
spyro: a Firedrake-based wave propagation and full waveform
inversion finite element solver
Keith J. Roberts1, Alexandre Olender2, Lucas Franceschini2, Robert C. Kirby3, Rafael S. Gioria1, and
Bruno S. Carmo2

1Dept. of Mining and Petroleum Engineering, Escola Politécnica, University of São Paulo, São Paulo, Brazil
2Dept. of Mechanical Engineering, Escola Politécnica, University of São Paulo, São Paulo, Brazil
3Dept. of Mathematics, Baylor University, Waco, USA

Correspondence: Keith J. Roberts (keithrbt0@gmail.com)

Abstract. In this article, we introduce spyro, a software stack to solve wave propagation in heterogeneous domains and perform

full waveform inversion (FWI) employing the finite element framework from Firedrake, a high-level Python package for

the automated solution of partial differential equations using the finite element method. The capability of the software is

demonstrated by using a continuous Galerkin approach to perform FWI for seismic velocity model building, considering

realistic geophysics examples. A time-domain FWI approach is detailed that uses meshes composed of variably sized triangular5

elements to discretize the domain. To resolve both the forward and adjoint-state equations, and to calculate a mesh-independent

gradient associated with the FWI process, a fully-explicit, variable higher-order (up to degree k = 5 in 2D and k = 3 in 3D)

mass lumping method is used. We show that, by adapting the triangular elements to the expected peak source frequency and

properties of the wavefield (e.g., local P-wavespeed) and by leveraging higher-order basis functions, the number of degrees-

of-freedom necessary to discretize the domain can be reduced. Results from wave simulations and FWIs in both 2D and 3D10

highlight our developments and demonstrate the benefits and challenges with using triangular meshes adapted to the material

properties.

1 Introduction

The construction of models consistent with observations of Earth’s physical properties can be posed mathematically as solving

an inverse problem referred to as full waveform inversion (FWI) (Lines and Newrick, 2004; Virieux and Operto, 2009; Fichtner,15

2011; Brittan et al., 2013). FWI is used extensively in geophysical exploration studies in the search for raw materials such as

oil and gas (Gras et al., 2019; Fruehn et al., 2019). The attraction of the FWI approach is the promise of deriving higher

fidelity models from acquired seismic data as compared to other less complex and less costly methods, for instance, time

travel tomography (Lines and Newrick, 2004), normal moveout (NMO), Kirchhoff migration (Yilmaz, 2001), wave equation

migration velocity analysis (WEMVA) (Sava and Biondi, 2004a, b), and wavefield extrapolation migrations (Robein, 2010).20

However, the FWI problem is challenging to apply in practice since there exists a non-unique configuration of data that can

best explain the observations. This is due to the nonconvex nature of the objective function usually employed in FWI, namely

the L2-norm of the residuals between the recorded field data and the synthetic modelled data. A common manifestation of

1



this nonconvexity is cycle skipping, which occurs when the phase match between the observed field data and modelled data is

greater than half a wavelength, causing erroneous model updates in the optimization process (Yao et al., 2019). Besides this, the25

associated computational cost to simulate wave propagation in expansive 2D and 3D domains can quickly become extremely

demanding.

The basic method of FWI requires several computationally and memory expensive components that need to be executed

iteratively potentially dozens of times to arrive at an optimized model (Virieux and Operto, 2009; Fichtner, 2011; Pratt and

Worthington, 1990; Bunks et al., 1995; Jones, 2019; Basker et al., 2016). Each iteration of FWI requires the simulation of30

acoustic or elastic waves in an arbitrarily heterogeneous medium, which can only be accomplished via numerical approaches.

Further, in order to sufficiently illuminate a given domain and provide sufficient information to produce a solution to the inverse

problem, many wave simulations are often required. As a result, the primary computational expense of the FWI scales with the

cost to numerically simulate wave propagation. Thus, by more efficiently modeling wave propagation, the process of FWI can

be accelerated.35

Considering the computational cost of solving the wave equation is important to efficiently performing FWI, finite differ-

ence methods are often used to model wave propagation. Finite difference methods are well-studied in the context of seismic

application in part because they can be highly optimized for computational performance especially so with the help of re-

cent packages such as Devito (Louboutin et al., 2019; Witte et al., 2019). However, canonical finite difference methods use

structured grids to represent the domain and inefficiently represent irregular geometries and/or large regional/global domains40

without the use of more sophisticated methods (e.g., Liu et al., 2008). Consequently for these cases, approaches such as finite

element methods (FEM) are often preferred as they discretize the domain with an unstructured mesh of, most commonly, vari-

able sized quadrilaterals/hexahedrals or triangles/tetrahedrals (e.g., Krischer et al., 2015; Modrak et al., 2018; Zhang, 2019;

Peter et al., 2011; Anquez et al., 2019; van Driel et al., 2020; Thrastarson et al., 2020; Trinh et al., 2019). The element size can

be adapted to the variation of the local shortest wavelength when the seismic velocity field is spatially variable (e.g., Etienne45

et al., 2009) or to the source location (e.g., van Driel et al., 2020; Thrastarson et al., 2020) to reduce the number of degrees-

of-freedom (DoF). For this reason in part, Spectral Element Methods (SEM) using tensor-based quadrilaterals/hexahedrals are

widely used in geophysical applications for expansive regional and global domains (Modrak et al., 2018; Fichtner, 2011; Lyu

et al., 2020; Fathi et al., 2015; Patera, 1984; Seriani and Priolo, 1994). Furthermore, since the stability condition for explicit

time-marching schemes depends on the maximal local ratio of velocity to mesh size, local mesh size adaptation can decrease50

the overall work-load associated with the wave propagation.

Despite the advantage unstructured meshes appear to offer to FWI there are several major difficulties associated with using

them that we attempt to address in this work. 1) The computational burden associated with solving a sparse system of equations

arising from the discretization with finite elements, 2) the generation and distribution of variable resolution unstructured meshes

3) code complexity and optimization associated with programming finite element methods themselves. Unlike in the case55

of SEM, in which the domain is discretized using tensor-based hexahedral elements that result in diagonal mass matrices

(e.g., mass lumped) and can be efficiently time marched (Peter et al., 2011; Patera, 1984), standard conforming simplex finite

elements produce a large sparse system of equations, even for explicit time-stepping. Although well-conditioned, solving this

2



linear system at each timestep easily dominates the rest of the computation in terms of cost. This makes the method unattractive

for FWI.60

To address the first issue, we point out that certain triangular finite element spaces do admit diagonal approximations to

mass matrices. These spaces contain the standard set of polynomials of some degree k, enriched with certain bubble functions

(Chin-Joe-Kong et al., 1999). For each such space, it is possible to identify a set of interpolation nodes that also can be

combined with appropriate weights to define a sufficiently accurate quadrature rule. Thus, the Kronecker property of the basis

functions at the quadrature points leads to the quadrature rule delivering a diagonal mass matrix. SEM uses the same principle,65

using Gauss-Lobatto quadrature points as interpolation nodes on quadrilateral/hexahedrals meshes. Such sets of points are

known up to k = 9 for triangles and k = 4 for tetrahedra and due to their diagonal mass matrix, they can be used for fast

fully-explicit numerical wave simulations (Chin-Joe-Kong et al., 1999; Mulder et al., 2013a; Geevers et al., 2018b, a; Cui

et al., 2017; Liu et al., 2017). These elements have been compared with finite difference schemes and have favourable results

for the forward wave propagation when interior complexity and topography are present that can be adequately modelled with70

unstructured tetrahedra (Zhebel et al., 2014). However, to the authors’ knowledge these elements have not been used in peer-

reviewed literature to perform seismic inversions. Thus, several questions remain on how these elements may benefit the other

components (e.g., discrete adjoint, sensitivity kernel calculation) of the seismic inversion posed in a finite element framework.

A second major difficulty is the generation and design of a variable resolution triangular mesh. This can be a potentially

laborious mesh generation pre-processing step and can strongly limit the applicability of the method, especially in 3D (e.g.,75

Anquez et al., 2019; Peter et al., 2011; Modave et al., 2015). To take full advantage of FEM, elements in the mesh must be sized

in an optimal way to take into account numerical stability criteria, the numerical methods used, the seismic data (e.g., velocity

model), and the characteristics of the forcing mechanism simultaneously. Further to this point, the most ubiquitous methods

to triangulate the computational domain with simplices (e.g., Delaunay triangulation) suffers from the formation of degenerate

elements termed slivers (Tournois et al., 2009), which would otherwise render a wave propagation simulation useless. Despite80

this, triangular mesh generation is generally preferred over hexahedral mesh generation as triangular meshes offer, in general,

a greater degree of flexibility in resolving complex and irregularly-shaped geometry. In this work, we explore the effect of

variable mesh resolution on the forward-state problem based on the source’s peak frequency and seismic velocity medium

(e.g., waveform adapted meshes) and use these mesh resolution guidelines to design meshes for FWI.

Third, the high complexity of implementing efficient unstructured FEM frequently discourages domain practitioners. Com-85

pared to finite difference methods, FEM require additional levels of coding complexity associated with mesh data structures,

numerical integration, function spaces, matrix assembly, and sophisticated code optimizations for looping over unstructured

mesh connectivity (Luporini et al., 2015, 2017). Re-implementing such tasks in a particular application context (e.g., FWI)

do not constitute a major advancement. Recognizing this issue, many advanced software packages have been put forward,

separating the concerns between low-level programming/implementation and the high-level mathematical formulation to more90

confidently write FEM codes for various application domains (Krischer et al., 2015; Modrak et al., 2018; Alnæs et al., 2015;

Witte et al., 2019; Cockett et al., 2015; Rücker et al., 2017; Louboutin et al., 2019; Rathgeber et al., 2017). These approaches

often present a programming environment in which data objects correspond to higher-level mathematical objects inherent to

3



inverse problems and/or numerical discretizations such as the finite difference, finite element or finite volume methods. For

example, packages have focused on creating high-level abstractions for geophysical inversion problems (e.g., Witte et al., 2019;95

Cockett et al., 2015; Rücker et al., 2017), while others more generally deal with solving variational problems using the finite

element method (Rathgeber et al., 2017) or writing performant stencil codes for finite difference methods (Louboutin et al.,

2019).

The Firedrake project (Rathgeber et al., 2017) is one example of a powerful programming environment that adequately

address the code complexity inherent to FEM and leads to the development of computationally performant and highly technical100

FEM implementations in concise scripts within the Python programming language. Firedrake, like FEniCS (Alnæs et al.,

2015), uses the Unified Form Language (UFL Alnæs et al., 2014) to describe variational problems in mathematical syntax.

This high-level symbolic description can be manipulated as a first-class object so that Jacobians and adjoint operators can be

automatically derived (Alnæs et al., 2014; Farrell et al., 2013) and, as recently shown by Farrell et al. (2020), time discretization

can be automated from a semi-discrete problem description. Although written in Python, Firedrake internally generates efficient105

low-level code and interfaces to advanced solver packages and hence can scale to billions of DoF (Kirby and Mitchell, 2018;

Farrell et al., 2019). This combination of high-level features and performance makes Firedrake an interesting candidate for

developing an extensible and maintainable code stack for performing FWI with finite element methods.

The aim of this paper is to address the issues associated with the application of triangular, unstructured FEM to perform

FWI with the higher-order mass lumped elements of Chin-Joe-Kong et al. (1999) and Geevers et al. (2018b). We demon-110

strate the concept that waveform adapted meshes combined with a discrete adjoint technique lead to an FWI implementation

that requires significantly fewer computational resources while maintaining the accuracy of the result. Several technical as-

pects of the methods are detailed including mesh-dependency, domain truncation, efficient mesh design, and gradient-based

adjoints providing practical information for FWI implementations using finite element methods and making triangular finite

element methods more attractive for future applications in seismic imaging applications. All developments detailed in this115

work are available in an open source Python implementation using the Firedrake programming environment named spyro

(https://zenodo.org/record/5164113).

The article is organized as follows: first we introduce the FWI algorithm and discuss the continuous formulation. Thereafter,

we focus on the discretization of the governing equations in both space and time. Following this, we discuss our Firedrake

implementation. Then we study the error associated with discretizing the domain with variable resolution triangular meshes.120

Lastly, we demonstrate computational results in both 2D and 3D, discuss and conclude the work.

2 Full waveform inversion

Figure 1 shows a basic overview of an experimental configuration used in FWI in a marine environment. FWI is designed to

simulate a geophysical survey and estimate the model parameters (e.g., seismic velocity) to explain the observed waveforms in

a way that minimizes a measure of error (e.g., misfit). This process is known as inversion. In contrast to less computationally125

expensive tomography methods that use only the phase information of recorded signals, FWI utilizes both amplitudes and

4



presure waves
source of

survey ship

hydrophones

gas

oil porous reservoir rock

impermeable rock

sea bed

offset

maximum offset

sedimentary rock layers

reflected waves

refracted
waves

Figure 1. A simplified illustration of a marine seismic survey with relevant components annotated. Courtesy from João Baptista Dias Moreira.

phase information from recorded data and can thus image higher resolution targets to half the spatial wavelength of the source

frequency (Fichtner, 2011).

In a typical field setup in an offshore/marine environment, a ship tows a cable potentially several kilometers long with

hundreds of microphones (Figure 1). Nearby the ship, small controlled explosions known as shots or sources are created. These130

shots propagate sound waves that interact with the subsurface medium and produce signals recorded by the microphones. The

collection of seismic signals for a particular shot explosion event is referred to as a shot record and the quantity and the location

of the sources with respect to the location of the receivers is referred to as acquisition geometry.

FWI can either be posed in the time domain or frequency domain (Virieux and Operto, 2009; Pratt and Worthington, 1990).

In 2D, the frequency domain approach is regarded as the more computationally efficient approach (Brossier et al., 2009; Virieux135

and Operto, 2009). In 3D however, the computational effort and memory requirements associated with solving the system of

equations in the frequency domain can become prohibitive and negatively affect parallel scaling efficiency. Thus, the time

domain approach for FWI is still used in applications and remains technically relevant.

One key challenge associated with FWI and inverse problems in general is that they require a adequate starting velocity

model to converge toward the global minimum of the misfit. In other words, the initial model should be able to predict the140

travel time of any arrival involved in the inversion to within half a period of the lowest inverted frequency when a classical

least-squares misfit function based on the data difference is used otherwise the FWI will converge to a local minimum (e.g.,

Virieux and Operto, 2009). Typically these initial models are created through time travel tomography methods with manual

inspection and edits (Lines and Newrick, 2004).

5



2.1 Forward wave simulation in a PML truncated medium145

In this work, the acoustic wave equation in its second-order form is considered in either a 2D or 3D physical domain Ω0.

The acoustic wave equation has one free parameter c that is the spatially-variable compressional wavespeed otherwise referred

to as the P-wavespeed. The acoustic wave equation is frequently used in FWI applications because its numerical solution

is computationally inexpensive compared to the solution of the elastic wave equation while still yielding practically useful

inversion results in some scenarios (Gras et al., 2019).150

When simulated waves reach the extent of the domain, they create reflections generating signals that are deleterious for

FWI applications since field data do not contain these signals. Thus, in this work an absorbing boundary layer referred to as

a Perfectly Matched Layer (PML) is included as a small domain extension ΩPML to attenuate the propagation of the outgoing

waves and Ω ∈ Ω0 ∪ΩPML. Note that the PML surrounds Ω0 on all but the water layer of the domain, shown in Figure 1. The

domain is truncated with a non-reflective Neumann boundary condition in order to absorb some remaining oscillations there155

(Clayton and Engquist, 1977). All examples in this text rely on the usage of this acoustic wave equation in this configuration

and further technical details about the PML formulation used can be found in Kaltenbacher et al. (2013).

The coupled system of equations for the modified acoustic wave equation with the PML are given by the residual operators

Ru,Rp,Rω as:

Ru(u,p,ω,f)≡
∂2u

∂t2
+trΨ1

∂u

∂t
+trΨ3u+detΨ1ω−∇ · (c2∇u)−∇ ·p− f = 0, (1)160

Rp(u,p,ω)≡
∂p

∂t
+Ψ1p+Ψ2(c

2∇u)−Ψ3(c
2∇ω) = 0, (2)

Rω(u,p,ω)≡
∂ω

∂t
−u = 0, (3)

∂tu
∣∣
t0
= v

∣∣
t0

= 0, (4)

p
∣∣
t0

= 0, (5)

ω
∣∣
t0

= 0, (6)165

(∂tu+ c∇u ·n)|∂Ω = 0, (7)

where u(x, t) : (0,T )×Ω→ R is the pressure at time t and position x= (x,y,z) ∈Ω, ω(x, t) : (0,T )×Ω→ R is an auxiliary

scalar variable and p(x, t) = (px,py,pz) : (0,T ) × Ω → R3 is an auxiliary vector variable and px, py and pz are the vector

components, c(x) is the P-wavespeed, f(x, t) is the source term, and Ψi are the damping matrices. These damping matrices are

calculated using damping functions, which are referred to as σi. Note that Ψi, p and ω only need to be calculated in the PML.170

We remark that this formulation of the modified acoustic wave equation with the PML is the same as that originally designed

by Grote and Sim (2010) and Kaltenbacher et al. (2013) and these formulations differ by what constitutes the spatially-varying

velocity model, which either comes from the variation in density or the variation in bulk modulus.

6



In 2D, the modified acoustic wave formulation is simplified since pz , ω and σz vanish and it becomes:

Ru(u,p,f)≡
∂2u

∂t2
+trΨ1

∂u

∂t
+trΨ2u−∇ · (c2∇u)−∇ ·p− f = 0, (8)175

Rp(u,p)≡
∂p

∂t
+Ψ1p+Ψ2(c

2∇u) = 0, (9)

where the boundary conditions remain unchanged. Only one vector-valued variable (e.g., p) is additionally solved for each

timestep. In both 2D and 3D for all experiments in this work, quadratic polynomial exponents are used to control the variations

in the damping layer functions σi which are used to form the damping matrices (e.g., Ψ1, Ψ2, Ψ3) (Kaltenbacher et al., 2013).

Note that σi are zero inside the physical domain Ω0.180

All sources f are forced with a time-varying Ricker wavelet with a specified peak frequency in Hertz. More details regarding

the implementation of the source are provided later in Section 4.2.

2.2 Continuous optimization problem formulation

In this section, the optimization components of the FWI process are detailed. Experimental data are generated by exciting a

physical domain Ω0 by Ns independent shots, which are located at points {xs
i}i=1,··· ,Ns

. For each shot xi, data is collected185

at an array of Nm measurement points (receivers c.f., Figure 1) {xm
j }j=1,··· ,Nm

for a time interval of length T ; for instance,

ui(x
m
j , t) for t ∈ [0,T ). As mentioned earlier, the collection of this time series data at an array of receivers produces what is

commonly referred to as a shot record. The cost functional that represents the error between a given numerical experiment and

the reference data (denoted here by ũ) is given by:

J =
1

2

Ns∑
i=1

Nm∑
j=1

T∫
0

(ui(xj , t)− ũi(xj , t))
2dt=

1

2

Ns∑
i=1

Nm∑
j=1

T∫
0

∫
Ω

(ui(x, t)− ũi(x, t))
2δxj

dxdt (10)190

where the last equality is obtained by using the following property of the Dirac masses δxj
, acting on the points xj (c.f., Brezis

(2011)):

∫
Ω

f(x)δxj
dx= f(xj), (11)

where f is a function smooth enough for the pairing to make sense.

For a given velocity model c upon integration of equations (1), (2), and (3) or (8) and (9), we can compute the cost functional195

J . The goal of FWI is to find a velocity model c that minimizes J . This problem is a PDE-constrained optimization problem

that will be solved using a gradient-descent method. The gradient of J with respect to c otherwise referred to as the sensitivity

kernel or the gradient can be posed in the Lagrangian formalism. For that, the Lagrangian is defined as:

L({ui,ωi,pi},{u†i ,ω
†
i ,p

†
i}, c) = J(ui)200

+

Ns∑
i=1

T∫
0

u†iRu(ui,pi,ωi,fi)+

Ns∑
i=1

T∫
0

∫
Ω

p†
i ·Rp(ui,pi,ωi)+

Ns∑
i=1

T∫
0

∫
Ω

ω†
iRω(ui,pi,ωi). (12)

7



This Lagrangian is dependent on the forward solution {u,pi,ωi}, on the velocity model c (e.g., the control variable) and

also on the adjoint solution {u†,p†
i ,ω

†
i }. The optimal condition is verified if the variation of the above Lagrangian with respect

to the forward, adjoint and control variable are zero. The variation of the Lagrangian with respect to the adjoint field will lead

to the equations (1)-(3). Setting the variation of the Lagrangian with respect to the forward field to zero (see Appendix A) will205

lead to the adjoint equations:

R†
u(u,p,ω,f)≡

∂2u†

∂t2
− trΨ1

∂u†

∂t
+trΨ3u

† −ω† −∇ · (c2∇u†)−∇ · (c2Ψ2p
†)+

Nm∑
j=1

(u(t)− ũ(t))δxm
j

= 0, (13)

R†
p(u,p,ω,f)≡− ∂p†

∂t
+Ψ1p

† +∇u†i = 0, (14)

R†
ω(u,p,ω,f)≡− ∂ω†

∂t
+detΨ1u

† +∇ · (c2Ψ3p
†) = 0. (15)

In 2D, these equations become:210

R†
u(u,p,ω,f)≡

∂2u†

∂t2
− trΨ1

∂u†

∂t
+trΨ2u

† −∇ · (c2∇u†)−∇ · (c2Ψ2p
†)+

Nm∑
j=1

(ui(t)− ũi(t))δxm
j

= 0, (16)

R†
p(u,p,ω,f)≡− ∂p†

∂t
+Ψ1p

† +∇u†i = 0. (17)

In addition to these volume-equations, we can deduce the boundary and initial/final conditions for their variables. One can

verify that a homogeneous final condition (on t= T ) has to be imposed in all variables u†, p†, ω†. Also, since the forward

solution needs to satisfy the boundary conditions n · ∇u= 0 and n ·p= 0 (which also has to be verified for the test functions215

δu,δp), the adjoint variables admits the boundary conditions, which are the same for 2D and 3D:

n · ∇u† +nΨ2p
† = c−1∂tu

†, n · (Ψ3p
†) = 0, x ∈ ∂Ω. (18)

So the variation of the Lagrangian with respect to the control variable c, while keeping all the other variables constant, leads to

the sensitivity kernel (or the gradient) dJ/dc:

lim
ε→0

L(c+ εδc)−L(c)
ε

=
dL
dc

δc≡
∫
Ω

dJ

dc
δcdx=

Ns∑
i=1

T∫
0

∫
Ω

2c∇u†i · ∇ui δcdxdt. (19)220

where the terms involving the PML are not present in the physical domain Ω0 since the damping functions σi are zero outside

of the PML where we perform the optimization. The calculation of the sensitivity kernel and cost functional can then be used

in an optimization algorithm of choice.

3 Numerical discretization

3.1 Spatial discretization225

We have discretized the modified acoustic equation (Eq.(1)-(3), Eq.(8)-(9)) and their respective discrete adjoints (Eqs.(13)-

(15), (16)-(17)) with a continuous Galerkin (CG) FEM. While the physical features of the velocity model in reality are likely

8



discontinuous, CG FEM can still provide good approximate solutions to velocity modeling building, which often commence

from smooth initial material parameters.

CG methods actually provide a family of methods, parameterized over the choice of approximating spaces rather than a230

single method. Frequently, the choice of approximating spaces only affects the overall accuracy – by choosing standard P k

elements based on polynomials of degree k, one obtains a certain order of convergence. However, special choices of these

approximating spaces may affect other aspects of the method. In particular, by using the elements that we describe later on,

we obtain a so-called lumped mass matrix on each simplex, which obviates the need to solve a linear system for each explicit

timestep.235

Regardless of the particulars, we denote the finite element function space used within our CG method as V C , spanned by

some locally constructed basis {ϕi(x)}. This will be used to discretize the pressure u, together with each component of the

auxiliary vector pi and possibly the variable ω if a 3D domain is considered. If we let U,P,Y and F be the vectors containing

the weights of the projection of u,p,ω and f onto the FEM space V C , the space-discrete equations can be cast in the following

general matrix form (here only the 3D equations are presented, but the 2D case is analogous):240

MuÜi +Mu,1U̇i +Mu,3Ui +Mω,1Yi +KUi +DPi =MuFi, (20)

MpṖ +Mp,1P +Du,2Ui −Dω,3Yi = 0, (21)

MωẎi −MωUi = 0, (22)

where the matrices Mu, Mu,1, Mu,3, Mp, Mp,1, Mω and Mω,1 are mass-like matrices that do not involve any spatial derivative.

The matrix D is the discrete divergence operator and Du,2 and Dω,3 are gradient-like discrete operators. The matrix K is the245

stiffness matrix. The precise mathematical definitions of the matrices are given in B.

3.2 Higher-order mass lumping

For linear triangular elements, mass lumping can be accomplished using the standard Lagrange basis functions and vertex-

based Newton-Cotes integration rule. However for higher-degree (k > 1) triangular elements, a similar approach leads to

unstable and/or inaccurate methods. Higher-order triangular elements and associated quadrature rules that do admit a lumping250

quadrature scheme are given in Geevers et al. (2018a); Chin-Joe-Kong et al. (1999); Geevers et al. (2018b). The function spaces

for these elements do not consist solely of polynomials of degree k, but also include certain higher-order bubble functions.

These higher-order bubble functions increase the total number of degrees-of-freedom per element relative to traditional Pk

elements, but in explicit time-stepping contexts, the gain of having a diagonal mass matrix more than offsets this cost (e.g.,

Geevers et al., 2018b; Mulder and Shamasundar, 2016).255

The aforementioned concept of using higher-order bubble functions to achieve these elements is illustrated and compared

with standard Lagrange elements in both 2D and 3D in Figure 2 and Figure 3, respectively. These elements are referred to here

as mass lumped (ML) elements. For example, ML1tri and ML1tet denotes degree-1 triangular and tetrahedral elements where

the “tri" or “tet" refers to a triangular or tetrahedral element, respectively.

9



Figure 2. Some two-dimensional Lagrange and ML elements

Figure 3. Some three-dimensional Lagrange and ML elements.

3.3 Waveform adapted triangular meshes260

In order to efficiently discretize the domain, a triangular mesh of conforming elements interchangeably referred to as a mesh has

to be generated. The major benefit of this approach is that mesh elements range in size according to several aspects elaborated

below (e.g., Figure 4), reducing the total number of DoF. On the contrary, for structured grids the design of the elements is fully

controlled using a regular structured mesh. While a structured grid greatly simplifies applications, they impose the additional

computational cost of dramatically over resolving some areas of the domain from the standpoint of minimizing numerical265

error and dispersion. We note that the mesh is built by adapting elements according to the initial velocity model and is static

throughout the inversion process.

The design of a so-called “optimal" mesh in a way that maximizes accuracy while minimizing computational cost through

mesh size variation represents a challenging task. One crucial aspect is the numerical stability condition, which puts constraints

on meshing because the timestep is affected by the smallest cell via the CFL condition (e.g., Mulder et al., 2013b). It is crucial270

therefore that the mesh generation program ensures elements are as large as possible to avoid prohibitively small simulation

timesteps. Mesh size variation must also be gradual in order to minimize numerical error (Persson, 2006).

In this work, variable resolution element sizes are based on the acoustic wavelength, the CFL condition, and a mesh grada-

tion rate. Altogether the design of resolution becomes proportional to the wavelength of the acoustic wave hence the phrase

10



Figure 4. The Marmousi2 P-wavespeed model (Martin et al., 2005) discretized using a graded mesh with 4 cells per wavelength (C = 4) for a

Ricker source with a peak frequency of 5 Hz. The mesh contains 3,022 vertices and 5,743 elements. The element size is the circumdiameter

of each enclosed circle of each triangle.

waveform adapted. The assumption is made that all triangles will be nearly equilateral, which is necessary for accurate sim-275

ulation with FEMs. The mesh can be the result of any external mesh generator; in this work we use a domain specific mesh

generator tool called SeismicMesh (Roberts et al., 2021) that is capable of generating 2D/3D triangular meshes with the vast

majority of triangles that are approximately equilateral and with elements sized according to the local seismic velocity. The

desired distribution of triangular edge lengths le in our meshes are calculated using a ratio of the local seismic velocity (e.g.,

P-wavespeed) and the representative frequency of a source wavelet:280

le(x)∝
c(x)

C · fsource
, (23)

where c(x) is once again the spatially variable P-wavespeed, fsource is the representative frequency of a source wavelet and

C denotes the number of cells-per-wavelength. An example of a typical mesh size distribution for the synthetic P-wavespeed

model Marmousi2 (Martin et al., 2005) is shown in Figure 4. In the case of a marine domain such as Marmousi2, the layer

of water along the top of the model must contain the finest mesh resolution since the acoustic wavelength is the shortest285

there. It is also important to point out that mesh sizes must be smoothly varying (otherwise referred to as a graded) to avoid

numerical errors when simulations are performed. In this work, we use a mesh gradation rate of 15%, which was obtained

through trial-and-error.

The length of the element’s edges le can be related to the cells-per-wavelength parameter C = λ/le, which in turn affects

the number of grid-point-per-wavelength G of a given problem. The parameters C and G are related to one another through:290

G= α(P ) · C (24)

where α(P ) is a constant coefficient that is a function of the spatial polynomial degree k. ML elements have a higher number

of nodes-per-element, therefore they have a higher α per polynomial degree than standard Lagrange elements. Padovani et al.

(1994) refers to G as the average number of grid-points-per-space and not the maximum value of grid spacing inside the

11



element between all possible pairwise nodal combinations. Therefore, α(P ) is calculated based on the root of the number of295

DoF (nDoF ) per number of elements (ne) in the mesh,
√
nDoF /ne, in 2D, and 3

√
nDoF /ne, in 3D. When this metric is applied

to SEM quadrilateral elements, it gives results that match the values reported in Lyu et al. (2020).

The selection of C, and consequently G, raise several important questions such as: what is the minimal G that can minimize

numerical dispersion error and how does the choice of G affect the total DoF for a given problem. These are important aspects

as they yield significant effects on both the runtime and computational requirements of FWI with FEM and are later investigated300

in Section 5.2.

3.4 Time discretization

A second-order accurate fully-explicit central finite difference scheme was used to discretize all time derivative terms. While

higher-order timestepping schemes such as a Dablain scheme (Dablain, 1986) or a Lax-Wendroff procedure (Lax and Wendroff,

1960) can be used, these methods were not pursued in this work to better focus the manuscript on the aforementioned issues305

concerning the spatial discretization and the usage of variable resolution triangular meshes. As a result, due to the usage of a

relatively low-order timestepping scheme, we are required to select relatively small timesteps (∆t≤ [1]ms) ms to ensure the

error from the time discretization is sufficiently small to study the effects on the spatial discretization on the forward-state wave

propagation and FWI.

For a given variable vn = v(tn) and for a given discrete time series tn = n∆t, we have310

dv

dt
(tn)≈

vn+1 − vn−1

2∆t
,

d2v

dt2
(tn)≈

vn+1 − 2vn + vn−1

∆t2
. (25)

Using this discretization and also defining a state vector as a concatenation of all the variablesQn
i = [Un

i ,P
n
i ,Y

n
i ]T , the system

of equations can be recast as

An+1Qn+1 +AnQn +An−1Qn−1 =MFn, (26)

where those new matrices are given by:315

An+1 =


∆t−2Mu +(2∆t)−1Mu,1 0 0

0 (2∆t)−1Mp 0

0 0 (2∆t)−1Mω

 ,

An =


−2∆−2Mu +Mu,3 +K D Mω,1

Du,2 Mp,1 −Dω,3

−Mω 0 0

 ,

An−1 =


∆t−2Mu − (2∆t−1)Mu,1 0 0

0 −(2∆t)−1Mp 0

0 0 −(2∆t)−1Mω

 .

12



In order to solve for the variables at timestep n+1 given the previous ones, we need to invert An+1, which is a mass-like matrix.

While this requires significant work for standard Pk elements, it is trivial for ML elements with the specialized quadrature rules320

discussed in Section 3.2.

In a practical application, it remains important to be able to determine a numerically stable timestep for this discretization

and this depends on element degree k and the quality of the mesh’s elements. The maximum stable timestep can be estimated

a priori by calculating the spectral radius of the scalar waves spatial operator while ignoring the contribution from the PML

terms:325

L=M−1
u K (27)

A reasonable upper bound for the maximum stable timestep can then be found through (e.g., Mulder et al., 2013b):

∆tCFL ≤ 2√
ρ(L)

(28)

where ρ is the spectral radius estimated via Gershgorin’s Disk Theorem (Geršgorin, 1931) and the subscript CFL implies an

upper bound on the timestep. This is possible to do explicitly for ML elements since M is diagonal and can be inverted onto K330

by just scaling rows.

In practice, a timestep 10% to 20% lower than the estimate provided by Eq. (28) remains stable and helps ensure numerical

stability can be maintained throughout the inversion process as the seismic velocity is inverted. In 3D, the spectral radius ρ(L)

and consequently the maximum numerically-stable timestep are highly sensitive to the minimum dihedral angle in the mesh

(Tournois et al., 2009). Thus, degenerate triangles termed slivers can result in exceedingly small numerically-stable timesteps335

and must be removed from the mesh. In practice, a minimum dihedral angle bound greater than 15◦ is often desired in order

to maximize the stable timestep. However, this can be difficult to achieve in practice due to mesh generation challenges with

variable resolution meshes. The minimum dihedral bound can be enforced in the mesh connectivity through a sliver-removal

algorithm implemented in Roberts et al. (2021). All 3D meshes used in this work feature a minimum dihedral angle at least

greater than 12◦.340

3.5 The adjoint-state and gradient problems discretized

The numerical implementation of the adjoint problem and the gradient computation are detailed in this section. From the adjoint

equations presented in their strong form (Eq.(13)-(15) and Eq.(16)-(17)), we then derive the associated variational formulation

through the canonical procedure:

13



∫
Ω

∂2

∂t2
u†v−

∫
Ω

∂

∂t
trΨ1u

†v+

∫
Ω

(
trΨ3u

† −ω†)v+∫
Ω

c2∇u† · ∇v, (29)345

+

∫
Ω

c2(Ψ2p
†) · ∇v−

∫
∂Ω

c∂tu
†v =−

Nm∑
j=1

(u(t,xm
j )− ũ(t,xm

j ))v(xm
j ), (30)

−
∫
Ω

∂

∂t
p† · q+

∫
Ω

(Ψ1p
†) · q+

∫
Ω

∇u†i · q = 0, (31)

−
∫
Ω

∂

∂t
ω†γ+

∫
Ω

detΨ1u
†γ−

∫
Ω

c2Ψ3p
† · ∇γ = 0. (32)

The discretization of this variational formulation can be cast as:

MuÜ
†
i −Mu,1U̇

†
i +Mu,3U

†
i −MT

ωY
†
i +KU†

i +DT
u,2P

†
i =HTH(Un − Ũn), (33)350

−MpṖ
† +Mp,1P

† +DTU†
i = 0, (34)

−MωẎ
†
i +MT

ω,1U
†
i −DT

ω,3Y
†
i = 0. (35)

where H is the discrete version of the Dirac operator applied on all the measurement points in the domain. We remark that all

the matrices used before (c.f., B) are reused but transposed (if not symmetric) both at the level of their entries and at the level of

the equations. By discretizing the continuous equations with the FEM, we obtain the discrete adjoint. This is further clarified355

when discretizing Eq. (33) in time using the same procedure as before with central differences (e.g., Eq. (25)), which leads to

the system for the variables in compact notation Q† = (U†,P †,Y †)T :

AT
n+1Q

†
n−1 +AT

nQ
†
n +AT

n−1Q
†
n+1 =HTH(Qn − Q̃n).

In addition to the adjoint, the gradient is computed by discretizing Eq. (19) by letting the function δc to be the trial function.

The resulting linear system for the gradient, denoted G in its discrete form, is written as:360

MG =R, where Rl =

Ns∑
i=1

Nt∑
n=1

∫
Ω

2c∇u†i (tn) · ∇ui(tn)δcl dx. (36)

In order to derive the discrete adjoint and gradient, the time integral appearing in the continuous formulation (i.e., in the

cost functional J , and in the definition of the inner product, in the Lagrangian functional L) were all replaced with discrete

sums that did not consider a time integration. This is a similar approach as what was performed in Bunks et al. (1995). For this

reason, no ∆t factor (or other time integration methods such as trapezoidal or Simpson’s rule) are present.365

Also, we stress here that, in order to obtain the gradient G, we need to solve Eq. (36) by inverting a mass-matrix. This matrix

comes from the fact that, in the continuous gradient derivation, Eq. (19), the inner product is chosen to be the classical L2

inner product, which is represented by the mass-matrix in the discrete framework. This choice of inner product ensures that

14



the gradient will be mesh-independent (e.g., Schwedes et al., 2017) in the sense that local mesh refinements will not produce

differences in the gradient (if the problem is sufficiently mesh-converged). For example, if the right-hand-side expression in370

Eq. (36) is readily used as the gradient, the mesh-dependency would be present as the space integration would only be present

on the right-hand-side.

3.6 Gradient subsampling

Numerical simulations often require several thousand timesteps integrating over several seconds with the aforementioned

numerical approaches to compute the discrete gradient. As a result, there are significant memory requirements for storing the375

forward-state solution that are necessary to calculate Q̃ and subsequently G. By considering that the numerically stable timestep

given by the CFL condition is generally much shorter than the Nyquist sampling frequency dictated by the maximum source

frequency, our implementation allows for a subsampling approach to calculate G to reduce memory overhead. In other words,

the forward-state can optionally be saved at every r timesteps (r≫ 1), where r is the subsampling ratio and subsequently the

gradient is calculated every r timesteps. It is noted that this is known to lead to artefacts and inexact gradients and requires380

careful tuning to ensure feasible memory runtime requirements while balancing the accuracy of the gradient. The r subsampling

factor is noted in the results. These aspects were extensively studied in Louboutin et al. (2019).

4 Computer implementation

In this section, important components of our implementation are explained. The Firedrake package is used to implement the

numerical developments. The code (https://zenodo.org/record/5164113), datasets (https://zenodo.org/record/5172307) together385

with Firedrake (zenodo/Firedrake-20210810.0) were used for all experiments.

An additional layer of implementation is necessary for applications in seismic problems as there are operations to execute

FWI that fall outside of the capabilities within the Firedrake package. It is important to mention that Firedrake has components

that allow to compute the gradient with automatic differentiation (AD) (e.g., Dolfin-adjoint Mitusch et al., 2019), and we

have made the necessary additions to spyro that enables the use of this functionality to perform FWI. However, at the time390

the results for this paper were generated, that was not ready yet, and we have performed all calculations solving the adjoint

equations inserted directly in the algorithm.

The Rapid Optimization Library (ROL; Cyr et al., 2017) is used to solve the inverse problem given a gradient, a cost

functional, and a method to update the velocity model. The ROL library provides interfaces to and implementations of various

algorithms for gradient-based, unconstrained and constrained optimization coupled with line-search conditions that satisfy the395

strong Wolfe conditions (Wolfe, 1969). This improves the robustness of our FWI code by using well-developed and tested

algorithms. The C++ library ROL is called in our Firedrake Python codes via a Python wrapper code called pyROL (Wechsung

and Richardson, 2019).ROL was preferred over Scipy’s optimization library because the Firedrake development team is actively

involved with the developers of the ROL interface. Further the usage of ROL allowed for more advanced optimization methods

than SciPy offered.400

15



As mentioned earlier in this work, we exclusively rely on the second-order optimization method L-BFGS (Byrd et al., 1995),

which includes information about the curvature of the misfit function in the optimization process (Eq. (10)). The benefit of using

second-order optimization methods in FWI has been studied previously and shown to benefit the computational efficiency of

FWI (e.g., Castellanos et al., 2014). Using pyROL and Firedrake, a conventional FWI approach can be written in several dozen

lines of Python.405

Given the gradient subsampling (c.f., Section 3.6, the precision of the gradient was not severely damaged by subsampling.

This aspect was verified that the shape of the gradient remained essentially the same as without the subsampling. It is true

however that, if the frequency of the subsampling is not high enough, the gradient can be damaged, typically when the wave,

travelling one mesh element “h” and experiencing a wave speed “c” would be sampled with fewer than, say, five points, leading

to a condition of the form “dt<5h/c”.410

4.1 Implementation of higher-order mass lumped elements

Five triangular elements for spatial polynomial degrees k ≤ 5 from Chin-Joe-Kong et al. (1999) and three tetrahedral elements

for spatial polynomial orders up to k = 3 (Geevers et al., 2018b) were implemented inside Finite element Automator Tabulator

package (FIAT Kirby, 2004). In particular, we use the latest documented k = 3 3D tetrahedral element ML3tet from Geevers

et al. (2018b) with 32 nodes. This program FIAT is used by the Firedrake package to tabulate a wide variety of finite element415

bases.

The quadrature rules are key to defining the finite element basis, so we began by implementing these within FIAT. Then,

to define the finite elements themselves, we must first construct the function space. This is done using two particular FIAT

features described in Kirby et al. (2012). First, we use the RestrictedElement operation on a Lagrange element to

remove bubbles on facets where enrichment occurs, and then use a NodalEnrichedElement to put in higher-order bubbles420

on those facets. Second, we must provide the dual basis, which is just a list of pointwise evaluation functionals associated with

the ML quadrature points. In addition to these, like all other FIAT elements, we also provide a topological association of the

degrees-of-freedom to facets, and this information is used at a higher abstraction level by Firedrake to build local-to-global

mappings.

Certain standard boilerplate is required to expose a new FIAT element to the rest of Firedrake. First, the element, along with425

certain metadata, must be announced within the Unified Form Language. Then, it must also be wrapped into FInAT (Homolya

et al., 2017), which is a layer that provides abstract syntax for basis evaluation and supports higher-order operations, such

as tensor-products of elements or making vector-valued spaces such as used for our p variable. It is this layer, rather than

FIAT itself, that interacts with Firedrake’s form compiler, tsfc (Homolya et al., 2018). Within tsfc, we must also provide

a binding between UFL names and FInAT classes. Hence, although we make changes to several packages, they are rather430

superficial beyond the FIAT implementation.

16



4.2 Receivers and sources

To probe the computational domain, functionality is required to both record the solution at a set of points (i.e., receivers) and to

inject the domain with a time-varying wavelet (i.e., sources; Figure 1). Since the location of receivers does not necessarily match

vertices exactly inside the mesh connectivity, the wave solution must be interpolated to the receiver locations. Interpolation of435

the wave solution to the receivers is carried out in the same space of the finite elements used to discretize the domain.

Source injection is the adjoint operator of interpolating the solution to the receivers. To execute both, a Dirac mass is in-

tegrated against the finite-element basis functions in the form of weights equal to the basis functions evaluated at the source

(receiver) position inside the element that contains the source (receiver). This point force source is of the form f = w(t)δx(x),

where w(t) denotes the wavelet and xs the source or receiver position. For the 2D case, the contribution to fg(js,k),l is440 ∫
Tjs

fϕjs,kdx= w(t)ϕjs,k(xs). Here g(js,k) defines the local-to-global map from node k in element j containing the s

source/receiver to the global set of DoF. For the adjoint calculation, the source is forced at the receiver locations that recorded

the solution in the forward-state problem.

4.3 The inversion process

We start with an initial distribution of P-wavespeed c and solve the forward-state problem to obtain Q. With the misfit known,445

we then solve the adjoint-state problem and obtain Q†. With both Q and Q† known the discrete gradient G can be computed.

Thus, the updated velocity model c can be computed by:

ck+1 = ck +αksk. (37)

where αk is the step length and sk is the search direction and the superscript k denotes the iteration. In the l-BFGS algorithm,

the computation of the descent direction sk is done using an approximation of the Hessian matrix, computed by finite-difference450

of previous gradient evaluations. Also, the step length is computed satisfying the Wolfe conditions (see (Byrd et al., 1995)).

Both are automatically taken care of by the implementation in ROL.

The discussed inversion process is shown in Algorithm 1.

17



Figure 5. The functionality of the forward-state, adjoint-state and gradient Python codes.

In order to ensure a sufficient decrease of the objective functional at each inversion iteration k, line-search conditions are

employed that satisfy the strong Wolfe conditions (Wolfe, 1969). This line search is implemented inside the ROL library.455

4.4 Wave propagators

The spatial and temporal discretizations detailed in Section 2.1 are programmed with Firedrake. Figure 5 illustrates the main

functions: ‘forward.py’ and ‘gradient.py’ and how they work together. The forward wave propagator called ‘forward.py‘ returns

two quantities for a given source configuration: the Q at the timesteps determined by the subsampling ratio r (c.f., Section 3.5)

and the the forward-state solution HQ at the receivers for all timesteps. The adjoint-state propagator takes as input the differ-460

ence between measured and modeled data at the receivers locations (otherwise referred to as the misfit) and the forward-state

solution Q. To conserve virtual memory, while the adjoint-state propagator executes, the function called ‘gradient.py’ discards

Q as the adjoint Q† and subsequently G (Eq. (36)) are calculated reverse in time. Note that the adjoint wave propagator returns

the gradient summed over the timesteps dictated by the subsampling ratio r (c.f., Section 3.5).

We point out that all spatial discretizations are performed using matrix-free approaches, which are available in the Firedrake465

computing environment and this reduces run-time memory requirements (e.g, Homolya et al., 2017; Kirby and Mitchell, 2018).

4.5 Two-level parallelism strategy

A two-level parallelism strategy is implemented over both the sources and spatial domain decomposition. In space, domain

decomposition parallelism is handled by the Firedrake library, which automatically handles setting up halo/ghost zones around

each subdomain and performing the necessary communication at each timestep via the Message Passing Interface (MPI). In470

addition, Firedrake also provides options to configure the depth of the ghost layer for performance as needed. In this work, no

ghost layers are added to the subdomains and instead the solution is shared only at the boundary nodes of each subdomain. At

the source level, parallelism is trivial and handled by splitting the MPI communicator into groups of processes at initialization

18



and assigning each group to simulate one source. Due to the usage of Firedrake, no additional code is required for parallelism

as compared to the sequential version of the code.475

We do note a significant benefit from using both “shot-level” and domain decomposition parallelism simultaneously, espe-

cially in 3D, which is later detailed in Section 5.3.

4.6 Meshes and file I/O

Mesh files are read in from disk sequentially and then distributed in parallel if necessary; this functionality is handled latently

by Firedrake. External seismic velocity models are read in from disk from a H5 file format at execution time. Gridded velocity480

data is bi-linearly interpolated onto the nodal DoFs of the elements of the mesh at runtime. In this way, seismic velocities

can vary inside the element in the case higher-order elements are used. Gridded seismic velocity files can be prepared using

Seimsicmesh (Roberts et al., 2021)

5 Computational Results

5.1 Numerical verification of discrete gradient485

The accurate computation of the discrete gradient is crucial for the robustness of Algorithm 1. Through a numerical experiment,

we demonstrate that the gradients computed through the optimize-then-discretize approach (c.f., Section 3.5) are approximately

equal to the discrete gradients computed by the discrete gradients of the discrete objective functional. In this way, we compare

the directional finite difference of the discrete objective functional. The finite difference directional derivative is given as a

forward finite difference:490

dfdh (c)(c̃) :=
J(c+hc̃)− J(c)

h
, (38)

where c̃ is the discrete direction for c and h is an arbitrarily small step size. The directional derivative obtained via the control

problem is:

dco(c)(c̃) = c̃T M G. (39)

Next, we verify that Eq. (38) and Eq. (39) produce accurate values for an arbitrary choice of c̃ considering the test problems495

displayed in Figure 6. For this test, the direction c̃ to test is that of the gradient G.

The considered 2D test problem to verify the numerical gradients was a physical domain Ω0 = 1.0 x 1.0 km that features

half the domain with a P-wavespeed of 4.0 km/s and the other half with a P-wavespeed of 1.0 km/s (Figure 6(a)). The physical

domain was truncated with a 200 m PML on the sides while a non-reflective Neumann boundary condition was applied at the

top. A 5 Hz source is injected at (−0.1,0.50) km and the solution is recorded at 100 receivers equispaced along a horizontal500

line at the bottom of the domain between (−0.90,0.1) km and (−0.90,0.90) km. In this configuration, the problem models a

transmission of an acoustic wave. The domain was discretized with uniform-sized ML2tri elements with le = 20 m in length

yielding G> 10 given the 5 Hz peak source frequency, which we found is sufficient for this experiment. The total duration of

the simulation is 1.0 seconds, which is long enough for the wave to be absorbed in the PML and transmitted to the receivers.

19



Case dco
dfdh

h= 1e10−3 h= 1e10−4 h= 1e10−5

2D 0.0681 0.0665 0.0664 0.0664

3D 62.7069 65.4222 63.1321 62.9094

Table 1. Comparison of directional derivatives for 2D and 3D cases between the finite difference approximation (fd) and our discrete

gradient (co) .

A computational timestep ∆t= 0.50 ms was used and the gradient was computed with all timesteps (r = 1). Note that the505

directional derivative (Eq. (39)) was integrated only in Ωphysical and masked in ΩPML.

In 3D a similar problem to the 2D case was considered within a physical domain Ω0 = 1.0 x 1.0 x 1.0 km. Note the

orientation of the axes is z, x, then y. A 5 Hz source located was injected at (0.1,0.50,0.50) km and the solution solution was

recorded at a 2D grid of 100 receivers equispaced apart in both x and y directions at the bottom end of the domain between

(0.90,0.1,0.1) km and (0.90,0.90,0.90) km (Figure 6(b)). The domain was discretized with uniform ML2tet with le = 20 m510

in length yielding G> 10. A computational timestep ∆t= 0.50 ms is used and the gradient was computed with all timesteps

(r = 1). Similar to the 2D case, the gradient was masked in ΩPML.

For both 2D and 3D cases, an initial velocity model with a uniform velocity of 4.0 km/s was used; however, we simulated

both the exact and initial models with the same mesh.

We point out that relatively good agreement was found between the two derivatives in which the wavefield was resolved515

with at leastG= 10 (Table 1), especially in the 2D case where the maximum relative difference between the gradients was less

than 0.03 % . In the 3D case, the discretization error becomes somewhat larger and results in maximum relative differences of,

approximately 4.0%, decreasing with smaller h.

5.2 On the design of waveform adapted meshes

To effectively apply higher-order mass lumped methods with unstructured meshes, it is important to understand the required520

mesh resolution for a given desired accuracy (Lyu et al., 2020; Geevers et al., 2018c). As mentioned in Section 4.1, ML elements

contain a greater number of DoF-per-element than standard CG Lagrange or spectral/hp collapsed triangular elements. This

does not imply, however, that a given problem would contain a greater number of DoF when discretized with ML elements

since mesh resolution requirements for each method and element type vary widely (Lyu et al., 2020). Similar to the works of

Geevers et al. (2018c) and Lyu et al. (2020), we investigate the accuracy of ML elements for forward-state wave propagation525

to guide their application in FWI.

5.2.1 Reference wavefield solution

The implementation of the forward-state wave propagator in 2D and 3D was first verified in order to reliably intercompare

solutions between elements. An equivalence was demonstrated between a “converged" numerical result computed on a highly-

20



Figure 6. Problem configuration for verification of the discrete gradient in (a) 2D and (b) 3D. Note not all receiver positions are shown for

visualization purposes.

refined mesh in 2D and 3D and compared with their analytical solutions, respectively. Following that, the assumption was530

made that equivalence holds for all our subsequent tests implying that all the reference waveforms are “converged” numerical

solutions, given sufficiently fine mesh resolution and sufficiently small numerical timesteps.

The method of manufactured solutions (MMS) was used to verify the implementation in accordance with a manufactured

analytical solution. The manufactured 2D analytical solution was chosen as t2sin(x)sin(y). In 3D the analytical solution

was t2sin(x)sin(y)sin(z). Both analytical solutions are defined on a unit square and unit cube with a 250 m wide PML535

layer. Numerical solutions were calculated on highly-refined reference meshes built with G= 14.07 using ML5tri in 2D

and G= 9.30 using ML3tet in 3D. The velocity model was homogeneous with [1.43]km/s. The simulations used a timestep

of ∆t= 1 ms and were integrated for 0.10 s. The MMS error was represented as the L2-norm between the analytical and

numerical solution normalized by the analytical solution and only measured in the physical domain.

Our experiments demonstrated good agreement between the analytical and modeled solutions with relative error for the 2D540

reference homogeneous case of 0.34% and for the 3D homogeneous case the relative error was 0.90%. These error values

indicate the reference solutions represent numerically converged results given the spatial discretization and the forward-state

code implementation is producing correct solutions.

21



5.2.2 Homogeneous 2D P-wavespeed model

A 2D wave propagation experiment in a domain with a homogeneous velocity field was configured to quantify the accuracy545

of the forward-state solution with ML elements (Figure 7). The experiment is similar in design to that analyzed in Lyu et al.

(2020), which used SEM of variable space order. A domain 40.0λ by 30.0λ (i.e., [11.4]km by [8.57]km) was generated where

λ is the wavelength of the acoustic wave given the model’s wavespeed. The model had a uniform wave P-wavespeed of 1.43

km/s, which is approximately the speed of sound in water. A Ricker wavelet with a peak source frequency of 5.0 Hz was

injected at the center of the domain and a grid of 36 receivers was placed at a 10.0λ (i.e., 2.86 km offset) to the right of550

the the source location in order to record and intercompare solutions (Figure 7). A 0.28 km PML layer was added to absorb

outgoing waves. The timestep used for each simulation was 20.0% less than the ∆tCFL estimated maximum stable timestep

(c.f., Section 3.4). Meshes were generated for each element type by varying the C, which resulted in G that ranged from G= 2

to G= 10.5. Results were compared against the solutions computed on the so-called reference meshes.

Error was calculated based on the simulated pressure recorded at the receivers locations with:555

E =

√√√√∑Nr

r=1

∫ tf
0
(pr − prref )

2dt∑Nr

r=1

∫ tf
0
p2rref dt

× 100%, (40)

where Nr denotes the number of receivers, tf is the final simulation time in seconds, pr is the pressure at the receivers for a

given mesh and pref denotes the pressure at the receivers computed with a reference mesh. The time integration in Eq. (40)

was computed using the trapezoidal rule. Eq. (40) is a measure in percent difference between two solutions at the same set

of receivers. It is important to point out that measuring E in this way combines error associated with receiver and source560

interpolation as well as from the wave propagation. When E is measured at one receiver at a particular offset coordinate x, this

is referenced by a subscript (e.g., Ex=(0.5,0.5)); otherwise the quantity E considers all receivers.

The space of E for several values of C and subsequently G was explored for different ML elements in a process referred

to as a grid sweep (Table 2). The objective of the grid sweep is to find the smallest G (i.e., lowest grid point density) that can

produce E at or below a specified threshold. An allowable tolerance of E = 5.0% for each ML element was selected. While565

the E = 5.0% threshold chosen is arbitrary, it represents a measurement that can be used to intercompare solutions and, as

we later show through application, to be sufficiently accurate for robust FWI. Further, smaller target thresholds for E led to

non-convergence for some elements. To execute the grid sweep, the value of G was varied within a range of values depending

on the change in E in a similar manner to a back-tracking line search.

Overall, the homogeneous grid sweep results demonstrate that elements with spatial order k > 2 required fewerG to achieve570

the same E than ML2tri. As expected, the necessary C in order to maintain the target E decreases as spatial polynomial

order is increased (Figure 8(b)). The relationship between C and G is not linear due to the higher-order bubble functions

inside the ML elements (c.f., Section 3.2). Thus, the convergence rate of E with respect to G is not as consistent as it is for C

(Figure 8(a)).

Applying the results from the homogeneous grid sweep, the values forG andC that achievedE = 5.0% are shown in Table 2.575

The variation in C that could achieve the E threshold was C = 1.69 to C = 5.85 for ML5tri to ML2tri, respectively, while

22



Figure 7. The experimental configuration to calculate the grid-point-per-wavelength G values. In (a) the source is shown as a green circle

and the receivers are denoted as white triangles with a close-up of the bin of receivers shown in (b). In both panels, the normalized wavefield

is colored at t= 2.25 s.

Figure 8. Panels (a) and (b) depict results for the homogeneous velocity model experiment to find the minimum G (Section 5.2.2, Sec-

tion 5.2.3). Panel (a) shows C as a function of E (Eq. 40). Panel (b) illustrates the E as a function of G. Panels (c) and (d) show the same

thing as (a) and (b) but for the heterogeneous velocity model experiment. Colored lines represent the spatial polynomial order of the element.

The E = 5% threshold is drawn as a horizontal dashed black line on all panels.

23



Homogeneous Heterogeneous ∆C

Element minimum G minimum C minimum G minimum C %

ML1tri DNF DNF DNF DNF DNF

ML2tri 10.1 5.85 11.6 6.70 14.9%

ML3tri 7.86 3.08 9.06 3.55 15.3%

ML4tri 7.36 2.22 7.99 2.41 8.56%

ML5tri 7.88 1.69 8.54 1.84 8.38%
Table 2. Results from the grid sweep for both the homogeneous and heterogeneous experiment to identify efficient values for G using ML

elements of varying spatial degree k that maintain an error threshold of E = 5%, as compared to a highly-refined reference solution (c.f.,

Section 5.2). Note that DNF stands for did not finish.

for G it varied between G= 7.36 and G= 10.1. The ML element that led to the smallest problem (e.g., minimum G) while

satisfying the target E was ML4tri with a G= 7.36, whereas ML2tri required G= 10.01. It is important to note that the

lowest order ML1tri element performed poorly and did not achieve the target for E with any configuration of C tested.

5.2.3 Heterogeneous 2D P-wavespeed model580

In addition to generating a mesh that meets the requirements of the technique used to numerically discretize the PDE, the

mesh must also account for local variations in the seismic velocity, which can have significant effects on the simulation of

acoustic waves. In the case of simulation with a heterogeneous velocity model, E combines errors associated with how the

mesh discretely represents the local variations in velocity and errors associated with numerical discretization techniques. Thus,

it is often necessary to add additional DoFs into the design of the unstructured mesh above what would be required for a585

homogeneous seismic velocity model to accurately represent local seismic features (e.g., Anquez et al., 2019; Seriani and

Priolo, 1994; Lyu et al., 2020). However, it is important to point out that in FWI applications, the inversion commences from

a smooth, initial velocity model (e.g, Fathi et al., 2015; Thrastarson et al., 2020; Trinh et al., 2019), with locations of velocity

interfaces that are not generally not known prior.

As a result, in this experiment we added an additional percent to the parameter values of C obtained from the homogeneous590

test case (Section 5.2.2). The percent difference in C between homogeneous and heterogeneous results is defined as ∆C.

∆C =
(Chet −Chom)

Chom
, (41)

where the subscripts het and hom denote the heterogeneous and homogeneous grid sweep results, respectively.

For triangular meshes, the ∆C that is necessary to minimize E when simulating with heterogeneous velocity models has not

been investigated in prior scientific literature to the authors’ knowledge. It is also important to determine how the previously595

described homogeneous results can be applied to a heterogeneous seismic velocity model.

In a similar manner to the experiment with the homogeneous velocity model, a 2D experiment with a heterogeneous velocity

model was performed for the BP2004 P-wavespeed model (Billette and Brandsberg-Dahl, 2005) (Figure 9). The BP2004 model

24



represents geologic features in the Eastern/Central Gulf of Mexico and offshore Angola and is characterized by several salt

bodies with P-wavespeeds > 4 km/s. The domain is 12.0 km by [67.0]km with an additional 1.00 km PML. A Ricker source600

was injected at (−1.0, 34.5) km and a horizontal line of 500 receivers from (−1.0, 36.5) km to (−1.0, 44.5) km was used

to record the wavefield solution. The acquisition geometry led to a near-offset of 2.00 km and a far-offset of 10.0 km from

the source location, which are common dimensions in marine FWI applications for seismic velocity building (e.g., Virieux

and Operto, 2009). Each simulation lasted 9.0 simulation seconds, which was sufficient time for reflected waves to reach the

receivers with the largest offsets.605

In the mesh generation process, a mesh gradation rate of 15.0% was enforced to bound the element size transitions (Figure 9).

As with the homogeneous experiment,G= 6 toG= 12 were evaluated by comparing to the reference case. The reference case

used a highly-refined mesh constructed with G= 15.0 and simulated with ML5tri elements, which could correctly resolve all

interfaces (Figure 9).

As shown by Figure 8(c)-(d), the experiments with the BP2004 model consistently exhibited greater E and slower conver-610

gence rates as compared to the values from the homogeneous experiment given the same G (c.f., Figure 8(a)). As a result, the

values forC used to generate the meshes were increased from what was found in the homogeneous experiment by ∆C = 20.0%

and resulted in acceptable errors of E = 3.45%, E = 3.82%, E = 3.44%, and E = 3.38%, for ML2tri, ML3tri, ML4tri,

andML5tri elements, respectively. ∆C less than 20.0% did not sufficiently reduce the error to under the E = 5.0% threshold.

Wave propagation errors can be the result of dispersion and also by how well the mesh represents the local seismic wavespeed615

variations. In our mesh design, exact fault locations were not resolved with edge-orientated elements (e.g., Anquez et al., 2019)

and our numerical discretization used elements from a continuous function space, thus error associated with the propagation

of the reflected wavelet in the sharp contrast of the salt layer is expected. This error becomes more pronounced when using

larger element sizes associated with the higher-order (k > 2) ML elements. As an example of this, in Figure 10 E is calculated

individually for each receiver as a function of offset for ML5tri. A peak of E = 7.71% occured at the offset of 2.21 km that620

is associated with the reflection brought on by the salt layer Figure 11 and results in the peak E not only in ML5tri but also

in ML3tri and ML4tri. Neglecting the E associated with the salt body reflection in this receiver location would reduce the

error from E = 7.71% to E = 2.02%. Furthermore, even though E was kept below the previously defined threshold, a small

dispersion error still exists and can be noted in receivers at the far-offset in all cases. Dispersion error was the most prevalent

error only in the lower-order ML2tri element, whereas in ML3tri, ML4tri, and ML5tri the greatest error came from the625

wavelet reflected of the salt layer.

ForML3tri,ML4tri, andML5tri elements, peak E stemmed from the reflected wave associated with the salt body due to

the enlargement of element sizes nearby the salt body (Figure 11). Figure 11(b) illustrates the moment when the wave reflects

off of the salt body and this reflected wave accounted for 73.8% of the total error at this receiver.

5.2.4 Homogeneous 3D P-wavespeed630

A similar experiment to that described Section 5.2.2 was used to assess 3D ML elements. The focus was placed on finding

suitable values for C and G that minimize error for the ML2Tet and the ML3Tet elements that were discovered in Geevers

25



Figure 9. The reference problem configuration for the BP2004 seismic velocity model. Panel (a) shows the P-wavespeed data. Panel (b)

shows the mesh resolution (circumcircle diameter) based on local adaptation of the mesh resolution to the P-wave data from the BP2004

velocity model shown in panel (a). The parameters used for mesh generation were C = 2.03, ML5tri, a velocity gradation rate of 15.0%,

and a anticipated timestep of ∆t= 0.001 ms.

et al. (2018c). Therefore, a homogeneous 3D model was created with uniform P-wavespeed of 1.43 km/s in a 15.0λ×30.0λ×
15.0λ (i.e., 4.29 km by 8.57 km by 4.29 km) domain with an added 0.28 km PML layer to absorb outgoing waves on the

sides and bottom. A Ricker wavelet source was added at the coordinate (2.14 km, 0.43 km, 2.14 km) and 216 point receivers635

were arranged in a cubic grid with width of 5λ (i.e., 1.43 km) that was placed at a center offset of 10λ (i.e., 2.86 km) to

the right of the source coordinate, as illustrated in Figure 12. The timestep used for each simulation was 20.0% less than the

∆tCFL (maximum stable timestep based on an estimate) (c.f., Section 3.4). As with Subsection 5.2.2, meshes were generated

by varying C and a back-tracking line search was executed to reach an error threshold of 5.0% calculated using Eq (40).

26



Figure 10. E (Eq. (40)) as a function of the offset distance for ML5tri in the heterogeneous model setup. Peak E is annotated with dashed

orange lines.

The results are shown in Figure 13. The C values necessary to achieve E = 5.0% were C = 5.1 and C = 3.1 for ML2tet640

and ML3tet, respectively. These results are similar in magnitude to the values found in C for the 2D grid sweep for the

ML3tri of C = 3.08 but less than for ML2tri which was C = 5.85.

5.3 Computational performance

Simulations were executed on a cluster called Mintrop at the University of São Paulo. Experiments used 4 Intel-based computer

nodes. Each Intel node was a dual socket Intel Xeon Gold 6148 machine with 40 cores clocked at 2.4 GHz with 192 GB of645

RAM. Nodes were interconnected together with an 100 Gb/s InfiniBand network. While each node contained 40 cores, only

a maximum of 15 cores were used per node to minimize the effects of memory bandwidth on the performance of the wave

propagation solves.

The parallel efficiency of our forward propagator was assessed in Intel-based CPUs see Figure 14. For the 2D benchmark,

the domain contains a uniform velocity of 1.43 km/s and spans a physical space of 114 km by 85 km. The 2D domain650

was discretized using the homogeneous cell densities from Table 2 resulting in 18,804,171, 11,295,747, 9,929,409, and

11,204,136 DoF for ML2tri, ML3tri, ML4tri, and ML5tri, respectively. In addition to the physical domain, a 0.287 km

wide PML was included on all sides of the domain except the free surface. A source term with a time varying Ricker wavelet

that had a central frequency of 5.0 Hz was injected into the domain and a line of 15 receivers with offset varying from 2.0 km

to 10.0 km recorded the solution. The 2D simulations were executed for 4.0 seconds with timestep of 0.5 ms.655

The 3D domain had 8 km by 8 km by 8 km with an additional 0.287 km wide PML included on all sides of the domain

except the free surface. The domain was discretized using cell densities calculated in Section 5.2.4 resulting in 447,430,835

27



1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25

0.005

0.000

0.005

pr
es

su
re

 (P
a)

(a)
Pressure at receiver with 2 km offset

ML2tri
ML3tri
ML4tri
ML5tri
Reference

1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25
simulated time (s)

0.0004

0.0002

0.0000

0.0002

0.0004

0.0006

di
ff

er
en

ce
 fr

om
 re

fe
re

nc
e

(b)
Difference (MLxtri-reference) at receiver with 2 km offset

(c)

Figure 11. Panel (a) shows time series of pressure for several elements measured at a receiver with an offset of 2.00 km. The difference

(MLxtri− reference) in signals from the reference case is shown in panel (b), where x varies from 2 to 5. Panel (c) is the wave field at

t= 2.53 s with the receiver at 2.00 km emphasized with a triangular glyph. The difference in the signals is greatest when the wave reflected

by the salt body (indicated by darker blue in panel (c)) passes through the receiver also illustrated in panel (c).

28



Figure 12. The 3D experimental configuration to calculate the grid-point-per-wavelength G values. The Ricker source is represented as a

green sphere and the receivers are denoted as white pyramid glyphs.

and 288,233,805 for ML2tet and ML3tet, respectively. A source term with a time varying Ricker wavelet that had a central

frequency of 5.0 Hz was injected into the domain and a cubic grid of 216 receivers was placed with a 2.86 km offset. The 3D

simulations were executed for 1.0 second with a timestep of 0.5 ms.660

Overall, nearly ideal strong scaling was observed in both 2D and 3D cases for most of the elements tested up to 60 com-

putational cores. Since the ML elements admit diagonal mass matrices that avoid the need to solve a linear system, additional

MPI communication is circumvented, which greatly improves parallel scalability. We point out that this analysis considers

the gridpoint-per-wavelength results when designing the mesh sizes and thus represents a practical workload configuration.

Weak scaling is also observed out to average of 165,490 DoF in 2D and 4,803,896 DoF using 60 cores. With that said in 2D,665

scaling deviates somewhat from the ideal curve for ML4tri between 40 and 60 cores. With 60 cores the ML4tri features the

smallest problem in terms of average number of DoF per core and symbolic operations can begin to inhibit parallel scalability.

29



Figure 13. The 3D grid sweep, similar to Figure 8 but for 3D elements. The E = 5% threshold is drawn as a horizontal dashed black line on

all panels.

Figure 14. Strong scaling curves for solving the acoustic wave equation with a PML in spyro for 2D (a) and 3D (b) cases given a range of

computational resources using Intel nodes. The dashed lines represent ideal scaling for each element and the average number of degrees-of-

freedom per core is annotated.

30



Figure 15. The Marmousi2 model setup described in Section 5.4. Panel (a) The target model, panel (b) the guess velocity model. On both

panels, sources and receivers are annotated. The Ω0 is the region inside the solid-black line.

It is important to note that similar parallel performance was also obtained for the adjoint-state wave propagator as it is highly

similar in operations to the forward-state propagator.

5.4 Experiment with Marmousi2670

To investigate FWI (Algorithm 1) with variable unstructured meshes, several 2D inversions were performed using the Mar-

mousi2 model (Martin et al., 2005) (Figure 15). The objective of this experiment was to intercompare the performance of FWI

in terms of wall-clock time, peak memory usage, and final inverted model. All inversions used meshes with variable elemental

resolution based on the results with the homogeneous velocity model detailed in Section 5.2.2. The Firedrake programming

environment enables us to flexibly select the variable space order at run-time.675

FWIs commenced from an initial P-wavespeed model obtained by smoothing the ground truth Marmousi2 model with a

Gaussian blur that had a standard deviation of 100 grid points (Figure 15(a-b)). The water layer (i.e., region of the velocity

model with P-wavespeed < 1.51 km/s) was made exact in the initial seismic velocity model and was fixed throughout the

inversion process by setting the gradient to zero there.

31



Element # DoF C Run time (minutes) Jfinal

ML1tri 139,605 20.0 505 4.59e−2

ML2tri 103,877 7.02 647 4.88e−3

ML3tri 71,561 3.96 572 4.34e−3

ML4tri 54,592 2.67 472 5.08e−3

ML5tri 56,995 2.03 564 5.21e−3

Table 3. The number of degrees-of-freedom (DoF) for each experiment, the cells-per-wavelength C used to generate the mesh, the total

wall-clock time to run each FWI discretized with a different element type, and the final cost functional Jfinal.

Each inversion used an acquisition geometry setup of 40 sources equispaced in the water layer between the coordinates680

(−0.01,1.0) km and (−0.01,15.0) km. A horizontal line of 500 receivers were placed at 100.0 m deep below the water layer

between (−0.10,0.10) km and (−0.10,17.0) km. Simulations were integrated for 5.0 seconds with a noiseless Ricker wavelet

that had a peak frequency of 5 Hz. A PML was added to the domain with a width cmax/fmax = 900 m (Kaltenbacher et al.,

2013) and the non-reflective boundary was used to suppress free-surface multiplies (Eq. (6)).

The FWI setup described in Algorithm 1 was run for a maximum of 100 iterations itermax = 100. Note that an iteration is685

only counted if it reduces the cost functional. The inversion process was terminated if either a) the norm of G was less than

1e−10 or b) a maximum of 5 line searches were unable to reduce J . However, neither criteria was reached in this experiment.

A lower bound on the control c of 1.0 km/s and an upper bound of 5.0 km/s were enforced throughout the optimization to

ensure the result remained physical. Simulations were executed in serial using a numerical stable timestep of 0.001 seconds

with a subsampling ratio r = 10, which yields a gradient calculation frequency 10 times less than the Nyquist frequency as690

determined by the 5 Hz peak source frequency.

Except for theML1tri experiment, all meshes for the initial velocity model were generated using theC from Table 2 with an

additional 20% to take into account the heterogeneous velocity model of Marmousi2 Table 3. It is general practice to increase

the C for heterogeneous velocity models (Lyu et al., 2020; Anquez et al., 2019). In the case ofML1tri, the only possible mesh

configuration that was capable to maintain the threshold error below 30% was C = 20. The so-called ground truth shot records695

that were used to drive the inversion process were simulated with a separate mesh discretized using the ground truth velocity

model (c.f., Figure 15(a)) with ML5tri elements using C = 2.03. Ground-truth simulated used a smaller timestep than what

was used in FWI of 2.5 ms to minimize error associated with the time discretization.

The simulations were performed using one-shot-per-core using the shot-level ensemble parallelism described in Section 5.3

with 40 computational cores of one Intel node. Throughout each inversion, the total Random Access Memory (RAM) as a700

function of iteration, the total wall clock time spent performing the inversion, the cost functional J (Eq. (10)) at each iteration,

and the total number of iterations were recorded and documented.

32



5.4.1 Results

The number of DoF varied by approximately a factor of two over the range of ML elements tested. As expected, the ML1tri

produced the largest problem size with 139,605 DoF whereas ML4tri produces the smallest problem size with 54,592 DoF.705

Note that all discretizations used a ∆C = 20.0% (Eq. (41)) to take into account heterogeneity in the velocity model. It is

interesting to point out that ML5tri had a greater number of DoF in the problem than ML4tri despite containing both higher-

order basis functions and a lower C. We also note that in spite of going up to ML5tri, the variable mesh resolution enabled

all FWIs to be simulated at a 1 ms timestep.

The final inverted models are shown in Figure 16 and are qualitatively highly similar to each other. Given that all forward710

discretizations were constructed with the same tolerance for E, this is to be expected. All experiments exhibited between 6

and 11 failed line searches during the course of the 100 iterations demonstrating no clear dependence between the number of

failed line searches and the element type. With the exception of ML1tri, all results converged to a similar final cost functional

between 4.88e10−3 and 5.21e10−3 after exhausting the iteration set. As compared to the other FWIs, the final cost functional

for ML1tri was largely greater by an order of magnitude (J = 4.59e10−2), but still the inverted velocity model for ML1tri715

qualitatively resembled the true velocity model.

The total run time memory and wall-clock varied substantially (Figure 17, Table 3). For example, ML4tri produced the

fastest FWI result completing in 472 minutes whereas in comparison ML2tri produced the slowest result of 647 minutes.

There was also a marked increase in total wall-clock time going from ML1tri to ML2tri. Wall clock runtimes are primarily

a result of right-hand side assembly time since solving the linear system with ML elements is pointwise division. Furthermore,720

the higher k degree results in more shared nodes per element leading to more memory access and slower performance per DoF,

which offsets the performance gains from reducing the problem size with variable mesh resolution. In regard to virtual memory

usage however, there was a clear reduction in the peak random access memory (RAM) when ML elements were used, which

was also noted in Lyu et al. (2020). For comparison, the ML1tri element produced a peak RAM of 7.5 GB whereas ML4tri

required the least peak RAM of 3.1 GB. The ML5tri required slightly more than ML4tri with 3.13 GB.725

5.5 Overthrust 3D section

As a demonstration of all the previous developments, the FWI implementation was applied to invert a section of the Overthrust3D

P-wavespeed model (herein Overthrust3D) (Aminzadeh et al., 1996). Considering that the Overthrust3D is substantial in spatial

extent (5.0 km deep x 20.0 m x 20.0 km), the focus of this section is to invert a still considerable 5.175 km by 7.5 km by 7.5 km

section of the model (Figure 18(a-b)). The initial velocity model used to perform the inversion was obtained by smoothing the730

true velocity model using a Gaussian kernel with a standard deviation of 100 (Figure 18(b)). Similar to the other 2D FWI, the

water layer (i.e., region of the velocity model with P-wavespeed < 1.51 km/s) was made exact in the guess velocity model and

was fixed throughout the inversion process by setting the gradient in the water layer to zero. Finally, a 750 m PML is included

on both true and guess models to absorb outgoing waves.

33



Figure 16. The final result for each FWI using different ML elements. The total number of iterations (including both iterations that reduced

the cost functional and the ones that did not) are indicated in each figure along with the final J , and number of degrees-of-freedom N .

34



Figure 17. Comparing the performance of FWIs computed with different ML elements. Panel (a) shows the cost functional evolution and

panel (b) shows the peak memory usage.

For the inversion, 20 sources were used that were laid out in a 2D grid composed of 5 lines equispaced along the y-axis with735

each line containing 4 shots equispaced along the x-axis (Figure 18(c)). All sources were located at the surface of the domain

and the wave solution was recorded at a 2D grid of 900 receivers laid out 100 m below the surface. Each shot was simulated for

4.0 seconds, which was sufficient for the wave to spread out through the domain. A 5 Hz noiseless Ricker wavelet was injected

at each source location.

Both the guess and true velocity models were discretized with ML3tet elements. Each model featured elements adapted in740

size to the the true and guess model’s local seismic velocity given a 5 Hz Ricker wavelet with a C = 3.0 that yielded G= 6.97

(c.f., Section 5.2.4). With this discretization, the guess problem contained 5.3M DoF whereas the true velocity model contained

approximately 5.5M DoF.

Similar to the 2D FWI experiment, the 3D FWI ran for a maximum of 100 iterations itermax = 100. The inversion process

is terminated if either a) the norm of G was less than 1e10−10 or b) a maximum of 5 line searches were unable to reduce J ;745

however, neither criteria was reached in this experiment. A lower bound on the control c of 1 km/s and an upper bound of 6

km/s were enforced throughout the optimization to ensure the result remained physical. A numerical timestep of 0.75 ms was

utilized and a gradient subsampling rate of r = 20 was used to conserve memory.

Simulations were performed using the two-level parallelism strategy with two AMD nodes. Each AMD-based node had an

AMD EPYC 7601 machine with 64 cores clocked at 2.2 GHz with 512 GB of RAM. Specifically, each of the 20 shots used 6750

cores for spatial parallelism requiring in total 120 computational cores.

35



Figure 18. The Overthrust3d setup described in Section 5.5. Panel (a) shows the true model, and panel (b) shows the initial model. Panel (c)

shows the location of sources and receivers.

5.5.1 Results

The final inversion result along several cross-sectional slices along the x-axis and y-axis are compared with the true and guess

velocity model (Figure 19, Figure 20). Overall, the inverted model demonstrates convergence to the true velocity model. After

100 FWI iterations, the cost functional reduced nearly one order of magnitude, from 4.76e10−1 to 6.62e10−2. Stratified layers755

appeared in the inverted velocity model that match structures and shapes in the true model, which are not present in the initial

model. Overall, the inverted result appears more accurate near the surface closer to the sources than with depth. Noise appears

in the final inverted model however, which motivates the use of a regularization scheme in future FWIs. Another issue present

in the final model are aliasing artefacts, caused by the large interval between sources of 1750m. Ideally this interval would be

λ/2, but can go up to 3λ/2 (Brenders and Pratt, 2007), which for this model and source frequency is 653m.760

36



Figure 19. A comparison of cross-sectional slices along the x-axis in the Overthrust3D experiment between the true model, guess model,

and reconstructed wavefield (control) after 100 FWI iterations.

Even with the use of mass-lumping elements and variable mesh resolution, 3D FWI remains computationally challenging

on a relatively small-scale cluster with 120 cores. In this case, each FWI iteration took approximately 4.8 hours leading to a

total continuous execution time of 20 days to perform 100 FWI iterations. Peak memory usage was significantly larger than in

the 2D case at approximately 200 GB.

37



Figure 20. Same as Figure 19 but for the y-axis

38



6 Conclusions765

We have discussed a methodology for imaging regional seismic velocity in two- and three-dimensional, arbitrarily heteroge-

neous, semi-infinite domains in a process commonly referred to as full waveform inversion (FWI). The FWI process involves

solving a PDE-constrained optimization problem to minimize the misfit between the collected data and the computed response

of the forward equations starting from some initial distribution of seismic velocity. To solve this problem, a continuous Galerkin

(CG) finite element method (FEM) approach was developed using unstructured triangular (i.e., in 2D and tetrahedral in 3D)770

meshes with elements adapted in size to local seismic velocity. Both the forward, the adjoint-state wavefields, and the gradient

are computed on the same unstructured triangular mesh. The FWI was implemented using the Firedrake package (Rathgeber

et al., 2017), which enables us to represent the FEM discretization at a near-mathematical level simplifying our computer im-

plementation. To solve the optimization problem, the Rapid Optimization Library (ROL; Cyr et al., 2017) was used and called

directly from Python using pyROL (Wechsung and Richardson, 2019).775

Five triangular 2D elements and three tetrahedral 3D elements that were originally detailed in Chin-Joe-Kong et al. (1999)

and Geevers et al. (2018c) (referred to here as ML elements) that yield diagonal mass matrices (mass lumping) with special

quadrature rules, were implemented inside the Finite Element Automated Tabulator (FIAT Kirby, 2004). These elements were

used to form a fully-explicit time marching scheme for wave propagation with a second order accurate in time scheme. Higher-

order ML elements of various orders led to similar final results in a synthetic 2D FWI. As the spatial order increased, we780

observed a small speedup to perform a fixed number of FWI iterations and a significant reduction in peak memory usage. We

also demonstrated that a 3D forward wave simulation could be scaled up in a distributed memory sense with close to ideal

strong scalability. To provide practical guidance for subsequent application in FWI, specific mesh resolution requirements

were investigated to achieve a fixed error threshold of 5.0% for 2D/3D forward wave propagation simulations using the ML

elements. The usage of higher-order ML elements enabled us to greatly expand the element size while maintaining our desired785

accuracy. In practical experience, the expansion of the element size can make the removal of degenerate sliver tetrahedral

elements far easier, thus encouraging more numerically stable results with larger potentially numerically stable timesteps. We

highlight that in order to successfully implement FWI with variable resolution meshes, automated (scripted) mesh generation

tools are critically important (e.g., SeismicMesh Roberts et al., 2021).

The work presented in this article presents several new directions for FWI with triangular FEM. In the course of the FWI790

process, the physical model incrementally evolves and to aid convergence towards the global minimum of the cost function,

a multi-scale reconstruction is often used by increasing step by step the frequency of the simulated phenomena. In the case

of multi-scale FWI, an automated meshing process in the FWI loop is then crucial to deal with the variations of the physical

parameters and the increase of the frequency component of the waves simulated. Waveform adapted meshes could be used for

each frequency of interest so as to obtain an accurate solution while using the coarsest mesh possible.795

The current package enables developers to implement forward wave solvers that each make different physical assumptions

(e.g., variable density acoustic, elastic, visco-elastic, etc.) and discretize them using Firedrake within the current API. In this

extensible environment, automatic differentiation (AD) (e.g., Dolfin-adjoint Mitusch et al., 2019) can be used to derive the

39



gradient directly from the forward discretization. We envision future iterations of the package in which the user can readily

control the physics and be able to solve more complex, multivariate FWIs without having to focus much effort on repeatedly800

deriving and implementing adjoint and gradient operators.

Code and data availability. All code used in this repository is free and open source, and all data sets used in the demonstrations are publicly

available. The spyro source repository is available from https://github.com/krober10nd/spyro (last access: 20 August 2021). The spyro pack-

age is released under the GPLv3 license. The Zenodo release for the code is available at (https://zenodo.org/record/5164113), with data and

simulation scripts for FWI at (https://zenodo.org/record/5172307). This implementation was based on firedrake version (zenodo/Firedrake-805

20210810.0).

Appendix A: Continuous adjoint derivation

In this section, we include a few steps on the continuous adjoint derivation, given in the body of the text in equations 13, 14 and

15, where, for clarity, the formulation will be given for one short only. This is done by differentiating the Lagrangian (equation

12) with respect to the forward state, leading to:810

T∫
0

∫
Ω

∂L
∂(u,ω,p)

(δu,δω,δp) =

T∫
0

∫
Ω

∂J

∂u
δu+

T∫
0

∫
Ω

u†
(
∂2δu

∂t2
+trΨ1

δ∂u

∂t
+trΨ3δu+detΨ1δω−∇ · (c2∇δu)−∇ · δp

)

+

T∫
0

∫
Ω

p† ·
(
∂δp

∂t
+Ψ1δp+Ψ2(c

2∇δu)−Ψ3(c
2∇δω)

)
+

T∫
0

∫
Ω

ω†
(
∂δω

∂t
− δu

)
(A1)

which has to vanish to guarantee the optimality conditions for every trial functions (δu,δω,δp). To do so, we isolate them by

performing successive integration by parts, leading to:

T∫
0

∫
Ω

∂L
∂(u,ω,p)

(δu,δω,δp) =

T∫
0

∫
Ω

δuR†
u(u

†,p†,ω†)+

T∫
0

∫
Ω

δp ·R†
p(u

†,p†,ω†)+

T∫
0

∫
Ω

δωR†
ω(u

†,p†,ω†)

+

∫
Ω

(
−∂δu
∂t

u† + δu(
∂δu†

∂t
+trΨ1u

† +p† · δp+ω†δω)

)T

0

+

T∫
0

∫
∂Ω

(
−c2∇δu ·nu† +(c2∇u† ·n+n · c2Ψ2p

†)δu−u†δp ·n−n · (c2Ψ3p
†)
)

(A2)

The first three terms of the last equation represent three different integrals on Ω× (0,T ), which vanish for all trial functions if815

and only if the residualsR†
u,R†

p andR†
ω vanish, establishing the adjoint equations 13, 14 and 15. The last two terms are related

to the initial/final conditions and boundary conditions respectively. Having them to be zero implied on the boundary conditions

for the adjoints discussed in the body of the text.

40



Appendix B: Discretization details for the forward-state and adjoint-state equations

B1 Expressions for the matrices820

The expression of the matrices used in the forward discrete problem are:

Mu =Mω =Mxk
p =

∫
Ω

ϕi(x)ϕj(x)dx Mu,1 =

∫
Ω

trΨ1ϕi(x)ϕj(x)dx+

∫
∂Ω

c(x)ϕi(x)ϕj(x)ds

Mu,3 =

∫
Ω

trΨ3ϕi(x)ϕj(x)dx Mxk,xl

p,1 =

∫
Ω

ψi(x)Ψ
k,l
1 ψj(x)dx

K=

∫
Ω

c2(x)∇ϕi(x) · ∇ϕj(x)dx Dxk =

∫
Ω

ϕi(x)
∂ϕj
∂xk

dx

Du,2 =

∫
Ω

∑
k,l

ψi(x)Ψ
k,l
2

∂ψj(x)

∂xl
dx Dω,3 =

∫
Ω

∑
k,l

ψi(x)Ψ
k,l
3

∂ψj(x)

∂xl
dx

where Mxk
p is the diagonal block of matrix Mp corresponding to each entry on the (two or three-dimensional) vector P .

Also, the indices k, l represent the lines/rows in the matrices Γ1,2,3.

Author contributions. KJR, AO, LF implemented the code, developed the numerical formulation, performed several results for the manuscript,

and together wrote the manuscript. RCK helped implement some aspects of the finite elements used, wrote and improved the manuscript. BSC825

and RSG provided the research environment and intellectual discussion necessary for the software’s development and eventual realization of

this paper.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. This research was carried out in association with the ongoing R&D project registered as ANP 20714-2, “Software

technologies for modelling and inversion, with applications in seismic imaging" (University of São Paulo / Shell Brasil / ANP) – Desenvolvi-830

mento de técnicas numéricas e software para problemas de inversão com aplicações em processamento sísmico, sponsored by Shell Brasil

under the ANP R&D levy as “Compromisso de Investimentos com Pesquisa e Desenvolvimento”.

The fourth author (RCK) acknowledges support from the National Science Foundation grant 1912653. The sixth author (BSC) acknowl-

edges financial support from the Brazilian National Council for Scientific and Technological Development (CNPq) in the form of a produc-

tivity grant (grant number 312951/2018-3).835

We would like to thank Gerard Gorman at Imperial College London for his valuable feedback. We also acknowledge and appreciate the

valuable feedback given from Wim Mulder, Amik St-Cyr, and Jorge Lopez from Royal Dutch Shell regarding full waveform inversion and

finite elements.

41



We would also like to thank João Moreira for the generous comments and discussion.

42



References840

Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M. E., and Wells, G. N.: The FEniCS

project version 1.5, Archive of Numerical Software, 3, 2015.

Alnæs, M. S., Logg, A., Ølgaard, K. B., Rognes, M. E., and Wells, G. N.: Unified form language, ACM Trans. Math. Softw., 40, 1–37,

https://doi.org/10.1145/2566630, 2014.

Aminzadeh, F., Burkhard, N., Long, J., Kunz, T., and Duclos, P.: Three dimensional SEG/EAEG models — an update, The Leading Edge,845

15, 131–134, https://doi.org/10.1190/1.1437283, 1996.

Anquez, P., Pellerin, J., Irakarama, M., Cupillard, P., Lévy, B., and Caumon, G.: Automatic correction and simplification of geological maps

and cross-sections for numerical simulations, Cr. Geosci., 351, 48–58, https://doi.org/10.1016/j.crte.2018.12.001, 2019.

Basker, B., Rüger, A., Deng, L., and Jaramillo, H.: Practical considerations and quality control for an FWI workflow, The Leading Edge, 35,

151–156, 2016.850

Billette, F. and Brandsberg-Dahl, S.: The 2004 BP Velocity Benchmark, in: 67th EAGE Conference & Exhibition, pp. cp–1, European Asso-

ciation of Geoscientists & Engineers, European Association of Geoscientists & Engineers, https://doi.org/10.3997/2214-4609-pdb.1.b035,

2005.

Brenders, A. J. and Pratt, R. G.: Efficient waveform tomography for lithospheric imaging: implications for realistic, two-dimensional

acquisition geometries and low-frequency data, Geophysical Journal International, 168, 152–170, https://doi.org/10.1111/j.1365-855

246X.2006.03096.x, 2007.

Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer International Publishing,

https://doi.org/10.1007/978-0-387-70914-7, 2011.

Brittan, J., Bai, J., Delome, H., Wang, C., and Yingst, D.: Full waveform inversion – the state of the art, First Break, 31,

https://doi.org/10.3997/1365-2397.31.10.71541, 2013.860

Brossier, R., Operto, S., and Virieux, J.: Seismic imaging of complex onshore structures by 2D elastic frequency-domain full-waveform

inversion, Geophysics, 74, WCC105–WCC118, https://doi.org/10.1190/1.3215771, 2009.

Bunks, C., Saleck, F. M., Zaleski, S., and Chavent, G.: Multiscale seismic waveform inversion, Geophysics, 60, 1457–1473,

https://doi.org/10.1190/1.1443880, 1995.

Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C.: A Limited Memory Algorithm for Bound Constrained Optimization, SIAM J. Sci. Comput.,865

16, 1190–1208, https://doi.org/10.1137/0916069, 1995.

Castellanos, C., Métivier, L., Operto, S., Brossier, R., and Virieux, J.: Fast full waveform inversion with source encoding and second-order

optimization methods, Geophys. J. Int., 200, 720–744, https://doi.org/10.1093/gji/ggu427, 2014.

Chin-Joe-Kong, M., Mulder, W. A., and Van Veldhuizen, M.: Higher-order triangular and tetrahedral finite elements with mass lumping for

solving the wave equation, J. Eng. Math., 35, 405–426, 1999.870

Clayton, R. and Engquist, B.: Absorbing boundary conditions for acoustic and elastic wave equations, Bull. Seismol. Soc. Am., 67, 1529–

1540, 1977.

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., and Oldenburg, D. W.: SimPEG: An open source framework for simulation and gradient

based parameter estimation in geophysical applications, Comput. Geosci-uk., 85, 142–154, https://doi.org/10.1016/j.cageo.2015.09.015,

2015.875

43

https://doi.org/10.1145/2566630
https://doi.org/10.1190/1.1437283
https://doi.org/10.1016/j.crte.2018.12.001
https://doi.org/10.3997/2214-4609-pdb.1.b035
https://doi.org/10.1111/j.1365-246X.2006.03096.x
https://doi.org/10.1111/j.1365-246X.2006.03096.x
https://doi.org/10.1111/j.1365-246X.2006.03096.x
https://doi.org/10.1007/978-0-387-70914-7
https://doi.org/10.3997/1365-2397.31.10.71541
https://doi.org/10.1190/1.3215771
https://doi.org/10.1190/1.1443880
https://doi.org/10.1137/0916069
https://doi.org/10.1093/gji/ggu427
https://doi.org/10.1016/j.cageo.2015.09.015


Cui, T., Leng, W., Lin, D., Ma, S., and Zhang, L.: High Order Mass-Lumping Finite Elements on Simplexes, Numerical Mathematics: Theory,

Methods and Applications, 10, 331–350, https://doi.org/10.4208/nmtma.2017.s07, 2017.

Cyr, E. C., von Winckel, G. J., Kouri, D. P., Gardiner, T. A., Ridzal, D., Shadid, J. N., and Miller, S.: LDRD Report: Topological Design

Optimization of Convolutes in Next Generation Pulsed Power Devices., Tech. rep., Office of Scientific and Technical Information (OSTI),

https://doi.org/10.2172/1413648, 2017.880

Dablain, M.: The application of high-order differencing to the scalar wave equation, Geophysics, 51, 54–66,

https://doi.org/10.1190/1.1442040, 1986.

Etienne, V., Virieux, J., and Operto, S.: A massively parallel time-domain discontinuous Galerkin method for 3D elastic wave modeling, in:

SEG Technical Program Expanded Abstracts 2009, pp. 2657–2661, https://doi.org/10.1190/1.3255398, 2009.

Farrell, P., Ham, D., Funke, S., and Rognes, M.: Automated Derivation of the Adjoint of High-Level Transient Finite Element Programs,885

SIAM J. Sci. Comput., 35, C369–C393, https://doi.org/10.1137/120873558, 2013.

Farrell, P. E., Mitchell, L., and Wechsung, F.: An Augmented Lagrangian Preconditioner for the 3D Stationary Incompressible Navier–Stokes

Equations at High Reynolds Number, SIAM J. Sci. Comput., 41, A3073–A3096, https://doi.org/10.1137/18m1219370, 2019.

Farrell, P. E., Kirby, R. C., and Marchena-Menendez, J.: Irksome: Automating Runge–Kutta time-stepping for finite element methods, arXiv

preprint arXiv:2006.16282, 2020.890

Fathi, A., Kallivokas, L. F., and Poursartip, B.: Full-waveform inversion in three-dimensional PML-truncated elastic media, Comput. Method.

Appl. M., 296, 39–72, https://doi.org/10.1016/j.cma.2015.07.008, 2015.

Fichtner, A.: Full Seismic Waveform Modelling and Inversion, Springer Berlin Heidelberg, https://doi.org/10.1007/978-3-642-15807-0,

2011.

Fruehn, J., Greenwood, S., O”Driscoll, R., Jones, I., and Brittan, J.: A strategy for regional-scale FWI in the salt provinces offshore Brazil,895

in: SEG Technical Program Expanded Abstracts 2019, pp. 1330–1334, https://doi.org/10.1190/segam2019-3201719.1, 2019.

Geevers, S., Mulder, W., and van der Vegt, J.: Dispersion Properties of Explicit Finite Element Methods for Wave Propagation Modelling on

Tetrahedral Meshes, J Sci Comput, 77, 372–396, https://doi.org/10.1007/s10915-018-0709-7, 2018a.

Geevers, S., Mulder, W., and van der Vegt, J.: New Higher-Order Mass-Lumped Tetrahedral Elements for Wave Propagation Modelling,

SIAM J. Sci. Comput., 40, A2830–A2857, https://doi.org/10.1137/18m1175549, 2018b.900

Geevers, S., Mulder, W., and van der Vegt, J.: Dispersion Properties of Explicit Finite Element Methods for Wave Propagation Modelling on

Tetrahedral Meshes, J Sci Comput, 77, 372–396, https://doi.org/10.1007/s10915-018-0709-7, 2018c.

Geršgorin, S.: Über die Abgrenzung der Eigenwerte einer Matrix, Bulletin de l’Académie des Sciences de l’URSS. Classe des sciences

mathématiques et na, 6, 749–754, 1931.

Gras, C., Dagnino, D., Jiménez-Tejero, C. E., Meléndez, A., Sallarès, V., and Ranero, C. R.: Full-waveform inversion of short-offset, band-905

limited seismic data in the Alboran Basin (SE Iberia), Solid Earth, 10, 1833–1855, https://doi.org/10.5194/se-10-1833-2019, 2019.

Grote, M. and Sim, I.: Efficient PML for the wave equation, Global Science Preprint, arXiv:1001.0319v1 [math.NA], 1–15, 2010.

Homolya, M., Kirby, R. C., and Ham, D. A.: Exposing and exploiting structure: Optimal code generation for high-order finite element

methods, CoRR, abs/1711.02473, http://arxiv.org/abs/1711.02473, 2017.

Homolya, M., Mitchell, L., Luporini, F., and Ham, D. A.: TSFC: A Structure-Preserving Form Compiler, SIAM J. Sci. Comput., 40, C401–910

C428, https://doi.org/10.1137/17m1130642, 2018.

https://zenodo.org/record/5164113: spyro V0.1.0: Acoustic wave propagators for seismic domains with application to full waveform inver-

sion, https://doi.org/10.5281/zenodo.5164113, 2021.

44

https://doi.org/10.4208/nmtma.2017.s07
https://doi.org/10.2172/1413648
https://doi.org/10.1190/1.1442040
https://doi.org/10.1190/1.3255398
https://doi.org/10.1137/120873558
https://doi.org/10.1137/18m1219370
https://doi.org/10.1016/j.cma.2015.07.008
https://doi.org/10.1007/978-3-642-15807-0
https://doi.org/10.1190/segam2019-3201719.1
https://doi.org/10.1007/s10915-018-0709-7
https://doi.org/10.1137/18m1175549
https://doi.org/10.1007/s10915-018-0709-7
https://doi.org/10.5194/se-10-1833-2019
http://arxiv.org/abs/1711.02473
https://doi.org/10.1137/17m1130642
https://doi.org/10.5281/zenodo.5164113


https://zenodo.org/record/5172307: Simulation scripts and data for full waveform inversion using spyro,

https://doi.org/10.5281/zenodo.5172307, 2021.915

Jones, I. F.: Tutorial: The mechanics of waveform inversion, First Break, 37, 31–43, https://doi.org/10.3997/1365-2397.2019017, 2019.

Kaltenbacher, B., Kaltenbacher, M., and Sim, I.: A modified and stable version of a perfectly matched layer technique for

the 3-d second order wave equation in time domain with an application to aeroacoustics, J. Comput. Phys., 235, 407–422,

https://doi.org/10.1016/j.jcp.2012.10.016, 2013.

Kirby, R. C.: Algorithm 839, ACM Trans. Math. Softw., 30, 502–516, https://doi.org/10.1145/1039813.1039820, 2004.920

Kirby, R. C. and Mitchell, L.: Solver Composition Across the PDE/Linear Algebra Barrier, SIAM J. Sci. Comput., 40, C76–C98,

https://doi.org/10.1137/17m1133208, 2018.

Kirby, R. C., Logg, A., Rognes, M. E., and Terrel, A. R.: Common and unusual finite elements, in: Automated Solution of Differential

Equations by the Finite Element Method, pp. 95–119, Springer Berlin Heidelberg, https://doi.org/10.1007/978-3-642-23099-8_3, 2012.

Krischer, L., Fichtner, A., Zukauskaite, S., and Igel, H.: Large-scale seismic inversion framework, Seismological Research Letters, 86,925

1198–1207, 2015.

Lax, P. and Wendroff, B.: Systems of conservation laws, Comm. Pure Appl. Math., 13, 217–237, https://doi.org/10.1002/cpa.3160130205,

1960.

Lines, L. R. and Newrick, R. T.: Fundamentals of Geophysical Interpretation, Society of Exploration Geophysicists,

https://doi.org/10.1190/1.9781560801726, 2004.930

Liu, J., Brio, M., and Moloney, J. V.: Overlapping Yee FDTD Method on Nonorthogonal Grids, J Sci Comput, 39, 129–143,

https://doi.org/10.1007/s10915-008-9253-1, 2008.

Liu, Y., Teng, J., Xu, T., and Badal, J.: Higher-order triangular spectral element method with optimized cubature points for seismic wavefield

modeling, Journal of Computational Physics, 336, 458–480, https://doi.org/https://doi.org/10.1016/j.jcp.2017.01.069, 2017.

Louboutin, M., Lange, M., Luporini, F., Kukreja, N., Witte, P. A., Herrmann, F. J., Velesko, P., and Gorman, G. J.: Devito (v3.1.0):935

An embedded domain-specific language for finite differences and geophysical exploration, Geosci. Model Dev., 12, 1165–1187,

https://doi.org/10.5194/gmd-12-1165-2019, 2019.

Luporini, F., Varbanescu, A. L., Rathgeber, F., Bercea, G.-T., Ramanujam, J., Ham, D. A., and Kelly, P. H.: Cross-Loop Optimization of

Arithmetic Intensity for Finite Element Local Assembly, ACM Trans. Archit. Code Optim., 11, 1–25, https://doi.org/10.1145/2687415,

2015.940

Luporini, F., Ham, D. A., and Kelly, P. H.: An Algorithm for the Optimization of Finite Element Integration Loops, ACM Trans. Math.

Softw., 44, 1–26, https://doi.org/10.1145/3054944, 2017.

Lyu, C., Capdeville, Y., and Zhao, L.: Efficiency of the spectral element method with very high polynomial degree to solve the elastic wave

equation, Geophysics, 85, T33–T43, https://doi.org/10.1190/geo2019-0087.1, 2020.

Martin, G. S., Marfurt, K. J., and Larsen, S.: Marmousi-2: An updated model for the investigation of AVO in structurally complex areas, pp.945

1979–1982, Society of Exploration Geophysicists, https://doi.org/10.1190/1.1817083, 2005.

Mitusch, S., Funke, S., and Dokken, J.: dolfin-adjoint 2018.1: Automated adjoints for FEniCS and Firedrake, JOSS, 4, 1292,

https://doi.org/10.21105/joss.01292, 2019.

Modave, A., St-Cyr, A., Mulder, W., and Warburton, T.: A nodal discontinuous Galerkin method for reverse-time migration on GPU clusters,

Geophys. J. Int., 203, 1419–1435, https://doi.org/10.1093/gji/ggv380, 2015.950

45

https://doi.org/10.5281/zenodo.5172307
https://doi.org/10.3997/1365-2397.2019017
https://doi.org/10.1016/j.jcp.2012.10.016
https://doi.org/10.1145/1039813.1039820
https://doi.org/10.1137/17m1133208
https://doi.org/10.1007/978-3-642-23099-8_3
https://doi.org/10.1002/cpa.3160130205
https://doi.org/10.1190/1.9781560801726
https://doi.org/10.1007/s10915-008-9253-1
https://doi.org/https://doi.org/10.1016/j.jcp.2017.01.069
https://doi.org/10.5194/gmd-12-1165-2019
https://doi.org/10.1145/2687415
https://doi.org/10.1145/3054944
https://doi.org/10.1190/geo2019-0087.1
https://doi.org/10.1190/1.1817083
https://doi.org/10.21105/joss.01292
https://doi.org/10.1093/gji/ggv380


Modrak, R. T., Borisov, D., Lefebvre, M., and Tromp, J.: SeisFlows—Flexible waveform inversion software, Computers & geosciences, 115,

88–95, 2018.

Mulder, W. and Shamasundar, R.: Performance of continuous mass-lumped tetrahedral elements for elastic wave propagation with and

without global assembly, Geophys. J. Int., 207, 414–421, https://doi.org/10.1093/gji/ggw273, 2016.

Mulder, W., Zhebel, E., and Minisini, S.: Time-stepping stability of continuous and discontinuous finite-element methods for 3-D wave955

propagation, Geophys. J. Int., 196, 1123–1133, https://doi.org/10.1093/gji/ggt446, 2013a.

Mulder, W., Zhebel, E., and Minisini, S.: Time-stepping stability of continuous and discontinuous finite-element methods for 3-D wave

propagation, Geophys. J. Int., 196, 1123–1133, https://doi.org/10.1093/gji/ggt446, 2013b.

Padovani, E., Priolo, E., and Seriani, G.: Low And High Order Finite Element Method: Experience In Seismic Modeling, J. Comp. Acous.,

02, 371–422, https://doi.org/10.1142/s0218396x94000233, 1994.960

Patera, A. T.: A spectral element method for fluid dynamics: Laminar flow in a channel expansion, J. Comput. Phys., 54, 468–488,

https://doi.org/10.1016/0021-9991(84)90128-1, 1984.

Persson, P.-O.: Mesh size functions for implicit geometries and PDE-based gradient limiting, Eng. Comput-germany., 22, 95–109,

https://doi.org/10.1007/s00366-006-0014-1, 2006.

Peter, D., Komatitsch, D., Luo, Y., Martin, R., Le Goff, N., Casarotti, E., Le Loher, P., Magnoni, F., Liu, Q., Blitz, C., Nissen-Meyer, T.,965

Basini, P., and Tromp, J.: Forward and adjoint simulations of seismic wave propagation on fully unstructured hexahedral meshes, Geophys.

J. Int., 186, 721–739, https://doi.org/10.1111/j.1365-246x.2011.05044.x, 2011.

Pratt, R. G. and Worthington, M.: Inverse Theory Applied To Multi-Source Cross-Hole Tomography.. Part 1: Acoustic Wave-Equation

Method1, Geophys Prospect, 38, 287–310, https://doi.org/10.1111/j.1365-2478.1990.tb01846.x, 1990.

Rathgeber, F., Ham, D. A., Mitchell, L., Lange, M., Luporini, F., Mcrae, A. T., Bercea, G.-T., Markall, G. R., and Kelly, P. H.: Firedrake,970

ACM Trans. Math. Softw., 43, 1–27, https://doi.org/10.1145/2998441, article 24, 2017.

Robein, E.: Seismic Imaging: A Review of the Techniques, their Principles, Merits and Limitations, European Association of Geoscientists

& Engineers (EAGE), 2010.

Roberts, K., Gioria, R., and Pringle, W.: SeismicMesh: Triangular meshing for seismology, JOSS, 6, 2687,

https://doi.org/10.21105/joss.02687, 2021.975

Rücker, C., Günther, T., and Wagner, F. M.: pyGIMLi: An open-source library for modelling and inversion in geophysics, Comput. Geosci-

uk., 109, 106–123, https://doi.org/10.1016/j.cageo.2017.07.011, 2017.

Sava, P. and Biondi, B.: Wave-equation migration velocity analysis. I. Theory, Geophysical Prospecting, 52, 593–606,

https://doi.org/https://doi.org/10.1111/j.1365-2478.2004.00447.x, 2004a.

Sava, P. and Biondi, B.: Wave-equation migration velocity analysis. II. Subsalt imaging examples, Geophysical Prospecting, 52, 607–623,980

https://doi.org/https://doi.org/10.1111/j.1365-2478.2004.00448.x, 2004b.

Schwedes, T., Ham, D. A., Funke, S. W., and Piggott, M. D.: Mesh dependence in PDE-constrained optimisation, in: Mesh Dependence in

PDE-Constrained Optimisation, pp. 53–78, Springer, 2017.

Seriani, G. and Priolo, E.: Spectral element method for acoustic wave simulation in heterogeneous media, Finite Elem. Anal. Des., 16,

337–348, https://doi.org/10.1016/0168-874x(94)90076-0, special Issue Selection of Papers Presented at ICOSAHOM’92, 1994.985

Thrastarson, S., van Driel, M., Krischer, L., Boehm, C., Afanasiev, M., van Herwaarden, D.-P., and Fichtner, A.: Accelerating nu-

merical wave propagation by wavefield adapted meshes. Part II: Full-waveform inversion, Geophys. J. Int., 221, 1591–1604,

https://doi.org/10.1093/gji/ggaa065, 2020.

46

https://doi.org/10.1093/gji/ggw273
https://doi.org/10.1093/gji/ggt446
https://doi.org/10.1093/gji/ggt446
https://doi.org/10.1142/s0218396x94000233
https://doi.org/10.1016/0021-9991(84)90128-1
https://doi.org/10.1007/s00366-006-0014-1
https://doi.org/10.1111/j.1365-246x.2011.05044.x
https://doi.org/10.1111/j.1365-2478.1990.tb01846.x
https://doi.org/10.1145/2998441
https://doi.org/10.21105/joss.02687
https://doi.org/10.1016/j.cageo.2017.07.011
https://doi.org/https://doi.org/10.1111/j.1365-2478.2004.00447.x
https://doi.org/https://doi.org/10.1111/j.1365-2478.2004.00448.x
https://doi.org/10.1016/0168-874x(94)90076-0
https://doi.org/10.1093/gji/ggaa065


Tournois, J., Srinivasan, R., and Alliez, P.: Perturbing Slivers in 3D Delaunay Meshes, in: Proceedings of the 18th International Meshing

Roundtable, edited by Clark, B. W., pp. 157–173, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.990

Trinh, P.-T., Brossier, R., Métivier, L., Tavard, L., and Virieux, J.: Efficient time-domain 3D elastic and viscoelastic full-waveform inversion

using a spectral-element method on flexible Cartesian-based mesh, Geophysics, 84, R61–R83, https://doi.org/10.1190/geo2018-0059.1,

2019.

van Driel, M., Boehm, C., Krischer, L., and Afanasiev, M.: Accelerating numerical wave propagation using wavefield adapted meshes. Part

I: Forward and adjoint modelling, Geophys. J. Int., 221, 1580–1590, https://doi.org/10.1093/gji/ggaa058, 2020.995

Virieux, J. and Operto, S.: An overview of full-waveform inversion in exploration geophysics, Geophysics, 74, WCC1–WCC26,

https://doi.org/10.1190/1.3238367, 2009.

Wechsung, F. and Richardson, C.: pyROL: A python wrapper for the ROL package., https://bitbucket.org/pyrol/pyrol/src/master/, release

0.0.16, 2019.

Witte, P. A., Louboutin, M., Kukreja, N., Luporini, F., Lange, M., Gorman, G. J., and Herrmann, F. J.: A large-scale framework for sym-1000

bolic implementations of seismic inversion algorithms in Julia, Geophysics, 84, F57–F71, https://doi.org/10.1190/geo2018-0174.1, (Geo-

physics), 2019.

Wolfe, P.: Convergence Conditions for Ascent Methods, SIAM Rev., 11, 226–235, https://doi.org/10.1137/1011036, 1969.

Yao, G., da Silva, N. V., Warner, M., Wu, D., and Yang, C.: Tackling cycle skipping in full-waveform inversion with intermediate data,

Geophysics, 84, R411–R427, https://doi.org/10.1190/geo2018-0096.1, 2019.1005

Yilmaz, Ö.: Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data, Society of Exploration Geophysicists,

https://doi.org/10.1190/1.9781560801580, 2001.

zenodo/Firedrake-20210810.0: Firedrake version used in ‘Full waveform inversion using triangular waveform-adapted meshes’,

https://doi.org/10.5281/zenodo.5176201, 2021.

Zhang, W.: Elastic full waveform inversion on unstructured meshes by the finite element method, Phys. Scr., 94, 115 002,1010

https://doi.org/10.1088/1402-4896/ab1ce5, 2019.

Zhebel, E., Minisini, S., Kononov, A., and Mulder, W. A.: A comparison of continuous mass-lumped finite elements with finite dif-

ferences for 3-D wave propagation: A comparison of mass-lumped FEM with FD for 3D, Geophysical Prospecting, 62, 1111–1125,

https://doi.org/10.1111/1365-2478.12138, 2014.

47

https://doi.org/10.1190/geo2018-0059.1
https://doi.org/10.1093/gji/ggaa058
https://doi.org/10.1190/1.3238367
https://bitbucket.org/pyrol/pyrol/src/master/
https://doi.org/10.1190/geo2018-0174.1
https://doi.org/10.1137/1011036
https://doi.org/10.1190/geo2018-0096.1
https://doi.org/10.1190/1.9781560801580
https://doi.org/10.5281/zenodo.5176201
https://doi.org/10.1088/1402-4896/ab1ce5
https://doi.org/10.1111/1365-2478.12138

