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Abstract. This paper introduces WAVETRISK-2.1 (i.e. WAVETRISK-OCEAN), an incompressible version of the atmosphere
model WAVETRISK-1.x with free-surface. This new model is built on the same wavelet-based dynamically adaptive core as
WAVETRISK, which itself uses DYNAMICO’s mimetic vector-invariant multilayer rotating shallow water formulation. Both
codes use a Lagrangian vertical coordinate with conservative remapping. The ocean variant solves the incompressible multi-
layer shallow water equations with inhomogeneous density layers. Time integration uses barotropic—baroclinic mode splitting
via an semi-implicit free surface formulation, which is about 34—44 times faster than an unsplit explicit time-stepping. The
barotropic and baroclinic estimates of the free surface are reconciled at each time step using layer dilation. No slip boundary
conditions at coastlines are approximated using volume penalization. The vertical eddy viscosity and diffusivity coefficients
are computed from a closure model based on turbulent kinetic energy (TKE). Results are presented for a standard set of ocean
model test cases adapted to the sphere (seamount, upwelling and baroclinic turbulence). An innovative feature of WAVETRISK-
OCEAN is that it could be coupled easily to the WAVETRISK atmosphere model, thus providing a first building block toward an

integrated Earth-system model using a consistent modelling framework with dynamic mesh adaptivity and mimetic properties.

1 Introduction

Dynamically adaptive methods have the potential to significantly improve the computational efficiency and accuracy of the
dynamical cores of atmosphere and ocean models. They do this by optimizing grid resolution at each time step to represent
the dynamically active parts of the flow. This makes better use of computational resources by using fine resolution where
needed, and also allows better control of accuracy since the grid may be adapted based on a local error indicator. The same
technique can also be used to build statically adapted “nested”” models which avoid reflection and other errors at the refinement
boundaries. Another feature of adaptive methods is that they can be run at coarse resolutions for long times to spin up a model,
and then easily restarted with much higher resolutions for shorter runs.

However, these advantages come at the cost of increased code complexity and it is not clear a priori whether dynamically
adaptive methods will work well in complex multi-physics simulations with separate subgrid scale (SGS) parameterizations.
Because of their potential, we have been pursuing a program to push the adaptive paradigm as far as possible, to help assess its
potential in realistic or semi-realistic Earth system models. Our approach uses the powerful wavelet collocation multiresolution
framework, adapted to the needs of geophysical fluid dynamics (Kevlahan, 2021). Since our model implements the TRiSK

discretization Ringler et al. (2010) using an adaptive wavelet collocation method, we call it “WAVETRISK”.
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The development of WAVETRISK began with the shallow water equations on the S—plane (Dubos and Kevlahan, 2013)
and extended this method to the sphere (Aechtner et al., 2015). Ocean models require accurate approximation of boundary
conditions at solid boundaries, and Kevlahan et al. (2015) derived a robust volume penalization scheme to implement no-slip
boundary conditions in an adaptive model. Debreu et al. (2020) extended the volume penalization approach to modelling ocean
bathymetry. Finally, Kevlahan and Dubos (2019) extended this two-dimensional models to a three-dimensions hydrostatic
atmosphere model using Lagrangian vertical coordinates.

To simplify development, for better accuracy and for compatibility with existing SGS parameterizations, adaptivity is hori-
zontal only (as in Popinet, 2021). This means the data structure is a set of vertical columns of varying resolutions. WAVETRISK
is parallelized using mp i, and exhibit good strong parallel scaling properties (Kevlahan and Dubos, 2019).

This paper presents a significant step in the development of a foundational set of dynamical cores for adaptive Earth system
models. WAVETRISK-2.1 (which we will refer to as WAVETRISK-OCEAN) is a three-dimensional hydrostatic free-surface ocean
model with Lagrangian vertical coordinates and inhomogeneous density layers.

In the terminology of Beron-Vera (2021) WAVETRISK-OCEAN is an n-IL° model, i.e. an inhomogenous-layer model where
variables do not vary vertically within each layer. This is in contrast to the more common homogeneous layer (n-HL) models,
where buoyancy is horizontally and vertically homogeneous in each layer. The single layer ILY model was introduced by Ripa
(1993) to represent thermodynamic processes in a single layer reduced gravity ocean, and is sometimes called a “thermal
rotating shallow-water model". n-IL° preserves important mimetic properties of the continuously stratified system (Kelvin’s
circulation theorem, advection of tracers, conservation of Casimir invariants). The Hamiltonian structure of this model facili-
tates the development of discretizations with good conservation properties (Salmon, 1988). Dubos et al. (2015)’s DYNAMICO
model uses this approach to derive the discrete equations of motion directly from the discretized Hamiltonians and WAVETRISK
uses the same discrete equations as DYNAMICO. Beron-Vera (2021) improves n-ILY to n-IL' by allowing linear vertical varia-
tion within each layer.

WAVETRISK-OCEAN includes barotropic-baroclinic mode splitting using a semi-implicit free surface method implemented
using a #-method in time. The associated linear elliptic problem is solved efficiently using an adaptive multigrid method based
on the multiscale wavelet grid structure. According to the classification proposed by Griffies et al. (2020) WAVETRISK-OCEAN
is based on a vertical Lagrangian-remap method, as illustrated in their Figure 3.

The current version of WAVETRISK-OCEAN is semi-realistic, since it includes some basic features of a practical ocean model.
These include conservative grid remapping, inclusion of complex coastline geometries and bathymetry, and vertical diffusion
using a turbulent kinetic energy (TKE) closure scheme. Solar flux and wind stress forcing are also options. Where possible,
we have tried to incorporate best practice features of well-established ocean models, such as NEMO (Madec and Team, 2015)
and MITGCM (Adcroft et al., 2021). This model is sufficiently realistic to serve as a test bed for adaptive modelling of ocean
flows, while avoiding the complexity of a true operational ocean model.

Popinet (2021) has recently introduced an adaptive regional non-hydrostatic/hydrostatic multilayer ocean model built on the
Basilisk framework that he had used previously for two-dimensional shallow water ocean modelling (Popinet and Rickard,

2007; Popinet, 2011). This model uses Lagrangian layers and the same remapping we use here (Engwirda and Kelley, 2016).
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As in WAVETRISK, he adapts the grid horizontally, but not vertically. However, in contrast with WAVETRISK-OCEAN model,
Popinet (2021) does not use barotropic—baroclinic mode splitting, does not use penalization for solid boundaries, is based on
a fundamentally different adaptivity method, and is a regional rather than global model. WAVETRISK-OCEAN also includes
a vertical mixing parameterization, which is essential for climate modelling. Popinet (2021)’s model has been developed for
short time scale regional simulations, while WAVETRISK-OCEAN is aimed at global climate modelling of the oceans. Finally, an
important design goal of WAVETRISK-OCEAN was to incorporate important mimetic properties in the adaptive discretization.
These two adaptive models are therefore complementary, and provide a good illustration of the applicability of adaptivity to
ocean modelling.

The dynamical equations and basic approximations of the model are summarized in Section 2 and the components of the
numerical scheme are described in detail for the first time in Section 3. Results for a set of ocean model tests cases are
presented in Section 4. We summarize our main conclusions and outline some perspectives for future use and development of

WAVETRISK-OCEAN in Section 5.

2 Dynamical equations and adaptivity

2.1 Dynamical equations

This initial release of WAVETRISK-OCEAN uses the incompressible version of the DYNAMICO (Dubos et al., 2015) equations
on an icosahedral C-grid with Lagrangian vertical coordinates. These exactly incompressible equations are based on the simple
Boussinesq approximation (Vallis, 2006), which neglects the hydrostatic compressibility of seawater. This means that the

thermodynamic equation is based on density (i.e. buoyancy) and not on potential density,

z
Pog ~p (D

2
Cs

Ppot = P —

where ¢, ~ 1500 m/s is the speed of acoustic waves. This choice ensures a consistent and mathematically well-founded approx-
imation of the Navier—Stokes equations based on Hamilton’s principle and the associated Euler-Lagrange equations (Dubos
et al., 2015) at the cost of some loss of realism. The test cases presented here all use a simple linear equation of state relating

density and temperature
p=po+ao(T—1T,), (2

where linear coefficient of thermal expansion ay ~ 0.1655kg/meter®/°C, and the reference temperature T, ~10°C (actual
values depend on the test case).

For simplicity, we present the equations in non-penalized form (i.e. with open boundary conditions). In Section 3.4 we
review briefly the volume penalization used to approximate solid boundaries (e.g. continents) originally developed in Kevlahan
etal. (2015).

The prognostic variables are inertial pseudo-density p;r = poAz;, (using the Boussinesq approximation), mass-weighted

buoyancy, O, = ;0 (Where we define buoyancy as 0;;, = 1 — p;/po) and velocity veg. Index k labels a full vertical layer,
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[ an interface (half-layer) between full vertical layer, < an hexagonal or pentagonal cell, v a triangular cell and e an edge, with

geometry as shown in figure 1. The dynamical equations of motions (without splitting the barotropic and baroclinic modes) are

' Mass (scalars)
A Circulation

> Velocity

Figure 1. Left: basic computational cell for the icosahedral C-grid discretization, containing one node (for mass and buoyancy), three edges
(for velocities) and two triangles (for circulation). Right: relation of the triangular (primal) and hexagonal (dual) cells. Note that the cells are
not regular polygons on the sphere and there are 12 exceptional pentagonal dual cells. Separate wavelet transforms are provided for the nodes
(scalar-valued) and edges (vector-valued). The adaptive grid consists of the the significant nodes and edges, together with nearest neighbours

in position and scale necessary for dynamics. The horizontal grid is the same in each vertical layer.

Orpik +0iFe, = 0, 3)
39, +0;(Oix For) = DyOup, “4)
8tvek + 5eBik - @edeq)iilk + (qekak)j = DJ'Uek + Dwvekv (5)

where F.j, = i, °vej is the horizontal mass flux and (g, F, k)el is approximated using the TRiSK discretization (Ringler et al.,
2010) from values of potential vorticity q,; reconstructed at e points. We have assumed Lagrangian vertical coordinates (so
the vertical mass fluxes are not explicit). Centred averages are used for all interpolated quantities, e.g. @e is a node quantity
reconstructed at an edge. The discrete operators §; (divergence, with result at a node), . (gradient, with result at an edge) and
(~)J- (perpendicular flux), d, (curl, with result at triangle circumcenters) are defined as in Ringler et al. (2010).

The top vertical layer k£ = IV includes the free surface perturbation with the interface [ = N + 1 at the free surface, and the
bottom vertical interface [ = 1 is the bathymetry. We include an additional N + 1 vertical layer to represent the separate free
surface variable 1 when splitting the baroclinic and barotropic modes. Note that we only store the free surface in the N + 1
vertical layer since the depth-integrated fluxes are computed as needed from the other NV vertical layers. In the examples we
consider here we use a hybrid o — z grid. The seamount test case uses a Chebyshev vertical grid, while the upwelling and
baroclinic jet test cases use a hybrid vertical grid similar to that described in Shchepetkin and McWilliams (2009).

The system (3-5) is a multi-layer rotating shallow water model with inhomogeneous density layers (i.e. ;6;1 # 0), but

assumes zero vertical variation of velocity and buoyancy within each layer (i.e. an n—IL° model). A similar model was derived
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by Ripa (1993) and by Dubos et al. (2015). In this model, to be consistent with the piecewise constant representation of v
and @ in the vertical, a vertical average of the horizontal pressure gradient term in each layer is used to compute horizontal
velocity (Ripa, 1993).

The Bernoulli function for hydrostatic incompressible flow is

— kN
By = K+ @i + p’“, ©6)
0

where K, is the discrete kinetic energy computed from v.j, using appropriate averaging, and ®;; is the geopotential at vertical
layer interfaces I. Pressure \;; is calculated by summing the hydrostatic contribution from each vertical layer, g(1 — 0;1 ) thik»

from the top down. The hydrostatic pressure is therefore given by

N N
1 1
ik = E kg(l — 03 pij — 59(1 — O ) ik = | Ekﬂg(l —0ij)pij + 59(1 — Oik) i
J= J=

The terms on the right hand side of (3-5) are the discretizations of the appropriate Laplacian along-layer diffusion operators,

Dy =V - (K4V¢) (for the scalars) and Ds = V(K;V -v) and D,, = V x (K, V x v) (for the velocity),

D¢ — 6Z(K¢§e¢)> (7)
D6 = 58(K65i(ve))a (8)
Dw == 5@(Kw6v(ve))a (9)

The along-layer diffusion coefficients K, Ks and K|, are constants, and can be chosen either to model physical diffusion,
or at minimal values to ensure stability. In general K4 = 0, although some grid scale along-layer diffusion on the Lagrangian
layer thicknesses p;; = poAz;, and buoyancy could be included on the right hand side of equation (3) to enhance numerical
stability. For better accuracy and stability, mass density (i.e. layer depth) is decomposed into its mean and fluctuating parts and

we solve for the fluctuations.
2.2 Vertical remapping and horizontal grid adaptivity

Prognostic variables may be remapped as desired onto a target vertical grid using a conservative piecewise parabolic remapping
scheme, as described in Kevlahan and Dubos (2019), to avoid layer collapse or to ensure desired properties of the vertical grid
(e.g. approximately isopycnal).

The horizontal grid is adapted on fluctuating pseudo density (i.e. perturbations from mean layer depths), mass-weighted
buoyancy and velocities. Adapting on pseudo density ensures that the deformations of the Lagrangian layer interfaces are
properly represented by the adaptive grid. Note that if buoyancy is initially constant in each layer, i.e. 6;;, = 0, and the vertical
grids are not remapped, ;1 = (Ji;;, + ftik )04, i.€. buoyancy remains constant in each layer.

The horizontal grid adaptation scheme is based on the fact that wavelet coefficients measure the interpolation error at each
position and scale. A unique grid point is associated to each wavelet and so removing (small) wavelets from the data structure

also removes the corresponding grid point, resulting in an adapted grid.
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The essentials of the horizontal grid adaptation strategy are as follows. At the end of a time step the wavelet coefficients
of the prognostic variables are computed separately for each horizontal layer. Wavelet coefficients larger than the specified
relative tolerance ¢ for each prognostic variable are retained, and the remainder are deleted. This produces a multiscale adapted
grid for each vertical layer. The actual adapted grid is then the union of the adapted grids over all vertical layers. To account for
the change in the solution over one time step, nearest neighbours are then added in both scale and position. This is sufficient
for a dynamical equation with a quadratic nonlinearity and a time step corresponding to an advective CFL criterion of one.
Additional points are added to ensure that the adapted grid includes the stencils required for all discrete differential operators.
Finally, all variables are inverse wavelet transformed onto the new adapted grid.

The resulting adapted horizontal grid is the same in each vertical layer, which means that the computational elements are a
collection of columns of various sizes at each level of resolution j. Full details of the horizontal grid adaptation algorithm are
available in Dubos and Kevlahan (2013); Kevlahan and Dubos (2019); Kevlahan (2021).

In the incompressible version of WAVETRISK described in Kevlahan and Dubos (2019) the grid is adapted after each time
step, since the time step is based on the advective CFL number. However, in WAVETRISK-OCEAN the time step is usually
significantly smaller than the advective time step, since the advective velocity U ~1 m/s is much smaller than the barotropic
velocity U =200 m/s. This means that, even in the mode split version (3.1), the grid can be adapted much less frequently,
leading to a cpu time saving of about 10% per time step. For example, in the unstable baroclinic jet case (§4.3), which uses a
barotropic CFL criterion of 35, the grid can be adapted every 8 time steps. This strategy is based on the fact that high resolution
is needed primarily to track the fine scale vorticity filaments and associated density/temperature fluctuations (i.e. the turbulent
geostrophic modes).

We use a single time step for all resolution levels j. This may be less efficient than using a resolution-dependent time step
in cases where a majority of active grid points are at the finest levels (i.e. low levels of adaptivity), but it greatly simplifies the
time stepping algorithm, especially in the mode split case. We may consider implementing a resolution-dependent Runge—Kutta

method (McCorquodale et al., 2015) in future versions of WAVETRISK.

3 Numerical scheme
3.1 Barotropic-baroclinic mode splitting time step

The barotropic (or external) mode is typically O(102) faster than the baroclinic (internal gravity wave) modes and advective
time scales of the flow. For an ocean of mean depth H = 4 km the external wave speed is approximately cg = \/gH = 200m/s,
while the typical advective velocity is U =~ 1 m/s (the first baroclinic mode is usually much slower, typically

c1 =2/ —pﬂo% ~ 3m/s). To avoid advancing all vertical layers at the very small time step set by the stability criterion

for the external modes, most ocean models solve separately the two-dimensional barotropic mode and the three-dimensional

baroclinic modes. This barotropic—baroclinic mode separation has been done in three different ways:

1. Imposing a “rigid lid” (no longer used in operational models).
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2. Explicit sub-cycling, for example ROMS (Shchepetkin and McWilliams, 2005), MPAS-0(Kang et al., 2021), NEMO(Madec
and Team, 2015). This involves taking small time steps At ~ Ax/cy for the two-dimensional barotropic mode and longer

time steps At ~ Az /U for the baroclinic modes .

3. Using implicit or semi-implicit time stepping for the free surface (e.g. MITGCM Adcroft et al., 2021). This is the

approach we use here.

The implicit free surface filters the fast unresolved wave motions by damping them, and does not require an extremely accurate
solution of the associated elliptic equation (unlike the rigid lid approach).

The implicit free surface approach has been used in established ocean models such as MITGCM (Marshall et al., 1997;
Adcroft et al., 2021), as well as in more recent ocean models such as FESOM (Danilov et al., 2017) and MPAS-0O (Kang et al.,
2021). Implicit free surface models are a natural choice for unstructured grid models with variable resolution.

WAVETRISK-OCEAN allows two time stepping schemes: explicit low-storage RK4 without mode splitting, and barotropic—
baroclinic mode splitting with a linear implicit free surface. The fully implicit free surface method is unconditionally stable
for the barotropic mode, although stability requirements for the baroclinic vertical modes and horizontal geostrophic (vortical)
motions limit the practically useful barotropic CFL number. Since the implicit time stepping scheme is strongly diffusive,
the computed free surface waves are strongly diffused at large values of Charorropic. Therefore, fully implicit mode splitting is
appropriate only when we are interested primarily in the slow baroclinic dynamics. However, it does not represent barotropic
tides accurately. The following linear free surface scheme shares some features of the barotropic—baroclinic #-step used in
MITGCM (e.g. Adcroft et al., 2021, section 2.4).

Because of the significant dissipation associated with the fully implicit method, we implement a 6 semi-implicit time inte-
gration method, where the parameter 1/2 < § < 1 determines the mix of implicit and explicit approximations of the barotropic
flow divergence and surface pressure gradient components. § = 1 gives the full implicit scheme, while § = 1/2 gives a Crank—
Nicolson scheme (non-dissipative, but less stable). For simplicity, we describe in detail only the fully implicit § = 1 method,
using explicit Euler. The general -method is a simple modification, implemented as in MITGCM (Adcroft et al., 2021, section
2.10.1). Note, that the explicit Euler method is unconditionally unstable, and the actual implementation uses third or fourth
order Runge—Kutta, which are unconditionally stable for § > 0.75. The stability properties of the time integration scheme is
discussed at the end of this section.

Consider a first order discretization of the horizontal equations of motion (for simplicity we have dropped the horizontal
indices ¢, e and have not included the variable porosity used with the penalization). Mass flux through the air-sea interface has
been neglected, although it could be included as an extra source term in the top layer.

The first partial explicit Euler step for the scalars is
pio= = ANV Fp (10)
OF = Op—AV-(6pEF), an

where F' = pjvp is the mass flux in each layer. Because we use Lagrangian vertical coordinates, the layer depths evolve

according to (10), and the two estimates of the depth H + 7" and chvzl K/ po do not agree exactly. To avoid instability
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associated with the inconsistent estimates of the free surface position, layer dilation (Bleck and Smith, 1990) is used to stretch

each layer slightly to match the free surface estimate n”. Layer dilation is applied after each partial Euler step to correct the

layer depths
P ="N .. Pk (12)
D=1k

After dilating the layers, the mass-weighted buoyancy ©;* is corrected using the new mass density,

*

o; =Lt_or". (13)

ko

k

Due to differences between the barotropic and baroclinic mass fluxes, layer dilation conserves global mass but not mass in
individual layers. Nevertheless, as Hallberg and Adcroft (2009) pointed out, operational ocean models such as MICOM and
HYCOM have used this approach successfully. In any case, remapping of vertical layers also mixes buoyancy and inertial mass
between layers.

The implicit scheme for the vertical layer velocities and the free surface perturbation equation 9;n+ V - ((H + n)v) =0 is

Pt = Wl AHGE — gV, (14)
,'771,+1 _ ,'771, _ AtV . Fvn—i—l7 (15)
where G is the right hand side of the velocity equation without the external pressure gradientand F"+1 = SO Lt

(H +n"T1)v™*1 is the depth-integrated horizontal thickness flux.

Equation (14) is first split into explicit Euler and backwards Euler steps,

vy, = v +AtGy, (16)
vZH = v —AtgVn"T 17

We now use (17) to approximate the depth-integrated horizontal thickness flux as
F7L+1 ~ F* o Atg(H+n7L)v777z+1’

in (15), where F'* = Zgil wivi/po. The flux F™*1 has been linearized about the previous value of the free surface, i.e.

Pt~ pk and (H 40"tV ~ (H +n™) V™ +1. This gives the linear elliptic equation
"t =" — AtV - F* + A2V - [g(H +n") V™). (18)
Rearranging and dividing by At? gives,

ARl n*

Velg(H ")V = o = =1 (19)

where we have defined the intermediate free surface

n*=n"—-AtV-F*. (20)
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The adaptive multiscale elliptic solver used to solve (19) for "+ is described below in Section 3.3. Finally, the intermediate
layer velocities v;; are corrected using the backwards Euler step (17) to obtain ’UZ+1.

The layer dilation correction is applied once more to p} and ©%, using the new free surface perturbation 7™, to obtain
[LZ+1 and @ZH. Note that, in contrast to the the split-explicit method, a single (slow) barotropic time step At ~ 35+/gH is
used for both the implicit and the explicit steps.

In practice, the explicit Euler steps are incorporated into an explicit RK3 or RK4 scheme (as used in the non-split time
integration option). WAVETRISK-OCEAN uses either a third or fourth-order low storage Runge—Kutta scheme (Kinnmark and

Gray, 1984). The RK3 scheme for y' = f(y) is

y'o=yr+ 5Ly,
v o=yt + 5, 1)
Yt =y ALf(y?).

This method is third-order accurate for linear terms, second-order accurate for nonlinear terms and is stable for a CFL number
less than /3. It is well-suited for large, adaptive problems because it uses only one previous time step and has low memory
requirements. In a multi-step method like Runge—Kutta scheme, after each substep the layer dilation correction is applied to
the intermediate values of i and ©y and the result is interpolated back onto the adapted grid (to ensure mass conservation).
The external pressure gradient is neglected in the substeps (it is included in the backwards Euler step 17, which uses the new
free surface value 7" *1). We have checked that this time scheme preserves constants (e.g. that in the absence of remapping
a constant vorticity or buoyancy field remains constant). Bottom drag and wind stress are implemented as surface fluxes in a
separate backwards Euler split step as part of vertical diffusion (see Section 3.2).

We finish by presenting the linear stability of the #-method, following the approach of Walters et al. (2009). This analysis
specifically addresses the Coriolis term, and neglects bottom drag. Figure 2 compares the stable and unstable regions of the
6 method in the 6 — kcAt plane for several time integration schemes, where k is the perturbation wavenumber, ¢ = /gH is
the external wave speed and At is the time step. The explicit Euler and AB2 methods are both unstable for all 6 at small
wavenumbers, as is RK2 (not shown). In contrast, RK3 and RK4 are both stable for all § > 0.75. (Note that AB3 is stable for
all @ > 1/2 and is the current preferred choice in MITgecm.) RK3 is actually more stable than RK4 at small k, although this is
likely not significant in practice. The results presented below use RK4 with 8 = 1 (i.e. fully implicit) in Sections (4.1, 4.2) and
RK3 with § = 0.8 in Section 4.3.

An indication of the maximum computational efficiency of the code is given by the performance of the non-adaptive version.
We have performed computations for horizontal grids J =7 (163 840 cells) and J = 8 (655 360 cells) with 60 vertical layers
for the turbulent baroclinic jet case in Section 4.3 without nudging, remapping or diffusion. We show the performance for
different choices of patch size p for the hybrid data structure. (Patches are the lowest level of the quad tree, and are uniform
2P x 2P grids.) All runs were performed on the Compute Canada machine niagara with 40-core Intel Skylake nodes, where

each node has 202 GB of memory.
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Figure 2. Neutral linear stability level curves in the § — ckAt plane for the §-method for several explicit schemes. The Coriolis parameter
f=10"" rad/s, At =360 s. The area above the red curves indicates the stable region for each scheme. Note that RK3 and RK4 are

unconditionally stable for all § > 0.75, while AB2 and Explicit Euler are both unstable for small wavenumbers k.

Table 1 summarizes the metric 7 = (wall clock time x cores) / (iterations x nodes x vertical layers), where iterations = 3
for RK3. For the explicit scheme the best performance is 7 ~ 0.8 us, while for the split time scheme the best performance is
T & 1 ps. Since it uses time steps about 45 times larger, the mode split version of the code is about 34—44 times faster than the

265 explicit scheme.

As a comparison with the mode-split case, the best performance of the highly optimized regional ocean model ROMS (Shchep-
etkin and McWilliams, 2005) is a bit larger than 1 us (Roullet, 2019) for realistic configurations, or slightly less than 1 ps with
only the dynamical core (as here). (Note that a global model like WAVETRISK-OCEAN has some additional overhead associ-
ated with the spherical topology.) Thus, WAVETRISK-OCEAN has roughly similar computational performance to ROMS when

270 run non-adaptively. However, we note that this comparison is not precise, since ROMS solves additional tracer equations and
additional computations (e.g. isopycnal diffusion).

For the 60 vertical layer case considered here, the mode split scheme adds an overhead of 3-30%. The overhead associated
with adaptivity depends on the number of refinement levels, load balancing, how often the grid is adapted, the selected toler-
ance, and the patch size. For a well-balanced case with a grid compression of about 10 times, adaptive runs are about 1.5 times

275 slower per active node than non-adaptive runs on a single grid level (Kevlahan and Dubos, 2019, confirmed for the mode split
case). In practice, the performance of realistic, well-balanced, adaptive runs with at least 0(10%) active nodes is about T =

O(1 ps).

10
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Grid level J patch size 20 cores 40 cores 160 cores

explicit split explicit split explicit split
7 (163840 cells) | 8 x 8 1.23 ps 1.33 ps 1.42 ps 1.46 ps 1.30 ps 1.26 ps
7 (163840 cells) | 16 x 16 0.816 us | 1.05ps 0.850 us | 1.08 ps 0993 us | 1.29ps
8 (655360 cells) | 8 x 8 1.74 ps 1.86 ps 1.95 ps 2.13 ps 1.93 ps 2.03 ps
8 (655360 cells) | 32 x 32 0771 ps | 0961 ps | 0.708 us | 0.964 pus | 0.869 us | 1.09 ps

Table 1. Computational performance of the explicit and barotropic-baroclinic mode split time schemes without nudging, remapping or
diffusion for non-adaptive runs with 60 vertical layers for a modified version of the turbulent baroclinic jet case discussed in Section 4.3.
Patch size is the size of the uniform patches in the hybrid data structure (i.e. the lowest level of the quad tree). The metric used is (wall clock

time X cores) / (iterations X nodes X vertical layers), where iterations = 3 for RK3.

3.2 Vertical diffusion and TKE closure

WAVETRISK-OCEAN implements Laplacian vertical diffusion of buoyancy (i.e. the thermodynamic variable) and velocity in
each vertical column as a backwards Euler split step after the main time step. This implicit method is unconditionally stable.
The diffusion coefficients of buoyancy and velocity, K; and K,,, are evaluated either analytically (see the upwelling test
case 4.2) or using an eddy viscosity model with a Kolmogorov-type closure of the TKE. The TKE closure is similar to that
used in the NEMO ocean model (Madec and Team, 2015, section 10.1.3). TKE is computed dynamically in each vertical column

using the one-dimensional equation

3/2
il

le ’

ateil = Km||azvek||2 - KtNr?l + 8z(Kmazeil> — Ce (22)

where the TKE e;; is defined at node ¢ and interface 0 <[ < N, szz = —gdi[pir]/po is the local Brunt—Vaisild frequency
squared and [, is the dissipation length scale. ||0,vcx||? is computed at nodes using the usual WAVETRISK formula for kinetic

energy applied to 0,v.. The eddy viscosity K, and eddy diffusivity K; are then found from the TKE (dropping indices) as
K, = max(cplmve, Kimo), K; = max(K,,/Pr, Kyp), (23)

where ¢, = 0.1, [,,, is the mixing length and K¢, Ko are minimum diffusivities. The Prandtl and Richardson numbers are

1 ifRi<0.2, 9
N
P — : H . < 3 < R. = 77 24
¢ 5Ri if0.2<Ri<2, 1 10,02 + ¢, &4
10 if Ri> 2,

where 5 = 10720 s72. The length scales are computed as in NEMO from intermediate values [y, and l4y, to ensure that their

maximum vertical gradients are not larger than depth variations. This modifies the initial values from the basic formula

b =le= | ——
T\ max(N2,N2)’
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where N2 = 1072Y s72. The Dirichlet boundary conditions for TKE are

sfc

e(z =n,t) = max(Cs||7||/po.€5°)s e(z=—H,t) = ey,

where Cy. = 67.83, 7 is the surface wind stress, e%fc = 10"*m?/s? and e = 10*6/\/5 m? /s, This large value of Ci,
(compared with the usual value of 3.75), together with a modification of the length scale computation, parameterizes the
effect of surface wave breaking.

The TKE equation (22) is advanced in time from n to n + 1 using an implicit backwards Euler step, discretized as,

n+1 n n |12 2 1 Km n+1 eZeZJrl
eil :eil+At {Km”az'l}ekn _KtNil} +At Eél szk (Sk I:eil ] —0617 . (25)

Positivity of TKE is guaranteed by discretizing the buoyancy term implicitly by multiplying it by e?ﬁl /el when the source

term (the second term on the right hand side) is negative, i.e. the “Patankar trick” (Patankar, 1980). (Note that N? is always
evaluated at time step n.) The resulting one-dimensional tridiagonal system is solved using the 1apack routine dgtsv.
After the eddy viscosity and eddy diffusivity have been updated, vertical diffusion is applied to the buoyancy and velocity

using a backwards Euler split step,

At K
n+1 _ n t .n+1
eik - ik + Azik 6k |:Azil 5l [ezk }:| ’ (26)
At K
nt+l n m n+ly) 27
Vek Vek + Azek 6k l:Azel 61 [Uek }:| ( )

Source terms at the free surface and bottom (e.g. wind stress, bottom friction, heating/cooling) are implemented via the appro-
priate Neumann (i.e. vertical flux) boundary conditions. Note that surface heat flux boundary conditions for the temperature,
Fr =Q/(pocp), becomes Fy = Q/(pocp)ao/po using the simple linear equation of state (2) (without salinity or representation
of thermobaric and cabbeling effects).

The numerical implementation of vertical diffusion (26,27) and the associated TKE closure scheme (25) has been verified
using two standard one-dimensional test cases: boundary layer thickening (Kato and Phillips, 1969) and free convection (Willis
and Deardorff, 1974). In these cases only the vertical diffusion is active, and the code is run at a coarse resolution J = 4. In
both cases the results matched exactly those produced by NEMO using the same TKE closure model.

The current version of WAVETRISK-OCEAN also includes an enhanced buoyancy diffusion option and a solar penetrative flux
model, as in NEMO (Madec and Team, 2015, section 5.4.2). The NEMO model is based on a two-waveband light penetration

scheme.
3.3 Adaptive multiscale elliptic solver

The barotropic—baroclinic mode splitting relies on an efficient and sufficiently accurate algorithm for solving the associated
two-dimensional elliptic problem (19). The implicit free surface method is computationally efficient since, unlike the rigid lid
method, it does not require a very accurate solution for the free surface perturbation 7 to achieve an accurate representation

of the slow baroclinic vertical modes and geostrophic vortical motions. The WAVETRISK algorithm provides a natural adaptive
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multiscale set of approximation subspaces that we can take advantage of in a simple multigrid elliptic solver (Vasilyev and
Kevlahan, 2005).

The elliptic equation is first solved to high accuracy on the coarsest grid J,;, using bicgstab. A relative residual norm error of
109 (Kang et al., 2021) is achieved in 20-30 iterations with a barotropic CFL condition of 35 (or in 5-10 iterations with a CFL
condition of 10). The solution is then prolonged to the next finer level Jyin + 1 using the the standard WAVETRISK interpolation
operator for scalars, and the solution is improved using 20—60 Jacobi iterations (a larger residual tolerance is sufficient at these
finer scales). This process is continued until the solution is obtained on the finest grid. Since there are relative few active grid
points on the finer grids, this simple multiscale elliptic solver is quite fast.

To accelerate the Jacobi iterations we take advantage of the scheduled relaxation Jacobi (SRJ) method (Yang and Mittal,
2014). We use 30 distinct optimal relaxation factors computed for the elliptic equation (19) using the Chebyshev—Jacobi
variant of SJR (Adsuara et al., 2017). This method reduces the residual error at the finest scales by six orders of magnitude

about eight times faster than the standard Jacobi method, with no additional overhead.
3.4 Penalization of lateral boundaries

Kevlahan et al. (2015) introduced a volume penalization to approximate complex multiscale topography for the two-dimensional
shallow water equations. This method uses variable porosity ¢(x) and permeability o (x) to approximate no-slip boundary con-
ditions in the limit ¢ — 0 and o — 0. Solid regions are defined using a mask function x(x), which equals 1 in solid regions
and equals O in fluid regions. In practice, the mask is smoothed over a few grid points.

Since penalization defines solid regions implicitly by modifying the equations, it is especially well-suited for complicated
geometries in dynamically adaptive methods since the coastal geometry can be refined easily as the local grid resolution
changes. This avoids having to restrict the maximum resolution of the geometry or, conversely, carry extremely fine grids
along the coast even when not justified by the fluid dynamics. Kevlahan et al. (2015) showed that the error in satisfying the
boundary condition is O(ael/ 2), where « and e are, respectively, the porosity and permeability in the solid regions. Guinot and
Soares-Frazao (2006); Guinot et al. (2018) have developed a similar penalization method for modelling coastal inundation in
urban environments (including subgrid scale modelling of unresolved topography).

Debreu et al. (2020) developed a three-dimensional extension of this volume penalization to represent bottom bathymetry
and non-vertical lateral boundaries. However, in the present paper we restrict ourselves to vertical lateral boundaries and
represent bathymetry via a hybrid grid that is approximately uniform in z in shallow regions and terrain following in deep
regions Shchepetkin and McWilliams (2009). We intend to implement the fully three-dimensional penalization in future work,
and concentrate here on developing and validating a basic dynamically adaptive barotropic—baroclinic mode splitting global
ocean model.

In the results presented here we fix the porosity in the solid o = 0.01 and the permeability ¢ = At (minimum stable value
for an explicit time step). The velocity penalization is applied in a split step, after the main time step, as in Rasmussen et al.
(2011).
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3.5 Summary of the complete algorithm

We complete the presentation of the WAVETRISK-OCEAN algorithm by briefly summarizing its main steps in Algorithms 1-4.

Algorithm 1 Complete WAVETRISK-OCEAN time stepping algorithm.

t=0
while ¢t < T do
Set time step At {use strictest of barotropic, baroclinic and advective CFL conditions}
Explicit Runge-Kutta step (Algorithm 2)
Implicit free surface step (Algorithm 3)
Vertical diffusion split step (Section 3.2)
Conservative remapping (Engwirda and Kelley, 2016) {every 5-20 time steps}
Wavelet transform cycle (Algorithm 4)
Adapt horizontal grid (Section 2.2)
Apply boundary condition penalization (Section 3.4)
t=t+At

end while

Algorithm 2 Explicit Runge—Kutta sub-cycles (see Equation 21). The steps below are repeated three times for RK3 and four
times for RK4.

Layer dilation corrections (Equations 12, 13)
Forward Euler step (Equations 10,11,21)
Wavelet transform cycle (Algorithm 4)

Algorithm 3 Implicit free surface correction.

Solve elliptic equation for new free surface (Equation 19, Section 3.3)
Layer dilation corrections (Equations 12, 13)
Backwards Euler step to correct velocity (Equation 17)

Wavelet transform cycle (Algorithm 4)

360 4 Results

In this section we verify WAVETRISK-OCEAN by using it to simulate three test cases: flow over a seamount (Beckmann and
Haidvogel, 1993), coastal upwelling and an unstable baroclinic jet (Soufflet et al., 2016). Each of these tests focuses on a
specific property of ocean models. The seamount assesses horizontal pressure gradient errors associated with inclined vertical

layers. The upwelling case tests the model’s ability to reproduce wind-driven coastal upwelling in a periodic channel with
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Algorithm 4 Wavelet transform cycle to ensure that the solution satisfies the relative error tolerance € on the entire grid.

Compute wavelets of all variables
Zero out wavelets less than threshold e

Inverse wavelet transform of solution onto adapted grid {conserves energy and mass}

stable stratification and steep bathymetry. Finally, the jet shows how well the model can capture the turbulence generated by
baroclinic instabilities. In particular, we will be interested in the ability of WAVETRISK-OCEAN’s adaptivity to fully capture
the complex turbulence structure and its full energy spectrum with a relative small number of grid points. The jet case also
implements the vertical diffusion TKE model described in section 3.2.

It is, however, difficult to present precise, quantitative, comparisons with other models. This is in part because WAVETRISK-
OCEAN is an intrinsically global model, and most test cases are designed for - or f-plane configurations. But it is also
because there are numerous, often undocumented, differences in implementation (e.g. Lagrangian versus Eulerian vertical
grids, choice of along-layer diffusion, time integration, etc. Because of this, our primary goal is to show that WAVETRISK-
OCEAN produces reasonable, qualitatively correct results for a set of distinct test cases. Each of these three test cases has been
adapted for the sphere, although this inevitably involves choices and the resulting configurations cannot be identical to the
planar configurations.

A primary objective of the test cases is to determine which aspects of WAVETRISK-OCEAN should be prioritized for im-
provement, further development, or implementation. For example, the seamount test case shows that the simple horizontal
pressure gradient discretization inherited from DYNAMICO should be replaced by a more accurate scheme (e.g. Shchepetkin
and McWilliams, 2003) to reduce horizontal pressure gradient errors.

The thermodynamic variable is buoyancy and we use a linear equation of state p = pg — ao(T — T,) to relate density to
temperature. The vertical grid uses Lorenz coordinates and is remapped periodically onto the original grid using a conservative
piecewise parabolic interpolation (Engwirda and Kelley, 2016). The seamount case is remapped every time step, the upwelling
case is remapped every 20 time steps and the jet case is remapped every 5 time steps. Laplacian along-layer diffusion is used

for all test cases.
4.1 Seamount test case

The seamount test case was introduced by Beckmann and Haidvogel (1993) to quantify the horizontal pressure gradient (HPG)
errors in a o vertical coordinate system, where the vertical layers are stretched between the sea floor and the free surface. This
test case consists of a tall Gaussian bathymetry profile with a flat density perturbation that decreases exponentially with depth.
In o coordinates the vertical layers are therefore not aligned with the horizontal isopycnals. The axisymmetric bathymetry is
defined as

h(r) = H(1—De " /5%, (28)
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with H = 5km, D = 0.9, L = 40 km. The initial density profile with stable horizontal stratification is
p(z) = po+dpe’?, (29)

d = 500m and pg = 1000 kg/m?3. For this configuration the Brunt—Viisili frequency is defined as

gop
NG =- :
0 poHo
and the Burger number
NoH
S= .
JoL

The original test case was formulated for an f-plane approximation. We have extended this test case to the sphere by placing
the centre of Gaussian seamount at latitude 43.29 N such that f = 10~*s~!. The radius of the planet is a ~ 153 km, its rotation
rate Q = 7.2921 x 10~° rad/s, the linear bottom friction is 4 = 3 x 10~ m/s and, as in Shchepetkin and McWilliams (2003),
the kinematic viscosity is set to the relatively small value v = 50 m? /s.

We compare the growth of the spurious velocity for three different stratifications with Burger numbers S = 0.5, 1.5 and
3 (corresponding to 6p = —0.0816 kg/m?, —0.735kg/m?3 and —3kg/m?) . For all cases we use 20 vertical layers and an
nonadaptive horizontal grid with fixed resolution level Jyi, =5 (Az = 5.75km) to set the maximum topographic stiffness

ratio
, . |hit1 — Rl
max hz + hi+1

This value is close to the maximum value typically allowed in operational models to ensure acceptable HPG error. The vertical

~0.21.

grid uses Chebyshev nodes, which concentrate the vertical layers at the free surface and sea floor. The o type vertical coordi-
nates are z, = Axn— B H, where By, = %(1 +cos(mk/N)), k=0,...,N, where Ay, =1 — By. The vertical grid is remapped
to the original Chebyshev nodes every time step. A constant longitude slice through the computational grid is shown in fig-
ure 3 (top) and the corresponding initial stratification is shown in figure 3 (bottom). The barotropic CFL number is fixed at
Charotropic = 10 for all simulations, corresponding to At = 231 s. The baroclinic CFL numbers for the three stratifications are
therefore Charoclinic = ¢1At/Az = 0.027, 0.087 and 0.17. All simulations are run for 40 days, significantly longer than the
10 day results reported in Beckmann and Haidvogel (1993).

Figure 4 shows that the maximum spurious velocities stabilize at approximately 0.4 cm/s, 7.7 cm/s and 28 cm/s for Burger
numbers S = 0.5, 1.5 and 3.0 respectively. We have checked that the spurious velocity magnitudes are similar for the non-
split time scheme. In addition to verifying the barotropic—baroclinic splitting algorithm and the incompressible version of the
DYNAMICO discretization with the non-adaptive runs, we also confirmed that allowing three levels of grid refinement does not
amplify the spurious velocity fields.

The spurious velocity magnitude of 28 cm/s at S = 3 is about 4 times larger than the results of Debreu et al. (2020), who
find a maximum velocity magnitude of about 6.5 cm/s with 7, = 0.21 using the regional CROCO model with Az = 6.7 km.
Shchepetkin and McWilliams (2003) found spurious velocities of about 5 cm /s using their optimal CubicH scheme. Our value

is similar to that reported in Shchepetkin and McWilliams (2003) for the POM density Jacobian type scheme. However, they
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Figure 3. o-Chebyshev grid (top) and initial stratification (bottom) for the seamount test case with §p = —3 kg/m?®.
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Figure 4. Maximum velocity magnitudes (left) and kinetic energies (right) for the seamount test case for three Burger numbers. The maximum

topographic stiffness ratio rm.x = 0.21

415 chose a larger maximum topographic stiffness ratio (0.29 compared to our value of 0.21) and used only 10 vertical layers and

Az =6.7km.
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a 240 km L 80 km

00 1027 kg/m? g 9.806 16 m /s>
foat45° —8.4853 x 1075 rad/s

H 150 m Hpin 25m

rd 3x107*m/s To —0.1m/s

Table 2. Parameters for the upwelling test case: reference density po, Coriolis parameter fo, gravitational acceleration g, wind stress 7o,

bottom friction rq4, planetary radius a, minimum depth Hmin, maximum depth H, channel meridional width L.

Although the standard seamount test case is defined on an f-plane,