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Abstract. In this article, we introduce spyro, a software stack to solve acoustic wave propagation in heterogeneous domains and

perform full waveform inversion (FWI) employing the finite element framework from Firedrake, a high-level Python package

for the automated solution of partial differential equations using the finite element method. The capability of the software

is demonstrated by using a continuous Galerkin approach to perform FWI for seismic velocity model building, considering

realistic geophysics examples. A time-domain FWI approach is detailed that uses meshes composed of variably sized triangular5

elements to discretize the domain. To resolve both the forward and adjoint-state equations, and to calculate a mesh-independent

gradient associated with the FWI process, a fully-explicit, variable higher-order (up to degree k = 5 in 2D and k = 3 in 3D)

mass lumping method is used. We show that, by adapting the triangular elements to the expected peak source frequency and

properties of the wavefield (e.g., local P-wavespeed) and by leveraging higher-order basis functions, the number of degrees-

of-freedom necessary to discretize the domain can be reduced. Results from wave simulations and FWIs in both 2D and 3D10

highlight our developments and demonstrate the benefits and challenges with using triangular meshes adapted to the material

properties.

1 Introduction

The construction of models consistent with observations of Earth’s physical properties can be posed mathematically as solving

an inverse problem referred to as full waveform inversion (FWI) (Lines and Newrick, 2004; Virieux and Operto, 2009; Fichtner,15

2011; Brittan et al., 2013). FWI is used extensively in geophysical exploration studies in the search for raw materials such as

oil and gas (Gras et al., 2019; Fruehn et al., 2019). The attraction of the FWI approach is the promise of deriving higher fidelity

models from acquired seismic data as compared to other less complex and less costly methods (e.g., time travel tomography)

(Lines and Newrick, 2004). However, the FWI problem is challenging to apply in practice since there exists a non-unique

configuration of data that can best explain the observations. Besides this, the associated computational cost to simulate wave20

propagation in expansive 2D and 3D domains can quickly become extremely demanding.

The basic method of FWI requires several computationally and memory expensive components that need to be executed

iteratively potentially dozens of times to arrive at an optimized model (Virieux and Operto, 2009; Fichtner, 2011; Pratt and
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Worthington, 1990; Bunks et al., 1995; Jones, 2019; Basker et al., 2016). Each iteration of FWI requires the simulation of

acoustic or elastic waves in an arbitrarily heterogeneous medium, which can only be accomplished via numerical approaches.25

Further, in order to sufficiently illuminate a given domain and provide sufficient information to produce a solution to the inverse

problem, many wave simulations are often required. As a result, the primary computational expense of the FWI scales with the

cost to numerically simulate wave propagation. Thus, by more efficiently modeling wave propagation, the process of FWI can

be accelerated.

Considering the computational cost of solving the wave equation is important to efficiently performing FWI, finite differ-30

ence methods are often used to model wave propagation. Finite difference methods are well-studied in the context of seismic

application in part because they can be highly optimized for computational performance especially so with the help of re-

cent packages such as Devito (Louboutin et al., 2019; Witte et al., 2019). However, canonical finite difference methods use

structured grids to represent the domain and inefficiently represent irregular geometries and/or large regional/global domains

without the use of more sophisticated methods (e.g., Liu et al., 2008). Consequently for these cases, approaches such as finite35

element methods (FEM) are often preferred as they discretize the domain with an unstructured mesh of, most commonly, vari-

able sized quadrilaterals/hexahedrals or triangles/tetrahedrals (e.g., Krischer et al., 2015; Modrak et al., 2018; Zhang, 2019;

Peter et al., 2011; Anquez et al., 2019; van Driel et al., 2020; Thrastarson et al., 2020; Trinh et al., 2019). The element size can

be adapted to the variation of the local shortest wavelength when the seismic velocity field is spatially variable (e.g., Etienne

et al., 2009) or to the source location (e.g., van Driel et al., 2020; Thrastarson et al., 2020) to reduce the number of degrees-40

of-freedom (DoF). For this reason in part, Spectral Element Methods (SEM) using tensor-based quadrilaterals/hexahedrals are

widely used in geophysical applications for expansive regional and global domains (Modrak et al., 2018; Fichtner, 2011; Lyu

et al., 2020; Fathi et al., 2015; Patera, 1984; Seriani and Priolo, 1994). Furthermore, since the stability condition for explicit

time-marching schemes depends on the maximal local ratio of velocity to mesh size, local mesh size adaptation can decrease

the overall work-load associated with the wave propagation.45

Despite the advantage unstructured meshes appear to offer to FWI there are several major difficulties associated with using

them that we attempt to address in this work. 1) The computational burden associated with solving a sparse system of equations

arising from the discretization with finite elements, 2) the generation and distribution of variable resolution unstructured meshes

3) code complexity and optimization associated with programming finite element methods themselves. Unlike in the case

of SEM, in which the domain is discretized using tensor-based hexahedral elements that result in diagonal mass matrices50

(e.g., mass lumped) and can be efficiently time marched (Peter et al., 2011; Patera, 1984), standard conforming simplex finite

elements produce a large sparse system of equations, even for explicit time-stepping. Although well-conditioned, solving this

linear system at each timestep easily dominates the rest of the computation in terms of cost. This makes the method unattractive

for FWI.

To address the first issue, we point out that certain triangular finite element spaces do admit diagonal approximations to mass55

matrices. These spaces contain the standard set of polynomials of some degree k, enriched with certain bubble functions (Chin-

Joe-Kong et al., 1999). For each such space, it is possible to identify a set of interpolation nodes that also can be combined

with appropriate weights to define a sufficiently accurate quadrature rule. Thus, the Kronecker property of the basis functions
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at the quadrature points leads to the quadrature rule delivering a diagonal mass matrix. SEM uses the same principle, using

Gauss-Lobatto quadrature points as interpolation nodes on quadrilateral/hexahedrals meshes. Such sets of points are known up60

to k = 5 for triangles and k = 4 for tetrahedra and due to their diagonal mass matrix, they can be used for fast fully-explicit

numerical wave simulations (Chin-Joe-Kong et al., 1999; Mulder et al., 2013a; Geevers et al., 2018b, a). However, to the

authors’ knowledge these elements have not been used in peer-reviewed literature to perform seismic inversions. Thus, several

questions remain on how these elements may benefit the other components (e.g., discrete adjoint, sensitivity kernel calculation)

of the seismic inversion posed in a finite element framework.65

A second major difficulty is the generation and design of a variable resolution triangular mesh. This can be a potentially

laborious mesh generation pre-processing step and can strongly limit the applicability of the method, especially in 3D (e.g.,

Anquez et al., 2019; Peter et al., 2011; Modave et al., 2015). To take full advantage of FEM, elements in the mesh must be sized

in an optimal way to take into account numerical stability criteria, the numerical methods used, the seismic data (e.g., velocity

model), and the characteristics of the forcing mechanism simultaneously. Further to this point, the most ubiquitous methods70

to triangulate the computational domain with simplices (e.g., Delaunay triangulation) suffers from the formation of degenerate

elements termed slivers (Tournois et al., 2009), which would otherwise render a wave propagation simulation useless. Despite

this, triangular mesh generation is generally preferred over hexahedral mesh generation as triangular meshes offer, in general,

a greater degree of flexibility in resolving complex and irregularly-shaped geometry. In this work, we explore the effect of

variable mesh resolution on the forward-state problem based on the source’s peak frequency and seismic velocity medium75

(e.g., waveform adapted meshes) and use these mesh resolution guidelines to design meshes for FWI.

Third, the high complexity of implementing efficient unstructured FEM frequently discourages domain practitioners. Com-

pared to finite difference methods, FEM require additional levels of coding complexity associated with mesh data structures,

numerical integration, function spaces, matrix assembly, and sophisticated code optimizations for looping over unstructured

mesh connectivity (Luporini et al., 2015, 2017). Re-implementing such tasks in a particular application context (e.g., FWI)80

do not constitute a major advancement. Recognizing this issue, many advanced software packages have been put forward,

separating the concerns between low-level programming/implementation and the high-level mathematical formulation to more

confidently write FEM codes for various application domains (Krischer et al., 2015; Modrak et al., 2018; Alnæs et al., 2015;

Witte et al., 2019; Cockett et al., 2015; Rücker et al., 2017; Louboutin et al., 2019; Rathgeber et al., 2017). These approaches

often present a programming environment in which data objects correspond to higher-level mathematical objects inherent to85

inverse problems and/or numerical discretizations such as the finite difference, finite element or finite volume methods. For

example, packages have focused on creating high-level abstractions for geophysical inversion problems (e.g., Witte et al., 2019;

Cockett et al., 2015; Rücker et al., 2017), while others more generally deal with solving variational problems using the finite

element method (Rathgeber et al., 2017) or writing performant stencil codes for finite difference methods (Louboutin et al.,

2019).90

The Firedrake project (Rathgeber et al., 2017) is one example of a powerful programming environment that adequately

address the code complexity inherent to FEM and leads to the development of computationally performant and highly technical

FEM implementations in concise scripts within the Python programming language. Firedrake, like FEniCS (Alnæs et al.,
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2015), uses the Unified Form Language (UFL Alnæs et al., 2014) to describe variational problems in mathematical syntax.

This high-level symbolic description can be manipulated as a first-class object so that Jacobians and adjoint operators can be95

automatically derived (Alnæs et al., 2014; Farrell et al., 2013) and, as recently shown by Farrell et al. (2020), time discretization

can be automated from a semi-discrete problem description. Although written in Python, Firedrake internally generates efficient

low-level code and interfaces to advanced solver packages and hence can scale to billions of DoF (Kirby and Mitchell, 2018;

Farrell et al., 2019). This combination of high-level features and performance makes Firedrake an interesting candidate for

developing an extensible and maintainable code stack for performing FWI with finite element methods.100

The aim of this paper is to address the issues associated with the application of triangular, unstructured FEM to perform

FWI with the higher-order mass lumped elements of Chin-Joe-Kong et al. (1999) and Geevers et al. (2018b). We demon-

strate the concept thatwaveform adapted meshes combined with a discrete adjoint technique lead to an FWI implementation

that requires significantly fewer computational resources while maintaining the accuracy of the result. Several technical as-

pects of the methods are detailed including mesh-dependency, domain truncation, efficient mesh design, and gradient-based105

adjoints providing practical information for FWI implementations using finite element methods and making triangular finite

element methods more attractive for future applications in seismic imaging applications. All developments detailed in this

work are available in an open source Python implementation using the Firedrake programming environment named spyro

(https://zenodo.org/record/5164113).

The article is organized as follows: first we introduce the FWI algorithm and discuss the continuous formulation. Thereafter,110

we focus on the discretization of the governing equations in both space and time. Following this, we discuss our Firedrake

implementation. Then we study the error associated with discretizing the domain with variable resolution triangular meshes.

Lastly, we demonstrate computational results in both 2D and 3D, discuss and conclude the work.

2 Full waveform inversion

Figure 1 shows a basic overview of an experimental configuration used in FWI in a marine environment. FWI is designed to115

simulate a geophysical survey and estimate the model parameters (e.g., seismic velocity) to explain the observed waveforms in

a way that minimizes a measure of error (e.g., misfit). This process is known as inversion. In contrast to less computationally

expensive tomography methods that use only the phase information of recorded signals, FWI utilizes both amplitudes and

phase information from recorded data and can thus image higher resolution targets to half the spatial wavelength of the source

frequency (Fichtner, 2011).120

In a typical field setup in an offshore/marine environment, a ship tows a cable potentially several kilometers long with

hundreds of microphones (Figure 1). Nearby the ship, small controlled explosions known as shots or sources are created. These

shots propagate sound waves that interact with the subsurface medium and produce signals recorded by the microphones. The

collection of seismic signals for a particular shot explosion event is referred to as a shot record and the quantity and the location

of the sources with respect to the location of the receivers is referred to as acquisition geometry.125
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Figure 1. A simplified illustration of a marine seismic survey with relevant components annotated.

FWI can either be posed in the time domain or frequency domain (Virieux and Operto, 2009; Pratt and Worthington, 1990).

In 2D, the frequency domain approach is regarded as the more computationally efficient approach (Brossier et al., 2009; Virieux

and Operto, 2009). In 3D however, the computational effort and memory requirements associated with solving the system of

equations in the frequency domain can become prohibitive and negatively affect parallel scaling efficiency. Thus, the time

domain approach for FWI is still used in applications and remains technically relevant.130

One key challenge associated with FWI and inverse problems in general is that they require a adequate starting velocity

model to converge toward the global minimum of the misfit. In other words, the initial model should be able to predict the

travel time of any arrival involved in the inversion to within half a period of the lowest inverted frequency when a classical

least-squares misfit function based on the data difference is used otherwise the FWI will converge to a local minimum (e.g.,

Virieux and Operto, 2009). Typically these initial models are created through time travel tomography methods with manual135

inspection and edits (Lines and Newrick, 2004).

2.1 Forward wave simulation in a PML truncated medium

In this work, the acoustic wave equation in its second-order form is considered in either a 2D or 3D physical domain Ω0.

The acoustic wave equation has one free parameter c that is the spatially-variable compressional wavespeed otherwise referred

to as the P-wavespeed. The acoustic wave equation is frequently used in FWI applications because its numerical solution140

is computationally inexpensive compared to the solution of the elastic wave equation while still yielding practically useful

inversion results in some scenarios (Gras et al., 2019).

5

https://doi.org/10.5194/gmd-2021-363
Preprint. Discussion started: 30 November 2021
c© Author(s) 2021. CC BY 4.0 License.



When simulated waves reach the extent of the domain, they create reflections generating signals that are deleterious for

FWI applications since field data do not contain these signals. Thus, in this work an absorbing boundary layer referred to as

a Perfectly Matched Layer (PML) is included as a small domain extension ΩPML to attenuate the propagation of the outgoing145

waves and Ω ∈ Ω0 ∪ΩPML. Note that the PML surrounds Ω0 on all but the water layer of the domain, shown in Figure 1. The

domain is truncated with a non-reflective Neumann boundary condition in order to absorb some remaining oscillations there

(Clayton and Engquist, 1977). All examples in this text rely on the usage of this acoustic wave equation in this configuration

and further technical details about the PML formulation used can be found in Kaltenbacher et al. (2013).

The coupled system of equations for the modified acoustic wave equation with the PML are given by the residual operators150

Ru,Rp,Rω as:

Ru(u,p,ω,f)≡∂
2u

∂t2
+ trΨ1

∂u

∂t
+ trΨ3u+ detΨ1ω−∇ · (c2∇u)−∇ ·p− f = 0, (1)

Rp(u,p,ω)≡∂p

∂t
+ Ψ1p + Ψ2(c2∇u)−Ψ3(c2∇ω) = 0, (2)

Rω(u,p,ω)≡∂ω
∂t
−u = 0, (3)

∂tu
∣∣
t0

= v
∣∣
t0

= 0, (4)155

p
∣∣
t0

= 0, (5)

ω
∣∣
t0

= 0, (6)

(∂tu+ c∇u ·n)|∂Ω = 0, (7)

where u(x, t) : (0,T ) × Ω → R is the pressure at time t and position x = (x,y,z) ∈ Ω, ω(x, t) : (0,T ) × Ω → R is an

auxiliary scalar variable and p(x, t) = (px,py,pz) : (0,T ) × Ω → R3 is an auxiliary vector variable and px, py and pz are160

the vector components, c(x) is the P-wavespeed, f(x, t) is the source term, and Ψi and σi are the damping matrices and

functions, respectively. We remark that this formulation of the modified acoustic wave equation with the PML is the same

as that originally designed by Grote and Sim (2010) and Kaltenbacher et al. (2013) and these formulations differ by what

constitutes the spatially-varying velocity model, which either comes from the variation in density or the variation in bulk

modulus.165

In 2D, the modified acoustic wave formulation is simplified since pz , ω and σz vanish and it becomes:

Ru(u,p,f)≡∂
2u

∂t2
+ trΨ1

∂u

∂t
+ trΨ2u−∇ · (c2∇u)−∇ ·p− f = 0, (8)

Rp(u,p)≡∂p

∂t
+ Ψ1p + Ψ2(c2∇u) = 0, (9)

where the boundary conditions remain unchanged. Only one vector-valued variable (e.g., p) is additionally solved for each

timestep. In both 2D and 3D for all experiments in this work, quadratic polynomial exponents are used to control the variations170

in the damping layer functions σi which are used to form the damping matrices (e.g., Ψ1, Ψ2, Ψ3) (Kaltenbacher et al., 2013).

Note that σi are zero inside the physical domain Ω0.
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All sources f are forced with a time-varying Ricker wavelet with a specified peak frequency in Hertz. More details regarding

the implementation of the source are provided later in Section 4.2.

2.2 Continuous optimization problem formulation175

In this section, the optimization components of the FWI process are detailed. Experimental data are generated by exciting a

physical domain Ω0 by Ns independent shots, which are located at points {xs
i}i=1,··· ,Ns

. For each shot xi, data is collected

at an array of Nm measurement points (receivers c.f., Figure 1) {xm
j }j=1,··· ,Nm

for a time interval of length T ; for instance,

ui(xm
j , t) for t ∈ [0,T ). As mentioned earlier, the collection of this time series data at an array of receivers produces what is

commonly referred to as a shot record. The cost functional that represents the error between a given numerical experiment and180

the reference data (denoted here by ũ) is given by:

J =
1
2

Ns∑

i=1

Nm∑

j=1

T∫

0

(ui(xj , t)− ũi(xj , t))2dt=
1
2

Ns∑

i=1

Nm∑

j=1

T∫

0

∫

Ω

(ui(x, t)− ũi(x, t))2δxjdxdt (10)

where the last equality is obtained by using the following property of the Dirac masses δxj
, acting on the points xj (c.f., Brezis

(2011)):

∫

Ω

f(x)δxj
dx = f(xj), (11)185

where f is a function smooth enough for the pairing to make sense.

For a given velocity model c upon integration of equations (1), (2), and (3) or (8) and (9), we can compute the cost functional

J . The goal of FWI is to find a velocity model c that minimizes J . This problem is a PDE-constrained optimization problem

that will be solved using a gradient-descent method. The gradient of J with respect to c otherwise referred to as the sensitivity

kernel or the gradient can be posed in the Lagrangian formalism. For that, the Lagrangian is defined as:190

L({ui,ωi,pi},{u†i ,ω†i ,p†i}, c) = J(ui)

+
Ns∑

i=1

T∫

0

u†iRu(ui,pi,ωi,fi) +
Ns∑

i=1

T∫

0

∫

Ω

p†i ·Rp(ui,pi,ωi) +
Ns∑

i=1

T∫

0

∫

Ω

ω†iRω(ui,pi,ωi). (12)

This Lagrangian is dependent on the forward solution {u,pi,ωi}, on the velocity model c (e.g., the control variable) and

also on the adjoint solution {u†,p†i ,ω†i }. The optimal condition is verified if the variation of the above Lagrangian with respect195

to the forward, adjoint and control variable are zero. The variation of the Lagrangian with respect to the adjoint field will lead

to the equations (1)-(3). Setting the variation of the Lagrangian with respect to the forward field to zero will lead to the adjoint
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equations:

R†u(u,p,ω,f)≡∂
2u†

∂t2
− trΨ1

∂u†

∂t
+ trΨ3u

†−ω†−∇ · (c2∇u†)−∇ · (c2Ψ2p
†) +

Nm∑

j=1

(u(t)− ũ(t))δxm
j

= 0, (13)

R†p(u,p,ω,f)≡− ∂p†

∂t
+ Ψ1p

†+∇u†i = 0, (14)200

R†ω(u,p,ω,f)≡− ∂ω
†

∂t
+ detΨ1u

†+∇ · (c2Ψ3p
†) = 0. (15)

In 2D, these equations become:

R†u(u,p,ω,f)≡∂
2u†

∂t2
− trΨ1

∂u†

∂t
+ trΨ2u

†−∇ · (c2∇u†)−∇ · (c2Ψ2p
†) +

Nm∑

j=1

(ui(t)− ũi(t))δxm
j

= 0, (16)

R†p(u,p,ω,f)≡− ∂p†

∂t
+ Ψ1p

†+∇u†i = 0. (17)

In addition to these volume-equations, we can deduce the boundary and initial/final conditions for their variables. One can205

verify that a homogeneous final condition (on t= T ) has to be imposed in all variables u†, p†, ω†. Also, since the forward

solution needs to satisfy the boundary conditions n · ∇u= 0 and n ·p = 0 (which also has to be verified for the test functions

δu,δp), the adjoint variables admits the boundary conditions, which are the same for 2D and 3D:

n · ∇u†+ nΨ2p
† = c−1∂tu

†, n · (Ψ3p
†) = 0, x ∈ ∂Ω. (18)

So the variation of the Lagrangian with respect to the control variable c, while keeping all the other variables constant, leads to210

the sensitivity kernel (or the gradient) dJ/dc:

lim
ε→0

L(c+ εδc)−L(c)
ε

=
dL
dc

δc≡
∫

Ω

dJ

dc
δcdx =

Ns∑

i=1

T∫

0

∫

Ω

2c∇u†i · ∇ui δcdxdt. (19)

where the terms involving the PML are not present in the physical domain Ω0 since the damping functions σi are zero outside

of the PML where we perform the optimization. The calculation of the sensitivity kernel and cost functional can then be used

in an optimization algorithm of choice.215

3 Numerical discretization

3.1 Spatial discretization

We have discretized the modified acoustic equation (Eq.(1)-(3), Eq.(8)-(9)) and their respective discrete adjoints (Eqs.(13)-

(15), (16)-(17)) with a continuous Galerkin (CG) FEM. While the physical features of the velocity model in reality are likely

discontinuous, CG FEM can still provide good approximate solutions to velocity modeling building, which often commence220

from smooth initial material parameters.
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CG methods actually provide a family of methods, parameterized over the choice of approximating spaces rather than a

single method. Frequently, the choice of approximating spaces only affects the overall accuracy – by choosing standard P k

elements based on polynomials of degree k, one obtains a certain order of convergence. However, special choices of these

approximating spaces may affect other aspects of the method. In particular, by using the elements that we describe later on,225

we obtain a so-called lumped mass matrix on each simplex, which obviates the need to solve a linear system for each explicit

timestep.

Regardless of the particulars, we denote the finite element function space used within our CG method as V C , spanned by

some locally constructed basis {φi(x)}. This will be used to discretize the pressure u, together with each component of the

auxiliary vector pi and possibly the variable ω if a 3D domain is considered. If we let U,P and Y be the vectors containing230

the weights of the projection of u,p and ω onto the FEM space V C , the space-discrete equations can be cast in the following

general matrix form (here only the 3D equations are presented, but the 2D case is analogous):

MuÜi + Mu,1U̇i + Mu,3Ui + Mω,1Yi + KUi + DPi = MuFi, (20)

MpṖ + Mp,1P + Du,2Ui−Dω,3Yi = 0, (21)

MωẎi−MωUi = 0, (22)235

where the matrices Mu, Mu,1, Mu,3, Mp, Mp,1, Mω and Mω,1 are mass-like matrices that do not involve any spatial derivative.

The matrix D is the discrete divergence operator and Du,2 and Dω,3 are gradient-like discrete operators. The matrix K is the

stiffness matrix. The precise mathematical definitions of the matrices are given in A.

3.2 Higher-order mass lumping

For linear triangular elements, mass lumping can be accomplished using the standard Lagrange basis functions and vertex-240

based Newton-Cotes integration rule. However for higher-degree (k > 1) triangular elements, a similar approach leads to

unstable and/or inaccurate methods. Higher-order triangular elements and associated quadrature rules that do admit a lumping

quadrature scheme are given in Geevers et al. (2018a); Chin-Joe-Kong et al. (1999); Geevers et al. (2018b). The function spaces

for these elements do not consist solely of polynomials of degree k, but also include certain higher-order bubble functions.

These higher-order bubble functions increase the total number of degrees-of-freedom per element relative to traditional Pk245

elements, but in explicit time-stepping contexts, the gain of having a diagonal mass matrix more than offsets this cost (e.g.,

Geevers et al., 2018b; Mulder and Shamasundar, 2016).

The aforementioned concept of using higher-order bubble functions to achieve these elements is illustrated and compared

with standard Lagrange elements in both 2D and 3D in Figure 2 and Figure 3, respectively. These elements are referred to here

as mass lumped (ML) elements. For example, ML1tri and ML1tet denotes degree-1 triangular and tetrahedral elements where250

the “tri" or “tet" refers to a triangular or tetrahedral element, respectively.
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Figure 2. Some two-dimensional Lagrange and ML elements

Figure 3. Some three-dimensional Lagrange and ML elements.

3.3 Waveform adapted triangular meshes

In order to efficiently discretize the domain, a triangular mesh of conforming elements interchangeably referred to as a mesh has

to be generated. The major benefit of this approach is that mesh elements range in size according to several aspects elaborated

below (e.g., Figure 4), reducing the total number of DoF. On the contrary, for structured grids the design of the elements is fully255

controlled using a regular structured mesh. While a structured grid greatly simplifies applications, they impose the additional

computational cost of dramatically over resolving some areas of the domain from the standpoint of minimizing numerical error

and dispersion.

The design of a so-called “optimal" mesh in a way that maximizes accuracy while minimizing computational cost through

mesh size variation represents a challenging task. One crucial aspect is the numerical stability condition, which puts constraints260

on meshing because the timestep is affected by the smallest cell via the CFL condition (e.g., Mulder et al., 2013b). It is crucial

therefore that the mesh generation program ensures elements are as large as possible to avoid prohibitively small simulation

timesteps. Mesh size variation must also be gradual in order to minimize numerical error (Persson, 2006).

In this work, variable resolution element sizes are based on the acoustic wavelength, the CFL condition, and a mesh grada-

tion rate. Altogether the design of resolution becomes proportional to the wavelength of the acoustic wave hence the phrase265

waveform adapted. The assumption is made that all triangles will be nearly equilateral, which is necessary for accurate sim-
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Figure 4. The Marmousi2 P-wavespeed model (Martin et al., 2005) discretized using a graded mesh with 4 cells per wavelength (C = 4) for a

Ricker source with a peak frequency of 5 Hz. The mesh contains 3,022 vertices and 5,743 elements. The element size is the circumdiameter

of each enclosed circle of each triangle.

ulation with FEMs. The mesh can be the result of any external mesh generator; in this work we use a domain specific mesh

generator tool called SeismicMesh (Roberts et al., 2021) that is capable of generating 2D/3D triangular meshes with the vast

majority of triangles that are approximately equilateral and with elements sized according to the local seismic velocity. The

desired distribution of triangular edge lengths le in our meshes are calculated using a ratio of the local seismic velocity (e.g.,270

P-wavespeed) and the representative frequency of a source wavelet:

le(x)∝ c(x)
C · fsource

, (23)

where c(x) is once again the spatially variable P-wavespeed, fsource is the representative frequency of a source wavelet and

C denotes the number of cells-per-wavelength. An example of a typical mesh size distribution for the synthetic P-wavespeed

model Marmousi2 (Martin et al., 2005) is shown in Figure 4. In the case of a marine domain such as Marmousi2, the layer275

of water along the top of the model must contain the finest mesh resolution since the acoustic wavelength is the shortest

there. It is also important to point out that mesh sizes must be smoothly varying (otherwise referred to as a graded) to avoid

numerical errors when simulations are performed. In this work, we use a mesh gradation rate of 15%, which was obtained

through trial-and-error.

The length of the element’s edges le can be related to the cells-per-wavelength parameter C = λ/le, which in turn affects280

the number of grid-point-per-wavelength G of a given problem. The parameters C and G are related to one another through:

G= α(P ) · C (24)

where α(P ) is a constant coefficient that is a function of the spatial polynomial degree k. ML elements have a higher number

of nodes-per-element, therefore they have a higher α per polynomial degree than standard Lagrange elements. Padovani et al.

(1994) refers toG as the average number of grid-points-per-space and not the maximum value of grid spacing inside the element285

between all possible pairwise nodal combinations. Therefore, α(P ) is calculated based on the square root of the number of
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DoF (nDoF ) per number of elements (ne) in the mesh,
√
nDoF /ne. When this metric is applied to SEM quadrilateral elements,

it gives results that match the values reported in Lyu et al. (2020).

The selection of C, and consequently G, raise several important questions such as: what is the minimal G that can minimize

numerical dispersion error and how does the choice of G affect the total DoF for a given problem. These are important aspects290

as they yield significant effects on both the runtime and computational requirements of FWI with FEM and are later investigated

in Section 5.2.

3.4 Time discretization

A second-order accurate fully-explicit central finite difference scheme was used to discretize all time derivative terms. While

higher-order timestepping schemes such as a Dablain scheme (Dablain, 1986) or a Lax-Wendroff procedure (Lax and Wendroff,295

1960) can be used, these methods were not pursued in this work to better focus the manuscript on the aforementioned issues

concerning the spatial discretization and the usage of variable resolution triangular meshes. As a result, due to the usage of a

relatively low-order timestepping scheme, we are required to select relatively small timesteps (∆t≤ [1]ms) ms to ensure the

error from the time discretization is sufficiently small to study the effects on the spatial discretization on the forward-state wave

propagation and FWI.300

For a given variable vn = v(tn) and for a given discrete time series tn = n∆t, we have

dv

dt
(tn)≈ vn+1− vn−1

2∆t
,

d2v

dt2
(tn)≈ vn+1− 2vn + vn−1

∆t2
. (25)

Using this discretization and also defining a state vector as a concatenation of all the variablesQn
i = [Un

i ,P
n
i ,Y

n
i ]T , the system

of equations can be recast as

An+1Qn+1 +AnQn +An−1Qn−1 =MFn, (26)305

where those new matrices are given by:

An+1 =




∆t−2Mu + (2∆t)−1Mu,1 0 0

0 (2∆t)−1Mp 0

0 0 (2∆t)−1Mω


 ,

An =




−2∆−2Mu + Mu,2 + K D Mω

Du,2 Mp,1 −Dω,3

−Mω 0 (2∆t)−1Mω


 ,

An−1 =




∆t−2Mu− (2∆t−1)Mu,1 0 0

0 0 −(2∆t)−1Mp

0 0 (2∆t)−1Mω


 .
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In order to solve for the variables at timestep n+1 given the previous ones, we need to invertAn+1, which is a mass-like matrix.310

While this requires significant work for standard Pk elements, it is trivial for ML elements with the specialized quadrature rules

discussed in Section 3.2.

In a practical application, it remains important to be able to determine a numerically stable timestep for this discretization

and this depends on element degree k and the quality of the mesh’s elements. The maximum stable timestep can be estimated

a priori by calculating the spectral radius of the scalar waves spatial operator while ignoring the contribution from the PML315

terms:

L = M−1
u K (27)

A reasonable upper bound for the maximum stable timestep can then be found through (e.g., Mulder et al., 2013b):

∆tCFL ≤
2√
ρ(L)

(28)

where ρ is the spectral radius estimated via Gershgorin’s Disk Theorem (Geršgorin, 1931) and the subscript CFL implies an320

upper bound on the timestep. This is possible to do explicitly for ML elements since M is diagonal and can be inverted onto K

by just scaling rows.

In practice, a timestep 10% to 20% lower than the estimate provided by Eq. (28) remains stable and helps ensure numerical

stability can be maintained throughout the inversion process as the seismic velocity is inverted. In 3D, the spectral radius ρ(L)

and consequently the maximum numerically-stable timestep are highly sensitive to the minimum dihedral angle in the mesh325

(Tournois et al., 2009). Thus, degenerate triangles termed slivers can result in exceedingly small numerically-stable timesteps

and must be removed from the mesh. In practice, a minimum dihedral angle bound greater than 15◦ is often desired in order

to maximize the stable timestep. However, this can be difficult to achieve in practice due to mesh generation challenges with

variable resolution meshes. The minimum dihedral bound can be enforced in the mesh connectivity through a sliver-removal

algorithm implemented in Roberts et al. (2021). All 3D meshes used in this work feature a minimum dihedral angle at least330

greater than 12◦.

3.5 The adjoint-state and gradient problems discretized

The numerical implementation of the adjoint problem and the gradient computation are detailed in this section. From the adjoint

equations presented in their strong form (Eq.(13)-(15) and Eq.(16)-(17)), we then derive the associated variational formulation

through the canonical procedure:335
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∫

Ω

∂2

∂t2
u†v−

∫

Ω

∂

∂t
trΨ1u

†v+
∫

Ω

(
trΨ3u

†−ω†
)
v+

∫

Ω

c2∇u† · ∇v, (29)

+
∫

Ω

c2(Ψ2p
†) · ∇v−

∫

∂Ω

c∂tu
†v =−

Nm∑

j=1

(u(t,xm
j )− ũ(t,xm

j ))v(xm
j ), (30)

−
∫

Ω

∂

∂t
p† · q +

∫

Ω

(Ψ1p
†) · q +

∫

Ω

∇u†i · q = 0, (31)

−
∫

Ω

∂

∂t
ω†γ+

∫

Ω

detΨ1u
†γ−

∫

Ω

c2Ψ3p
† · ∇γ = 0. (32)

The discretization of this variational formulation can be cast as:340

MuÜ
†
i −Mu,1U̇

†
i + Mu,3U

†
i −MT

ωY
†
i + KU†i + DT

u,2P
†
i = HT H(Un− Ũn), (33)

−MpṖ
†+ Mp,1P

†+ DTU†i = 0, (34)

−MωẎ
†
i + MT

ω,1U
†
i −DT

ω,3Y
†
i = 0. (35)

where H is the discrete version of the Dirac operator applied on all the measurement points in the domain. We remark that all

the matrices used before (c.f., A) are reused but transposed (if not symmetric) both at the level of their entries and at the level345

of the equations. By discretizing the continuous equations with the FEM, we obtain the discrete adjoint. This is further clarified

when discretizing Eq. (33) in time using the same procedure as before with central differences (e.g., Eq. (25)), which leads to

the system for the variables in compact notation Q† = (U†,P †,Y †)T :

AT
n+1Q

†
n−1 +AT

nQ
†
n +AT

n−1Q
†
n+1 =HTH(Qn− Q̃n).

In addition to the adjoint, the gradient is computed by discretizing Eq. (19) by letting the function δc to be the trial function.350

The resulting linear system for the gradient, denoted G in its discrete form, is written as:

MG =
Ns∑

i=1

Nt∑

n=1

∫

Ω

2c∇u†i (tn) · ∇ui(tn)δcdx. (36)

In order to derive the discrete adjoint and gradient, the time integral appearing in the continuous formulation (i.e., in the

cost functional J , and in the definition of the inner product, in the Lagrangian functional L) were all replaced with discrete

sums that did not consider a time integration. This is a similar approach as what was performed in Bunks et al. (1995). For this355

reason, no ∆t factor (or other time integration methods such as trapezoidal or Simpson’s rule) are present.

Also, we stress here that, in order to obtain the gradient G, we need to solve Eq. (36) by inverting a mass-matrix. This matrix

comes from the fact that, in the continuous gradient derivation, Eq. (19), the inner product is chosen to be the classical L2

inner product, which is represented by the mass-matrix in the discrete framework. This choice of inner product ensures that

14

https://doi.org/10.5194/gmd-2021-363
Preprint. Discussion started: 30 November 2021
c© Author(s) 2021. CC BY 4.0 License.



the gradient will be mesh-independent (e.g., Schwedes et al., 2017) in the sense that local mesh refinements will not produce360

differences in the gradient (if the problem is sufficiently mesh-converged). For example, if the right-hand-side expression in

Eq. (36) is readily used as the gradient, the mesh-dependency would be present as the space integration would only be present

on the right-hand-side.

3.6 Gradient subsampling

Numerical simulations often require several thousand timesteps integrating over several seconds with the aforementioned365

numerical approaches to compute the discrete gradient. As a result, there are significant memory requirements for storing the

forward-state solution that are necessary to calculate Q̃ and subsequently G. By considering that the numerically stable timestep

given by the CFL condition is generally much shorter than the Nyquist sampling frequency dictated by the maximum source

frequency, our implementation allows for a subsampling approach to calculate G to reduce memory overhead. In other words,

the forward-state can optionally be saved at every r timesteps (r� 1), where r is the subsampling ratio and subsequently the370

gradient is calculated every r timesteps.

4 Computer implementation

In this section, important components of our implementation are explained. The Firedrake package is used to implement the

numerical developments. The code (https://zenodo.org/record/5164113), datasets (https://zenodo.org/record/5172307) together

with Firedrake (zenodo/Firedrake-20210810.0) were used for all experiments.375

An additional layer of implementation is necessary for applications in seismic problems as there are operations to execute

FWI that fall outside of the capabilities within the Firedrake package. At the current point of development, components of

Firedrake that are essential to compute the gradient with automatic differentiation (AD) (e.g., Dolfin-adjoint (Mitusch et al.,

2019)) were not ready to be used in our FWI code.

The Rapid Optimization Library (ROL; Cyr et al., 2017) is used to solve the inverse problem given a gradient, a cost380

functional, and a method to update the velocity model. The ROL library provides interfaces to and implementations of various

algorithms for gradient-based, unconstrained and constrained optimization coupled with line-search conditions that satisfy the

strong Wolfe conditions (Wolfe, 1969). This improves the robustness of our FWI code by using well-developed and tested

algorithms. The C++ library ROL is called in our Firedrake Python codes via a Python wrapper code called pyROL (Wechsung

and Richardson, 2019).385

As mentioned earlier in this work, we exclusively rely on the second-order optimization method L-BFGS (Byrd et al., 1995),

which includes information about the curvature of the misfit function in the optimization process (Eq. (10)). The benefit of using

second-order optimization methods in FWI has been studied previously and shown to benefit the computational efficiency of

FWI (e.g., Castellanos et al., 2014). Using pyROL and Firedrake, a conventional FWI approach can be written in several dozen

lines of Python.390

15

https://doi.org/10.5194/gmd-2021-363
Preprint. Discussion started: 30 November 2021
c© Author(s) 2021. CC BY 4.0 License.



4.1 Implementation of higher-order mass lumped elements

Five triangular elements for spatial polynomial degrees k ≤ 5 from Chin-Joe-Kong et al. (1999) and three tetrahedral elements

for spatial polynomial orders up to k = 3 (Geevers et al., 2018b) were implemented inside Finite element Automator Tabulator

package (FIAT Kirby, 2004). In particular, we use the latest documented k = 3 3D tetrahedral element ML3tet from Geevers

et al. (2018b) with 50 nodes. This program FIAT is used by the Firedrake package to tabulate a wide variety of finite element395

bases.

The quadrature rules are key to defining the finite element basis, so we began by implementing these within FIAT. Then,

to define the finite elements themselves, we must first construct the function space. This is done using two particular FIAT

features described in Kirby et al. (2012). First, we use the RestrictedElement operation on a Lagrange element to

remove bubbles on facets where enrichment occurs, and then use a NodalEnrichedElement to put in higher-order bubbles400

on those facets. Second, we must provide the dual basis, which is just a list of pointwise evaluation functionals associated with

the ML quadrature points. In addition to these, like all other FIAT elements, we also provide a topological association of the

degrees-of-freedom to facets, and this information is used at a higher abstraction level by Firedrake to build local-to-global

mappings.

Certain standard boilerplate is required to expose a new FIAT element to the rest of Firedrake. First, the element, along with405

certain metadata, must be announced within the Unified Form Language. Then, it must also be wrapped into FInAT (Homolya

et al., 2017), which is a layer that provides abstract syntax for basis evaluation and supports higher-order operations, such

as tensor-products of elements or making vector-valued spaces such as used for our p variable. It is this layer, rather than

FIAT itself, that interacts with Firedrake’s form compiler, tsfc (Homolya et al., 2018). Within tsfc, we must also provide

a binding between UFL names and FInAT classes. Hence, although we make changes to several packages, they are rather410

superficial beyond the FIAT implementation.

4.2 Receivers and sources

To probe the computational domain, functionality is required to both record the solution at a set of points (i.e., receivers) and to

inject the domain with a time-varying wavelet (i.e., sources; Figure 1). Since the location of receivers does not necessarily match

vertices exactly inside the mesh connectivity, the wave solution must be interpolated to the receiver locations. Interpolation of415

the wave solution to the receivers is carried out in the same space of the finite elements used to discretize the domain.

Source injection is the adjoint operator of interpolating the solution to the receivers. To execute both, a Dirac mass is in-

tegrated against the finite-element basis functions in the form of weights equal to the basis functions evaluated at the source

(receiver) position inside the element that contains the source (receiver). This point force source is of the form f = w(t)δx(x),

where w(t) denotes the wavelet and xs the source or receiver position. For the 2D case, the contribution to fg(js,k),l is420
∫
Tjs

fφjs,kdx= w(t)φjs,k(xs). Here g(js,k) defines the local-to-global map from node k in element j containing the s

source/receiver to the global set of DoF. For the adjoint calculation, the source is forced at the receiver locations that recorded

the solution in the forward-state problem.
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4.3 The inversion process

We start with an initial distribution of P-wavespeed c and solve the forward-state problem to obtain Q. With the misfit known,425

we then solve the adjoint-state problem and obtain Q†. With both Q and Q† known the discrete gradient G can be computed.

Thus, the updated velocity model c can be computed by:

ck+1 = ck +αksk. (37)

where αk is the step length and sk is the search direction and the superscript k denotes the iteration. The L-BFGS is used to

compute search directions sk and ROL is used to calculate αk (Byrd et al., 1995).430

The discussed inversion process is shown in Algorithm 1.

In order to ensure a sufficient decrease of the objective functional at each inversion iteration k, line-search conditions are

employed that satisfy the strong Wolfe conditions (Wolfe, 1969). This line search is implemented inside the ROL library.

4.4 Wave propagators

The spatial and temporal discretizations detailed in Section 2.1 are programmed with Firedrake. Figure 5 illustrates the main435

functions: ‘forward.py’ and ‘gradient.py’ and how they work together. The forward wave propagator called ‘forward.py‘ returns

two quantities for a given source configuration: the Q at the timesteps determined by the subsampling ratio r (c.f., Section 3.5)

and the the forward-state solution HQ at the receivers for all timesteps. The adjoint-state propagator takes as input the differ-

ence between measured and modeled data at the receivers locations (otherwise referred to as the misfit) and the forward-state

solution Q. To conserve virtual memory, while the adjoint-state propagator executes, the function called ‘gradient.py’ discards440

Q as the adjoint Q† and subsequently G (Eq. (19)) are calculated reverse in time. Note that the adjoint wave propagator returns

the gradient summed over the timesteps dictated by the subsampling ratio r (c.f., Section 3.5).

We point out that all spatial discretizations are performed using matrix-free approaches, which are available in the Firedrake

computing environment and this reduces run-time memory requirements (e.g, Homolya et al., 2017; Kirby and Mitchell, 2018).
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Figure 5. The functionality of the forward-state, adjoint-state and gradient Python codes.

4.5 Two-level parallelism strategy445

A two-level parallelism strategy is implemented over both the sources and spatial domain decomposition. In space, domain

decomposition parallelism is handled by the Firedrake library, which automatically handles setting up halo/ghost zones around

each subdomain and performing the necessary communication at each timestep via the Message Passing Interface (MPI). In

addition, Firedrake also provides options to configure the depth of the ghost layer for performance as needed. In this work, no

ghost layers are added to the subdomains and instead the solution is shared only at the boundary nodes of each subdomain. At450

the source level, parallelism is trivial and handled by splitting the MPI communicator into groups of processes at initialization

and assigning each group to simulate one source. Due to the usage of Firedrake, no additional code is required for parallelism

as compared to the sequential version of the code.

4.6 Meshes and file I/O

Mesh files are read in from disk sequentially and then distributed in parallel if necessary; this functionality is handled latently455

by Firedrake. External seismic velocity models are read in from disk from a H5 file format at execution time. Gridded velocity

data is bi-linearly interpolated onto the nodal DoFs of the elements of the mesh at runtime. In this way, seismic velocities

can vary inside the element in the case higher-order elements are used. Gridded seismic velocity files can be prepared using

Seimsicmesh (Roberts et al., 2021)

5 Computational Results460

5.1 Numerical verification of discrete gradient

The accurate computation of the discrete gradient is crucial for the robustness of Algorithm 1. Through a numerical experiment,

we demonstrate that the gradients computed through the optimize-then-discretize approach (c.f., Section 3.5) are approximately
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Case dco
dfd

h

h = 1e10−3 h = 1e10−4 h = 1e10−5

2D 0.0681 0.0665 0.0664 0.0664

3D 62.7069 65.4222 63.1321 62.9094

Table 1. Comparison of directional derivatives for 2D and 3D cases between the finite difference approximation (fd) and our discrete

gradient (co) .

equal to the discrete gradients computed by the discrete gradients of the discrete objective functional. In this way, we compare

the directional finite difference of the discrete objective functional. The finite difference directional derivative is given as a465

forward finite difference:

dfd
h (c)(c̃) :=

J(c+hc̃)− J(c)
h

, (38)

where c̃ is the discrete direction for c and h is an arbitrarily small step size. The directional derivative obtained via the control

problem is:

dco(c)(c̃) = c̃T M G. (39)470

Next, we verify that Eq. (38) and Eq. (39) produce accurate values for an arbitrary choice of c̃ considering the test problems

displayed in Figure 6. For this test, the direction c̃ to test is that of the gradient G.

The considered 2D test problem to verify the numerical gradients was a physical domain Ω0 = 1.0 x 1.0 km that features

half the domain with a P-wavespeed of 4.0 km/s and the other half with a P-wavespeed of 1.0 km/s (Figure 6(a)). The physical

domain was truncated with a 200 m PML on the sides while a non-reflective Neumann boundary condition was applied at the475

top. A 5 Hz source is injected at (−0.1,0.50) km and the solution is recorded at 100 receivers equispaced along a horizontal

line at the bottom of the domain between (−0.90,0.1) km and (−0.90,0.90) km. In this configuration, the problem models a

transmission of an acoustic wave. The domain was discretized with uniform-sized ML2tri elements with le = 20 m in length

yielding G> 10 given the 5 Hz peak source frequency, which we found is sufficient for this experiment. The total duration of

the simulation is 1.0 seconds, which is long enough for the wave to be absorbed in the PML and transmitted to the receivers.480

A computational timestep ∆t= 0.50 ms was used and the gradient was computed with all timesteps (r = 1). Note that the

directional derivative (Eq. (39)) was integrated only in Ωphysical and masked in ΩPML.

In 3D a similar problem to the 2D case was considered within a physical domain Ω0 = 1.0 x 1.0 x 1.0 km. A 5 Hz source

located was injected at (0.1,0.50,0.50) km and the solution solution was recorded at a 2D grid of 100 receivers equispaced apart

in both x and y directions at the bottom end of the domain between (0.90,0.1,0.1) km and (0.90,0.90,0.90) km (Figure 6(b)).485

The domain was discretized with uniform ML2tet with le = 20 m in length yielding G> 10. A computational timestep

∆t= 0.50 ms is used and the gradient was computed with all timesteps (r = 1). Similar to the 2D case, the gradient was

masked in ΩPML.

For both 2D and 3D cases, an initial velocity model with a uniform velocity of 4.0 km/s was used; however, we simulated

both the exact and initial models with the same mesh.490
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Figure 6. Problem configuration for verification of the discrete gradient in (a) 2D and (b) 3D. Note not all receiver positions are shown for

visualization purposes.

We point out that relatively good agreement was found between the two derivatives in which the wavefield was resolved

with at leastG= 10 (Table 1), especially in the 2D case where the maximum relative difference between the gradients was less

than 0.03 % . In the 3D case, the discretization error becomes somewhat larger and results in maximum relative differences of,

approximately 4.0%, decreasing with smaller h.

5.2 On the design of waveform adapted meshes495

To effectively apply higher-order mass lumped methods with unstructured meshes, it is important to understand the required

mesh resolution for a given desired accuracy (Lyu et al., 2020; Geevers et al., 2018c). As mentioned in Section 4.1, ML elements

contain a greater number of DoF-per-element than standard CG Lagrange or spectral/hp collapsed triangular elements. This

does not imply, however, that a given problem would contain a greater number of DoF when discretized with ML elements

since mesh resolution requirements for each method and element type vary widely (Lyu et al., 2020). Similar to the works of500

Geevers et al. (2018c) and Lyu et al. (2020), we investigate the accuracy of ML elements for forward-state wave propagation

to guide their application in FWI.
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5.2.1 Reference wavefield solution

The implementation of the forward-state wave propagator in 2D and 3D was first verified in order to reliably intercompare

solutions between elements. An equivalence was demonstrated between a “converged" numerical result computed on a highly-505

refined mesh in 2D and 3D and compared with their analytical solutions, respectively. Following that, the assumption was

made that equivalence holds for all our subsequent tests implying that all the reference waveforms are “converged” numerical

solutions, given sufficiently fine mesh resolution and sufficiently small numerical timesteps.

The method of manufactured solutions (MMS) was used to verify the implementation in accordance with a manufactured

analytical solution. The manufactured 2D analytical solution was chosen as t2sin(x)sin(y). In 3D the analytical solution510

was t2sin(x)sin(y)sin(z). Both analytical solutions are defined on a unit square and unit cube with a 250 m wide PML

layer. Numerical solutions were calculated on highly-refined reference meshes built with G= 14.07 using ML5tri in 2D

and G= 9.30 using ML3tet in 3D. The velocity model was homogeneous with [1.43]km/s. The simulations used a timestep

of ∆t= 1 ms and were integrated for 0.10 s. The MMS error was represented as the L2-norm between the analytical and

numerical solution normalized by the analytical solution and only measured in the physical domain.515

Our experiments demonstrated good agreement between the analytical and modeled solutions with relative error for the 2D

reference homogeneous case of 0.34% and for the 3D homogeneous case the relative error was 0.90%. These error values

indicate the reference solutions represent numerically converged results given the spatial discretization and the forward-state

code implementation is producing correct solutions.

5.2.2 Homogeneous 2D P-wavespeed model520

A 2D wave propagation experiment in a domain with a homogeneous velocity field was configured to quantify the accuracy

of the forward-state solution with ML elements (Figure 7). The experiment is similar in design to that analyzed in Lyu et al.

(2020), which used SEM of variable space order. A domain 40.0λ by 30.0λ (i.e., [11.4]km by [8.57]km) was generated where

λ is the wavelength of the acoustic wave given the model’s wavespeed. The model had a uniform wave P-wavespeed of 1.43

km/s, which is approximately the speed of sound in water. A Ricker wavelet with a peak source frequency of 5.0 Hz was525

injected at the center of the domain and a grid of 36 receivers was placed at a 10.0λ (i.e., 2.86 km offset) to the right of

the the source location in order to record and intercompare solutions (Figure 7). A 0.28 km PML layer was added to absorb

outgoing waves. The timestep used for each simulation was 20.0% less than the ∆tCFL estimated maximum stable timestep

(c.f., Section 3.4). Meshes were generated for each element type by varying the C, which resulted in G that ranged from G= 2

to G= 10.5. Results were compared against the solutions computed on the so-called reference meshes.530

Error was calculated based on the simulated pressure recorded at the receivers locations with:

E =

√√√√
∑Nr

r=1

∫ tf

0
(pr − prref

)2dt
∑Nr

r=1

∫ tf

0
p2

rref
dt

× 100%, (40)

where Nr denotes the number of receivers, tf is the final simulation time in seconds, pr is the pressure at the receivers for a

given mesh and pref denotes the pressure at the receivers computed with a reference mesh. The time integration in Eq. (40)
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Figure 7. The experimental configuration to calculate the grid-point-per-wavelength G values. In (a) the source is shown as a green circle

and the receivers are denoted as white triangles with a close-up of the bin of receivers shown in (b). In both panels, the normalized wavefield

is colored at t = 2.25 s.

was computed using the trapezoidal rule. Eq. (40) is a measure in percent difference between two solutions at the same set535

of receivers. It is important to point out that measuring E in this way combines error associated with receiver and source

interpolation as well as from the wave propagation. When E is measured at one receiver at a particular offset coordinate x, this

is referenced by a subscript (e.g., Ex=(0.5,0.5)); otherwise the quantity E considers all receivers.

The space of E for several values of C and subsequently G was explored for different ML elements in a process referred

to as a grid sweep (Table 2). The objective of the grid sweep is to find the smallest G (i.e., lowest grid point density) that can540

produce E at or below a specified threshold. An allowable tolerance of E = 5.0% for each ML element was selected. While

the E = 5.0% threshold chosen is arbitrary, it represents a measurement that can be used to intercompare solutions and, as

we later show through application, to be sufficiently accurate for robust FWI. Further, smaller target thresholds for E led to

non-convergence for some elements. To execute the grid sweep, the value of G was varied within a range of values depending

on the change in E in a similar manner to a back-tracking line search.545

Overall, the homogeneous grid sweep results demonstrate that elements with spatial order k > 2 required fewerG to achieve

the same E than ML2tri. As expected, the necessary C in order to maintain the target E decreases as spatial polynomial

order is increased (Figure 8(b)). The relationship between C and G is not linear due to the higher-order bubble functions

inside the ML elements (c.f., Section 3.2). Thus, the convergence rate of E with respect to G is not as consistent as it is for C

(Figure 8(a)).550

Applying the results from the homogeneous grid sweep, the values forG andC that achievedE = 5.0% are shown in Table 2.

The variation in C that could achieve the E threshold was C = 1.69 to C = 5.85 for ML5tri to ML2tri, respectively, while

for G it varied between G= 7.36 and G= 10.1. The ML element that led to the smallest problem (e.g., minimum G) while
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Figure 8. Panels (a) and (b) depict results for the homogeneous velocity model experiment to find the minimum G (Section 5.2.2, Sec-

tion 5.2.3). Panel (a) shows C as a function of E (Eq. 40). Panel (b) illustrates the E as a function of G. Panels (c) and (d) show the same

thing as (a) and (b) but for the heterogeneous velocity model experiment. Colored lines represent the spatial polynomial order of the element.

The E = 5% threshold is drawn as a horizontal dashed black line on all panels. On panel (a), the line of best fit is drawn in the corresponding

color and the slope of this line is annotated.

Homogeneous Heterogeneous ∆C

Element minimum G minimum C minimum G minimum C %

ML1tri DNF DNF DNF DNF DNF

ML2tri 10.1 5.85 11.6 6.70 14.9%

ML3tri 7.86 3.08 9.06 3.55 15.3%

ML4tri 7.36 2.22 7.99 2.41 8.56%

ML5tri 7.88 1.69 8.54 1.84 8.38%
Table 2. Results from the grid sweep for both the homogeneous and heterogeneous experiment to identify efficient values for G using ML

elements of varying spatial degree k that maintain an error threshold of E = 5%, as compared to a highly-refined reference solution (c.f.,

Section 5.2). Note that DNF stands for did not finish.
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satisfying the target E was ML4tri with a G= 7.36, whereas ML2tri required G= 10.01. It is important to note that the

lowest order ML1tri element performed poorly and did not achieve the target for E with any configuration of C tested.555

5.2.3 Heterogeneous 2D P-wavespeed model

In addition to generating a mesh that meets the requirements of the technique used to numerically discretize the PDE, the

mesh must also account for local variations in the seismic velocity, which can have significant effects on the simulation of

acoustic waves. In the case of simulation with a heterogeneous velocity model, E combines errors associated with how the

mesh discretely represents the local variations in velocity and errors associated with numerical discretization techniques. Thus,560

it is often necessary to add additional DoFs into the design of the unstructured mesh above what would be required for a

homogeneous seismic velocity model to accurately represent local seismic features (e.g., Anquez et al., 2019; Seriani and

Priolo, 1994; Lyu et al., 2020). However, it is important to point out that in FWI applications, the inversion commences from

a smooth, initial velocity model (e.g, Fathi et al., 2015; Thrastarson et al., 2020; Trinh et al., 2019), with locations of velocity

interfaces that are not generally not known prior.565

As a result, in this experiment we added an additional percent to the parameter values of C obtained from the homogeneous

test case (Section 5.2.2). The percent difference in C between homogeneous and heterogeneous results is defined as ∆C.

∆C =
(Chet−Chom)

Chom
, (41)

where the subscripts het and hom denote the heterogeneous and homogeneous grid sweep results, respectively.

For triangular meshes, the ∆C that is necessary to minimize E when simulating with heterogeneous velocity models has not570

been investigated in prior scientific literature to the authors’ knowledge. It is also important to determine how the previously

described homogeneous results can be applied to a heterogeneous seismic velocity model.

In a similar manner to the experiment with the homogeneous velocity model, a 2D experiment with a heterogeneous velocity

model was performed for the BP2004 P-wavespeed model (Billette and Brandsberg-Dahl, 2005) (Figure 9). The BP2004 model

represents geologic features in the Eastern/Central Gulf of Mexico and offshore Angola and is characterized by several salt575

bodies with P-wavespeeds > 4 km/s. The domain is 12.0 km by [67.0]km with an additional 1.00 km PML. A Ricker source

was injected at (−1.0, 34.5) km and a horizontal line of 500 receivers from (−1.0, 36.5) km to (−1.0, 44.5) km was used

to record the wavefield solution. The acquisition geometry led to a near-offset of 2.00 km and a far-offset of 10.0 km from

the source location, which are common dimensions in marine FWI applications for seismic velocity building (e.g., Virieux

and Operto, 2009). Each simulation lasted 9.0 simulation seconds, which was sufficient time for reflected waves to reach the580

receivers with the largest offsets.

In the mesh generation process, a mesh gradation rate of 15.0% was enforced to bound the element size transitions (Figure 9).

As with the homogeneous experiment,G= 6 toG= 12 were evaluated by comparing to the reference case. The reference case

used a highly-refined mesh constructed with G= 15.0 and simulated with ML5tri elements, which could correctly resolve all

interfaces (Figure 9).585
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Figure 9. The reference problem configuration for the BP2004 seismic velocity model. Panel (a) shows the P-wavespeed data. Panel (b)

shows the mesh resolution (circumcircle diameter) based on local adaptation of the mesh resolution to the P-wave data from the BP2004

velocity model shown in panel (a). The parameters used for mesh generation were C = 2.03, ML5tri, a velocity gradation rate of 15.0%,

and a anticipated timestep of ∆t = 0.001 ms.

As shown by Figure 8(c)-(d), the experiments with the BP2004 model consistently exhibited greater E and slower conver-

gence rates as compared to the values from the homogeneous experiment given the same G (c.f., Figure 8(a)). As a result, the

values forC used to generate the meshes were increased from what was found in the homogeneous experiment by ∆C = 20.0%

and resulted in acceptable errors of E = 3.45%, E = 3.82%, E = 3.44%, and E = 3.38%, for ML2tri, ML3tri, ML4tri,

andML5tri elements, respectively. ∆C less than 20.0% did not sufficiently reduce the error to under the E = 5.0% threshold.590

Wave propagation errors can be the result of dispersion and also by how well the mesh represents the local seismic wavespeed

variations. In our mesh design, exact fault locations were not resolved with edge-orientated elements (e.g., Anquez et al., 2019)

and our numerical discretization used elements from a continuous function space, thus error associated with the propagation

of the reflected wavelet in the sharp contrast of the salt layer is expected. This error becomes more pronounced when using
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larger element sizes associated with the higher-order (k > 2) ML elements. As an example of this, in Figure 10 E is calculated595

individually for each receiver as a function of offset for ML5tri. A peak of E = 7.71% occured at the offset of 2.21 km that

is associated with the reflection brought on by the salt layer Figure 11 and results in the peak E not only in ML5tri but also

in ML3tri and ML4tri. Neglecting the E associated with the salt body reflection in this receiver location would reduce the

error from E = 7.71% to E = 2.02%. Furthermore, even though E was kept below the previously defined threshold, a small

dispersion error still exists and can be noted in receivers at the far-offset in all cases. Dispersion error was the most prevalent600

error only in the lower-order ML2tri element, whereas in ML3tri, ML4tri, and ML5tri the greatest error came from the

wavelet reflected of the salt layer.

Figure 10. E (Eq. (40)) as a function of the offset distance for ML5tri in the heterogeneous model setup. Peak E is annotated with dashed

orange lines.

ForML3tri,ML4tri, andML5tri elements, peak E stemmed from the reflected wave associated with the salt body due to

the enlargement of element sizes nearby the salt body (Figure 11). Figure 11(b) illustrates the moment when the wave reflects

off of the salt body and this reflected wave accounted for 73.8% of the total error at this receiver.605

5.2.4 Homogeneous 3D P-wavespeed

A similar experiment to that described Section 5.2.2 was used to assess 3D ML elements. The focus was placed on finding

suitable values for C and G that minimize error for the ML2Tet and the ML3Tet elements that were discovered in Geevers

et al. (2018c). Therefore, a homogeneous 3D model was created with uniform P-wavespeed of 1.43 km/s in a 15.0λ×30.0λ×
15.0λ (i.e., 4.29 km by 8.57 km by 4.29 km) domain with an added 0.28 km PML layer to absorb outgoing waves on the610

sides and bottom. A Ricker wavelet source was added at the coordinate (2.14 km, 0.43 km, 2.14 km) and 216 point receivers

were arranged in a cubic grid with width of 5λ (i.e., 1.43 km) that was placed at a center offset of 10λ (i.e., 2.86 km) to
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Figure 11. Panel (a) shows time series of pressure for several elements measured at a receiver with an offset of 2.00 km. The difference

(MLxtri− reference) in signals from the reference case is shown in panel (b), where x varies from 2 to 5. Panel (c) is the wave field at

t = 2.53 s with the receiver at 2.00 km emphasized with a triangular glyph. The difference in the signals is greatest when the wave reflected

by the salt body (indicated by darker blue in panel (c)) passes through the receiver also illustrated in panel (c).
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Figure 12. The 3D experimental configuration to calculate the grid-point-per-wavelength G values. The Ricker source is represented as a

green sphere and the receivers are denoted as white pyramid glyphs.

the right of the source coordinate, as illustrated in Figure 12. The timestep used for each simulation was 20.0% less than the

∆tCFL (maximum stable timestep based on an estimate) (c.f., Section 3.4). As with Subsection 5.2.2, meshes were generated

by varying C and a back-tracking line search was executed to reach an error threshold of 5.0% calculated using Eq (40).615

The results are shown in Figure 13. The C values necessary to achieve E = 5.0% were C = 5.1 and C = 3.1 for ML2tet

and ML3tet, respectively. These results are similar in magnitude to the values found in C for the 2D grid sweep for the

ML3tri of C = 3.08 but less than for ML2tri which was C = 5.85.

5.3 Computational performance

Simulations were executed on a cluster called Mintrop at the University of São Paulo. Experiments used 4 Intel-based computer620

nodes. Each Intel node was a dual socket Intel Xeon Gold 6148 machine with 40 cores clocked at 2.4 GHz with 192 GB of

RAM. Nodes were interconnected together with an 100 Gb/s InfiniBand network. While each node contained 40 cores, only
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Figure 13. The 3D grid sweep, similar to Figure 8 but for 3D elements. The E = 5% threshold is drawn as a horizontal dashed black line on

all panels. On panel (a), the line of best fit is drawn in the corresponding color and the slope of this line is annotated.

Figure 14. Strong scaling curves for solving the acoustic wave equation with a PML in spyro for 2D (a) and 3D (b) cases given a range of

computational resources using Intel nodes. The dashed lines represent ideal scaling for each element and the average number of degrees-of-

freedom per core is annotated.
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a maximum of 15 cores were used per node to minimize the effects of memory bandwidth on the performance of the wave

propagation solves.

The parallel efficiency of our forward propagator was assessed in Intel-based CPUs see Figure 14. For the 2D benchmark,625

the domain contains a uniform velocity of 1.43 km/s and spans a physical space of 114 km by 85 km. The 2D domain

was discretized using the homogeneous cell densities from Table 2 resulting in 18,804,171, 11,295,747, 9,929,409, and

11,204,136 DoF for ML2tri, ML3tri, ML4tri, and ML5tri, respectively. In addition to the physical domain, a 0.287 km

wide PML was included on all sides of the domain except the free surface. A source term with a time varying Ricker wavelet

that had a central frequency of 5.0 Hz was injected into the domain and a line of 15 receivers with offset varying from 2.0 km630

to 10.0 km recorded the solution. The 2D simulations were executed for 4.0 seconds with timestep of 0.5 ms.

The 3D domain had 8 km by 8 km by 8 km with an additional 0.287 km wide PML included on all sides of the domain

except the free surface. The domain was discretized using cell densities calculated in Section 5.2.4 resulting in 447,430,835

and 288,233,805 for ML2tet and ML3tet, respectively. A source term with a time varying Ricker wavelet that had a central

frequency of 5.0 Hz was injected into the domain and a cubic grid of 216 receivers was placed with a 2.86 km offset. The 3D635

simulations were executed for 1.0 second with a timestep of 0.5 ms.

Overall, nearly ideal strong scaling was observed in both 2D and 3D cases for most of the elements tested up to 60 com-

putational cores. Since the ML elements admit diagonal mass matrices that avoid the need to solve a linear system, additional

MPI communication is circumvented, which greatly improves parallel scalability. We point out that this analysis considers

the gridpoint-per-wavelength results when designing the mesh sizes and thus represents a practical workload configuration.640

Weak scaling is also observed out to average of 165,490 DoF in 2D and 4,803,896 DoF using 60 cores. With that said in 2D,

scaling deviates somewhat from the ideal curve for ML4tri between 40 and 60 cores. With 60 cores the ML4tri features the

smallest problem in terms of average number of DoF per core and symbolic operations can begin to inhibit parallel scalability.

It is important to note that similar parallel performance was also obtained for the adjoint-state wave propagator as it is highly

similar in operations to the forward-state propagator.645

5.4 Experiment with Marmousi2

To investigate FWI (Algorithm 1) with variable unstructured meshes, several 2D inversions were performed using the Mar-

mousi2 model (Martin et al., 2005) (Figure 15). The objective of this experiment was to intercompare the performance of FWI

in terms of wall-clock time, peak memory usage, and final inverted model. All inversions used meshes with variable elemental

resolution based on the results with the homogeneous velocity model detailed in Section 5.2.2. The Firedrake programming650

environment enables us to flexibly select the variable space order at run-time.

FWIs commenced from an initial P-wavespeed model obtained by smoothing the ground truth Marmousi2 model with a

Gaussian blur that had a standard deviation of 100 grid points (Figure 15(a-b)). The water layer (i.e., region of the velocity

model with P-wavespeed < 1.51 km/s) was made exact in the initial seismic velocity model and was fixed throughout the

inversion process by setting the gradient to zero there.655
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Figure 15. The Marmousi2 model setup described in Section 5.4. Panel (a) The target model, panel (b) the guess velocity model. On both

panels, sources and receivers are annotated. The Ω0 is the region inside the solid-black line.

Each inversion used an acquisition geometry setup of 40 sources equispaced in the water layer between the coordinates

(−0.01,1.0) km and (−0.01,15.0) km. A horizontal line of 500 receivers were placed at 100.0 m deep below the water layer

between (−0.10,0.10) km and (−0.10,17.0) km. Simulations were integrated for 5.0 seconds with a noiseless Ricker wavelet

that had a peak frequency of 5 Hz. A PML was added to the domain with a width cmax/fmax = 900 m (Kaltenbacher et al.,

2013) and the non-reflective boundary was used to suppress free-surface multiplies (Eq. (6)).660

The FWI setup described in Algorithm 1 was run for a maximum of 100 iterations itermax = 100. Note that an iteration is

only counted if it reduces the cost functional. The inversion process was terminated if either a) the norm of G was less than

1e−10 or b) a maximum of 5 line searches were unable to reduce J . However, neither criteria was reached in this experiment.

A lower bound on the control c of 1.0 km/s and an upper bound of 5.0 km/s were enforced throughout the optimization to

ensure the result remained physical. Simulations were executed in serial using a numerical stable timestep of 0.001 seconds665

with a subsampling ratio r = 10, which yields a gradient calculation frequency 10 times less than the Nyquist frequency as

determined by the 5 Hz peak source frequency.

Except for theML1tri experiment, all meshes for the initial velocity model were generated using theC from Table 2 with an

additional 20% to take into account the heterogeneous velocity model of Marmousi2 Table 3. It is general practice to increase
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Element # DoF C Run time (minutes)

ML1tri 139,605 20.0 505

ML2tri 103,877 7.02 647

ML3tri 71,561 3.96 572

ML4tri 54,592 2.67 472

ML5tri 56,995 2.03 564

Table 3. The number of degrees-of-freedom (DoF) for each experiment, the cells-per-wavelength C used to generate the mesh, and the total

wall-clock time to run each FWI discretized with a different element type.

the C for heterogeneous velocity models (Lyu et al., 2020; Anquez et al., 2019). In the case ofML1tri, the only possible mesh670

configuration that was capable to maintain the threshold error below 30% was C = 20. The so-called ground truth shot records

that were used to drive the inversion process were simulated with a separate mesh discretized using the ground truth velocity

model (c.f., Figure 15(a)) with ML5tri elements using C = 2.03. Ground-truth simulated used a smaller timestep than what

was used in FWI of 2.5 ms to minimize error associated with the time discretization.

The simulations were performed using one-shot-per-core using the shot-level ensemble parallelism described in Section 5.3675

with 40 computational cores of one Intel node. Throughout each inversion, the total Random Access Memory (RAM) as a

function of iteration, the total wall clock time spent performing the inversion, the cost functional J (Eq. (10)) at each iteration,

and the total number of iterations were recorded and documented.

5.4.1 Results

The number of DoF varied by approximately a factor of two over the range of ML elements tested. As expected, the ML1tri680

produced the largest problem size with 139,605 DoF whereas ML4tri produces the smallest problem size with 54,592 DoF.

Note that all discretizations used a ∆C = 20.0% (Eq. (41)) to take into account heterogeneity in the velocity model. It is

interesting to point out that ML5tri had a greater number of DoF in the problem than ML4tri despite containing both higher-

order basis functions and a lower C. We also note that in spite of going up to ML5tri, the variable mesh resolution enabled

all FWIs to be simulated at a 1 ms timestep.685

The final inverted models are shown in Figure 16 and are qualitatively highly similar to each other. Given that all forward

discretizations were constructed with the same tolerance for E, this is to be expected. All experiments exhibited between 6

and 11 failed line searches during the course of the 100 iterations demonstrating no clear dependence between the number of

failed line searches and the element type. With the exception of ML1tri, all results converged to a similar final cost functional

between 4.88e10−3 and 5.21e10−3 after exhausting the iteration set. As compared to the other FWIs, the final cost functional690

for ML1tri was largely greater by an order of magnitude (J = 4.59e10−2), but still the inverted velocity model for ML1tri

qualitatively resembled the true velocity model.
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The total run time memory and wall-clock varied substantially (Figure 17, Table 3). For example, ML4tri produced the

fastest FWI result completing in 472 minutes whereas in comparison ML2tri produced the slowest result of 647 minutes.

There was also a marked increase in total wall-clock time going from ML1tri to ML2tri. Wall clock runtimes are primarily695

a result of right-hand side assembly time since solving the linear system with ML elements is pointwise division. Furthermore,

the higher k degree results in more shared nodes per element leading to more memory access and slower performance per DoF,

which offsets the performance gains from reducing the problem size with variable mesh resolution. In regard to virtual memory

usage however, there was a clear reduction in the peak random access memory (RAM) when ML elements were used, which

was also noted in Lyu et al. (2020). For comparison, the ML1tri element produced a peak RAM of 7.5 GB whereas ML4tri700

required the least peak RAM of 3.1 GB. The ML5tri required slightly more than ML4tri with 3.13 GB.

5.5 Overthrust 3D section

As a demonstration of all the previous developments, the FWI implementation was applied to invert a section of the Overthrust3D

P-wavespeed model (herein Overthrust3D) (Aminzadeh et al., 1996). Considering that the Overthrust3D is substantial in spatial

extent (5.0 km deep x 20.0 m x 20.0 km), the focus of this section is to invert a still considerable 5.175 km by 7.5 km by 7.5 km705

section of the model (Figure 18(a-b)). The initial velocity model used to perform the inversion was obtained by smoothing the

true velocity model using a Gaussian kernel with a standard deviation of 100 (Figure 18(b)). Similar to the other 2D FWI, the

water layer (i.e., region of the velocity model with P-wavespeed < 1.51 km/s) was made exact in the guess velocity model and

was fixed throughout the inversion process by setting the gradient in the water layer to zero. Finally, a 750 m PML is included

on both true and guess models to absorb outgoing waves.710

For the inversion, 20 sources were used that were laid out in a 2D grid composed of 5 lines equispaced along the y-axis with

each line containing 4 shots equispaced along the x-axis (Figure 18(c)). All sources were located at the surface of the domain

and the wave solution was recorded at a 2D grid of 900 receivers laid out 100 m below the surface. Each shot was simulated for

4.0 seconds, which was sufficient for the wave to spread out through the domain. A 5 Hz noiseless Ricker wavelet was injected

at each source location.715

Both the guess and true velocity models were discretized with ML3tet elements. Each model featured elements adapted in

size to the the true and guess model’s local seismic velocity given a 5 Hz Ricker wavelet with a C = 3.0 that yielded G= 6.97

(c.f., Section 5.2.4). With this discretization, the guess problem contained 5.3M DoF whereas the true velocity model contained

approximately 5.5M DoF.

Similar to the 2D FWI experiment, the 3D FWI ran for a maximum of 100 iterations itermax = 100. The inversion process720

is terminated if either a) the norm of G was less than 1e10−10 or b) a maximum of 5 line searches were unable to reduce J ;

however, neither criteria was reached in this experiment. A lower bound on the control c of 1 km/s and an upper bound of 6

km/s were enforced throughout the optimization to ensure the result remained physical. A numerical timestep of 0.75 ms was

utilized and a gradient subsampling rate of r = 20 was used to conserve memory.
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Figure 16. The final result for each FWI using different ML elements. The total number of iterations (including both iterations that reduced

the cost functional and the ones that did not) are indicated in each figure along with the final J , and number of degrees-of-freedom N .
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Figure 17. Comparing the performance of FWIs computed with different ML elements. Panel (a) shows the cost functional evolution and

panel (b) shows the peak memory usage.

Simulations were performed using the two-level parallelism strategy with two AMD nodes. Each AMD-based node had an725

AMD EPYC 7601 machine with 64 cores clocked at 2.2 GHz with 512 GB of RAM. Specifically, each of the 20 shots used 6

cores for spatial parallelism requiring in total 120 computational cores.

5.5.1 Results

The final inversion result along several cross-sectional slices along the x-axis and y-axis are compared with the true and guess

velocity model (Figure 19, Figure 20). Overall, the inverted model demonstrates convergence to the true velocity model. After730

100 FWI iterations, the cost functional reduced nearly one order of magnitude, from 4.76e10−1 to 6.62e10−2. Stratified layers

appeared in the inverted velocity model that match structures and shapes in the true model, which are not present in the initial

model. Overall, the inverted result appears more accurate near the surface closer to the sources than with depth, which is likely

a result of poor source illumination beyond several kilometers of depth. Noise appears in the final inverted model however,

which motivates the use of a regularization scheme in future FWIs.735

Even with the use of mass-lumping elements and variable mesh resolution, 3D FWI remains computationally challenging

on a relatively small-scale cluster with 120 cores. In this case, each FWI iteration took approximately 4.8 hours leading to a

total continuous execution time of 20 days to perform 100 FWI iterations. Peak memory usage was significantly larger than in

the 2D case at approximately 200 GB.
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Figure 18. The Overthrust3d setup described in Section 5.5. Panel (a) shows the true model, and panel (b) shows the initial model. Panel (c)

shows the location of sources and receivers.

6 Conclusions740

We have discussed a methodology for imaging regional seismic velocity in two- and three-dimensional, arbitrarily heteroge-

neous, semi-infinite domains in a process commonly referred to as full waveform inversion (FWI). The FWI problem arises

in geophysical exploration where high-fidelity imaging of seismic wave velocity is used to help locate oil and gas reservoirs.

Acoustic waves are used to probe the domain, and the responses to the waves are recorded at an array of microphones near

the surface. The FWI process involves solving a PDE-constrained optimization problem to minimize the misfit between the745

collected data and the computed response of the forward equations starting from some initial distribution of seismic velocity.

In order to resolve the wave equation, a continuous Galerkin (CG) finite element method (FEM) approach was developed

using unstructured triangular (i.e., in 2D and tetrahedral in 3D) meshes with elements adapted in size to local seismic velocity.
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(a) true x = 1.0 km (b) true x = 3.5 km (c) true x = 6.0 km

(c) guess x = 1.0 km (d) guess x = 3.5 km (e) guess x = 6.0 km

(c) control x = 1.0 km (d) control x = 3.5 km (e) control x = 6.0 km

Figure 19. A comparison of cross-sectional slices along the x-axis in the Overthrust3D experiment between the true model, guess model,

and reconstructed wavefield (control) after 100 FWI iterations.
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(a) true y = 1.0 km b) true y = 3.5 km (c) true y = 6.0 km

(c) guess y = 1.0 km (d) guess y = 3.5 km (e) guess y = 6.0 km

(c) control y = 1.0 km (d) control y = 3.5 km (e) control y = 6.0 km

Figure 20. Same as Figure 19 but for the y-axis
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In this way, the design of mesh resolution becomes proportional to the wavelength of the acoustic wave hence the phrase wave-

form adapted meshes. Both the forward, the adjoint-state wavefields, and the gradient are computed on the same unstructured750

triangular mesh. To model a semi-infinite domain and suppress parasitic wave reflections, a Perfectly Matched Layer (PML)

approach detailed in Kaltenbacher et al. (2013) was implemented. Both the discrete adjoint of the acoustic wave equation with

the PML and its gradient with respect to the cost functional were derived using an optimize-then-discretize approach.

The FWI was implemented using the Firedrake package (Rathgeber et al., 2017) and the code is publicly available

(https://zenodo.org/record/5164113). The Firedrake package enables us to represent the FEM discretization at a near-755

mathematical level simplifying our computer implementation. To solve the optimization problem, the Rapid Optimization

Library (ROL; Cyr et al., 2017) was used and called directly from Python using pyROL (Wechsung and Richardson, 2019).

Among other powerful features, ROL allows us to measure quantities in function space rather than Euclidean norms, which

avoids well-known issues of mesh-dependent outer iteration counts for solving the optimization problems (e.g., Schwedes

et al., 2017), which is not the case with some other common optimization packages (e.g., SciPy Virtanen et al., 2020).760

An attractive aspect of the Firedrake package is the potential to utilize automatic differentiation (AD) (e.g., Dolfin-adjoint

Mitusch et al., 2019) to derive the gradient from the forward discretization. At the time of development however, AD did not

support the ability to annotate a solution at a point, which is necessary to define the cost functional in FWI applications. Future

work intends to take advantage of AD as coding developments emerge. One could implement several forward wave solvers

that each make different physical assumptions (e.g., variable density acoustic, elastic, visco-elastic, etc.) and discretize them in765

a common package using Firedrake. In this way, the user could readily control the physics and be able to solve more complex,

multivariate FWIs without having to focus much effort on repeatedly deriving and implementing adjoint and gradient operators.

While triangular FEM offers flexibility to discretize domains with heterogeneous materials and irregular shapes, in the

context of FWI they can lead to prohibitive computational costs to solve the sparse system of equations associated with their

spatial discretization. As a result, five triangular 2D elements and three tetrahedral 3D elements that were originally detailed770

in Chin-Joe-Kong et al. (1999) and Geevers et al. (2018c) (referred to here as ML elements) that yield diagonal mass matrices

(mass lumping) with special quadrature rules, were implemented inside the Finite Element Automated Tabulator (FIAT Kirby,

2004). Much like spectral elements on tensorial-based quadrilateral/hexaderal elements (Patera, 1984), ML elements were

used to form a fully-explicit time marching scheme for wave propagation with a second order accurate in time scheme. We

demonstrated that a 3D forward wave simulation could be scaled up in a distributed memory sense with close to ideal strong775

scalability. While SEM enables reduced-complexity sum-factored application of finite element operators in addition to lumped

mass matrices, such techniques do not seem to be available for the enriched triangular elements that support mass-lumping.

This issue would likely become significant at orders beyond those which are currently known for triangular elements.

In the context of FWI, the ML’s mass lumping property also leads to performance benefits on the adjoint-state and gradient

computations. Much like the forward-state calculation, the adjoint-state calculation is a wave propagation problem and benefits780

from mass lumping by avoiding solving linear systems of equations each timestep. Moreover, the diagonal mass matrix greatly

accelerates the gradient calculation (19).
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A major aspect of our FWI approach is that it takes advantage of variable triangular mesh resolution to discretize the domain

by usingwaveform adapted meshes. Mesh resolution follows the local shortest wavelength of the seismic velocity model and

is graded so that mesh resolution transitions are not too abrupt. We highlight that in order to successfully implement FWI with785

variable resolution meshes, automated (scripted) mesh generation tools are critically important (e.g., SeismicMesh Roberts

et al., 2021). The mesh generation tool needs to produce high quality 2D/3D triangular meshes according to variations in local

seismic velocity models, which reduces the overall number of DoF in the problem from that of a structured grid. To provide

practical guidance for subsequent application in FWI, specific mesh resolution requirements were investigated to achieve a

fixed error threshold of 5.0% for 2D/3D forward wave propagation simulations using the ML elements. For a given fixed error790

threshold of 5.0%, in 2D the ML3tri element achieved the target error threshold with the fewest number of DoF and in 3D

the ML3tet element achieved this goal. Linear elements could not meet any practical fixed error threshold and thus are not

recommended for usage in FWI. Similar to the results in Lyu et al. (2020) for spectral elements, the usage of higher-order ML

elements enabled us to greatly expand the element size while maintaining our desired accuracy. The expansion of the element

size with higher-order elements has important implications with respect to generating 3D triangular meshes for regional and795

global seismic domains. In practical experience, the expansion of the element size can make the removal of degenerate sliver

tetrahedral elements far easier, thus encouraging more numerically stable results with larger potentially numerically stable

timesteps.

Higher-order ML elements of various orders led to similar final results in a synthetic 2D FWI. As the spatial order increased,

we observed a small speedup to perform a fixed number of FWI iterations and a significant reduction in peak memory usage.800

On the down side, coarser meshes potentially under-resolve sharp velocity interfaces that could generate error in simulations.

For forward wave propagation on heterogeneous velocity models, a homogenization technique would likely be necessary to

simplify the velocity model before simulation is attempted to avoid complex mesh generation procedures. However in the

context of FWI however, seismic velocity models are generally smooth and using very high degree elements has always been

an option. In a similar fashion to the results outlined in Lyu et al. (2020) but using SEM, the primary benefit of higher-order805

ML elements was the ability to reduce peak run time memory requirements by nearly a factor of 2x in our 2D FWI example.

The work analyzed in this article presents several new directions for FWI with triangular FEM. In the course of the FWI

process, the physical model incrementally evolves, and to aid convergence towards the global minimum of the cost function,

a multi-scale reconstruction is often used by increasing step by step the frequency of the simulated phenomena. In the case

of multiscale FWI, an automated meshing process in the FWI loop is then crucial to deal with the variations of the physical810

parameters and the increase of the frequency component of the waves simulated. Waveform adapted meshes could be used for

each frequency of interest so as to obtain an accurate solution while using the coarsest mesh possible.

Code and data availability. All code used in this repository is free and open source, and all data sets used in the demonstrations are publicly

available. The spyro source repository is available from https://github.com/krober10nd/spyro (last access: 20 August 2021). The spyro pack-

age is released under the GPLv3 license. The Zenodo release for the code is available at (https://zenodo.org/record/5164113), with data and815
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simulation scripts for FWI at (https://zenodo.org/record/5172307). This implementation was based on firedrake version (zenodo/Firedrake-

20210810.0).

Appendix A: Discretization details for the forward-state and adjoint-state equations

A1 Expressions for the matrices

The expression of the matrices used in the forward discrete problem are:820

Mu = Mω = Mxk
p =

∫

Ω

φi(x)φj(x)dx Mu,1 =
∫

Ω

trΨ1φi(x)φj(x)dx +
∫

∂Ω

c(x)φi(x)φj(x)ds

Mu,3 =
∫

Ω

trΨ3φi(x)φj(x)dx Mxk,xl

p,1 =
∫

Ω

ψi(x)Ψk,l
1 ψj(x)dx

K =
∫

Ω

c2(x)∇φi(x) · ∇φj(x)dx Dxk =
∫

Ω

φi(x)
∂φj

∂xk
dx

Du,2 =
∫

Ω

ψi(x)Ψk,l
2

∂ψj(x)
∂xl

dx Dω,3 =
∫

Ω

ψi(x)Ψk,l
3

∂ψj(x)
∂xl

dx

Author contributions. KR, AO, LF implemented the code, developed the numerical formulation, performed several results for the manuscript,

and together wrote the manuscript. RK helped implement some aspects of the finite elements used, wrote and improved the manuscript. BS

and RG provided the research environment and intellectual discussion necessary for the software’s development and eventual realization of

this paper.

Competing interests. The authors declare that they have no conflict of interest.825

Acknowledgements. This research was carried out in association with the ongoing R&D project registered as ANP 20714-2, “Software

technologies for modelling and inversion, with applications in seismic imaging" (University of São Paulo / Shell Brasil / ANP) – Desenvolvi-

mento de técnicas numéricas e software para problemas de inversão com aplicações em processamento sísmico, sponsored by Shell Brasil

under the ANP R&D levy as “Compromisso de Investimentos com Pesquisa e Desenvolvimento”.

The fourth author (RCK) acknowledges support from the National Science Foundation grant 1912653. The sixth author (BSC) acknowl-830

edges financial support from the Brazilian National Council for Scientific and Technological Development (CNPq) in the form of a produc-

tivity grant (grant number 312951/2018-3).

41

https://doi.org/10.5194/gmd-2021-363
Preprint. Discussion started: 30 November 2021
c© Author(s) 2021. CC BY 4.0 License.



We would like to thank Gerard Gorman at Imperial College London for his valuable feedback. We also acknowledge and appreciate the

valuable feedback given from Wim Mulder, Amik St-Cyr, and Jorge Lopez from Royal Dutch Shell regarding full waveform inversion and

finite elements.835

We would also like to thank João Moreira for the generous comments and discussion.

42

https://doi.org/10.5194/gmd-2021-363
Preprint. Discussion started: 30 November 2021
c© Author(s) 2021. CC BY 4.0 License.



References

Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M. E., and Wells, G. N.: The FEniCS

project version 1.5, Archive of Numerical Software, 3, 2015.

Alnæs, M. S., Logg, A., Ølgaard, K. B., Rognes, M. E., and Wells, G. N.: Unified form language, ACM Trans. Math. Softw., 40, 1–37,840

https://doi.org/10.1145/2566630, 2014.

Aminzadeh, F., Burkhard, N., Long, J., Kunz, T., and Duclos, P.: Three dimensional SEG/EAEG models — an update, The Leading Edge,

15, 131–134, https://doi.org/10.1190/1.1437283, 1996.

Anquez, P., Pellerin, J., Irakarama, M., Cupillard, P., Lévy, B., and Caumon, G.: Automatic correction and simplification of geological maps

and cross-sections for numerical simulations, Cr. Geosci., 351, 48–58, https://doi.org/10.1016/j.crte.2018.12.001, 2019.845

Basker, B., Rüger, A., Deng, L., and Jaramillo, H.: Practical considerations and quality control for an FWI workflow, The Leading Edge, 35,

151–156, 2016.

Billette, F. and Brandsberg-Dahl, S.: The 2004 BP Velocity Benchmark, in: 67th EAGE Conference & Exhibition, pp. cp–1, European Asso-

ciation of Geoscientists & Engineers, European Association of Geoscientists & Engineers, https://doi.org/10.3997/2214-4609-pdb.1.b035,

2005.850

Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer International Publishing,

https://doi.org/10.1007/978-0-387-70914-7, 2011.

Brittan, J., Bai, J., Delome, H., Wang, C., and Yingst, D.: Full waveform inversion – the state of the art, First Break, 31,

https://doi.org/10.3997/1365-2397.31.10.71541, 2013.

Brossier, R., Operto, S., and Virieux, J.: Seismic imaging of complex onshore structures by 2D elastic frequency-domain full-waveform855

inversion, Geophysics, 74, WCC105–WCC118, https://doi.org/10.1190/1.3215771, 2009.

Bunks, C., Saleck, F. M., Zaleski, S., and Chavent, G.: Multiscale seismic waveform inversion, Geophysics, 60, 1457–1473,

https://doi.org/10.1190/1.1443880, 1995.

Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C.: A Limited Memory Algorithm for Bound Constrained Optimization, SIAM J. Sci. Comput.,

16, 1190–1208, https://doi.org/10.1137/0916069, 1995.860

Castellanos, C., Métivier, L., Operto, S., Brossier, R., and Virieux, J.: Fast full waveform inversion with source encoding and second-order

optimization methods, Geophys. J. Int., 200, 720–744, https://doi.org/10.1093/gji/ggu427, 2014.

Chin-Joe-Kong, M., Mulder, W. A., and Van Veldhuizen, M.: Higher-order triangular and tetrahedral finite elements with mass lumping for

solving the wave equation, J. Eng. Math., 35, 405–426, 1999.

Clayton, R. and Engquist, B.: Absorbing boundary conditions for acoustic and elastic wave equations, Bull. Seismol. Soc. Am., 67, 1529–865

1540, 1977.

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., and Oldenburg, D. W.: SimPEG: An open source framework for simulation and gradient

based parameter estimation in geophysical applications, Comput. Geosci-uk., 85, 142–154, https://doi.org/10.1016/j.cageo.2015.09.015,

2015.

Cyr, E. C., von Winckel, G. J., Kouri, D. P., Gardiner, T. A., Ridzal, D., Shadid, J. N., and Miller, S.: LDRD Report: Topological Design870

Optimization of Convolutes in Next Generation Pulsed Power Devices., Tech. rep., Office of Scientific and Technical Information (OSTI),

https://doi.org/10.2172/1413648, 2017.

43

https://doi.org/10.5194/gmd-2021-363
Preprint. Discussion started: 30 November 2021
c© Author(s) 2021. CC BY 4.0 License.



Dablain, M.: The application of high-order differencing to the scalar wave equation, Geophysics, 51, 54–66,

https://doi.org/10.1190/1.1442040, 1986.

Etienne, V., Virieux, J., and Operto, S.: A massively parallel time-domain discontinuous Galerkin method for 3D elastic wave modeling, pp.875

2657–2661, https://doi.org/10.1190/1.3255398, 2009.

Farrell, P., Ham, D., Funke, S., and Rognes, M.: Automated Derivation of the Adjoint of High-Level Transient Finite Element Programs,

SIAM J. Sci. Comput., 35, C369–C393, https://doi.org/10.1137/120873558, 2013.

Farrell, P. E., Mitchell, L., and Wechsung, F.: An Augmented Lagrangian Preconditioner for the 3D Stationary Incompressible Navier–Stokes

Equations at High Reynolds Number, SIAM J. Sci. Comput., 41, A3073–A3096, https://doi.org/10.1137/18m1219370, 2019.880

Farrell, P. E., Kirby, R. C., and Marchena-Menendez, J.: Irksome: Automating Runge–Kutta time-stepping for finite element methods, arXiv

preprint arXiv:2006.16282, 2020.

Fathi, A., Kallivokas, L. F., and Poursartip, B.: Full-waveform inversion in three-dimensional PML-truncated elastic media, Comput. Method.

Appl. M., 296, 39–72, https://doi.org/10.1016/j.cma.2015.07.008, 2015.

Fichtner, A.: Full Seismic Waveform Modelling and Inversion, Springer Berlin Heidelberg, https://doi.org/10.1007/978-3-642-15807-0,885

2011.

Fruehn, J., Greenwood, S., O”Driscoll, R., Jones, I., and Brittan, J.: A strategy for regional-scale FWI in the salt provinces offshore Brazil,

pp. 1330–1334, https://doi.org/10.1190/segam2019-3201719.1, 2019.

Geevers, S., Mulder, W., and van der Vegt, J.: Dispersion Properties of Explicit Finite Element Methods for Wave Propagation Modelling on

Tetrahedral Meshes, J Sci Comput, 77, 372–396, https://doi.org/10.1007/s10915-018-0709-7, 2018a.890

Geevers, S., Mulder, W., and van der Vegt, J.: New Higher-Order Mass-Lumped Tetrahedral Elements for Wave Propagation Modelling,

SIAM J. Sci. Comput., 40, A2830–A2857, https://doi.org/10.1137/18m1175549, 2018b.

Geevers, S., Mulder, W., and van der Vegt, J.: Dispersion Properties of Explicit Finite Element Methods for Wave Propagation Modelling on

Tetrahedral Meshes, J Sci Comput, 77, 372–396, https://doi.org/10.1007/s10915-018-0709-7, 2018c.

Geršgorin, S.: Über die Abgrenzung der Eigenwerte einer Matrix, Bulletin de l’Académie des Sciences de l’URSS. Classe des sciences895

mathématiques et na, 6, 749–754, 1931.

Gras, C., Dagnino, D., Jiménez-Tejero, C. E., Meléndez, A., Sallarès, V., and Ranero, C. R.: Full-waveform inversion of short-offset, band-

limited seismic data in the Alboran Basin (SE Iberia), Solid Earth, 10, 1833–1855, https://doi.org/10.5194/se-10-1833-2019, 2019.

Grote, M. and Sim, I.: Efficient PML for the wave equation, Global Science Preprint, arXiv:1001.0319v1 [math.NA], 1–15, 2010.

Homolya, M., Kirby, R. C., and Ham, D. A.: Exposing and exploiting structure: Optimal code generation for high-order finite element900

methods, CoRR, abs/1711.02473, http://arxiv.org/abs/1711.02473, 2017.

Homolya, M., Mitchell, L., Luporini, F., and Ham, D. A.: TSFC: A Structure-Preserving Form Compiler, SIAM J. Sci. Comput., 40, C401–

C428, https://doi.org/10.1137/17m1130642, 2018.

https://zenodo.org/record/5164113: spyro V0.1.0: Acoustic wave propagators for seismic domains with application to full waveform inver-

sion, https://doi.org/10.5281/zenodo.5164113, 2021.905

https://zenodo.org/record/5172307: Simulation scripts and data for full waveform inversion using spyro,

https://doi.org/10.5281/zenodo.5172307, 2021.

Jones, I. F.: Tutorial: The mechanics of waveform inversion, First Break, 37, 31–43, https://doi.org/10.3997/1365-2397.2019017, 2019.

44

https://doi.org/10.5194/gmd-2021-363
Preprint. Discussion started: 30 November 2021
c© Author(s) 2021. CC BY 4.0 License.



Kaltenbacher, B., Kaltenbacher, M., and Sim, I.: A modified and stable version of a perfectly matched layer technique for

the 3-d second order wave equation in time domain with an application to aeroacoustics, J. Comput. Phys., 235, 407–422,910

https://doi.org/10.1016/j.jcp.2012.10.016, 2013.

Kirby, R. C.: Algorithm 839, ACM Trans. Math. Softw., 30, 502–516, https://doi.org/10.1145/1039813.1039820, 2004.

Kirby, R. C. and Mitchell, L.: Solver Composition Across the PDE/Linear Algebra Barrier, SIAM J. Sci. Comput., 40, C76–C98,

https://doi.org/10.1137/17m1133208, 2018.

Kirby, R. C., Logg, A., Rognes, M. E., and Terrel, A. R.: Common and unusual finite elements, in: Automated Solution of Differential915

Equations by the Finite Element Method, pp. 95–119, Springer Berlin Heidelberg, https://doi.org/10.1007/978-3-642-23099-8_3, 2012.

Krischer, L., Fichtner, A., Zukauskaite, S., and Igel, H.: Large-scale seismic inversion framework, Seismological Research Letters, 86,

1198–1207, 2015.

Lax, P. and Wendroff, B.: Systems of conservation laws, Comm. Pure Appl. Math., 13, 217–237, https://doi.org/10.1002/cpa.3160130205,

1960.920

Lines, L. R. and Newrick, R. T.: Fundamentals of Geophysical Interpretation, Society of Exploration Geophysicists,

https://doi.org/10.1190/1.9781560801726, 2004.

Liu, J., Brio, M., and Moloney, J. V.: Overlapping Yee FDTD Method on Nonorthogonal Grids, J Sci Comput, 39, 129–143,

https://doi.org/10.1007/s10915-008-9253-1, 2008.

Louboutin, M., Lange, M., Luporini, F., Kukreja, N., Witte, P. A., Herrmann, F. J., Velesko, P., and Gorman, G. J.: Devito (v3.1.0):925

An embedded domain-specific language for finite differences and geophysical exploration, Geosci. Model Dev., 12, 1165–1187,

https://doi.org/10.5194/gmd-12-1165-2019, 2019.

Luporini, F., Varbanescu, A. L., Rathgeber, F., Bercea, G.-T., Ramanujam, J., Ham, D. A., and Kelly, P. H.: Cross-Loop Optimization of

Arithmetic Intensity for Finite Element Local Assembly, ACM Trans. Archit. Code Optim., 11, 1–25, https://doi.org/10.1145/2687415,

2015.930

Luporini, F., Ham, D. A., and Kelly, P. H.: An Algorithm for the Optimization of Finite Element Integration Loops, ACM Trans. Math.

Softw., 44, 1–26, https://doi.org/10.1145/3054944, 2017.

Lyu, C., Capdeville, Y., and Zhao, L.: Efficiency of the spectral element method with very high polynomial degree to solve the elastic wave

equation, Geophysics, 85, T33–T43, https://doi.org/10.1190/geo2019-0087.1, 2020.

Martin, G. S., Marfurt, K. J., and Larsen, S.: Marmousi-2: An updated model for the investigation of AVO in structurally complex areas, pp.935

1979–1982, Society of Exploration Geophysicists, https://doi.org/10.1190/1.1817083, 2005.

Mitusch, S., Funke, S., and Dokken, J.: dolfin-adjoint 2018.1: Automated adjoints for FEniCS and Firedrake, JOSS, 4, 1292,

https://doi.org/10.21105/joss.01292, 2019.

Modave, A., St-Cyr, A., Mulder, W., and Warburton, T.: A nodal discontinuous Galerkin method for reverse-time migration on GPU clusters,

Geophys. J. Int., 203, 1419–1435, https://doi.org/10.1093/gji/ggv380, 2015.940

Modrak, R. T., Borisov, D., Lefebvre, M., and Tromp, J.: SeisFlows—Flexible waveform inversion software, Computers & geosciences, 115,

88–95, 2018.

Mulder, W. and Shamasundar, R.: Performance of continuous mass-lumped tetrahedral elements for elastic wave propagation with and

without global assembly, Geophys. J. Int., 207, 414–421, https://doi.org/10.1093/gji/ggw273, 2016.

Mulder, W., Zhebel, E., and Minisini, S.: Time-stepping stability of continuous and discontinuous finite-element methods for 3-D wave945

propagation, Geophys. J. Int., 196, 1123–1133, https://doi.org/10.1093/gji/ggt446, 2013a.

45

https://doi.org/10.5194/gmd-2021-363
Preprint. Discussion started: 30 November 2021
c© Author(s) 2021. CC BY 4.0 License.



Mulder, W., Zhebel, E., and Minisini, S.: Time-stepping stability of continuous and discontinuous finite-element methods for 3-D wave

propagation, Geophys. J. Int., 196, 1123–1133, https://doi.org/10.1093/gji/ggt446, 2013b.

Padovani, E., Priolo, E., and Seriani, G.: Low And High Order Finite Element Method: Experience In Seismic Modeling, J. Comp. Acous.,

02, 371–422, https://doi.org/10.1142/s0218396x94000233, 1994.950

Patera, A. T.: A spectral element method for fluid dynamics: Laminar flow in a channel expansion, J. Comput. Phys., 54, 468–488,

https://doi.org/10.1016/0021-9991(84)90128-1, 1984.

Persson, P.-O.: Mesh size functions for implicit geometries and PDE-based gradient limiting, Eng. Comput-germany., 22, 95–109,

https://doi.org/10.1007/s00366-006-0014-1, 2006.

Peter, D., Komatitsch, D., Luo, Y., Martin, R., Le Goff, N., Casarotti, E., Le Loher, P., Magnoni, F., Liu, Q., Blitz, C., Nissen-Meyer, T.,955

Basini, P., and Tromp, J.: Forward and adjoint simulations of seismic wave propagation on fully unstructured hexahedral meshes, Geophys.

J. Int., 186, 721–739, https://doi.org/10.1111/j.1365-246x.2011.05044.x, 2011.

Pratt, R. G. and Worthington, M.: Inverse Theory Applied To Multi-Source Cross-Hole Tomography.. Part 1: Acoustic Wave-Equation

Method1, Geophys Prospect, 38, 287–310, https://doi.org/10.1111/j.1365-2478.1990.tb01846.x, 1990.

Rathgeber, F., Ham, D. A., Mitchell, L., Lange, M., Luporini, F., Mcrae, A. T., Bercea, G.-T., Markall, G. R., and Kelly, P. H.: Firedrake,960

ACM Trans. Math. Softw., 43, 1–27, https://doi.org/10.1145/2998441, article 24, 2017.

Roberts, K., Gioria, R., and Pringle, W.: SeismicMesh: Triangular meshing for seismology, JOSS, 6, 2687,

https://doi.org/10.21105/joss.02687, 2021.

Rücker, C., Günther, T., and Wagner, F. M.: pyGIMLi: An open-source library for modelling and inversion in geophysics, Comput. Geosci-

uk., 109, 106–123, https://doi.org/10.1016/j.cageo.2017.07.011, 2017.965

Schwedes, T., Ham, D. A., Funke, S. W., and Piggott, M. D.: Mesh dependence in PDE-constrained optimisation, in: Mesh Dependence in

PDE-Constrained Optimisation, pp. 53–78, Springer, 2017.

Seriani, G. and Priolo, E.: Spectral element method for acoustic wave simulation in heterogeneous media, Finite Elem. Anal. Des., 16,

337–348, https://doi.org/10.1016/0168-874x(94)90076-0, special Issue Selection of Papers Presented at ICOSAHOM’92, 1994.

Thrastarson, S., van Driel, M., Krischer, L., Boehm, C., Afanasiev, M., van Herwaarden, D.-P., and Fichtner, A.: Accelerating nu-970

merical wave propagation by wavefield adapted meshes. Part II: Full-waveform inversion, Geophys. J. Int., 221, 1591–1604,

https://doi.org/10.1093/gji/ggaa065, 2020.

Tournois, J., Srinivasan, R., and Alliez, P.: Perturbing Slivers in 3D Delaunay Meshes, in: Proceedings of the 18th International Meshing

Roundtable, edited by Clark, B. W., pp. 157–173, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

Trinh, P.-T., Brossier, R., Métivier, L., Tavard, L., and Virieux, J.: Efficient time-domain 3D elastic and viscoelastic full-waveform inversion975

using a spectral-element method on flexible Cartesian-based mesh, Geophysics, 84, R61–R83, https://doi.org/10.1190/geo2018-0059.1,

2019.

van Driel, M., Boehm, C., Krischer, L., and Afanasiev, M.: Accelerating numerical wave propagation using wavefield adapted meshes. Part

I: Forward and adjoint modelling, Geophys. J. Int., 221, 1580–1590, https://doi.org/10.1093/gji/ggaa058, 2020.

Virieux, J. and Operto, S.: An overview of full-waveform inversion in exploration geophysics, Geophysics, 74, WCC1–WCC26,980

https://doi.org/10.1190/1.3238367, 2009.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J.,

van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat,
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