Response to Anonymous Referee #1
(RC1)

# spyro: a Firedrake-based wave propagation and full waveform inversion finite element
solver

Thank you for submitting your manuscript. The paper reads nicely and is well written. The
objectives and proposed results are interesting and are a good fit for this journal.

Overall, | would recommend minor revision as some details need to be improved and the
presented results are not fully convincing. | think this software could be of benefit to the
geophysical community and that an improved manuscript would greatly improve its outreach.

R: We thank the referee for the time spent reading and evaluating the manuscript, and for
the comments drawn. We are happy they see a valuable contribution in our work and
appreciate their intention in promoting the improvement of the manuscript. Changes are
annotated in the colour red and responses are annotated in the colour black.

Mainly my concerns are:

- The computational aspect, emphasised in the introduction, needs more clarity and some
type of baseline

R: While we understand the point here, the computational aspect of FWI with this method is
not the main focus of the manuscript. As we stated in the introduction, the aim of this paper
is to provide solutions to the three enumerated issues regarding the application of triangular
continuous Galerkin finite element methods to perform full waveform inversion, specifically
using the higher order mass lumped elements. However, we do understand the referee's
point and elaborated more on this aspect while answering the question about computational
runtime. In the response to comments regarding the computational aspect below, we also
note changes to the manuscript that are relevant to this concern.

- The author does not discuss meshing when a "good smooth model" is not available. What
would be the strategy if the mesh needs to be modified at each (couple) iteration.

R: In our case, because FWI is done using a local optimization approach, a good starting
model is a prerequisite for the FWI process (Virieux and Operto 2009). We note that this was
already stated in Section 2 when describing the FWI process.

There are a good number of publications focused on how to generate those starting models,
which range from recent techniques such as dynamic time warping and convolutional neural
networks (Yao and Wang 2022) and initial models based on global optimization approaches
(Mojica, Kukreja, 2019) all the way through to the more industry standard reflection
traveltime tomography (Woodward et al., 2008). We also add that constraints can be
enforced in the mesh connectivity to capture material gradients if they are known a priori.



However, since the construction of an initial starting model is not the current focus of our
research we use a smooth velocity model based on the application of a gaussian filter.

- The 3D results are not very accurate. While | understand these take a lot of resources and
can not necessarily be re-run, justification on the accuracy is needed to justify the use of that
software.

R: This concern is discussed in depth while responding to the referee’s comments regarding
the 3D overthrust section further below.

The author landscape needs to better justify why the software they propose improves the
current software for FWI.

R: Our software improves the current software landscape in a few ways, such as proving an
extensible code stack for FWI, implementing software that is integrated with automatic mesh
generation using simplices, software that provides tools that guide that mesh generation by
providing relevant metrics and runs using higher-order mass-lumped elements which make
FWI computationally feasible with continuous Galerkin finite element methods.

The use of the Unified Form Language (UFL Alnees et al., 2014), a high-level mathematically
consistent Domain Specific Language that closely resembles mathematical notation, inside
our code, combined with Firedrake (Rathgeber et al., 2017) makes it a good candidate for an
extensible and maintainable code stack for FWI. Its use of the Firedrake framework allows
additional implementations, such as automatically derived adjoints (Farrel et al. 2020) and a
variety of different spatial (such as higher-order mass-lumped triangular elements or
quadrilateral spectral elements) and temporal discretizations in the same software.

We currently have other teams of researchers taking advantage of this aspect by testing the
addition of sharp-interface imaging , spectral element methods on quadrilaterals, automatic
adjoint formulations (already added in the latest version of the code), elastic wave solvers
and different temporal discretizations. This extensibility is also required because new
higher-order simplicial mass lumped elements can still be found in the future and Firedrake
allows them to be added to spyro’s wave solver. A new paragraph was added to Section 6.

“The current package enables developers to implement forward wave solvers that each
make different physical assumptions (e.qg., variable density acoustic, elastic, visco-elastic,
efc.) and discretize them using Firedrake within the current API. In this extensible
environment, automatic differentiation (AD) (e.g., Dolfin-adjoint (Mitusch et al., 2019) can be
used to derive the gradient directly from the forward discretization. We envision future
iterations of the package in which the user can readily control the physics and be able to
solve more complex, multivariate FWIs without having to focus much effort on repeatedly
deriving and implementing adjoint and gradient operators.”

Please see below for more details about the manuscript.



# Detailed comments

Line 18:
This is a bit terse, other methods exist (NMO, WEMVA, kirchoff, Depth/time extrapolation)
and are widely used.

R: We kindly point out that this section is describing the timestepping methods used for
solving the wave equation with a numerical technique so it's not immediately clear how those
methods the reviewer mentions are relevant.

Line 20:

"However, the FWI problem is challenging to apply in practice since there exists a
non-unique configuration of data that can best explain the observations. "

This is commonly described as cycle skipping. Please add references to the literature.
R: Several sentences were added into the introduction.

Paragraph 1 of Section 1.

“This is due to the nonconvex nature of the objective function usually employed in FWI,
namely the L2-norm of the residuals between the recorded field data and the synthetic
modelled data. A common manifestation of this nonconvexity is cycle skipping, which occurs
when the phase match between the observed field data and modelled data is greater than
half a wavelength, causing erroneous model updates in the optimization process (Yao et al.,
2019).”

Line 47:

One other problematic issue (the main one | would say) that isn't mentioned is the model
dependence of the mesh. If the meshing becomes velocity/Unkown dependent then in
theory, it should be added to the mathematical definition of the problem and the gradient of
the mesh with respect to the velocity must be taken. This problem leads in some cases into
elements wrapping onto themselves.

This should be discussed by the authors, and considering the mesh independent of the
inverse problem needs to be justified.

R: In the cases run to produce the results for this paper, the mesh is static throughout the
inversion process (it is generated based on the initial guess model and remains fixed), so
there is no need to take into account mesh changes in the formulation. Also, the gradient,
necessary for the optimization process, is mesh-independent, since it results from inverting
the mass matrix on the right-hand-side “R” in equation 36.

The static nature of the mesh is emphasised in Section 3.3

“We note that the mesh is built by adapting elements according to the initial velocity model
and is static throughout the inversion process.”



Figure 1: Did you make that figure? This looks fairly familiar so please add a reference in
case this is from somewhere else.

R: Another member of our research team who is not one of the authors of this paper, Ph.D.
candidate Jodo Baptista Dias Moreira, made that figure.

We credited it to him in the caption in the revised version of the paper.

Equation 1: This is not the conventional way to define the wave equation in an acoustic
medium. Ignoring the PML for simplicity, the acoustic wave equation (d'Alember operator) is
defined as

“diff(u, (t, 2)) - ¢*2 laplacian(u)'. including the spatially varying wave speed as “div(c * 2
grad(u))’ is quite unconventional, what is the justification behind this formulation?

R: In the acoustic wave propagation in the subsurface, the wave passes through media with
different wave speeds. In finite elements, the local approximate solutions are defined within

an element, and in our high-order formulation the wave speed does not need to be constant
inside the element. So, since the domain is not homogeneous in terms of the wave speed, it
is necessary to use the equation in this form.

Equation 9: Following the point above, the expression for the sensitivity is quite
unconventional as well. (usually is either *-2/c"3" or 1" depending on whether the
wavespeed or squared slowness “1/c*2" is considered.

R: Indeed, the derivation of the adjoint and gradient follow from the definition of the forward
problem, which, as you pointed out in the previous point, is not “usual’.

Gradient subsampling: This is known to lead to artifacts and inexact gradients. What exact
subsampling ratio is used and how much information is lost with that subsampling (maybe
compare gradients with and without subsampling).

R: The reviewer is correct in that gradient subsampling leads to artifacts and inexact gradients.
We believe that this focus is beyond the scope of the manuscript. Gradient subsampling is a
common method to reduce the memory footprint of the FWI solver and this aspect is covered in
other papers as a major focus area particularly in the context of “checkpointing”, as alluded to in
Section 3.6. We point out the r subsampling factor was noted in both FWI examples.

“It is noted that this is known to lead to artefacts and inexact gradients and requires careful tuning
to ensure feasible memory runtime requirements while balancing the accuracy of the gradient. The
SrS subsampling factor is noted in the results. These aspects were extensively studied in
Louboutin et al. (2019).”

Line 379: " were not ready to be used in our FWI code." So did you implement the adjoint by
hand?



R: As stated in Section 3.5, the adjoint was implemented “by hand” by deriving the adjoint. A
new appendix A1 is added detailing this derivation. Our team has evolved the software and
we now have automatic differentiation working in the code. This leads to the same results we
obtained with the adjoint equations implemented “by hand”, unfortunately at higher
computational costs due to annotation overhead. We have updated this sentence in the
manuscript accordingly.

Line 380: Rapid Optimization Library. Any reason you did not choose a standard python
library easier to use (i.e scipy) since, as you mentioned in the introduction, the bulk of the
computing is the wave equation solves. Therefore "fast" optimization implementation doesn't
really impact the overall performance.

R: ROL was preferred over Scipy’s optimization library because we were working actively
with the developers of the ROL interface. It was allowing for more advanced optimization
methods as well. In addition, scipy does not support the specification of the L2 norm.

In Section 4.0 Computer implementation

“ROL was preferred over Scipy’s optimization library because the Firedrake development
team is actively involved with the developers of the ROL interface. Further the usage of ROL
allowed for more advanced optimization methods than SciPy offered.”

Line 386: "we exclusively rely on the second-order optimization method L-BFGS (". L-BFGS
rely heavily on exact gradient information. Subsampling the gradient leads to an inexact
gradient that doesn't satisfy |-bfgs requirement to guarantee better convergence.

R: The precision of the gradient was not severely damaged by subsampling. Indeed, we
verified that the shape of the gradient remained essentially the same as without the
subsampling. It is true however that, if the frequency of the subsampling is not high enough,
the gradient would be poorer, typically when the wave, travelling one mesh element “h” and
experiencing a wave speed “c” would be sampled with fewer than, say, five points, leading to

a condition of the form “dt<5h/c”.
In Section 4.0:

“Given the gradient subsampling (c.f., Section~\ref{sec:gradient_downsampling}, the
precision of the gradient was not severely damaged by subsampling. This aspect was
verified that the shape of the gradient remained essentially the same as without the
subsampling. It is true however that, if the frequency of the subsampling is not high enough,
the gradient can be damaged, typically when the wave, travelling one mesh element “h” and
experiencing a wave speed “c” would be sampled with fewer than, say, five points, leading to
a condition of the form “dt<5h/c”.”

Line 451: "parallelism is trivial and handled by splitting the MPI communicator into groups of
processes at initialization" Using MPI for separable task parallelism is known to be overkill



and prone to issues. Any reason more adapted task parallelism (Dask, spark, ...) was not
used?

R: Dask was not used because we found MPI performed adequately and was already integrated
within the Firedrake library. We do note a benefit from using both “shot-level” and domain
decomposition parallelism especially in 3D amd this was previously shown in Figure 14 in
Section 5.3.

A new sentence was added:

We do note a significant benefit from using both “shot-level” and domain decomposition
parallelism simultaneously, especially in 3D, which is later detailed in
Section~\ref{sec:parallel_perf}.

The computational runtime, while informative, does not say much about the performance of
the proposed method without any reference. How long would it take to run FWI with FD with
the same amount of resources? And how much memory?

R: Again we stress the major aim of the manuscript is to detail the spyro package and its
capabilities, not an intercomparison between methods. We indeed provided run times for
parallel execution of the forward problem given suitable mesh resolution in Section 5.3.

We stress again that the novelty of our approach is a software capable of solving FWI using
unstructured triangular meshes waveform adapted to a priori knowledge. Everything in our
approach is geared towards using automatically generated unstructured meshes with
variable resolution. Therein lies the difficulty in comparing with finite difference methods,
which cannot use unstructured meshes with higher order approximation. There is almost no
reason to use finite elements in structured meshes, and this has been shown in a number of
publications, dissertations and theses.

One could start a comparison using regular grids for FEM. However, if we only do this
comparison, then we contend that we are not actually comparing our implementation with
FD. We would be completely taking out the novelty of our approach and redoing something
that has already been researched extensively. Therefore, any comparison, in the authors'
point of view, should take into account the FEM software implementations that were needed
to be done in generating code completely compatible with automatically generated waveform
adapted simplicial meshes. Naturally some of those implementations/features increase
computational runtime.

Having said this, there are already a few comparisons of mass-lumped elements with FD
and other methods in the literature, but those are usually restricted to the forward wave
solver. Zhebel et al. (2014) did an interesting comparison of 5 specific 2D and 3D cases with
varying interior complexity and topologies and arrived at the conclusion that:

The results show that, for simple models like a cube with constant density and
velocity, the finite-difference method outperforms the finite-element method by at
least an order of magnitude. Outside the application area of rectangular meshes, i.e.,
for a model with interior complexity and topography well described by tetrahedra,



however, finite-element methods are about two orders of magnitude faster than
finite-difference methods, for a given accuracy. (Zhebel et al., 2014)

However, everything those authors did not only are based on exclusively the forward
propagation, but also they consider perfect knowledge of the interior complexity (aligning
elements with faults) and topology. In a FWI problem this cannot and perhaps should not be
done.

We give one more example of the influence of using unstructured meshes. We have run a
comparison, in 2D and using spyro, between 4th order triangular mass-lumped elements and
4th order SEM (using quadrilaterals, Gauss-Lobatto-Legendre collocation points and
under-integration), which is already commonly used in FWI. Two different cases were
studied, one using a homogeneous velocity model and another with the Marmousi velocity
model. In order to run both cases, the cells-per-wavelength parameter chosen for SEM was
based on the same experiment illustrated in section 5.2, therefore generating the same error
(calculated by eq. 40) on the homogeneous model and using the same cell percentage
increase for the heterogeneous case.

The first case, with homogeneous velocity, was done using the same domain and model
parameters as the strong scaling test shown in section 5.3 on 5 cores. The computational
time necessary for the forward simulation was 906 s and 648 s for the mass-lumped
triangles and SEM, respectively. However, even though the triangle-based simulation took
more time to run, it had less degrees-of-freedom then the SEM-based one (9,929,409 vs
10,212,615). Since both utilises diagonal mass matrices, the longer runtime can be
explained by the structured mesh used in quadrilaterals, which increases time spent
updating right-hand side values, with 596 s and 356 s spent in this section for triangles and
quadrilaterals, respectively. The rest of the simulation took roughly the same amount of time
(310 s and 292 s).

However, since we use waveform adapted elements, which increase element sizes in
sections of the mesh and therefore lower degrees-of-freedom, we did one more comparison.
An unstructured waveform adapted mesh, with triangular mass-lumped 4th order elements,
was compared with a structured mesh, with quadrilateral SEM on the Marmousi velocity
model. This is done only to illustrate the gains of waveform adapting the elements, since
SEM can also use unstructured meshes in 2D, even though in 3D automatically adapting
hexahedral meshes is considerably more difficult then tetrahedra. Once again, for both
mass-lumped triangles and SEM, the cells-per-wavelength parameter was calculated based
on the same error for both discretizations using the methodology illustrated in section 5.2.
The adapted mass-lumped triangles outperformed the structured quadrilaterals with runtimes
of 327 s and 755 s. It is important to note that this comparison was only done to illustrate
gains associated with unstructured elements and the authors know that SEM can also use
unstructured elements and there are many techniques for semi-structured meshes and
homogenization (Lyu et al., 2020) that can also be applied.

In section 1 (introduction):

“These elements have been compared with finite difference schemes and have favourable



results for the forward wave propagation when interior complexity and topography are
present that can be adequately modelled with unstructured tetrahedra (Zhebel et al., 2014).”

## 2D Marmousi

The peak RAM usage seems a bit high. AS a comparison, as standard FD on this model
(17km x 3 km discretized on a 20m grid) requires ~151*851*1251*4/(1024*3) = .6Gb" of
memory for a wavefield sampled at 4ms (‘'r=4" for your case) which is about 5x-10X lower
than what your method seems to require. Can you elaborate on the memory needs of your
method?

R: The memory requirements are different than what you would expect from a conventional
solver written in ANSI C and/orFORTRAN because of the overhead associated with the Domain
Specific Language and the way Python handles memory management via garbage collection.
Ongoing improvements in the Firedrake library aim at reducing the memory overheads, but this is
an active issue with using the Firedrake library.

Another important issue is that some available FD software have since launch been continuously
incremented with memory and performance enhancing upgrades. Some of which can also be
applied here and should be done when comparing different softwares. Two relevant examples
are checkpointing for FWI and source-encoding in the forward shot propagation. The latter allows
the use of propagating groups of shots simultaneously, creately reducing runtime and memory
costs.

The runtimes need a reference as by themselves they do not provide any information.
R: Please see the answer to the comment before the previous.

## 3D overthrust

The 3D overthrust results aren't very convincing as they show a lot of artifacts and noise. |
would consider trying to improve those. The author states "which is likely a result of poor
source illumination beyond several kilometers of depth.". The illumination is usually
corrected for with the hessian (or some diagonal approximation such as “1/norm(u_"2)".
Because you use |I-BFGS you should have an approximation of the hessian that is quite
accurate after that many iterations. Therefore this interpretation seems incorrect. You can
see in related work (such as Witte et. al you refer to) that the deep part of the model can be
recovered with a god initial model such as yours.

R: The reviewer is correct about the existence of a lot of artefacts and noise. The reason for
this is not the “poor source illumination beyond several kilometers in depth” mentioned
earlier, but the low number of sources used. Because of the current lack of source encoding
in spyro, which is something presently being implemented by other researchers, our 3D
model was limited to only 20 sources. Source-encoding would allow us to run many shots
simultaneously, greatly reducing memory costs and runtime. Because of the low number of
sources, a large source interval of 1750 m was used, causing aliasing artefacts in the final
model. Witte et al. (2019) uses 9600 sources, although on the full 3D model (5.0 km deep x
20.0 m x 20.0 km), which results in roughly 200 m source interval. Based on Brenders and
Pratt (2007), to not have those aliasing artefacts, source spacing would ideally be below A/2,



but can also be increased up to 3M/2, since the minimum velocity, outside of the water, in the
Overthrust 3D model is 2178 m/s, this translates to using a maximum source spacing of 653
m (with the 5 Hz frequency) in order to reduce those aliasing artefacts. The ideal value of
source spacing would be 218 m.

The original statement has been changed in the manuscript, nad the following sentence has
been added:

“Another issue present in the final model are aliasing artefacts, caused by the large interval
between sources of 1750m. Ideally this interval would be A/2, but can go up to 3A/2
(Brenders and Pratt, 2007), which for this model and source frequency is 653m.”

C:

A 5Hz peak wavelet is unrealistic as it leads to <1Hz data not being feasible in real life.
Low-frequency FWI is usually performed for frequencies >3Hz. This could be achieved with
a higher frequency wavelet (ie 15 Hz) than band/lowpass your data to 3-8Hz for inversion.
R: The reviewer is correct with regards to field application of FWI employing higher
frequencies. The study with lower frequencies (5 Hz) aims to test the limits of the proposed
approach even with a lack of information generated by the absence of higher frequencies.
Even with a significantly low frequency, the results obtained were good. If we employed
higher frequencies, we would in principle be able to better define finer features and thin
layers. This is being investigated in an ongoing work, in which we are developing a
multiscale FWI technique using spyro.

C:
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