
demonstrate

:::
the

::::::::
flexibility

:::
of

::::::::
Firedrake,

:::
we

::::
have

::::
also

:::
run

:::::::::::
comparisons

::::::
against

:::::::::
analytical

:::::::
solutions

:::::
using

::
a

::::::::::::
(discontinuous)

::::::::::::
delta-function

:::::::
forcing.

::
In

::::
this

::::
case,

:::::::::::
convergence

:::
for

:::
the

:::::
Q2Q1

:::::::::::
discretisation

:::::::
(Figure

:::
??)

:::::
drops

::
to

:::
1.5

::::
and

:::
0.5720

::
for

:::::::
velocity

::::
and

:::::::
pressure,

:::::::::::
respectively.

::::::::
However,

::
by

:::::::::
employing

:::
the

:::::::
Q2P1DG:::::

finite
:::::::
element

::::
pair,

:::
we

::::::
observe

:::::::::::
convergence

::
at

:::
3.5

:::
and

:::
2.0

::::::
(Figure

::::
??).

:::::::::
Consistent

::::
with

::
?,

::::
this

:::::::::::
demonstrates

:::
that

:::
the

::::::::::
continuous

::::::::::::
approximation

::
of

:::::::
pressure

:::
can

::::
lead

::
to
::
a
:::::::
reduced

::::
order

::
of

:::::::::::
convergence

::
in

:::
the

::::::::
presence

::
of

::::::::::::
discontinuities,

::::::
which

:::
can

:::
be

::::::::
overcome

:::::
using

:
a
::::::::::::
discontinuous

:::::::
pressure

::::::::::::
discretisation.

Python scripts for these analytical comparisons can be found in the repository accompanying this paper.

31

Free-Slipk=2 k=4

Zero-Slipk=2 k=4
(a)

(c)

(b)

(d)

(f)(e)

(g) (h)

Figure 7.
:::::::::
Convergence

:::
for

::::
2-D

::::::::
cylindrical

::::
shell

:::::
cases

::::
with

:::::::
zero-slip

::::
(a-d)

::::
and

::::::
free-slip

:::::
(e-h)

:::::::
boundary

:::::::::
conditions,

:::::
driven

:::
by

::::::
smooth

:::::
forcing

::
at
::
a

::::
series

::
of
:::::::

different
::::::::::::
wave-numbers,

::
n,

:::
and

:::::::
different

:::::::::
polynomial

:::::
orders

::
of

:::
the

:::::
radial

:::::::::
dependence,

::
k,

::
as

:::::::
indicated

:::
in

::
the

::::::
legend

:::::::::::::::::::
(see ?, for further details).

::::::::::
Convergence

:::
rate

:
is
:::::::
indicated

:::
by

:::::
dashed

::::
lines,

::::
with

:::
the

::::
order

::
of

:::::::::
convergence

:::::::
provided

::
in

::
the

::::::
legend.

:::
For

::
the

:::::
cases

:::::
plotted,

:::
the

:::::
series

::
of

::::::
meshes

:::
start

::
at

::::::::
refinement

::::
level

::
1,

:::::
where

:::
the

::::
mesh

::::::
consists

::
of
::::
1024

:::::::
divisions

::
in
:::

the
::::::::
tangential

:::::::
direction

:::
and

::
64

:::::
radial

:::::
layers.

::
At

::::
each

::::::::
subsequent

::::
level

:::
the

::::
mesh

::
is

:::::
refined

::
by

:::::::
doubling

::::::::
resolution

::
in

:::
both

::::::::
directions.

32

1 # Mesh Generation:
2 rmin, rmax, ref_level, nlayers = 1.22, 2.22, 4, 16
3 mesh2d = CubedSphereMesh(rmin, refinement_level=ref_level, degree=2)
4 mesh = ExtrudedMesh(mesh2d, layers=nlayers, extrusion_type=’radial’)
5
6 ---
7 # Nullspaces and near-nullspaces:
8 x_rotV = Function(V).interpolate(as_vector((0, X[2], -X[1])))
9 y_rotV = Function(V).interpolate(as_vector((-X[2], 0, X[0])))

10 z_rotV = Function(V).interpolate(as_vector((-X[1], X[0], 0)))
11 V_nullspace = VectorSpaceBasis([x_rotV, y_rotV, z_rotV])
12 V_nullspace.orthonormalize()
13 p_nullspace = VectorSpaceBasis(constant=True) # Constant nullspace for pressure
14 Z_nullspace = MixedVectorSpaceBasis(Z, [V_nullspace, p_nullspace]) # Setting mixed nullspace
15
16 nns_x = Function(V).interpolate(Constant([1., 0., 0.]))
17 nns_y = Function(V).interpolate(Constant([0., 1., 0.]))
18 nns_z = Function(V).interpolate(Constant([0., 0., 1.]))
19 V_near_nullspace = VectorSpaceBasis([nns_x, nns_y, nns_z, x_rotV, y_rotV, z_rotV])
20 V_near_nullspace.orthonormalize()
21 Z_near_nullspace = MixedVectorSpaceBasis(Z, [V_near_nullspace, Z.sub(1)])

Listing 6. Difference in Firedrake code required to reproduce 3-D spherical shell benchmark cases from ?.

5.3.3 3-D Spherical Shell Domain725

We next move into a 3-D spherical shell geometry, which is required to simulate global mantle convection. We examine a

well-known isoviscous community benchmark case (e.g. ????), at a Rayleigh number of Ra= 7×103, with free-slip velocity

boundary conditions. Temperature boundary conditions are set to 1 at the base of the domain (rmin = 1.22) and 0 at the surface

(rmax = 2.22), with the initial temperature distribution approximating a conductive profile with superimposed perturbations

triggering tetrahedral symmetry at spherical harmonic degree l = 3 and order m= 2 (see ?, for further details).730

As illustrated in Listing 6, when compared to the 2-D cylindrical
::::
shell

:
case examined in Section 5.3.2, the most notable

change required to simulate this 3-D case is the generation of the underlying mesh. We use Firedrake’s built-in CubedSphereMesh

and extrude it radially through 16 layers, forming hexahedral elements. As with our cylindrical
:::
shell

:
example, we approxi-

mate the curved cylindrical
::::::::
spherical domain quadratically, using the optional keyword argument degree= 2. Further required

changes, highlighted in Listing 6, relate to 3-D extensions of the velocity nullspace, and the near-nullspaces required by the735

GAMG preconditioner, all of which are simple. We do not show the changes associated with extending the radial unit vector

to 3-D, or the initial condition for temperature, given that they are straightforward, although, as with all examples, a complete

Python script for this case can be found in the repository accompanying this paper.

Despite the simplicity of our setup, the accuracy of our approach is confirmed via comparison of both Nusselt numbers

and RMS velocities with those of previous studies (e.g. ????????)
::::::::::::::
(e.g. ?????????). For completeness, the final steady-state740

temperature field is illustrated in Figure ??(c). Furthermore, in line with our 2-D cases, we have confirmed the accuracy of our

Stokes solver for both zero-slip and free-slip boundary conditions in a 3-D spherical
::::
shell

:
geometry, through comparisons with

analytical solutions from ?, which provide solutions based upon a smooth forcing term at a range of spherical harmonic degrees,

l, and orders,m, with radial dependence formed by a polynomial of arbitrary order k. As with our 2-D cases, we observe super-

convergence for the Q2-Q1
::::
Q2Q1

:
element pair at fourth- and second-order, for velocity and pressure, respectively, with both745

zero-slip and free-slip boundary conditions (Figure ??).

This section has allowed us to highlight a number of Firedrake’s benefits over other codes: (i) the ease at which simulations

can be examined in different geometries, with minimal changes to the Python code, facilitated by Firedrake’s built-in mesh

33

(c)

(b)

(a)

(f)

(e)

(d)

Figure 8. (a)/(b) Nusselt number/RMS velocity vs. number of pressure and velocity DOF, designed to match an isoviscous 3-D spherical

:::
shell

:
benchmark case at Ra= 7× 103, for a series of uniform, structured meshes. The range of solutions predicted in previous studies are

bounded by dashed red lines (????????)
::::::::::
(?????????); (c) final steady-state temperature field highlighted through isosurfaces at temperature

anomalies (i.e. away from radial average) of T =−0.15 (blue) and T = 0.15 (orange), with the core-mantle-boundary at the base of the

spherical shell marked by a red surface; (d-f) as in a-c, but for a temperature-dependent-viscosity case, with thermally induced viscosity

contrasts of 102. Fewer codes have published predictions for this case, but results of ? are marked by dashed red lines,
:::
for

::::::::
comparison.

generation utilities and extrusion functionality; (ii) the ease at which iterative solver configurations and preconditioners can

be updated and tested, including scenarios incorporating multiple nullspaces, facilitated by Firedrake’s fully-programmable750

solver interface, alongside its customisable preconditioner interface, both of which are seamlessly coupled to PETSc; and (iii)

34

Free-SlipZero-Slip
(a)

(c)

(b)

(d)

Figure 9. Convergence of velocity and pressure for 3-D spherical
:::
shell

:
cases with zero-slip and free-slip boundary conditions, for perturba-

tions at a range of spherical harmonic degrees l and orders m. Note that all cases with a smooth forcing are run at k = l+1. Refinement

level 3 corresponds to the level specified for our cubed sphere mesh, comprising 386 elements in the tangential direction, which is extruded

radially to 8 layers. Resolution is doubled in all directions at subsequent refinement levels.

the convergence properties of our finite element system, in geometries that are representative of Earth’s mantle. Taken together,

these confirm Firedrake’s suitability for simulations of global mantle dynamics, as will be further highlighted in Section ??.

6 Parallel Scaling

We assess parallel scalability using a 3-D spherical
::::
shell

:
case similar to that presented in Section ??, albeit incorporating a755

temperature-dependent viscosity, following the relation:

µ= exp[E(0.5−T)], (42)

where E is a parameter that controls the temperature dependence of viscosity. In the example considered — Case A4 from ? —

we set E = ln(100), leading to thermally induced viscosity contrasts of 102 across the computational domain. For complete-

35

ness, our steady-state results, highlighting the consistency of our results for this case with the predictions of ?, are displayed in760

Figure ??, although for the purposes of parallel scaling analyses, we run simulations for 20 time-steps only.

We focus on weak scaling, where the problem size and the number of processing cores are simultaneously increased. Cases

are examined on 24, 192, 1536 and 12288 cores, maintaining 4096 elements per core and ensuring a constant element aspect

ratio across all resolutions examined. Simulations were examined on the Gadi supercomputer at the National Computational

Infrastructure (NCI) in Australia, using compute nodes with 2× 24 core Intel Xeon Platinum 8274 (Cascade Lake) 3.2 GHz765

CPUs, and 192 GB RAM, per node. Linking the nodes is the latest generation HDR InfiniBand technology in a Dragonfly+

topology, capable of transferring data at up to 200 Gb/s.

The most challenging aspect of weak parallel scaling is solver performance as the problem size increases. Whilst the amount

of computation in equation assembly typically scales linearly with the number of DOFs – before taking parallel aspects such

as communication into account – solver scaling is generally worse. In the case of iterative solvers, this is due to a deterioration770

in the conditioning of the matrix, driving an increase in the number of iterations required for convergence. As a result, even if

the cost per iteration scales linearly, the overall cost will not. This implies that for weak scaling, the amount of work per core

may increase rapidly, despite the number of DOFs per core remaining consistent.

The deterioration in conditioning is intimately related to the fact that an increase in resolution increases the ratio between

smallest and largest resolvable length-scales. For elliptic operators, like the viscosity matrix K, the condition number scales775

with the square of that ratio (e.g. ?). Multigrid approaches, which separate smaller and larger length scales on a hierarchy

of fine to coarse meshes, are commonly used to address this problem, which motivates the choice of the algebraic multigrid

preconditioner, GAMG, used here. Such approaches aim to maintain a constant, or only slowly increasing number of iterations

and, thus, a near-linear scaling of the overall cost, as the problem size increases. This can be a challenge however as, for

instance, an increase in resolution will require more multigrid levels, which will lead to an increased setup time and cost per780

iteration. In practice, when configuring the multigrid method, a compromise needs to be found between the effectiveness of

multigrid in limiting the number of iterations, and not allowing the setup and costs per iteration to grow too rapidly. The two

options, gamg_threshold and gamg_square_graph, specified in our solver setup, ensure a balance between multigrid effectiveness

an coarse grid complexity.

A breakdown of key parallel scaling results are presented in Figure ??. Panel a
::
(a)

:
displays the average number of iterations785

per solve over the 20 timesteps. We find that the number of pressure (the Schur complement solve: fieldsplit_1) and energy

solve iterations remains flat (12 and ∼ 10.5, respectively), whilst the number of velocity solve iterations (inversion of the

matrix K, using the GAMG preconditioner: fieldsplit_0) increases only slowly, from ∼ 41 to ∼ 51, over a greater than three-

orders-of-magnitude increase in problem size and number of processor cores. This demonstrates algorithmic scalability on up

to 12288 cores and ∼ 50× 106 elements (which corresponds to ∼ 1.25× 109
:::::::::::
∼ 1.26× 109

:
velocity and pressure degrees of790

freedom).

Parallel scalability can also be assessed by analysing the growth in CPU-time of the dominant components of our problem:

assembly of finite element systems (Figure ??b), setup of the algebraic multigrid (GAMG) preconditioner (Figure ??c), and

time spent solving the Schur complement system (Figure ??d). We find that the assembly time is a negligible fraction of

36

(a)

(c)

(b)

(d)

(e) (f)

Figure 10. Weak scaling analyses for a 20 time-step, temperature-dependent viscosity, spherical shell simulation with free-slip boundary

conditions: (a) mean number of iterations per time-step, for energy (blue
:::
stars), pressure (red

:::::
squares) and velocity (green

:::::
circles) solves,

respectively; (b) time spent in assembly of finite element systems; (c) time spent setting up algebraic multgird
:::::::
multigrid

:
preconditioner;

(d) time spent solving the Schur complement (Stokes) system; (e) cost per velocity solve iterations; (f) total simulation time, which closely

mimics the Schur complement
::::::
solution

:
time.

this problem. The setup time for our GAMG preconditioner grows from ∼ 240s on 24 cores to ∼ 470s on 12288 cores. This795

is understandable, given the large communication costs associated with setting up various multigrid levels, particularly for

problems incorporating nullspaces and near-nullspaces, as is the case here. We note, however, that this is not a concern: as a

37

fraction of the entire solution time for the Schur complement solve (Figure ??d), GAMG setup remains small. We do observe

an increase in time required for solution of the Schur Complement (Stokes solve), from ∼ 6500s on 24 cores to ∼ 12100s on

12288 cores. This results primarily from the minor increase in the number of velocity solve iterations and the increased cost per800

iteration (Figure ??e), which rises from 155s on 24 cores to 225s on 12288 cores, reflecting costs associated with increasing

the number of multigrid levels for higher-resolution problems. The total time spent in running this problem mirrors the time

spent in solving the Schur complement system (Figure ??f), indicating where future optimisation efforts should be directed.

We note that the change in gradient, apparent in panels b-f when moving from 24-192 and 192-12288 cores arises due to a

transition from running simulations on a single compute node to multiple nodes.805

7 Realistic Application in 3-D spherical
::::
shell

:
geometry: Global Mantle Convection

In this section, we demonstrate application of Firedrake to a time-dependent simulation of global mantle convection in a 3-

D spherical shell geometry, at a realistic Rayleigh number.
:::
We

::::::
assume

::
a
:::::::::::
compressible

:::::::
mantle,

:::::
under

:::
the

:::::::::
Anelastic

::::::
Liquid

::::::::::::
Approximation

:::::::
(ALA),

::::
and

:
a
::::::::::::

temperature-,
::::::
depth-,

::::
and

:::::::::
strain-rate

:::::::::
dependent

::::::::
rheology,

:::
in

::::
line

::::
with

:::
the

::::::::::
viscoplastic

:::::
case

:::::::
analysed

::
in

::::::
Section

:::::
5.2.2.

::::::::
Viscosity

::::::::
increases

:::::
below

:::
the

::::::
mantle

::::::::
transition

::::
zone

::::
and

::
we

:::::::
include

:
a
:::::::::::
brittle-failure

::::
type

::::::::::
yield-stress810

:::
law,

::::::::
ensuring

:::
that

:::::::
yielding

:::::::::::
concentrates

::
at

:::::::
shallow

::::::
depths.

:
As with the examples provided above, calculations are performed

using a hexahedral trilinear Q2-Q1
:::::
Q2Q1 element pair for velocity and pressure. We use a Q2 discretisation for temperature

and, given the increased importance of advection at higher Rayleigh numbers, incorporate stabilisation through a streamline

upwinding scheme, following ?.
:::
We

::::::
employ

::
a
:::::
Cubed

::::::
Sphere

:::::
mesh

::::
with

::::::
98304

:::::::
elements

:::
on

::::
each

::::::::
spherical

::::::
surface

:::
and

:::::::
extrude

:
it
:::::::
radially

:::::::
through

::
64

::::::
layers,

::::
with

:::::::
spacing

:::::::
reduced

:::::::
adjacent

::
to

:::
the

:::
top

:::
and

:::::::
bottom

:::::::::
boundaries

::
of

:::
the

:::::::
domain.

::::
This

::::::
results

::
in

::
a815

:::::::
problem

::::
with

:::::::::::
∼ 1.26× 109

:::::::
velocity

::::
and

:::::::
pressure

::::::
degrees

:::
of

:::::::
freedom,

::::
and

::::::::::
∼ 5.0× 107

::::::::::
temperature

:::::::
degrees

::
of

::::::::
freedom.

:
Our

solution strategy for the Stokes and energy equations is otherwise identical
:::::::
equations

::
is
:::::::

similar to the spherical
::::
shell

:
exam-

ples presented above. ,
:::::
albeit

:::::::::
exploiting

::::::::
PETSc’s

:::::
SNES

:::::::::::
functionality

:::::
using

:
a
:::::
setup

:::::
based

:::
on

::::::::
Newton’s

:::::::
method

::
to

::::::
handle

:::
the

::::::::::
nonlinearity

::
in

:::
the

::::::
system.

::::::::
Solution

::::::
strategy

:::
for

:::
the

::::::
energy

:::::::
equation

::
is
::::::::
identical

::
to

:::
the

:::::::
previous

::::::::
example.

For simplicity, we assume an incompressible mantle and a linear temperature- and depth-dependent rheology, following the820

relation,

µ= µ0exp[E(0.5−T)] .

Here µ0 is a reference viscosity that increases by a factor of 40 below the mantle transition zone, andE = ln(1000) controls the

sensitivity of viscosity to temperature. We specify a reference
::
We

:::::::
achieve

:
a (basally heated) Rayleigh number of 2× 107

:::::::
7.5× 107

::
in

:::
the

::::::::::::
asthenosphere, which is comparable to estimates of Earth’s mantle (e.g. ?), and also include internal heating at a non-825

dimensional heating rate of 10. The simulation is spun-up with free-slip and isothermal (T = 0 at base; T = 1 at top) boundaries

at both surfaces. After the model reaches a quasi-steady state (i.e. when the surface and basal Nusselt numbers both change

by less than 0.1% over 10 consecutive time-steps), surface velocities are assimilated through a kinematic boundary condition,

according to 230 Myr of plate motion histories (?), using the Python interface to GPlates (e.g. ??). Our simulation then runs for-

38

(b)(a)

∆T

-0.15

0.15

0.0

Figure 11. Present-day thermal structure, predicted from our global mantle convection simulation where the geographic distribution of

heterogeneity is dictated by 230 Myr of imposed plate motion history (?). Each image includes a radial surface at r = 1.25 (i.e. immediately

above the core-mantle boundary), a cross-section, and transparent isosurfaces at temperature anomalies (i.e. away from the radial average)

of T =−0.15
:::::::::
T =−0.075

:
(blue) and T = 0.15

:::::::
T = 0.075

:
(red), highlighting the location of downwelling slabs and upwelling mantle

plumes (below r = 2.19
::::::
r = 2.13), respectively. Continental boundaries provide geographic reference. Panel a provides an Africa-centered

view, with panel b centered on the Pacific Ocean, and including
:::::
(green)

:
glyphs at the surface highlighting the imposed plate velocities.

ward towards the present-day
:::::
present

::::
day. This case is therefore analogous

::::::
similar to the simulations examined when address-830

ing questions from the very frontiers of geodynamical research(e.g. ?????????). ,
:::::
albeit

::::::::::::
incorporating

:
a
:::::
more

::::::::::::
representative

::::::::
treatment

::
of

::::::
mantle

:::
and

:::::::::
lithosphere

::::::::
rheology

::::::::::::::::
(e.g. ??????????).

:::
The

:::::::::
simulation

::::
was

:::::::
executed

::::::
across

::::
1344

::::::
CPUs,

::
on

:::
the

:::::
same

:::::::::
architecture

:::
as

:::::::
outlined

:::::
above,

::::
and

::::
took

::::
∼ 92

::::::
hours.

Our results are illustrated in Figure ??. We find that the present-day upper mantle convective planform is dominated by

strong downwellings in regions of plate convergence. In the mid-mantle, cold downwellings are prominent beneath North835

America and South-East Asia, whilst remnants of older subduction are visible above the core-mantle-boundary. The location

of hot upwelling material is strongly modulated by these downwellings, with upwelling plumes concentrating in two clusters

beneath the African continent and the central Pacific ocean (i.e. away from regions that have experienced subduction over the

past 150 Myr or so). The cluster of plumes in the Pacific is reasonably circular, whilst those beneath Africa extend in a NW-SE

trending structure, which to the north curves eastward under Europe and to the south extends into the Indian Ocean.840

Further analysis of this proof-of-concept simulation is beyond the scope of this study. However, when combined with the

benchmark and parallel scaling analyses presented-above, our model predictions, which are consistent with those from a num-

39

ber of previous studies (e.g. ????), confirm Firedrake’s applicability for realistic, time-dependent , global mantle dynamics

simulations of this nature.

8 Discussion845

Firedrake is a next-generation automated system for solving variational problems using the finite element method (e.g. ??).

It has a number of features that are ideally suited to simulating geophysical fluid dynamics problems, as exemplified by its

use in application areas such as coastal ocean modelling (?), numerical weather prediction (?), and glacier flow modelling (?).

The focus of this manuscript has been to demonstrate Firedrake’s applicability for geodynamical simulation, with an emphasis

on global mantle dynamics. To do so, we
::::
have

:
presented, analysed and validated Firedrake against a number of benchmark850

and analytical cases , of systematically increasing complexity, building towards a realistic time-dependent global simulation
::
at

::::::
realistic

:::::::::
convective

::::::
vigour.

In order to introduce the
::
To

::::::::
introduce

:::
its core components and illustrate the elegance of setting up and validating a geo-

dynamical model in Firedrake, we started with a simple, incompressible, isoviscous case in an enclosed 2-D Cartesian box.

Setting up this problem was straightforward, requiring only a weak formulation of the governing equations for specification in855

UFL, together with a mesh, boundary conditions
:::::
initial

:::
and

::::::::
boundary

::::::::::
conditions, and appropriate discrete function spaces. By

utilising
:::
We

::::::
utilised

:
Firedrake’s built-in meshing functionality and default direct solver options, we were able to demonstrate

:::
and

:::::::::::
demonstrated

:
the framework’s accuracy for simulations of this nature: in less than 70

:::
only

:::
56 lines of Python

:::::::::
(excluding

::::::::
comments

::::
and

:::::
blank

::::
lines), we reproduced results from the well-established benchmark study of ?, .

:

Representative simulations of mantle and lithosphere dynamics, however, incorporate more complicated physics. To demon-860

strate Firedrake’s applicability in such scenarios, we next set up 2-D simulations that accounted for compressibility, through the

Anelastic Liquid Approximation (?), and a nonlinear viscosity that depends upon temperature, depth and strain-rate. Our results

were validated through comparison with the benchmark studies of ?
::
? and ?, respectively. For compressible cases, despite the

governing equations differing appreciably from their incompressible counterparts, the modifications required to our setup were

minimal, with the most notable change being the UFL describing the relevant PDEs. For the viscoplastic rheology case, where865

viscosity varied by several orders of magnitude across the domain, an appropriate solution strategy was required to deal with

nonlinear coupling between strain-rate and viscosity: Firedrake’s fully-programmable solver interface and seamless coupling

to PETSc facilitated the straightforward use of PETSc’s Scalable Nonlinear Equation Solvers (SNES)
::
(?). Taken together,

these examples highlight one of Firedrake’s key benefits: by leveraging UFL (?), associated strategies for automatic assembly

of finite element systems, and PETSc (???), the framework is easily extensible, allowing for straightforward application to870

problems involving different physical approximations, even when they require distinct solution strategies.

This is further highlighted with the transition from 2-D to 3-D. With modifications to only a few lines of Python, the

basic 2-D Cartesian case described above was easily extended to 3-D, allowing for comparison and validation against the

well-established benchmark results of ?. However, the direct solvers used for our 2-D cases quickly become computationally

intractable in 3-D, necessitating the use of an iterative approach. Firedrake’s programmable solver interface facilitates the875

40

straightforward inclusion of Python dictionaries that define iterative solver parameters for the Stokes and energy systems.

A number of different schemes have been advocated by the geodynamical modelling community (e.g. ??), but in all 3-D

simulations examined herein, the Schur complement approach was utilised for solution of our Stokes system, exploiting the

fieldsplit preconditioner type to apply preconditioners, including algebraic multigrid, to different blocks of the system. A

Crank-Nicholson
::::::::::::
Crank-Nicolson

:
scheme was utilised for temporal discretisation of the energy equation, with a standard880

GMRES Krylov method with SOR preconditioning used for solution. We have demonstrated that such solution strategies are

effective and scalable, with algorithmic scalability confirmed on up to 12288 cores.

Cartesian simulations offer a means to better understand the physical mechanisms controlling mantle convection, but a

3-D spherical shell geometry is required to simulate global mantle dynamics. We have demonstrated how Firedrake’s built-

in meshing and extrusion functionality facilitates the effortless transition to such geometries (in addition to comparable 2-D885

cylindrical shell geometries), whilst its Python user-interface allows for the simple inclusion of a radial gravity direction and

boundary conditions that are not aligned with Cartesian directions. The convergence properties and accuracy of our simulations

in a 3-D spherical
::::
shell

:
geometry have been demonstrated through comparison with the extensive set of analytical solutions

introduced by ? and a series of low Rayleigh number isoviscous and temperature-dependent viscosity simulations, from ?.

We observed super-convergence for the Q2-Q1
:::::
Q2Q1

:
element pair at fourth- and second-order, for velocity and pressure,890

respectively.

Having validated Firedrake against this broad suite of cases, we finally applied the framework to a realistic simulation

of global mantle convection . For simplicity, we assumed an incompressible
:
at
:::::::

realistic
::::::::::

convective
::::::
vigour.

:::
We

::::::::
assumed

::
a

:::::::::::
compressible mantle and a linear temperature- and depth-dependent rheology

::::::::
nonlinear

:::::::::::
temperature,

:::::
depth

::::
and

:::::::::
strain-rate

::::::::
dependent

::::::::
viscosity, assimilating 230 Myr of plate motion histories (?) through a kinematic surface boundary condition. These895

prescribed plate velocities organize
:::::::
modulate

:
underlying mantle flow, such that the predicted present-day convective planform

is dominated by cold downwellings in regions of plate convergence, with upwellings concentrating elsewhere, particularly

beneath the African and Pacific domains
:::::::
continent

::::
and

:::::
Pacific

::::::
Ocean. Our model predictions, which

::
are

:::::::::
consistent

::::
with

:::::
those

::::
from

:
a
:::::::
number

::
of

:::::::
previous

:::::::
studies

::::::::::
(e.g. ?????),

:
reproduce first-order characteristics of the structure of Earth’s mantle imaged

through seismology (e.g. ??) ,
:::
and

:
the geographical distribution of mantle plumes (e.g. ??), and are consistent with those from900

a number of previous studies and the (e.g. ????),
:
.
::::
They

:
serve as a proof-of-concept, confirming Firedrake’s applicability for

realistic, time-dependent, global simulations of this nature and, accordingly, its suitability for addressing research problems

from the very frontiers of
:::::
global geodynamical research.

Despite this, several components of Firedrake have not been fully examined in this paper. Many of these will likely be useful

for geodynamical simulation and, accordingly, will be examined in the future. These include:905

1. A range of finite elements: in all
:::
most

:
examples considered herein, we utilised a continuous Q2-Q1

:::::
Q2Q1

:
element pair

for velocity and pressure with a Q2 discretisation for temperature(with the exception of one set of examples in Section

5.1, where we demonstrated the use of
:
.
::
In

::::::::
addition,

::
in

:::::
some

::::
cases

:::
we

:::::::
instead

::::::
employ

:::
the

:::::::
Q2P1DG:::::

finite
:::::::
element

::::
pair

::
for

:::
the

::::::
Stokes

:::::::
system,

::
or

:
a Q1 temperature discretisation). Accordingly

:::::::::::
discretisation

:::
for

::::::::::
temperature.

:::::::
Despite

:::
this, we

have not
:::
fully

:
demonstrated Firedrake’s support for a wide-range

::::::::
wide-array

:
of finite elements, including continuous,910

41

1 class Mass(AuxiliaryOperatorPC):
2 def form(self, pc, test, trial):
3 a = 1/mu * inner(test, trial)*dx
4 bcs = None
5 return (a, bcs)

Listing 7. Re-implementation by user code of the MassInvPC preconditioner for the Schur complement first used in Section 5.3.1. The UFL
in line 3 that defines a mass matrix scaled by the inverse of viscosity µ could be replaced by any other expression approximating the Schur
complement (see ? for an overview). Preconditioners that are expressed through linear algebra operations on sub-matrices of the saddle point
matrix, e.g. GTKG≈ diag

(
GT diag(K)GT

)
, can be constructed by applying these operations through the petsc4py interface.

discontinuous, H(div) and H(curl) discretisations, and elements with continuous derivatives such as the Argyris and

Bell elements (see ?, for an overview). Some of these could offer major advantages for geodynamical simulation. For

example,

2.
:::
The

:::
use

::
of

::::
DG

:::::::
schemes

:::
for

:::
the

:::::::
solution

::
of

:::
the

::::::
energy

::::::::
equation: a number of studies now advocate the use of Discontin-

uous Galerkin (DG) schemes for solution of the energy equation (e.g. ??). Importantly, Firedrake’s simple API allows a915

user to escape the UFL abstraction, and implement common operations that fall outside of pure variational formulations,

such as flux limiters, which are central to DG schemes. Firedrake also

3.
:::::::::::
Hybridisation

:::::::::
strategies:

::::::::
Firedrake provides the necessary infrastructure for hybridisation strategies (?), which allow for

a reduction of the many extra degrees of freedom introduced by DG schemes in the global system to a smaller subset,

defined on element interfaces through so-called trace elements. This offers the prospect of arriving at
::::
could

::::::::
facilitate920

more efficient ways of solving the Stokes system (e.g. ?). Such possibilities will be explored in future work, noting that

Firedrake’s existing support for these elements will facilitate rapid and efficient testing and validation.

4. Fully coupled nonlinear systems: in all examples considered herein, we solve for velocity and pressure in a separate

step to temperature, largely owing to our familiarity with this approach from previous work (e.g. ??)
::::::::
(e.g. ???). How-

ever, a number of studies advocate solving for these fields simultaneously (e.g. ?), particularly for strongly coupled,925

highly-nonlinear, multi-physics problems. By leveraging UFL, in combination with PETSc’s fieldsplit preconditioning

approach, future work to configure and test such coupled schemes within Firedrake will be relatively straightforward.

5. Preconditioners: a major benefit of Firedrake for the problems considered herein is access to the wide variety of solution

algorithms and preconditioning strategies provided by the PETSc library, which can be flexibly configured through the

solver parameters dictionary, allowing one to test and apply different strategies with ease. The development of precon-930

ditioners for the Stokes problem is an active area of research (e.g. ???)
:::::::::
(e.g. ????). As noted above, Firedrake supports

a powerful programmable preconditioner interface which, in turn, connects with the Python preconditioner interface of

PETSc, and allows users to specify their own linear operator in UFL , thus
::::
(see

::::::
Listing

:::
??

:::
for

::
an

::::::::
example)

:
enabling

preconditioning techniques with bespoke operator approximations. We note that in addition to the complete range of

algebraic solvers offered by PETSc, Firedrake also provides access to multilevel solvers with geometric hierarchies,935

opening up the possibility of exploring geometric multigrid approaches in the future.

42

::
To

:::::::
support

:::::
these

:::::::::
statements

::::
and

::::::
further

::::::::::
demonstrate

::::
the

:::::::
potential

:::
of

:::
the

::::::::::
framework

::
in

::::::::
exploring

::::::::::
challenging

:::::::::
nonlinear

::::::::
problems,

:::
we

::::::
briefly

:::::::
consider

:::
the

::::::::
nonlinear

::::::::::
benchmark

::::
case

::
of

:::
?,

::::
with

:
a
:::::::::
strain-rate

::::
and

:::::::
pressure

:::::::::
dependent

:::::::::::::
Drucker-Prager

:::::::
rheology.

:::
In

::
?,

:
a
:::::::
number

::
of

:::::::
solution

::::::::
strategies

:::
are

::::::::
explored

:::
for

:::
this

::::
case

::::::::
(amongst

:::::::
others),

::::
with

:::
the

:::::
study

:::::::::
advocating

:::
the

::::
use

::
of

:::
two

::::::::::::
modifications

::
to

:::
the

::::::::
Jacobian:

:::
(i)

::::::
adding

::
an

:::::::::
additional

::::
term

::
to

::::::::
Equation (32)

:::
that

::
is
:::
the

:::::::::
transpose

::
of

:::
the

::::::
second

:::::
term,940

:::
thus

::::::::
restoring

:::
the

:::::::::
symmetry

::
of

:::
K;

:::
(ii)

::
to

:::::
scale

::::
those

::::::
terms

::::::::
associated

::::
with

:::::::
∂η/∂u

::
by

::
a
:::::::
spatially

:::::::
varying

:::::
αSPD,

:::::::::
calculated

::
at

::
the

::::::
Gauss

:::::
points

:::::::::
according

::
to:

:

αSPD =

1 if

[
1− a : b

‖a‖‖b‖

]2
< csafety2η(ε̇(u)),

csafety
2η(ε̇(u))

[1− a : b
‖a‖‖b‖]

2 otherwise,
::

(43)

:::::
where

:::::
a= ε̇,

::::
and

:::::::
b= ∂η

∂ε̇ .
::::
This

::::::::
rescaling

:::
acts

:::
as

:
a
:::::::::::
stabilisation,

:::::::
ensuring

::::
that

::
K

:::::::
remains

:::::::
positive

:::::::
definite.

::
It
::::::
should

:::
be

:::::
noted

:::
that

:::
the

:::::::
pressure

::::::::::
dependence

::
of

:::
the

:::::::::::::
Drucker-Prager

::::::::
rheology

:::
also

:::::
leads

::
to

::::::::
additional

:::::
terms

::
in
:::
the

::::::::
top-right

:::::
block

::
of

:::
the

::::::
Stokes945

:::::::
Jacobian

::::::
matrix,

::
in

:::::::
addition

::
to
::
G
:::
in

:::::::
Equation

:
(28)

:
,
::::::
making

:::
the

::::::
overall

::::::
system

::::::::::
asymmetric,

:::::::::
regardless.

:

::
In

::::::::
traditional

::::::
codes,

:::
the

::::::::::::
implementation

:::
of

::::
such

::::::::
additional

:::::
terms

::
in

:::
the

:::::::
Jacobian

:::
and

:::
the

::::::::
proposed

:::::::::::
modifications

:::::::::::
(stabilisation)

::::::
require

:::::::::
significant

:::::::::::
development.

:::::::::
Analytical

::::::::::
expressions

:::
for

::::::
∂η/∂u

::::
and

::::::
∂η/∂p

::::
must

:::
be

::::::
derived

:::
for

::::
each

:::::::
specific

::::::::::
rheological

:::::::::
relationship

::::::::
analysed

:::
(as

::
is

::::
done

:::
in

:::
the

:::::::::
appendices

::
of

:::
?),

::::
and

:::
the

::::::::
assembly

::
of

:::
any

:::::::::
additional

:::::
terms

::::
may

::::::
require

::
a
:::::::::
significant

:::::::
overhaul

::
of

:::::::
existing

::::
code

::::
and

::::
data

::::::::
structures

:::
as,

:::
for

::::::::
example,

:::::::
sparsity

::::::::
structures

::::
may

:::::::
change.

::
In

:::::::::
Firedrake,

:::
the

:::
full

::::::::
Jacobian950

:
is
:::::::
derived

:::::::::::
symbolically

:::
and

:::
the

:::::
code

:::
for

::
its

::::::::
assembly

::::::::
generated

::::::::::::
automatically,

:::::::
making

:::
the

:::::
entire

:::::::
process

:::::::::
automatic,

::::
even

:::
for

:::::
highly

::::::::
complex

:::::::::
rheologies.

:::
We

:::::
were

::::
able

::
to

:::::::::
implement

::::
the

:::::::
Jacobian

::::::::::::
modifications

::::::::
proposed

::
in

::::
? in

::::
only

::
7

::::
lines

::
of

:::::::
Python

::::
code

:::
(the

::::
full

::::::
Python

:::::
script

::
for

::::
this

::::
case

:
is
::::::::
available

::
in

:::
the

:::::::::
repository

::::::::::::
accompanying

:::
this

::::::
paper)

:::
and,

:::
as

::::::::
illustrated

::
in

::::::
Figure

:::
??,

::
we

::::::
obtain

::::::
similar

::::::
results.

:::
As

::::::::
indicated

::
in

::
?,

:::
the

:::::::::::
convergence

::
of

:::
the

:::::::
problem

::::
gets

:::::
more

:::::::::
challenging

:::::
with

::::::::
increased

:::::::::
resolution,

:::
and

:::::::
although

::
a
:::::::::
reasonably

:::::::::
converged

:::::
result

:::
can

::
be

::::::::
obtained

::
for

:::
the

::::
case

::::::
shown

::
in

::::::
Figure

::
??

::
at

:
a
:::::::::
resolution

::
of

::::::::::
1024× 512,

::::
this955

:
is
::::::::::
insufficient

::
to

:::::::
resolve

:::
the

:::::
details

:::
of

:::
the

::::::::::
unstructured

:::::
mesh

:::::::
domain

::::
used

::
in
::::::

? who
:::::::
reported

:::::::::::::::
non-convergence

:::
for

:::
this

:::::
case.

:::::::::
Firedrake’s

::::::
ability

::
to

::::::
choose

::::
from

::
a
:::::
large

::::::
variety

::
of

:::::::::::
discretisation

:::::
types,

:::::::::
including

::::::::::
unstructured

:::::::
meshes,

::::
and

::
its

:::::::::
flexibility

::
to

::::
adapt

::::
and

:::::::::
experiment

::::
with

:::
the

:::::::
solution

::::::::
strategy,

:::::
opens

:::
up

::::::::
numerous

:::::::
avenues

::
to

::::::
further

:::::::::
investigate

:::
the

:::::::::
challenges

::
in

::::
this,

::::
and

:::::
other,

:::::
highly

::::::::
nonlinear

:::::::::
problems.

:
It
::
is
:::::::::
important

::
to

::::
point

:::
out

::::
that

:::::
some

:::::::
common

:::::::::::
components

::
of

::::::::::::
geodynamical

::::::
models

::::
have

::::
not

::::
been

:::::::::
showcased

::::::
herein

::::
and,960

::
to

:::
our

::::::::::
knowledge,

::::
have

::::
not

:::
yet

::::
been

::::::::
explored

::::::
within

:::
the

::::::::
Firedrake

::::::::::
framework.

::::::
These

:::::::
include,

:::
for

::::::::
example,

:
a
:::::::::::

free-surface

::::::::
boundary

::::::::
condition

:::
and

:::
the

::::::
ability

::
to
::::::

model
:::::::::::::::
multiple-material

:::::
flows,

:::::
often

:::::::::::
implemented

::
in

::::::::::::
geodynamical

:::::::
models

:::::
using

:::
the

::::::::::::
particle-in-cell

::::::::
technique.

::::
Our

::::
goal

:::
for

:::
this

:::::
paper

:
is
::
to
:::::::
provide

::::
solid

::::::::::
foundations

:::
for

:::::
future

::::
work

::
in
::::::::
Firedrake

::::
that

:::
we,

:::
and

::::::
others

::
in

:::
the

:::::::::::
geodynamical

:::::::::
modelling

::::::::::
community,

:::
can

:::::
build

:::::
upon.

:::::::::::
Nonetheless,

:::
we

:::
see

:::
no

::::::::::
fundamental

::::::
reason

::::
why

:::
any

::::::::::
component

::
of

::::
other

::::::::::::
geodynamical

:::::::::
modelling

:::::
tools

::::::
cannot

::
be

:::::::::::
incorporated

::::::
within

::::::::
Firedrake.

::::
For

::::::::
example,

:::
the

:::::::::::
TerraFERMA

::::::::::
framework965

::
of

::
?,

:::::
which

::
is
:::::
built

::
on

::::::::
FEniCS,

:::
has

::::
been

::::
able

:::
to

:::::
match

:::
the

::::::::::
free-surface

:::::::::::
benchmarks

::
of

:::
? –

::
a
::::::
similar

:::::::::::::
implementation

::::::
would

::
be

:::::::::::::
straightforward

::
in

:::::::::
Firedrake.

:::
For

::::::::::::
multi-material

::::::
flows,

::::::
solving

:::
an

::::::::
advection

::::::::
equation,

:::
for

::::::::
example

::::
with

::
a

::::::::::::
Discontinuous

:::::::
Galerkin

:::::::
scheme

:::
and

::::::::::
appropriate

:::::::
limiters

:::::::
(e.g. ?),

:::::
would

:::
be

:::::::::::::
straightforward.

::
In

::::::::
addition,

:::::::::::::
particle-in-cell

:::::::
schemes

::::
have

:::::
been

43

:

0 10 20 30 40 50
Picard/Newton Iterations

10 11

10 9

10 7

10 5

10 3

10 1

Re
sid

ua
l

U0 = 2.5 mm/yr, 1 = 1023 Pa s

0 10 20 30 40 50
Picard/Newton Iterations

10 11

10 9

10 7

10 5

10 3

10 1

Re
sid

ua
l

U0 = 5.0 mm/yr, 1 = 1024 Pa s

Picard
0 Picard + unst. Newton
0 Picard + stab. Newton
5 Picard + unst. Newton
5 Picard + stab. Newton
15 Picard + unst. Newton
15 Picard + stab. Newton
25 Picard + unst. Newton
25 Picard + stab. Newton

Figure 12.
:::::::::
Benchmark

:::
case

::
of

:::::
? with

::::::::
strain-rate

:::
and

::::::
pressure

::::::::
dependent

::::::::::::
Drucker-Prager

:::::::
rheology.

:::::::
Solution

::::
fields,

::::::::
including

::::::
velocity,

:::::
strain

:::
rate,

:::::::
viscosity,

:::
and

::::
αSPD::::

(see
:::::::
Equation

::
??)

:::
are

:::::
shown

:::
for

::
the

::::
case

::::
with

:::::
inflow

::::::
velocity

::::::
U0 = 5

:::::
mm/yr,

::::::::
η1 = 1024

::
Pa

:
s
:::
and

::
a
:::::
friction

:::::
angle

::
of

::::::
α= 30o

::
in

:::
the

:::
left

:::::
panel.

:::
The

:::::::
top-right

:::
and

:::::::::
bottom-right

:::::
panel

::::
show

:::::::::
convergence

::
of
:::

the
::::::
residual

::
in
:::
the

:::::
Picard

:::
and

::::::
Newton

::::::
solvers

::::::
applied

:
to
:::

the
:::::::
U0 = 2.5

::::::
mm/yr,

::::::::
η1 = 1023

:::
Pa

:
s
::::
case,

:::
and

:::
the

::::::
U0 = 5

:::::
mm/yr,

:::::::::
η1 = 1024

::
Pa

:
s
::::
case

:::::::::
respectively.

::::
Both

:::::
cases

:::
are

:::
run

:::
with

::
a
::::::
number

:
of
:::::

initial
::::::

Picard
:::::::
iterations,

::
as
::::::::

indicated
::
in

::
the

::::::
legend,

::::::
before

:::::::
switching

::
to
:::::
either

:::
the

:::
full

:::::::::
unmodified

::::::
Newton

::::::
method

:::::
(solid

:::::
lines),

::
or

:::
the

:::::::
stabilised

::::::
method

:::
with

:::::::::::
modifications

:
as
::::::::

proposed
:
in
:::::::
? (dots).

::
In

::
the

::::::
former

::::
case,

::
the

:::::::::
unmodified

::::::
Newton

::::::
method

:::::
clearly

:::::::
performs

::::
best,

::::
with

::
the

:::::::
stabilised

::::::
method

:::::::
showing

::::
some

:::::::::
degradation

::::::
towards

:::
the

:::::
Picard

::::::
method

:::::
(purple

:::::
line).

::
In

::
the

::::
latter

::::
case,

:::
the

:::::::::
unmodified

::::::
Newton

::::::
method

:::
fails

::
to

::::::::
converge,

::::::
whereas

:::
the

:::::::
stabilised

::::::
method

::::::::
continues

::
to

:::::::
converge

:::::
slowly

:::
but

:::
not

::::
much

:::::
faster

:::
than

:::
the

:::::
Picard

:::::::
method,

:::::
before

::::::
stalling

::::::::
altogether.

::::
These

:::::
results

:::
are

:::::::
generally

::::::::
consistent

::::
with

::::
those

::
in

:
?.

::::::::::
successfully

:::::::::
developed

:::
and

::::::
tested

::::
with

::::::::
FEniCS

::::::
(?) and

:::
we

::::
see

:::
no

::::::::::
fundamental

::::::
reason

::::
that

:::::
such

:::::::::::
functionality

::::::
cannot

:::
be

::::::::::
incorporated

::::::
within

::::::::
Firedrake.

:::::::
Finally,

:::::::::
Firedrake’s

::::::::
flexibility

:::::
would

:::::
make

::::::::
exploring

:::::::
different

::::::::
advection

::::::::
schemes

:::::::::::::
straightforward,970

::::::::
rendering

:
it
::::
very

::::::::::
well-suited

::
to

:::::::
level-set

:::::::::
approaches

:::::::
(e.g. ?).

:

We note that the automated approach underpinning Firedrake has the potential to revolutionize the use of adjoints and

other inverse schemes in geodynamics. Adjoint models have made an enormous impact in fields such as meteorology and

oceanography. However, despite significant progress (e.g. ??????), their use in other scientific fields, including geodynamics,

has been hampered by the practical difficulty of their derivation and implementation. In contrast to developing a model directly975

in Fortran or C++, high-level systems, such as Firedrake, allow the developer to express the variational problems to be solved

in near-mathematical notation through UFL. As such, these systems have a key advantage: since the mathematical structure of

44

the problem is preserved, they are more amenable to automated analysis and manipulation, which can be exploited to automate

the derivation of adjoints (e.g. ??) and the generation of the low-level code for the derived models. Exploring the use of such

an approach in geodynamics will be an important avenue for future research.980

Finally, given that the importance of reproducibility in the computational geosciencesis increasingly being recognized, we

note that Firedrake integrates with Zenodo and GitHub to provide users with the ability to generate a set of DOIs corresponding

to the exact set of Firedrake components used to conduct a particular set of simulations. In providing our input scripts and a

DOI for the version of Firedrake used herein, we ensure traceable provenance of model data, in full compliance with FAIR

(Findable, Accessible, Interoperable, Reusable) principles.985

9 Conclusions

Firedrake is a next-generation system for solving variational problems using the finite element method (e.g. ??). It treats finite

element problems as a composition of several abstract processes, using separate and open-source software components for each.

Firedrake’s overarching goal is to save users from manually writing low-level code for assembling the systems of equations that

discretize their model physics. It is written completely in Python, and exploits automatic code-generation techniques to apply990

sophisticated performance optimisations.
::::::::
Firedrake

::::::
creates

::
a

:::::::::
separation

::
of

::::::::
concerns

:::::::
between

::::::::::
employing

:::
the

:::::
finite

:::::::
element

::::::
method

::::
and

::::::::::::
implementing

::
it:

::::
this

:
is
::
a
::::::::::::
game-changer,

::
as

::
it

:::::
opens

::
up

:::::
these

::::::::
problems

::
to

:
a
::::
new

:::::
class

::
of

::::
user

:::
and

:::::::::
developer.

In this manuscript, we have confirmed Firedrake’s applicability for geodynamical simulation, by configuring and validating

model predictions against a series of benchmark and analytical cases, of systematically increasing complexity. In all cases,

Firedrake has been shown to be accurate and efficient, and we have also demonstrated that that it is flexible and easily exten-995

sible: by leveraging UFL and PETSc, it can be effortlessly applied to problems involving different physical approximations

(e.g. incompressible and compressible flow; isoviscous and more complex nonlinear rheologies), even if they require distinct

solution strategies. We have illustrated how Firedrake’s built-in mesh generation utilities and extrusion functionality provide a

straightforward mechanism for examining problems in different geometries (2-D and 3-D Cartesian, 2-D cylindrical and 3-D

spherical
::::
shells), and how its fully-programmable solver dictionary and customisable preconditioner interface, both of which1000

are seamlessly coupled to PETSc, facilitate straightforward configuration of different solution approaches. Parallel scalability

has been demonstrated, on up to 12288 compute cores. Finally, using a realistic
::::::::::::::::
more-representative simulation of global man-

tle dynamics, where the distribution of heterogeneity is governed by imposed plate motion histories (?), we have confirmed

Firedrake’s suitability for tackling challenges from
:
at
:

the very forefront of geodynamical research. We note that all simula-

tion data presented herein has traceable provenance: in providing our input scripts and a DOI for the exact set of Firedrake1005

components employed, Firedrake facilitates transparency and reproducibility, in full compliance with FAIR principles.

Code and data availability. Minor adjustments to the Firedrake code base required to successfully run the cases in this paper have been

merged into the open-source software associated with the Firedrake Project: https://www.firedrakeproject.org/. For the specific components of

45

the Firedrake project used in this paper, see https://zenodo.org/record/6522930. For the input files of all examples and benchmarks presented,

see https://zenodo.org/record/6523264.1010

Author contributions. DRD and SCK conceived this study, with all authors having significant input on the design, development and validation

of the examples and cases presented. All authors contributed towards writing the manuscript.

Competing interests. Authors declare that they have no conflict of interest.

Acknowledgements.
::
All

::::::
authors

::::::::::
acknowledge

::::::
support

::::
from

:::
the

::::::::
Australian

:::::::
Research

:::
Data

::::::::
Commons

:::::::
(ARDC:

::::::::::::::
https://ardc.edu.au/

:
,
::::
under

:::
the

::::::
G-Adopt

:::::::
platform

:::::
grant:

:::::::
PL031),

:::::::
AuScope,

::::::::::
Geosciences

:::::::
Australia

:::
and

:::
the

:::::::
National

:::::::::::
Computational

:::::::::::
Infrastructure

:::::
(NCI).

::::
DRD

::::
and

::::
SCK1015

:::::::::
acknowledge

::::::
support

::::
from

:::
the

::::::::
Australian

:::::::
Research

:::::::
Council,

::::
under

:::::
grant

::
no.

::::::::::::
DP170100058.

::::::::
Numerical

:::::::::
simulations

::::
were

::::::::
undertaken

::
at

:::
the

:::
NCI

:::::::
National

::::::
Facility

::
in

:::::::
Canberra,

::::::::
Australia,

::::
which

::
is
::::::::
supported

::
by

:::
the

:::::::
Australian

::::::::::::
Commonwealth

::::::::::
Government.

:::::::
Authors

::
are

::::::
grateful

::
to

:::
the

::::
entire

::::::::
Firedrake

:::::::::
development

:::::
team,

:::::::::
particularly

::::
David

:::::
Ham,

:::
for

::::::
support

:::
and

:::::
advice

::
at

:::::
various

:::::
points

::
of
::::

this
:::::::
research.

::
We

:::
are

::::
also

::::::
grateful

:
to
::
7
::::::::
reviewers,

:::::::
including

:::::
Cedric

:::::::
Thieulot,

::::::
Marcus

:::::
Mohr,

:::::::
Wolfgang

:::::::
Bangerth

:::
and

::::::
Carsten

::::::::
Burstedde:

::::
their

::::::
careful

:::
and

:::::::::
constructive

:::::::
feedback

:::::
helped

::
to

:::::
clarify

:::
and

::::::
improve

:::
this

::::::::::
contribution.1020

Appendix A: Governing Equations under the Anelastic Liquid Approximation

Density changes across Earth’s mantle result primarily from hydrostatic compression, with density increasing by ≈ 65% from

surface to core-mantle-boundary (CMB) (e.g. ?). Variations in density associated with local temperature and pressure pertur-

bations are small in comparison to the spherically averaged density. For a chemically homogeneous mantle, it is therefore

appropriate to assume a linearized equation of state, of the form:1025

ρ = ρ̄(T̄, p̄) + ρ′,

= ρ̄(T̄, p̄) + ρ̄(χ̄
T
p′− ᾱT ′). (A1)

Here ρ, p, T , χ
T

and α denote density, pressure, temperature, isothermal compressibility and the coefficient of thermal expan-

sion, respectively, whilst overbars refer to a reference state and primes to departures from it:

T = T̄ +T ′, p= p̄+ p′. (A2)1030

It is convenient to take the reference state as motionless and steady. Accordingly, for the purposes of the compressible case

examined herein, we will assume that the reference state varies as a function of depth, z, only. The reference state pressure thus

satisfies the hydrostatic approximation:

∂p̄

∂z
= ρ̄̄g · k̂, (A3)

46

https://ardc.edu.au/

where g is the acceleration of gravity and k̂ is the unit vector in the direction opposite to gravity. On Earth, g is a function1035

of position, however, for simplicity, it will be assumed constant for the compressible case examined herein. Following ?
:
?,

the reference density and reference temperature are described through an adiabatic Adams–Williamson equation of state (?),

where:

ρ̄(z) = ρ0 exp
(α0g0

γ0cp0
z
)

(A4)

and:1040

T̄ (z) = Ts exp
(α0g0

cp0
z
)
. (A5)

Here, cp and Ts represent the specific heat capacity at constant pressure and surface temperature, respectively, whilst γ0 denotes

the Grüneisen parameter, given by:

γ0 =
α0

ρ0cv0χT0

, (A6)

where cv denotes the specific heat capacity at constant volume. Variables with a sub-script 0 are constants, used in defining the1045

reference state. Here, they are defined at the domain’s upper surface.

Assuming a linearised equation of state (Eq. ??), the dimensionless form of the conservation of mass equation under the

Anelastic Liquid Approximation (ALA) can be expressed as (e.g., ?):

∇ · (ρ̄u) = 0, (A7)

where u is the velocity. Neglecting inertial terms, the force balance equation becomes:1050

∇ ·
[
µ

(
∇u+∇uT − 2

3
∇ ·uI

)]
−∇p′−Raρ̄k̂ᾱT ′− Di

γ0

cp0
cv0

ρ̄k̂χ̄
T
p′ = 0, (A8)

where µ denotes the dynamic viscosity, I the identity tensor, Ra the Rayleigh number, and Di the dissipation number given

by, respectively:

Ra=
ρ0α0∆Tg0d

3

µ0κ0
; Di=

α0g0d

cp0
, (A9)

with κ denoting the thermal diffusivity, d the length scale and ∆T the temperature scale. Note that the final
:::
last

:::
but

::::
one term1055

in Eq. ?? is expressed in terms of the temperature perturbation, T ′ (sometimes called the potential temperature). Finally, in the

absence of internal heating, conservation of energy is expressed as:

ρ̄c̄p

(
∂T ′

∂t
+u · ∇T ′

)
−∇ ·

[
k̄∇(T̄ +T ′)

]
+Diᾱρ̄̄g ·uT ′− Di

Ra
Φ = 0, (A10)

where k is the thermal conductivity and Φ denotes viscous dissipation.

47

:::
Case

::::::::::
Discretisation

:::::::
Resolution

:::
DOF

:::
(u)

::::
DOF

::
(p)

:::
DOF

:::
(T)

::
Nu

::::
VRMS

:::
Base

:::
Case

:::::::::::
(Ra= 1× 104)

: ::::::
Q2Q1:Q2

:::::::
320× 320

: :::::
821762

: ::::
103041

: :::::
410881

::::
4.885

:::
42.86

:

:::
Base

:::
Case

:::::::::::
(Ra= 1× 105)

: ::::::
Q2Q1:Q2

:::::::
320× 320

: :::::
821762

: ::::
103041

: :::::
410881

::::
10.54

:::::
193.21

:::
Base

:::
Case

:::::::::::
(Ra= 1× 105)

: ::::::::
Q2P1DG:Q2

:::::::
320× 320

: :::::
821762

: ::::
307200

: :::::
410881

::::
10.54

:::::
193.21

:::
Base

:::
Case

:::::::::::
(Ra= 1× 106)

: ::::::
Q2Q1:Q2

:::::::
320× 320

: :::::
821762

: ::::
103041

: :::::
410881

::::
22.03

:::::
833.99

:::
Base

:::
Case

:::::::::::
(Ra= 1× 106)

: ::::::
Q2Q1:Q1

:::::::
320× 320

: :::::
821762

: ::::
103041

: :::::
103041

::::
21.86

:::::
834.10

:::::::::
Compressible

::::::
Q2Q1:Q2

:::::::
320× 320

: :::::
821762

: ::::
103041

: :::::
410881

::::
7.575

:::::
155.09

::::::::
Viscoplastic

::::::
Q2Q1:Q2

:::::::
320× 320

: :::::
821762

: ::::
103041

: :::::
410881

::::
6.617

:::
79.09

:

:::
3-D

::::::
Cartesian

::::::
Q2Q1:Q2

:::::::::
60× 60× 60

::::::
3294225

::::
141398

: :::::
1098075

: ::::
3.539

:::
41.00

:

::
2-D

::::::::
Cylindrical

::::
Shell

::::::
Q2Q1:Q2

::::::::
2048× 512

::::::
8396800

::::::
1050624

:::::
4198400

: ::::
9.541

:::::
193.26

:::
3-D

::::::
Spherical

::::
Shell

:
-
:::::::
Isoviscous

::::::
Q2Q1:Q2

::::::::
98304× 64

:::::::
152175366

: ::::::
6389890

:::::::
50725122

::::
3.506

:::
32.62

:

::
3-D

:::::::
Spherical

:::
Shell

:
-
::::
µ(T)

: ::::::
Q2Q1:Q2

::::::::
98304× 64

:::::::
152175366

: ::::::
6389890

:::::::
50725122

::::
2.922

:::
22.99

:

Table A1.
::::::
Highest

:::::::
resolution

:::::
results

::::
from

:::::::::
benchmark

::::
cases

:::::::
analysed

::::::
herein.

::::
DOF

:
=
::::::
degrees

::
of

:::::::
freedom,

:::
for

::::::
velocity

:::
(u),

:::::::
pressure

:::
(p)

:::
and

:::::::::
temperature

:::
(T);

:::
Nu

:
=
::::::
surface

::::::
Nusselt

::::::
number.

48

Fr
ee

-S
lip

Ze
ro
-S
lip

(a)

(c)

(b)

(d)

Figure A1.
::::::::::
Convergence

:::
for

:::
2-D

:::::::::
cylindrical

::::
shell

:::::
cases

::::
with

:::::::
zero-slip

::::
(a-b)

::::
and

::::::
free-slip

:::::
(c-d)

:::::::
boundary

:::::::::
conditions,

:::::
using

:
a
::::::

Q2Q1

::::
finite

::::::
element

::::
pair

:::
for

:::
the

:::::
Stokes

::::::
system,

::::::
driven

::
by

::
a
:::::::::::
delta-function

:::::
forcing

:::
at

::::::
different

::::::::::::
wave-numbers,

::
n,
:::

as
:::::::
indicated

::
in
:::

the
::::::

legend

:::::::::::::::::::
(see ?, for further details).

::::::::::
Convergence

:::
rate

::
is
:::::::
indicated

:::
by

:::::
dashed

:::::
lines,

::::
with

:::
the

::::
order

::
of

::::::::::
convergence

:::::::
provided

::
in

:::
the

::::::
legend.

:::
For

:::
the

::::
cases

::::::
plotted,

:::
the

::::
series

::
of

::::::
meshes

::::
start

::
at

::::::::
refinement

::::
level

::
1,

:::::
where

::
the

:::::
mesh

::::::
consists

::
of

::::
1024

:::::::
divisions

::
in

:::
the

:::::::
tangential

:::::::
direction

:::
and

:::
64

::::
radial

:::::
layers.

:::
At

:::
each

:::::::::
subsequent

::::
level

::
the

:::::
mesh

:
is
::::::
refined

::
by

:::::::
doubling

:::::::
resolution

::
in
::::
both

::::::::
directions.

49

Fr
ee

-S
lip

Ze
ro
-S
lip

(a)

(c)

(b)

(d)

Figure A2.
::::::::::
Convergence

::
for

::::
2-D

::::::::
cylindrical

:::::
shell

::::
cases

::::
with

:::::::
zero-slip

::::
(a-b)

::::
and

::::::
free-slip

:::::
(c-d)

:::::::
boundary

:::::::::
conditions,

:::::
using

:
a
:::::::

Q2P1DG

::::
finite

::::::
element

::::
pair

:::
for

:::
the

:::::
Stokes

::::::
system,

::::::
driven

::
by

::
a
:::::::::::
delta-function

:::::
forcing

:::
at

::::::
different

::::::::::::
wave-numbers,

::
n,
:::

as
:::::::
indicated

::
in
:::

the
::::::

legend

:::::::::::::::::::
(see ?, for further details).

::::::::::
Convergence

:::
rate

::
is
:::::::
indicated

:::
by

:::::
dashed

:::::
lines,

::::
with

:::
the

::::
order

::
of

::::::::::
convergence

:::::::
provided

::
in

:::
the

::::::
legend.

:::
For

:::
the

::::
cases

::::::
plotted,

:::
the

::::
series

::
of

::::::
meshes

::::
start

::
at

::::::::
refinement

::::
level

::
1,

:::::
where

::
the

:::::
mesh

::::::
consists

::
of

::::
1024

:::::::
divisions

::
in

:::
the

:::::::
tangential

:::::::
direction

:::
and

:::
64

::::
radial

:::::
layers.

:::
At

:::
each

:::::::::
subsequent

::::
level

::
the

:::::
mesh

:
is
::::::
refined

::
by

:::::::
doubling

:::::::
resolution

::
in
::::
both

::::::::
directions.

All authors acknowledge support from the Australian Research Data Commons (ARDC: https://ardc.edu.au/, under the1060

G-Adopt platform grant: PL031), AuScope, Geosciences Australia and the National Computational Infrastructure (NCI). DRD

and SCK acknowledge support from the Australian Research Council, under grant no. DP170100058. Numerical simulations

were undertaken at the NCI National Facility in Canberra, Australia, which is supported by the Australian Commonwealth

Government. Authors are grateful to the Firedrake development team, particularly David Ham, for support and advice at

various points of this research.1065

50

https://ardc.edu.au/

