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Abstract. Extreme drought events in Amazon forests are expected to become more frequent and more intense with climate 

change, threatening ecosystem function and carbon balance. Yet large uncertainties exist on the resilience of this ecosystem to 

drought. A better quantification of tree hydraulics and mortality processes is needed to anticipate future drought effects on 

Amazon forests. Most state-of-the-art dynamic global vegetation models are relatively poor in their mechanistic description of 25 

these complex processes. Here, we implement a mechanistic plant hydraulic module within the ORCHIDEE-CAN-NHA r7236 

land surface model to simulate the percentage loss of conductance (PLC) and changes in water storage among organs via a 

representation of the water potentials and vertical water flows along the continuum from soil to roots, stems and leaves. The 

model was evaluated against observed seasonal variability in stand-scale sap flow, soil moisture and productivity under both 

control and drought setups at the Caxiuanã throughfall exclusion field experiment in eastern Amazonia between 2001 and 30 

2008. A relationship between PLC and tree mortality is built in the model from two empirical parameters, the cumulated 

drought exposure duration that triggers mortality, and the mortality fraction in each day exceeding the exposure. Our model 

captures the large biomass drop in the year 2005 observed four years after throughfall reduction, and produces comparable 

annual tree mortality rates with observation over the study period. Our hydraulic architecture module provides promising 
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avenues for future research in assimilating experimental data to parameterize mortality due to drought-induced xylem 35 

dysfunction. We also highlight that species-based (isohydric or anisohydric) hydraulic traits should be further tested to 

generalize the model performance in predicting the drought risks. 

1 Introduction  

Drought-induced forest mortality events are projected to become more frequent and intense under current climate trends 

(Allen et al., 2015) and may threaten vegetation carbon sinks, as well as biophysical climate regulation by forests (Allen et al., 40 

2010;McDowell et al., 2018). Amazonian rainforests hold the largest forest biomass carbon stock on Earth as one of the most 

important components of the global carbon balance. In the last 15-20 years Amazonia has been heavily affected by concurrent 

drought at intervals of 5-6 years (Lewis et al., 2011;Phillips et al., 2009;Yang et al., 2018). A persistent increase of biomass 

mortality and levelling-off of stand-level growth rate from forest inventory plots suggest a decrease of net biomass 

accumulation rate over the past 30 years (Brienen et al., 2015). The predicted intensification of droughts for future climate 45 

change scenarios may continue to cause increased tree mortality across large areas (Duffy et al., 2015), and exacerbate the 

likelihood of exceeding a tipping point for regional carbon stocks (Nobre and Borma, 2009). Yet, great uncertainties prevent 

understanding and quantification of tree mortality, given the high diversity of tree species with different resistance and 

resilience to drought. Ecosystem models are especially challenged to simulate climate induced mortality at individual and 

stand level, given the lack of field studies providing long-term data for both biometric measurements and observations of soil 50 

and canopy physical climate variables leading to water stress and impairment of tree function. Local ecosystem models with a 

simulation of individual tree growth and death are computationally expensive, require a large number of parameters per species, 

and are generally less developed for simulating the soil water dynamics and surface energy budget. Upscaling of these models 

is also challenging (Maréchaux et al., 2021) and to our knowledge, few land surface models have included climate induced 

mortality beyond that arising from crowding and tree longevity related mortality for large regions (Adams et al., 2017;Delbart 55 

et al., 2010; Powell et al., 2013). On the other hand, land surface models, part of Earth System Models, have advanced 

capabilities to simulate water and energy fluxes between forests and the atmosphere, but usually have rather simple 

representations of biomass carbon dynamics, and many of them do not explicitly resolve climate-induced mortality processes. 

A mechanistic representation and prediction of the Amazon forest response to drought in global land surface models is thus an 

important priority for research.  60 

 

Early vegetation models parameterized mortality through indicators of competition-induced self-thinning and /or 

threshold of growth vigor (Adams et al., 2013;Zhu et al., 2015;McDowell et al., 2011), which ignored the mortality related to 

extreme events such as drought. Improving mortality representation requires more robust physiological processes embedded 

in models that couple water, carbon and energy fluxes (Gustafson and Sturtevant, 2013). Recent advances have been made for 65 

improved resolution of the mechanisms by which trees die from drought. Two non-exclusive physiological mechanisms have 
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been proposed: hydraulic failure and carbon starvation (Choat et al., 2018;McDowell et al., 2018;Meir et al., 2015). Hydraulic 

failure occurs when the tension within the xylem vessels is so high that it causes air-seeded embolism, which impedes water 

transport. If embolism exceeds a tree dependent survival threshold (Cochard and Delzon, 2013), individual tree dieback may 

occur, possibly with some lag in case of insufficient repair capabilities to restore upward water transport. Carbon starvation 70 

during drought is expected to occur from prolonged stomatal closure causing reduced photosynthetic assimilation, resulting in 

a drawdown and possible exhaustion of nonstructural carbohydrate reserves (NSC) (Hartmann, 2015;Signori-Müller et al., 

2021). Also, embolized vessels may be detrimental to the carbon assimilation processes, so that hydraulic failure and carbon 

starvation are coupled together (McDowell et al., 2018). Many studies have tried to discern the respective contributions of the 

two mechanisms in tree wilting during drought (Rowland et al., 2015;Yoshimura et al., 2016). After 15-years of experimental 75 

throughfall exclusion in a forest in the Amazon, Rowland et al. (2015) found that hydraulic failure was most closely associated 

with tree mortality under the drier condition, and that there was no distinct difference in NSC concentration between droughted 

and non-droughted trees, although seasonal differences were observed. Here, we will build on this early understanding of 

drought-induced impacts in the Amazon and present a model where hydraulic failure is considered to be the dominant risk 

factor for tree mortality, but we recognize the importance of carbon starvation and also investigate primary production and 80 

labile carbon changes in the simulations.  

 

Efforts have been made toward accounting for physically-based water transport in land surface models, implemented 

through regulation of stomatal behavior, and the explicit simulation of water transport across the soil, root, stem, leaves and 

atmosphere continuum following a gradient of water potential and organ-specific conductivity parameters (see summary in 85 

Table A1). The Ecosystem Demography model optimized the marginal increase of net carbon assimilation per unit of water 

loss within the soil-plant-atmosphere continuum to simulate a realistic stomatal conductance (Xu et al., 2016). Given the 

benefit-cost tradeoff between photosynthetic carbon gain and hydraulics uplift of water, Sperry et al. (2017) modeled stomatal 

behavior by maximizing the instantaneous difference between photosynthetic gain and the proximity to hydraulic failure. The 

target of such stomatal optimization schemes varies from carbon gains (Dewar et al., 2018), water use efficiency (Bonan et al., 90 

2014) to profit maximization of the difference between carbon gain and hydraulic cost (Sabot et al., 2020), or optimization 

was performed using a linear function of water potential (Eller et al., 2018) or xylem conductance (Eller et al., 2020). In 

addition to the optimization of stomatal control, key features of water potential along the soil-plant-atmosphere continuum are 

also introduced in some models to describe plant hydraulic responses. Papastefanou et al. (2020) modeled plant hydraulics 

starting from leaf water potential in consideration of iso-hydricity among different hydraulics strategies. De Kauwe et al. (2020) 95 

incorporated the plant hydraulic module ‘Desica’ into the CABLE land surface model, which simulated water flows and water 

potential through the soil-plant-atmosphere continuum following Xu et al. (2016). Kennedy et al. (2019) generated new 

configurations of prognostic vegetation water potential at the root, stem and leaf levels and based plant water stress on the 

metrics of leaf water potential in the community land model version 5a. Explicit representations of plant hydraulics in process-

based models advance our knowledge of the plant responses to drought (Hendrik and Maxime, 2017). However, in terms of 100 
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how tree mortality responds to future climate scenarios, research gaps still remain in the specific thresholds of hydraulics 

failure beyond which drought stress induces tree mortality (Anderegg, 2015;Choat, 2013;Hammond et al., 2019), which limits 

the development and testing of hydraulic failure mechanisms coupled to mortality in Amazonian rainforests.  

 

Identifying a specific threshold for hydraulic failure associated with a given mortality likelihood remains challenging 105 

(Choat et al., 2018). Drought indices related to climate have already been tested in this context and were found to be species 

and trait dependent. Anderegg et al. (2015) found that hydraulic conductivity of aspen dropped rapidly when accumulated 

climatic water deficit from 2000-2013 exceeds almost 5300 mm from break-point regression analysis. Relative water content 

derived from vegetation optical depth also contains the signal of such a threshold relationship with drought-driven mortality 

rates (Rao et al., 2019). The percentage of loss in conductivity (PLC) has also been found to be an appropriate metric for 110 

assessment of hydraulic dysfunction (Adams et al., 2017), and has been linked experimentally to plant mortality (Brodribb 

and Cochard, 2009;Liu et al., 2021a;Urli et al., 2013). Liu et al. (2021a) fitted relationships between simulated PLC and 

observed mortality rate across investigated sites via multiple regression, and used this formula for the prediction of mortality. 

Brodribb and Cochard (2009) found that the maximum survivable water stress in conifer species was a 95% loss in leaf 

conductance. For five angiosperm tree species in Europe, Urli et al. (2013) found that the embolism threshold was closer to 115 

the water potential at 88% of conductance loss. Plant volumetric water content also shows a threshold-type response 

empirically related to mortality risk, with an inflection point at 47% of volumetric content (Sapes et al., 2019). Thus, the lethal 

point can differ among tree species, and presumably strongly in tropical forests in which different species vary widely over 

hydraulic traits (Bittencourt et al., 2020;Rowland et al., 2015). This variation needs to be considered in hydraulic modelling.  

 120 

Currently, only a few studies have integrated plant hydraulic failure as a process in a global land surface model and 

parameterized mortality as a consequence. In this study, we implement a mechanistic hydraulic architecture modeling of the 

water transport in the continuum from soil to atmosphere in the ORCHIDEE-CAN model. We refer to this New Hydraulic 

Architecture module as “NHA” that is, ORCHIDEE-CAN-NHA. We describe three developments and their evaluation against 

field measurements for control and experimental throughfall conditions, in aspects of soil and plant water variables, and 125 

biometric variables such as tree growth and mortality, at the Amazon tropical forest site of Caxiuanã (Fisher et al., 2006;Meir 

et al., 2018). Firstly, we describe the development of the new hydraulic architecture model. Then we carry out site-level 

simulations and evaluate the model performance in aspects of seasonal variability in transpiration, soil moisture and 

productivity against experimental control and drought observations. Thirdly with the simulation of dynamic water potential, 

water transport, and conductance, the model is extended to define a mortality risk from continuous high loss of stem 130 

conductance from cavitation. In this part, we bridge the gap between reaching a stem conductance threshold corresponding to 

a high loss of conductance and mortality risk. Finally, we compare the modeled mortality in different circumference classes to 

verify whether our improved model can capture the observed size-related mortality distribution, with trees being first rather 

insensitive to drought during the first years, after which larger trees are affected by dieback.   
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2 Methods   135 

2.1 Model description and simulation protocols 

2.1.1 The starting point: ORCHIDEE-CAN r2290 

The model version taken as the starting point for development in this study is ORCHIDEE-CAN (r2290), a branch of the 

ORCHIDEE land surface model. ORCHIDEE is a physical process-based model, which can simulate the energy, water, and 

carbon fluxes between land surfaces and the atmosphere. The SECHIBA module corresponds to faster processes, such as 140 

exchange of water and energy as well as photosynthesis between land and the atmosphere in half hour time interval. The carbon 

module (STOMATE) simulates soil processes (soil decomposition, heterotrophic respiration, soil organic carbon dynamics) at 

the half-hourly time step and vegetation carbon cycle processes at daily intervals, including carbon allocation, vegetation 

mortality and recruitment, phenology, litter fall. The development of this branch of the ORCHIDEE model focuses on 

improving the capability of the ORCHIDEE model to simulate the biogeochemical and biophysical effects of forest 145 

management and includes allometric-based allocations of carbon to different pools, a simple plant hydraulic structure (see 

below) as well as an albedo scheme that in part depends on canopy structure (Naudts et al., 2015). One of its new features is 

the way the vegetation is discretized; a dynamic canopy structure is simulated by considering a user-defined number of 

circumference classes (n=20 in this study) and an empirical rule reflecting intra-tree competition that downscales canopy level 

GPP into the different circumference classes, which feedback on light interception and mortality through self-thinning. 150 

Background mortality comes from the reciprocal of a constant residence time. Climate based mortality, e.g. from drought has 

not been modeled yet using this system.  

 

2.1.2 Hydraulic architecture representation in ORCHIDEE-CAN  

In ORCHIDEE-CAN r2290 (Naudts et al., 2015), the representation of water stress is realized through a constraint based 155 

on the amount of water that plants can transport from soil to their leaves. This constrained transpiration supply equals the 

quotient between the water potential gradient from soil to leaves, and a total hydraulic resistance of leaf, stem and root. In this 

framework, the leaf water potential is fixed to a constant value for each plant functional type (PFT), with specific minimum 

value (-2.2 MPa for tropical evergreen forests, Hickler et al. (2006). The soil water potential in the root zone is calculated by 

adding a tuned scaling factor, accounting for soil-root resistance and other missing processes, to the sum of the soil water 160 

potential (calculated from soil moisture and van Genuchten parameters, Van Genuchten (1980) weighted by a proportion of 

root mass in each soil layer. Such hard modulator can sometimes lead to unrealistic soil water potential in the root zone (Joetzjer 

et al., 2022). The prescribed vegetation distribution is used to constrain this modulator to minimize model bias (Naudts et al., 

2015). During the simulation, transpiration is co-limited by the energy budget providing a transpiration demand, and the 

transpiration water supply limited by transport from soil to leaves. When the potential transpiration constrained by the energy 165 

budget is higher than the transpiration supply, real transpiration is limited to the physically plausible water supply. Then the 
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energy budget and photosynthesis-related processes are recalculated. It should be noted that the root and leaf resistance 

parameters in ORCHIDEE-CAN depend only on conductivity and biomass (root mass for root, LAI for leaf) and do not respond 

to hydrological conditions directly. Only the stem resistance related to xylem conductivity is dynamic and changes as a function 

of the soil water potential in the root zone. The schematic framework of the ORCHIDEE-CAN model is illustrated in Figure 170 

1a. This architecture is not completely mechanistic, given the tuned factor on top of soil water potential, the fixed leaf water 

potential values and the conductivities affected solely by organ mass. Therefore, further developments of the hydraulic 

architecture scheme were performed and presented here.  

 

2.1.3 Dynamic root scheme in ORCHIDEE-CAN-RS 175 

To increase the reliability of soil water potential simulations in root zone (Ψsoil-root), Joetzjer et al (2022) improved this 

part of the model (flowchart in Figure 1b, ORCHIDEE-CAN-RS). Ψsoil-root integrated Ψsoil in the root zone vertically, i.e. Ψsoil 

in the root zone is now weighted by the maximum amount of water that can be absorbed by roots in each soil layer (Emax), 

which depends on a soil-to-root resistance and on a prescribed minimum root water potential (-3 MPa in this study) below 

which no more water in a given soil layer can be drawn into the plant. The soil-to-root resistance accounts for the water 180 

transport path from soil to root surface. With this scheme, the plant will dynamically use deep layer soil moisture when the 

surface soil desiccates, so that this process allows to sustain more transpiration from deeper layers during dry periods. Although 

Joetzjer et al (2022) solved the problem of tuned modulator imposed on Ψsoil-root by adding a parameterization of the soil-to-

root resistance, a more integral mechanistic structure of water transport from soil to leaf remains to be done to enable a dynamic 

connection between soil and leaf as well as corresponded simulations during drought events. Ψsoil-root is calculated separately 185 

for different cohorts, since we assume taller trees have deeper roots and can reach water stored in deeper layers. For example, 

we assume that the largest cohort can take water from all 12 soil layers while the smallest cohort can only take water in shallow 

layer.  

 

2.1.4 Hydraulic scheme development and implementation in ORCHIDEE-CAN-NHA r7236  190 

Figure 1c presents the schematic diagram of the new hydraulic architecture in ORCHIDEE-CAN-NHA. Besides the water 

transport driven by vertical water pressure difference, the water flow to / from organ-specific water storage at time t is explicitly 

modeled based on capacitances and water potential differences between time t and t-1. For each organ, the water supply should 

meet its water demand. For example, water demand at leaf level is parameterized as the transpiration supply. Water supply to 

leaf is composed by water transport from stem minus the water charge or plus the discharge from the leaf water storage pool. 195 

The water budget of the leaves is calculated first, in order to determine how much water has to be drawn up from the other 

connected upstream organs. It should be noted that the new hydraulic mechanism is imposed on 20 circumference classes, 

separately. The detailed description of new mechanistic hydraulic processes is given below.  



7 

 

2.1.4.1 Water storage calculation  

The Supply-Demand framework is solved at leaf, stem and root, separately. We assume that during the first time step, all 200 

water potentials in different organs are the same (Eq. 1). Here, “the first time-step” points to the very first half-hour of the 

simulation. At first time-step, the initial value of Ψl, Ψs, and Ψr all equal to Ψsoil-root, which is the weighted sum of soil water 

potential. 

Ψleaf, t = Ψstem, t = Ψroot, t = Ψsoil-root, t  (1) 

Water storage in the different organs is calculated with organ-specific capacitance values (water storage unit: mmol): 205 

𝑀𝑙𝑒𝑎𝑓,𝑚𝑎𝑥 =
𝐵𝑙𝑒𝑎𝑓

𝐿
− 𝐵𝑙𝑒𝑎𝑓  (2) 

𝑀𝑙𝑒𝑎𝑓,𝑡 = 𝑀𝑙𝑒𝑎𝑓,𝑚𝑎𝑥 + 𝐶𝑙𝑒𝑎𝑓 × 𝜓𝑙𝑒𝑎𝑓,𝑡 × 𝐿𝐴  (3)  

Where Cleaf is relative leaf capacitance in unit of mmol m-2 MPa-1, L the leaf dry matter content, Bleaf is the dry leaf biomass. 

LA is total leaf area. Maximum water storage in leaf (Mleaf,max) is generated by leaf fresh mass minus dry mass. Mleaf,t is leaf 

water storage at time t.  210 

𝑀𝑠𝑎𝑝,𝑚𝑎𝑥 = 𝑉𝑠𝑡𝑒𝑚 × 𝛾  (4) 

𝑀𝑠𝑎𝑝,𝑡 = 𝑀𝑠𝑎𝑝,𝑚𝑎𝑥 + 𝐶𝑠𝑡𝑒𝑚 × 𝜓𝑠𝑡𝑒𝑚,𝑡 × 𝑉𝑠𝑡𝑒𝑚  (5) 

𝑉𝑠𝑡𝑒𝑚 = 𝜋  
𝐷

2
 
2

ℎ  (6) 

Where Cstem is sapwood capacitance (unit: kg m-3 MPa-1), h tree height in m, Vstem is proportional to the volume of tree stem in 

m3. γ is the amount of water (mmol) per unit stem volume, which corresponds to the maximum mass of water per stem volume. 215 

Msap,max and Msap,t are maximum sapwood water storage and sapwood water storage at time t, respectively. D is the diameter at 

breast height. In the model, we also did a unit transform from kg to mmol.  

𝑀𝑟𝑜𝑜𝑡,𝑚𝑎𝑥 = 𝐵𝑟𝑜𝑜𝑡 × 휀  (7) 

𝐵𝑟𝑜𝑜𝑡 = 𝑉𝑠𝑡𝑒𝑚 × 𝛿 × 𝜃  (8) 

𝑉𝑟𝑜𝑜𝑡 =
𝐵𝑟𝑜𝑜𝑡

𝜌𝑟𝑜𝑜𝑡
        (9)  220 

𝑀𝑟𝑜𝑜𝑡,𝑡 = 𝑀𝑟𝑜𝑜𝑡,𝑚𝑎𝑥 + 𝐶𝑟𝑜𝑜𝑡 × 𝜓𝑟𝑜𝑜𝑡,𝑡 × 𝑉𝑟𝑜𝑜𝑡  (10) 

Where ε indicates the amount of water (mmol) stored in per gram of root mass. δ is aboveground wood density. Vroot is root 

volume. θ is root to shoot ratio. Broot is root mass. ρroot is root density. Mroot,max and Mroot,t are maximum root water storage and 

root water storage at time t, respectively. Croot is root capacitance (unit: kg m-3 MPa-1).  

 225 

2.1.4.2 Hydraulic conductance calculation  

Hydraulic conductance per unit of leaf area in leaf, sapwood and root at time t (kleaf,t, kstem,t, kroot,t) are calculated with 

sigmoidal relationships (Pammenter and Van der Willigen, 1998), based on their real-time water potential and a maximum 

conductance. 𝜓50,𝑜𝑟𝑔𝑎𝑛   denotes the water potential when 50% conductance lost. 𝑒𝑎𝑜𝑟𝑔𝑎𝑛  describes the sensitivity of 
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conductance to changes in water potential around 𝜓50,𝑜𝑟𝑔𝑎𝑛 . An example for how these two shape parameters affecting 230 

sapwood conductance is shown in Figure S1.  

 

𝑘𝑙𝑒𝑎𝑓,𝑡 =
𝑘𝑙𝑒𝑎𝑓,𝑚𝑎𝑥

1+𝑒𝑥𝑝 𝑎𝑙𝑒𝑎𝑓× 𝜑𝑙𝑒𝑎𝑓,𝑡−𝜑50,𝑙𝑒𝑎𝑓  
        (11) 

where kleaf,t and kleaf,max are leaf conductance at time t and maximum leaf conductance, respectively.  

𝑘𝑠𝑡𝑒𝑚,𝑡 =
𝑘𝑠𝑡𝑒𝑚,𝑚𝑎𝑥

1+𝑒𝑥𝑝 𝑎𝑠𝑡𝑒𝑚× 𝜑𝑠𝑡𝑒𝑚,𝑡−𝜑50,𝑠𝑡𝑒𝑚  
  (12) 235 

where kstem,t and kstem,max are stem sapwood conductance at time t and maximum stem sapwood conductance, respectively.  

𝑘𝑟𝑜𝑜𝑡,𝑡 =
𝑘𝑟𝑜𝑜𝑡,𝑚𝑎𝑥

1+𝑒𝑥𝑝 𝑎𝑟𝑜𝑜𝑡× 𝜑𝑟𝑜𝑜𝑡,𝑡−𝜑50,𝑟𝑜𝑜𝑡  
  (13) 

where kroot,t and kroot,max are root conductance at time t and maximum root conductance, respectively.  

The conductance of the upper part of the tree (leaf plus upper part of stem) and lower part of the tree (lower part of stem plus 

root) are calculated following Eq. 14-15. These two conductances will be used to calculate the water flow from stem to leaf, 240 

and root to stem later separately. The value 2 in front of kstem,t in each equation denotes that only half of stem is accounted for 

in upper part and trunk part separately. Half of root length is considered in trunk part as well. The water transport process is 

assumed to be similar to electric current, of which the resistance (the reciprocal of hydraulic conductance) should be added up 

along the water transport path.  

 245 

𝑘𝑢𝑝𝑝𝑒𝑟,𝑡 =
1

1

𝑘𝑙𝑒𝑎𝑓,𝑡
+

1

2𝑘𝑠𝑡𝑒𝑚,𝑡

 (14)   

𝑘𝑡𝑟𝑢𝑛𝑘,𝑡 =
1

1

2𝑘𝑟𝑜𝑜𝑡,𝑡
+

1

2𝑘𝑠𝑡𝑒𝑚,𝑡

 (15) 

 

2.1.4.3 Water transport pathway simulation   

We assume that for leaves, transpiration supply is based on the water input transported from the stem minus the water 250 

charge/discharge from the leaf water storage pool (Eq. 16).  

𝑇𝑠𝑢𝑝𝑝𝑙𝑦 = 𝐽𝑙𝑒𝑎𝑓,𝑡+1 −𝑊𝑙𝑒𝑎𝑓,𝑡+1 (16) 

Where Jleaf,t+1 is the flux of water transported vertically to leaf from stem sapwood (unit: mmol) and Wleaf,t+1 the change in leaf 

water storage. A positive value of Wleaf, t+1 means that the leaf was charged with water during hydraulic recovery, and negative 

means it was reduced by evapotranspiration. At leaf level, the target is to solve for the leaf water potentials that minimize the 255 

difference between potential transpiration demand and supply (Eq. 17).   

∆= (𝐽𝑙𝑒𝑎𝑓,𝑡+1 −𝑊𝑙𝑒𝑎𝑓,𝑡+1) − 𝑃𝑇𝑑𝑒𝑚𝑎𝑛𝑑    (17) 

Similarly, at stem level, the target is to minimize the difference between water demand at stem and water supply to the stem 



9 

 

(Eq. 18).  

∆=  𝐽𝑠𝑡𝑒𝑚,𝑡+1 −𝑊𝑠𝑡𝑒𝑚,𝑡+1 − 𝐽𝑙𝑒𝑎𝑓,𝑡+1       (18) 260 

Jstem,t+1 is the water transported vertically from root to stem. Wstem,t+1 the change in stem water storage. After solving leaf-level 

target, Jleaf,t+1 is known, which is the water demand at stem.  

At root level, the target is to minimize the difference between water demand at root and water supply to root (Eq. 19)  

∆=  𝐽𝑟𝑜𝑜𝑡,𝑡+1 −𝑊𝑟𝑜𝑜𝑡,𝑡+1 − 𝐽𝑠𝑡𝑒𝑚,𝑡+1         (19) 

Jroot,t+1 is the water transported from soil in root zone to root. Wroot,t+1 is the change in root water storage. After solving stem-265 

level target, Jstem,t+1 is known, which is the water demand at root. The detailed calculations of these water flow variables are 

explained below in the order of leaf, stem and root.   

Thus, water potentials are solved to let the water supply equal to water demand at each organ. In the model, HYBRD1 

function from Minpack package in Fortran is used, which seeks a zero of N nonlinear equations in N variables. The evaluated 

function is the difference between water supply and water demand at each organ level. This function iteratively minimizes the 270 

absolute value of the evaluated function. The initial estimate of the solution vector is quite important and comes from the water 

potential at last time step. For example, the initial estimate for leaf water potential at time step t that will be used in the formula 

is the stem water potential at time step t-1. 

 

a. Leaf transport 275 

The water movement into the leaf through the hydraulic pathway is calculated as 

𝐽𝑙𝑒𝑎𝑓,𝑡+1 =  𝜓𝑠𝑡𝑒𝑚,𝑡 − 𝜓𝑙𝑒𝑎𝑓,𝑡+1 − 𝜓ℎ/2 × 𝑘𝑢𝑝𝑝𝑒𝑟,𝑡+1 × 𝐿𝐴             (20) 

𝑊𝑙𝑒𝑎𝑓,𝑡+1 = 𝐶𝑙𝑒𝑎𝑓 ×  𝜓𝑙𝑒𝑎𝑓,𝑡+1 − 𝜓𝑙𝑒𝑎𝑓,𝑡 × 𝐿𝐴      (21)  

A positive Wleaf,t+1 means an increase in leaf water storage and vice versa.   

Ψh/2 indicates how much water potential gradient is needed to pull water against gravity up to the height (h) of the tree from 280 

position of 1/2 tree height (middle of stem).  

We calculate Jleaf,t+1 and Wleaf,t+1 using an optimization procedure i.e. we start by assuming 𝜓𝑙𝑒𝑎𝑓,𝑡+1 = 𝜓𝑠𝑡𝑒𝑚,𝑡  and 

progressively decrease 𝜓𝑙𝑒𝑎𝑓,𝑡+1 until the difference between leaf water supply and demand is close to zero (Eq. 22). Leaf 

water potential is solved using HYBRD1 function (see above). The tolerance is 0.00001MPa. When the relative error between 

two consecutive iterates is below the tolerance, the calculation routine is terminated. 285 

 

 ∆= 𝑇𝑠𝑢𝑝𝑝𝑙𝑦 − 𝑃𝑇𝑑𝑒𝑚𝑎𝑛𝑑  (22) 

PTdemand (potential transpiration demand) is related to stomatal conductance, VPD and total leaf area (Eq. 23), where stomatal 

conductance varies with Ψleaf (Eq. 24).  

𝑃𝑇𝑑𝑒𝑚𝑎𝑛𝑑 = 𝑔𝑠 ×
𝑉𝑃𝐷

𝑃
× 𝐿𝐴      (23) 290 
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𝑔𝑠 =
𝑔𝑚𝑎𝑥

𝐿×𝑅𝑎𝑑

𝐿×𝑅𝑎𝑑+𝐿𝑘

1+𝑒
𝑎𝑔𝑠 𝜓𝑙𝑒𝑎𝑓,𝑡−𝜓50,𝑔𝑠 

+ 𝑔𝑚𝑖𝑛  (24)     

gs, gmax and gmin are in unit of mmol m-2 s-1. VPD is in unit of kPa. LA is total leaf area.  

P is standard atmospheric pressure (101.3 kPa). The aim of this gs model is to let gs vary following dynamics of leaf water 

potential in sigmoidal function then gs can be coupled into the plant water transport system via the transpiration supply. 

Meanwhile, the gs is assured to close to 0 in the night, mediated by the radiation-related variable (
L×Rad

L×Rad+Lk
). L and Lk are 295 

parameters specifying the strength of short-wave radiation limitation on stomatal conductance. Minimum leaf water potential 

in this study is set to -3.0 MPa to avoid unrealistic value (Fisher et al., 2006).  

We verified that our simulated gs with the parameters values from Table A2 are of similar magnitude than in the SPA model of 

Fisher et al (2007) at Caxiuana, which was developed independently from ORCHIDEE (Figure S2). gs in SPA model is obtained 

by maximizing the marginal carbon gain of stomatal openness (intrinsic water use efficiency). Further, in order to show that 300 

our model parameters can be used to simulate gs at other rainforest sites, we collected gs observations (at leaf scale) from two 

rainforests in French Guiana and Peru from Lin et al (2015) and tested our model against these observations. Figure S3 shows 

that our simulated gs values fall in the range observed at these two sites. 

 

b. Stem transport 305 

Next, we know that the water demand at stem is the amount of water transported from stem to leaf, Jleaf,t+1. We can now 

use the same procedure to calculate the Ψstem, t+1 that produces the expected Jleaf,t+1, and how much of that transport is from 

storage and from the roots through the vertical hydraulic pathway.  

𝐽𝑠𝑡𝑒𝑚,𝑡+1 =  𝜓𝑟𝑜𝑜𝑡,𝑡 −𝜓𝑠𝑡𝑒𝑚,𝑡+1 − 𝜓ℎ/2 × 𝑘𝑡𝑟𝑢𝑛𝑘,𝑡+1 × 𝐿𝐴 (25) 

𝑊𝑠𝑡𝑒𝑚,𝑡+1 = 𝑐𝑠𝑡𝑒𝑚 ×  𝜓𝑠𝑡𝑒𝑚,𝑡+1 −𝜓𝑠𝑡𝑒𝑚,𝑡 × 𝑉𝑠𝑡𝑒𝑚 (26) 310 

𝑆𝑠𝑡𝑒𝑚,𝑡+1 = 𝐽𝑠𝑡𝑒𝑚,𝑡+1−𝑊𝑠𝑡𝑒𝑚,𝑡+1     (27) 

∆= 𝑆𝑠𝑡𝑒𝑚,𝑡+1 − 𝐽𝑙𝑒𝑎𝑓,𝑡+1 (28) 

Sstem,t+1 is the water supply to stem. Jleaf, t+1 is the water demand at stem. Then we solved the Ψstem,t+1 to minimize the difference 

between Jleaf,t+1 and Sstem,t+1 (Eqs. 27-28).  

 315 

c. Root transport 

The same procedure is also carried out for root. The total flow out of the root is equal to Jstem,t+1. We calculate root water 

transport according to the following equations: 

𝐽𝑟𝑜𝑜𝑡,𝑡+1 =  𝜓𝑠𝑜𝑖𝑙−𝑟𝑜𝑜𝑡,𝑡 − 𝜓𝑟𝑜𝑜𝑡,𝑡+1 × 2 × 𝑘𝑟𝑜𝑜𝑡,𝑡+1 × 𝐿𝐴 (29) 

𝑊𝑟𝑜𝑜𝑡,𝑡+1 = 𝐶𝑟𝑜𝑜𝑡 ×  𝜓𝑟𝑜𝑜𝑡,𝑡+1 − 𝜓𝑟𝑜𝑜𝑡,𝑡 × 𝑉𝑟𝑜𝑜𝑡  (30) 320 

𝑆𝑟𝑜𝑜𝑡,𝑡+1 = 𝐽𝑟𝑜𝑜𝑡,𝑡+1 −𝑊𝑟𝑜𝑜𝑡,𝑡+1 (31) 

∆= S𝑟𝑜𝑜𝑡,𝑡+1 − 𝐽𝑠𝑡𝑒𝑚,𝑡+1 (32)  
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Jstem, t+1 is the water demand at root. Sroot,t+1 is the water supply to root. Then we solved the Ψroot,t+1 to minimize the difference 

between Jstem,t+1 and Sroot,t+1 (Eq. 31-32). The ‘2’ in Eq. 29 means half of the root is accounted (
1
1

2×𝑘𝑟𝑜𝑜𝑡

) here since the other half 

of the root is considered in ktrunk, t.  325 

We assume that water does not travel in reverse, leaving the roots and going into the soil. We also impose a limit on 

vertical water flow to non-negative values.  

 

2.1.4.4 Update water storage pools 

After the simulation of water transport, we use the Wt+1 values to update the water storage in each organ.  330 

𝑀𝑙𝑒𝑎𝑓,𝑡+1 = 𝑀𝑙𝑒𝑎𝑓,𝑡 +𝑊𝑙𝑒𝑎𝑓,𝑡+1 (33) 

𝑀𝑠𝑡𝑒𝑚,𝑡+1 = 𝑀𝑠𝑡𝑒𝑚,𝑡 +𝑊𝑠𝑡𝑒𝑚,𝑡+1 (34) 

𝑀𝑟𝑜𝑜𝑡,𝑡+1 = 𝑀𝑟𝑜𝑜𝑡,𝑡 +𝑊𝑟𝑜𝑜𝑡,𝑡+1 (35) 

 

All above calculation processes are carried out for 20 circumference classes, separately. The parameters used in the new 335 

hydraulic architecture are summarized in Table A2. We did some sensitivity tests by attempting different values combination 

of parameters within range of records in literatures, like degree of vulnerability, Ψ50, and degree of sensitivity, a (shape 

parameter), as shown in Figure S4. Parameters set that can better capture the observed variation of drought-induced tree 

mortality (especially the higher tree mortality rate in larger cohorts) was chosen. We do not aim for a perfect match between 

model output and observation to avoid the overfit issue during the generalization of the model. 340 

 

2.1.5 Parameterization of tree mortality related to drought  

Since trees can endure drought conditions and do not die after one or two days of low stem water potential or water 

shortage (Brodribb et al., 2020), we defined an exposure threshold dessiccation time to trigger mortality. Continuous exposure 

to a high percentage loss of conductance forebodes tree mortality, therefore a decision rule was set with two empirical 345 

parameters, a drought mortality exposure threshold (in days) and a mortality fraction of trees each time (in % of all trees that 

die). When PLC > 50% condition lasts for more than 15 continuous days, we assume that a fraction of 0.3 % of all the trees in 

each size cohort are killed. These two parameters are tuned according to the observed annual mortality rates. It should be noted 

that a cohort model represents all the trees in a grid cell as one average individual, thus an absolute mortality threshold would 

kill them all on the same day. Hence we impose a fractional mortality to capture the variability in mortality drivers and 350 

processes within each cohort. We also consider that a very short wetting break during a drought condition would not necessarily 

act to reverse embolism and thus the tree’s exposure to mortality. Here the minimum threshold for a continuous wetting break 
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(PLC<50%) to reset the exposure to zero is set to 5 days. The annual mortality rate equals to the number of dead trees per year 

divided by the number of trees alive in the beginning of this year. 

Finally, following ORCHIDEE-CAN-RS, the recruitment rate is determined by LAI (Joetzjer et al., 2022). LAI is 355 

determined by leaf mass, which is regulated by the leaf growth, leaf turnover and leaf loss due to drought-induced tree mortality. 

When LAI decreases during drought, the recruitment rate will increase correspondingly since recruitment is parameterized as 

function of LAI. The new outputs from ORCHIDEE-CAN-NHA are listed in Table A3.   

2.2 Biomass growth and loss calculation  

∆biomass = growth – loss (36) 360 

As ORCHIDEE does not account for BVOC emissions, root exudation and C-subsidies to mycorrhizae, biomass growth 

is simulated as the residual of GPP minus autotrophic respiration. Biomass loss comes from three processes in ORCHIDEE: 

turnover (loss of leaves and fine roots), self-thinning and climate-induced mortality, that is, drought for this study. It should be 

noted that, in ORCHIDEE-CAN, when the number of individuals falls below a parameterized threshold, self-thinning does not 

happen and individuals grow without competing with each other. This calculation process is the same among three different 365 

model versions.  

 

2.3 Site description  

The study site is a tropical lowland rainforest located in the Caxiuanã National forest, state of Para, north-east of Brazil 

(1o43’S, 51o27’W). Annual rainfall in this site is 2000-2500mm with dry season spanning from July to November (monthly 370 

rainfall < 100mm). There are two experiments, which were carried out since the beginning of 2001. A throughfall exclusion 

experiment (TFE) started in the end of dry season in 2001, where 50% of canopy throughfall is excluded by plastic roof at the 

height of 1-2m above the ground (Fisher et al., 2007;Meir et al., 2018). It is of 1-ha size. Another 1-ha control plot is also set 

without any manipulation. Here the observation data we used extends to 2008 at most due to data access issue, but these 

experiments are still running.  375 

 

From published literature (Carswell et al., 2002;da Costa et al., 2010;Fisher et al., 2007;Rowland et al., 2015), we 

collected observation data as validation for model simulation, including transpiration data, soil moisture data, annual mortality 

rate, annual biomass density, and GPP (Table 1). We also used output from the SPA (soil-plant-atmosphere) model with 

parameters measured for the Caxiuanã experiment. SPA is a multilayer soil-vegetation-atmosphere transfer model, which has 380 

been parameterized upon such drought affected ecosystems (Fisher et al., 2007). We included simulated GPP output from SPA 

for model comparison under TFE since eddy covariance flux measurements can only be used in model-data comparison under 

CTL.  
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Table 1 Collected observation data used for validation of process-based model simulation.  385 

Variables  Period Time step References 

Transpiration 2001-2003 Daily Fisher et al (2007) 

Soil moisture 2001-2004 Monthly Fisher et al (2007) 

Biomass density 2001-2008 Annual 
Observation from Rowland et al (2015) 

and da Costa et al (2010) 

GPP 2001-2003 Daily  
SPA model : Fisher et al (2007), 

flux data: Carswell et al. (2002) 

Mortality rate 2001-2008 Annual 
da Costa et al (2010); 

Rowland et al (2015) 

 

2.4 Simulation protocols  

We performed three simulations at site-level for Caxiuanã to compare the hydraulic architecture from each model version. 

Specifically, we tested the model performance under two setups, the control (CTL) and the throughfall exclusion experiments 

(TFE). In the model, TFE is reproduced by keeping only 50% of the rainfall of CTL with all else being the same as CTL (Fisher 390 

et al., 2007). It should be noted that such rainfall cut is a simplification since in reality, a plastic panel is used to exclude 50% 

of throughfall. We ran 250yr spin-up by cycling climate forcing data over 2001 to 2008 with constant CO2 concentration of 

380 ppm to get the preliminary state of carbon pools and water flow at the beginning of 2001. The meteorological forcing is 

of half-hourly time step. The half-hourly meteorological data are measured using an automatic weather station located at the 

top (51.5 m) of a tower 1 km from the experimental plot. The simulation was ran offline without coupling with a climate model. 395 

Two former model versions, and our new developments are integrated as below. We compared ORCHIDEE-CAN-RS and 

ORCHIDEE-CAN-NHA to see the improvements brought by the new hydraulic architecture. It should be noted that all these 

three simulations are realized through several flags to switch on/off some functionality.  

 

(1) ORCHIDEE-CAN with the original simple hydraulic module setup.  400 

(2) ORCHIDEE-CAN-RS, which adds new dynamic soil-root scheme on top of (1)  

(3) ORCHIDEE-CAN-NHA, with the new mechanistic hydraulics on top of (2).  
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2.5 Statistical tools 

We used the R programming environment and statistical packages (version 3.5.0; R Core Team 2019) for all data 405 

processing and analysis. Package ncdf4 v1.17 (Pierce, 2019) is used to handle files in NetCDF format from model outputs. 

Package fields v10.3 (Nychka D, 2020) is used in water potential plotting.  

 

3 Results  

3.1 Model evaluation against observation  410 

3.1.1 Evapotranspiration and soil moisture  

Under the control (CTL) condition, the model developed here (ORCHIDEE-CAN-NHA) agreed well with the sap flow 

observations from well-watered periods but underestimated sap flow in the dry season. The dry season points in Figure 2 are 

those with a water deficit of up to -3 mm day-1 (monthly precipitation below evapotranspiration). Regressing modeled 

transpiration with sap flow observations, we found that the model better represents the month-to-month seasonal variability 415 

under CTL than TFE (R=0.76 in CTL v.s. R=0.48 in TFE). Under the TFE condition, the model overestimated transpiration in 

both the wet and dry seasons, with a positive bias increasing at water deficits typically below -2mm/d (Figure 2). Simulation 

by ORCHIDEE-CAN-RS also showed such a positive bias (Figure S5). This positive model bias was mainly contributed by 

the simulation in 2002 when the TFE experiment was installed by the end of 2001. The transpiration supply did not show water 

limitation on transpiration under TFE until the end of the dry season in 2002 (Figure S6). The simulated transpiration could be 420 

limited by water supply (water limitation) or water demand (energy limitation). Under CTL, there is almost no water limitation 

even in dry season. The underestimated sap flow can be due to that model tends to underestimate the sensitivity to VPD 

increase in dry season. Under TFE, there is water supply limitation. The possible reasons for such overestimation under TFE 

can be that the sensitivity of water supply to drop in soil moisture is underestimated or the too slow soil water drainage in our 

model setup relative to that in reality (Kennedy et al., 2019).   425 

 

In terms of comparison on transpiration (Table S1), under CTL, the correlation coefficient with the observation is similar 

among three model versions (0.71-0.76) although there is indeed a bit increase in other error metrics in ORCHIDEE-CAN-

NHA like root mean square error (RMSE) and mean absolute percentage error (MAPE). ORCHIDEE-CAN-NHA performs 

better in water stress condition (under TFE) in aspects of these error metrics but shows a bit lower correlation with observation 430 

than other two versions. 

 

The partitioning of evapotranspiration (ET) was compared between CTL and TFE. Under the CTL condition, the modeled 

partition of evapotranspiration (ET) into transpiration (T), intercepted canopy water or dew re-evaporation (CE), and bare soil 

evaporation (E) is shown in Figure S7, with the ratio (T/ET) being around 0.57 in the wet season, and 0.74 in the dry season. 435 
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Under TFE, the difference of T/ET between the dry and the wet season increased (wet: 0.58 vs. dry: 0.82). Specifically, under 

CTL, the daily mean transpiration can reach more than 4 mm/d and soil evaporation accounted for 29% of total ET in the wet 

season. The magnitude of transpiration increased by 51% in the dry season (range: 22%-71%) compared to that in wet season 

under CTL, which is similar to the observations (+44% in Fisher et al., 2007), due to higher energy supply and non-water 

limiting conditions. This indicated that normal conditions at this site are not very strongly limited by soil moisture during the 440 

dry season, despite recurrent deficits, as shown by the red bars on the top of Figure 3. Nevertheless, under TFE, the transpiration 

was lower than in CTL and encountered emerging water supply induced limitation in the dry season, with Tdry/Twet of 1.12 

over 2002-2008 (minimum Tdry/Twet can be 0.60 in 2005) (Figure 3). Soil evaporation also decreased a lot under TFE from wet 

to dry season, and the ratio (E/ET) was halved from the wet to the dry season, especially in the year 2005, 2006 and 2007, 

when annual rainfall was relatively lower.  445 

 
We next examined the model performance (ORCHIDEE-CAN-NHA) for reproducing the soil moisture dynamics during 

the observation period between 2001 and 2004. Soil moisture content (SMC) featured a pronounced seasonal decrease between 

wet and dry periods under CTL and TFE (Figure 4). Under CTL, in the surface soil, the model produced a small 

underestimation of SMC in both wet and dry seasons compared to observation. With increasing depth in the soil, this negative 450 

difference between modeled and observed SMC became more pronounced in the dry season (Figure 4). Under TFE, a similar 

negative difference also appeared in the dry season only, while a positive difference appeared in the wet period. Besides, under 

TFE, the modeled SMC was however always lower than for CTL in the surface layer, and got even more depleted in the deeper 

layer with the dynamic soil-root scheme, even in wet season (Figure 5), because this scheme shifts root uptake from surface 

to deep layers when the surface dries out compared to simulation of ORCHIDEE-CAN (Figure S8). SMC at each layer is 455 

influenced by infiltration, evaporation, transpiration and drainage. The amount of water that can be absorbed from each layer 

(ɳ) is determined by its water potential and also soil-root resistance. Soil water potential decreases with soil depth while soil-

root resistance becomes much smaller with soil depth as well. Therefore, ɳ does not change monotonically with soil depth. For 

example, in wet season in 2005 under TFE, ɳ in deeper soil layer is higher than that in top layer. While in dry season, ɳ in 

deeper soil layer can decrease to almost 0, when the water supply mainly comes from the shallower layer. In year 2004, even 460 

in dry season, lower soil layers can contribute a lot to water uptake (Figure S9).  

 

3.1.2 Carbon fluxes  

GPP simulation outputs had a similar seasonality under CTL among all model versions (Figure S10). All simulations showed 

higher GPP in the dry season compared to the wet season under CTL (also in eddy covariance Carswell et al., 2002) (Table 465 

S2). When we compared GPP against the SPA model results from Fisher et al (2007) that were calibrated to best fit site-level 

observations, and against flux observation, we found that modeled GPP in ORCHIDEE-CAN-NHA showed a larger seasonal 

amplitude than that of SPA but with a similar phase (Figure 6). GPP from ORCHIDEE-CAN-NHA presents 1.1 gC m-2 day-1 
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difference between wet and dry season, which is similar with two previous versions. GPP seasonality from eddy covariance 

data was also in agreement with the simulation from ORCHIDEE-CAN-NHA, with a peak in the middle of the dry season. In 470 

contrast, the SPA modeled GPP decreased right from the start of the dry season. We found that the impact of TFE condition 

on modeled GPP was relatively small during the wet season, with a difference less than 10% in comparison with CTL (see 

Figure S10 for the two other versions). On the other hand, the impact of TFE during the dry season led to a pronounced 

decrease of GPP, like in the SPA model. In ORCHIDEE-CAN-NHA, GPP decreased only in the end of the dry season under 

TFE while in SPA it decreased from the beginning (Figure 6). Only after two years of drought, ORCHIDEE-CAN-NHA 475 

simulated an early decrease of GPP at the beginning of the dry season, and thus became consistent with SPA (Figure 6). Dry 

season GPP increase is also found in other two model versions in spite of a bit difference in the magnitude. In SPA model, 

GPP is simulated using FvCB model regulated by optimization of intrinsic water use efficiency, in which the optimization 

target is 
𝜕𝐴

𝜕𝑔𝑠
 (A is assimilation, gs is stomatal conductance), not accounting for VPD. So the magnitude of GPP variation would 

not be too high. In ORCHIDEE-CAN-NHA that we used here, larger seasonal amplitude of modeled GPP especially the low 480 

GPP in dry season under TFE is due to higher water limitation imposed from our hydraulic architecture.  

 

3.2 Simulated water potential gradients along the soil to leaf continuum 

With the mechanistic hydraulic architecture of ORCHIDEE-CAN-NHA, the dynamic water potential at leaf, stem and 

root levels were modeled and compared with observations (Figure S11). Diurnal cycle of Ψleaf was comparable between model 485 

and observations although the modeled Ψleaf was less negative than the observation in the noon (Figure S11). The lowest water 

potential was simulated in the leaf, followed by stem, as expected. There was clear seasonal variability between wet and dry 

periods especially under TFE conditions (Figure 7). Under CTL, the water potential vertical negative gradient between leaf 

and root was similar between the wet and the dry season (-0.79 MPa in wet season, -0.84 MPa in dry season for tree cohort 

#10, that is in diameter of 1.15 m; for the cohorts description see Methods); the minimum monthly mean Ψleaf, Ψstem and Ψroot 490 

were -1.3 MPa, -1.0 MPa and -0.8 MPa in the dry season, respectively. Under TFE, Ψleaf, Ψstem and Ψroot were prominently 

more negative during the dry season (-2.5 MPa, -1.9 MPa, -1.7 MPa, respectively) and the range of water potential gradients 

between stem and root in the dry season became a bit narrower than that in the wet season, which reflected the fact that the 

water flow from vertical transport is limited. With regard to the change of water storage, leaf water storage decreased 

continuously from wet to dry season but did not approach depletion of water storage (Figure S12). Ψleaf in the dry season in 495 

year 2005 (dry season rainfall is minimum) reached its minimum during the whole simulation period under TFE. We can see 

that at leaf and stem levels, Ψleaf and Ψstem decreased slightly with the size of cohorts and they were a bit more negative in 

larger (taller) cohorts correspondingly (Figure 7, Figure S13). Taller trees have a longer water transport path, which means 

greater gravitational potential energy is needed to pull water upward (Eq. 20). Thus more negative Ψ values were expected in 

the cicumference classes with higher trees. Ψsoil-root did not show too much variation among different cohorts (Figure S14). 500 
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Then the leaf water potential difference among cohorts is mainly contributed by the height effect, which is about -0.1MPa / 

10m.  

 

3.3 Simulated hydraulic failure   

Here, we used the simulated Percentage Loss of Conductance (PLC) in stem sapwood as an indicator of tree hydraulic 505 

failure. Under CTL, the PLC remained lower than 50% even in dry seasons, due to weak water limitation (see soil moisture 

deficits in Figure 4 and water potential gradients in Figure 7). Under TFE, the PLC did not reach above 50% in wet seasons, 

but in dry seasons, it increased to more than 80% especially in the (abnormally dry) year 2005 (Figure 8). Under TFE, the 

number of days with PLC above 50% were 12 days, 63 days in years 2002 and 2003 respectively, and reached up to 84 days 

in year 2005 (cohort #10). Besides its seasonal variability, PLC also moderately increased with the size of cohorts, denoting 510 

more severe water stress in larger / taller cohorts (Figure S15).  

 

Next, we looked at the two variables defined to link PLC with mortality in the model: the PLC mortality exposure 

threshold and the mortality fraction per day of exposure (see Methods). The mortality exposure threshold represents a 

maximum tolerable drought duration for trees before a fraction of them die. In this study, this mortality threshold is set to 515 

consecutive 15 days when PLC stays above 50%. The mortality fraction is set to a death rate of 0.3% during each day of the 

exposure period (no preferential rule is imposed for small or large trees). In absence of any measurement, the values of these 

two mortality-triggering variables were calibrated to reproduce the observed mortality in the TFE experiment. We estimated 

the mortality fraction by totaling the dead trees in each year and dividing this number by the initial tree density in each year. 

With this scheme, estimated drought-induced tree mortality rates were shown in Figure 8. The model simulated that more than 520 

10% of trees in larger cohorts (#12 to #20) would be killed by the dry conditions in 2005 (Figure 8), which was a bit higher 

than the 7% of mortality observed in the experiment. Figure S16 and S17 present that smaller cohort (#5 here) shows a bit 

larger variation in water potential dynamics and corresponding PLC, which indicates that an adequate cumulated drought 

exposure occurs less frequently than that of larger cohorts (#20 here). Thus the higher annual tree mortality rate is found in 

larger cohorts (Figure 8). 525 

 

The model simulation (ORCHIDEE-CAN-NHA) produced a reasonable (but slightly too large) biomass mortality under 

TFE during 2002 to 2008 (Figure 9, Figure S18), with a modeled biomass loss (~ 67 MgC/ha, ~19% of biomass in 2001) being 

a bit larger than observation (~30 MgC/ha, ~12% of biomass in 2001). Other two previous model versions cannot reproduce 

the comparable drought-induced biomass loss (Table S3). Figure 10 showed that under CTL, the biomass loss due to self-530 

thinning and turnover is almost compensated by the biomass growth and recruitment. Under TFE, self-thinning only existed 

in the years before 2004 according to the model, because a drop of tree density was induced by preceding drought mortality in 

2003, which suppressed the competition between trees in the model afterwards. The gain of biomass (labeled as ‘growth’ in 
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green in Figure 10) also decreased under TFE in comparison with CTL. Moreover, when we grouped the mortality rate 

simulated for 20 cohorts into three classes according to their DBH (<20cm, 20-40cm and >40cm) we can further evaluate the 535 

model performance (Figure 11). Under CTL, the model produced higher mortality rate (1.7%) than the observation (2001:2008 

mean: 1.1%-1.3%) in three classes. In other words, the modeled self-thinning rate was probably higher than that in reality since 

the mortality rate observed was only 0.4% in year 2001. Under TFE, the model performed differently for each size class. For 

the small-sized class with DBH<20cm, the model underestimated the mortality rate compared to observations after 2006. For 

the medium-sized class (DBH: 20-40cm), the modeled mortality rate was comparable with observation in year 2001, 2002 and 540 

2006. For the large-sized class group, the model can estimate successfully the large mortality observed in-situ from 2004-2005. 

Overall, the averaged mortality rate was comparable between observation and model simulation. The model-observation gap 

in year 2005, 3.7% in model simulation vs. 4.8% in observation, may be due to modeled underestimation in medium-sized 

group and large-sized group (Figure 11).     

 545 

Finally, we tested the performance of our hydraulic failure – mortality sub-model at another Throughfall Exclusion 

Experiment in the Amazon, from the Tapajos site (Nepstad et al., 2007). At this site, TFE only happened in the wet season 

between 2000 and 2003, with an exclusion of almost 50% rainfall. Figure S19 shows that our model can capture the observed 

phenomenon of a higher mortality rate found at Tapajos especially in trees with diameter > 30 cm although the modeled 

mortality rate is lower than that in the field measurement. Our model also simulates the net biomass increase at Tapajos under 550 

CTL and the great biomass loss under TFE. The two parameters of our hydraulic failure – mortality model (drought exposure 

threshold and mortality fraction each day upon exceeding the threshold), which are not directly observable, were effectively 

calibrated at Caxiuana but the model is also successfully evaluated at Tapajos site. Given the complexity of drought-mortality 

relationships which lack a unified theory, this shows high performances for the new parameterization we proposed in the study.  

 555 

 

 

4 Discussion  

4.1 Model improvements by new parameterizations of hydraulic transport  

The original ORCHIDEE-CAN model included a limit from transpiration supply based on water transport and resistances 560 

along a water potential gradient (Naudts et al., 2015). Nonetheless, the constant value assumed for Ψleaf, the lack of a dynamic 

simulation of Ψstem and Ψroot and conductivities limit the mechanistic basis of the approach. To make a step forward, the new 

hydraulic module presented here tracks the water flow continuum from the soil to the atmosphere. The water potentials Ψleaf, 

Ψstem, Ψroot are updated at each half-hour time step, based upon a Supply-Demand framework of minimization of difference 

between water demand and water supply at organ-level. Besides improvements in modeling the processes of vertical water 565 

transport, our hydraulic module also considers the tissue water storage and the dynamics of water flow between different 
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organs, both of which are bounded by the capacitance and water volume. The water storage capacity, can affect the water 

potential and determine the tolerable duration of desiccation before severe water potentials are reached (Gleason et al., 2014). 

For example, in the model, stem sapwood water storage can be discharged under CTL during both wet and dry periods, and 

this contribution can be larger than that from vertical water flow. In contrast, under TFE, the stem sapwood water pool is not 570 

always refilled overnight in the dry season (Figure S20). Martinez‐Vilalta et al. (2019) also found that a more explicit 

consideration of water pools helps advance the monitoring and prediction of mortality risk, although more experimental 

evidence is required for verifying the relationship between relative water content and mortality probability.  

 

Besides the capacity of each organ, stem hydraulic safety indicators like water potential at which 50% of stem conductance 575 

lost (Ψ50) can be modeled directly, and used as an indicator of tree responses to drought events. This variable influences the 

maximum drought exposure threshold proposed in our model, which varies among specific tree species, tree size and different 

growth conditions (Blackman et al., 2016). In a previous study at this site, Rowland et al. (2015) found vulnerable and resistant 

genera have contrasting vulnerability to hydraulic deterioration. Vulnerable trees with larger DBH displayed higher 

conductivity loss under experimental drought and less negative Ψ50. However, in a more recent study with much more field 580 

data in Bittencourt et al. (2020), the variability of hydraulic traits among species is also evident and the importance of particular 

hyper-dominant species becomes notable too in affecting the overall species and size patterns. Naudts et al (2015) related stem 

conductivity to Ψsoil-root with Ψ50 and another shape parameter as an adjustment. In our model, we built sigmoidal relationships 

between conductance and Ψstem, of which the slope parameter assesses the sensitivity of conductance loss to decline in water 

potential that can correspond to different plants water regulation strategies. Through involving trait-related parameters, our 585 

model could be used to reflect isohydric or anisohydric patterns although these two parameters are challenging to calibrate for 

highly diverse tropical forests (e.g Maréchaux et al. (2015)).  

 

Recently, there is expansion in the availability of the hydraulic parameters for tropics, but mainly for xylem and leaves. 

Although the sensitivity analysis of Supply-Demand theory in Sperry et al. (2016) suggested that the usage of single stem 590 

vulnerability curve would not bring more error to transpiration than the true segmented mode (that is, separate leaf, stem and 

root curves) as long as the leaf/stem Ψ50 and root/stem Ψ50 closer to 1, our study included vulnerability segmentation of leaf, 

stem and root to facilitate the coherent representation of the soil-root-stem-leaf continuum. Besides, the possible context-

dependent trait coordination also needs to be noticed in parameterizing models (Maréchaux et al., 2020), e.g. the relationship 

between leaf turgor loss point and leaf area, which will benefit the diversity in vegetation models.  595 

 

With water transport from vertical gradient of potentials and changes in water storage, ORCHIDEE-CAN-NHA produced 

dynamic and reasonable water potentials (Figure S11) and conductance at leaf, stem and root levels. Based on the improved 

hydraulic architecture, we implemented an empirical algorithm that assumes a fixed fraction of trees will die after 15 days of 

continuous sustained drought exposure with PLC>50%. Combinations of these two parameters of drought exposure threshold 600 
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and mortality fraction each time could also be adapted to diverse plants traits to match mortality rates across different sites, 

coping with adverse conditions, e.g. tree size, different isohydric and anisohydric behaviors of stomatal regulation upon 

varying water status (McDowell et al., 2008). Therefore, these two parameters would need to be calibrated upon data suited to 

different conditions. For example, Esquivel-Muelbert et al. (2017) found that wet-affiliated genera tends to show higher 

drought-induced mortality than dry-affiliated ones. Assigning higher mortality fraction for wet-affiliated genera upon such 605 

condition can be a solution to test different levels of mortality fraction parameters.  

 

The Supply-Demand framework in our model also draws on Sperry et al. (2016) that empirical expression of each 

continuum component, e.g. stomatal conductance, hydraulic conductivities from vulnerability curve is applied. There are also 

similarities between our hydraulic structure and Xu et al. (2016), in aspects that both vertical water flow and water storage 610 

capacity in leaf and stem are accounted for in modelling process of water supply and demand. The major differences from Xu 

et al. (2016) are that our model uses potential water demand (rather than the real transpiration) as the leaf-level demand instead 

and also refines the water transport from soil-root-stem thus water potential of each organ in continuum is solved.   

 

The earlier hydraulic models like SPA and Xu et al (2016) indeed proposed the simulation framework of water flow and 615 

water potential following Darcy’s law, however, a full segmentation of the hydraulic system including water flow and water 

storage change of leaves, stem, and root are still not completely solved yet (i.e. root part was missing in Xu et al., 2016). Our 

hydraulic architecture refines the segmentation of plant hydraulics of leaves, stem and root, separately, of which the hydraulic 

conductance varies with water potential value following sigmoidal relationship. Meanwhile, the water capacitance is 

considered as well to account for the variation in water storage. The hydraulic models like SPA and Xu et al (2016), lack either 620 

the full segmentation or the consideration of contribution of each water storage pool (SPA model only used canopy 

capacitance). Our model also extends one step further to link the hydraulic failure measured by percentage loss of conductance 

to tree mortality rate via an empirical model composed of two parameters: drought exposure threshold (number of continuous 

days under water stress), and tree mortality fraction upon each tree mortality event. This tree mortality sub model accounts for 

the cumulative drought effects, which can adapt to different drought strengths and drought frequencies. Therefore, our 625 

hydraulic model with tree mortality scheme improves the hydraulic segmentation simulation and also paves a new way of 

linking hydraulic failure to tree mortality. Admittedly, weakness does exist in our model, for example, parameter retrieval can 

be further realized through data assimilation that use more benchmark (see below). More optimization paradigm can be 

integrated into our model, which would benefit the parameterization process.  

4.2 Possible factors affecting tree mortality  630 

Our model simulations showed that larger trees suffer more severe water stress with higher PLC (Figure 8) and that the 

mortality fraction is consequently the highest in groups with DBH>40cm. This uses the theory that longer vertical water 
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transport pathway in taller trees can intensify the height-dependent hydraulic limitation (Grote et al., 2016) and site-level 

experimental evidence (Rowland et al., 2015). Such size-regulated mortality has also been corroborated by Bennett et al. 

(2015). Hendrik and Maxime (2017) summarized that drought can be more detrimental on growth and mortality rates of larger 635 

trees. Klos et al. (2009) also found that older and denser stands are more susceptible to drought damage, but that the mortality-

height relationship can also be relaxed by species diversity, for example, the taxonomic identity also controls the traits-size 

relationship (Bittencourt et al., 2020). Environmental gradients of climate conditions and concurrent competition can also 

affect the height-mortality risk relationship (Stovall et al., 2019), and co-explain the forest mortality patterns (Young et al., 

2017). Conversely, the benefits of deeper root systems potentially may allow tall trees to avoid drought stress (Trugman et al., 640 

2021). Simulated water content in bottom soil layers did not counteract the embolism under dry season in our study, so we 

captured the positive height-mortality relationship observed at this site. Nevertheless, in the Caxiuanã field measurements of 

Rowland et al (2015), trees of similar size also showed different vulnerability (Ψ50), which suggests the influence of other 

anatomical traits, for instance, wood density, which is already prescribed as PFT-based parameter in simulation setup. Such 

kind of within PFT variation cannot yet be accounted for in model. Wood density with intra-individual variability is intimately 645 

linked with tree mortality, and has been found to explain variation in tropical mortality rate across sites through a hierarchical 

Bayesian approach (Kraft et al., 2010). Plant functional traits like xylem, leaf specific conductivities and capacitances are 

inversely related to the wood density (Meinzer et al., 2008). On the one hand, taller trees with lower wood density (Rozendaal 

et al., 2020), would be expected to present higher sapwood conductivity although the overall effect would depend on the forest 

type, and growth conditions (Fajardo, 2018;Meinzer et al., 2008). On the other hand, height-dependent water limitation 650 

weakens the stem hydraulic conductivity. Such tradeoffs co-determine the resistance to hydraulic failure.  

 

Under extreme drought, hydraulic traits are also highly important factors for mortality risk. Trees with high cavitation 

resistance and wide hydraulic safety margin can endure longer desiccation (Blackman et al., 2019). Although xylem anatomical 

traits directly related to conductivity better reflect the whole-tree performance (Fan et al., 2012), the relative importance of 655 

climate conditions, plant functional and hydraulic traits in determining forest mortality risk encountering drought needs further 

validation with large amount of experimental observations (Aleixo et al., 2019).  

 

4.3 Model limitations and directions for future development 

Several potentially important ecological processes related to plant hydraulics and mortality warrant further consideration. 660 

First, tree mortality risk, in the simulations, is mainly triggered by drought-induced water stress, but soil water limitation can 

also be alleviated by enhanced tree survival through increasing nutrients uptake, to increase water use efficiency and reduce 

negative effects of droughts (Wang et al., 2012). Fast growth rate, however, is associated with higher mortality probability (see 

Rozendaal et al. (2020) for spatial relationship between basal area growth, diameter and possibility of mortality in Amazonia 

tropical forest). Discounting the demographic association between tree growth and mortality rate could lead to underestimation 665 
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of mortality in model simulations. Representations of these interactions should be further incorporated to increase model 

credibility under various environments. Secondly, the plant functional type classification used in ORCHIDEE-CAN-NHA does 

not capture hydraulic variation. Some researchers proposed hydraulic trait-based classifications (Anderegg, 2015) or hydraulic 

functional types (Liu et al., 2021b), which may better represent isohydric and anisohydric behaviors affecting water potential 

and stomatal regulation. Accounting for the variability in hydraulic traits would be important to properly model in future 670 

ecosystem-atmosphere feedback effects (Anderegg et al., 2018;Powell et al., 2018). More specifically, some traits are also but 

not always found to vary with tree size, like Ψ50, conductivity and the number of days of exposure to severe drought that a tree 

can tolerate. Our assumption of fixed Ψ50 values for all 20 cohorts may lead to miscalculation of mortality rates in different 

classes, e.g. overestimation for PLC in smaller cohorts and underestimation for PLC in larger cohorts. Therefore, future 

research should focus on discerning the empirical connection between species-specific hydraulic strategies toward mortality 675 

by distinguishing vegetation functional groups. Thirdly, legacy or memory effects are not fully accounted here. The impacts 

of drought on increasing tree mortality can last for at least two years after an extreme climatic event (Aleixo et al., 2019). 

Some cumulated or memory indicators may help tackle such problems. For example, we can consider the effects of past drought 

events on current tree growth by multiplying the drought intensity with the inverse of time passed (Franklin et al., 1987). 

Finally, different threshold indicators like relative water content and turgor loss point can also be tested in mortality triggering 680 

process (Sapes et al., 2019;Zhu et al., 2018).   

 

Besides future developments of the hydraulic module, more calibration and understanding of the lethal threshold required 

for hydraulic failure is clearly necessary. We call for that more observed hydraulic traits data for tropical trees, including 

detailed vulnerability, to support more reasonable and appropriate parameterization scheme in mortality risk modeling. For 685 

example, the point of no return from drought-induced xylem embolism in aspects of water potential (turgor loss point), 

conductivity and relative water content. Remote sensing products of vegetation optical depth (VOD), proportional to the 

vegetation water content, may help benchmark the capacitance dynamics. In addition, in this study we have only calibrated the 

new hydraulic architecture against observations from one experimentally droughted site. It should be noted that the 

hydrological parameters are quite sensitive in aspect of drought response and also uncertain. Expanding this method to other 690 

drought experiment sites to generalize the model performance is required. For example, this future work could address to what 

extent the 2005 and 2010 drought affected forest dynamics in western Amazonia. Large-scale mortality observations and more 

comprehensive mortality benchmarking datasets are also required to evaluate the hydraulic architecture in process-based model 

(Adams et al., 2013;Allen et al., 2010). Regarding the parameterization of model at the regional and global scales, here we 

focus on the tree mortality sub-model to clarify the parameter uncertainties issue. In our tree mortality empirical sub-model, 695 

the two parameters, drought exposure threshold and tree mortality fraction upon each stress event, are related to each other 

given a target tree mortality rate. We derive a parameter space composed of these two empirical parameters in the tree mortality 

scheme that can produce similar tree mortality rate for cohort #20 in Caxiuana TFE experiment in 2005 (cohort #20 is taken 

as an example here). That is to say, higher drought exposure threshold should be combined with a higher tree mortality rate in 
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each event, and vice versa (Figure S21). Specifying a higher drought exposure threshold, such a parameterization scheme 700 

would underestimate the impact of drought with high intensity but short period since higher drought exposure threshold would 

lead to less frequent tree mortality events detection in model perspective.    

 

After the derivation of a parameter space, we did a regional simulation focusing on the 2005 drought in western Amazon 

using parameters specified in the main text (named as default simulation). To reduce the computation load, we just use the 705 

percentage loss of conductance output in the default simulation to calculate the number of tree mortality events with varying 

drought exposure threshold in order to test the range of parameters values. Figure S22 shows that the tree mortality rate (cohort 

#20) below 20% can become lower if the model was fed with a higher drought exposure threshold (DT=25 or 30). And the 

tree mortality rate below 20% tends to be higher with a lower drought exposure threshold (DT=10). Although all these 

parameters combinations can produce a similar tree mortality phenomenon (cohort #20) for Caxiuana TFE setup in 2005, they 710 

will perform differently regarding drought with different intensities and durations regionally. Therefore, more experiment data 

manifesting the tree tolerance should be well included to constrain the drought exposure threshold uncertainties in our model 

framework. 

 

Towards the enrichment of parameters for the regional simulation, generally, three means can be resorted to benefit such 715 

realizations. The first one can be embedding the plant trait database like TRY (Kattge et al., 2020) into our process-based 

model although the records are still limited in aspect of hydraulic traits. The second solution can be the optimization of 

hydraulic parameters using e.g. Monte Carlo Markov Chain with measurements or remote sensing products as constraints like 

traits retrieval in Liu et al. (2021b) or other data-assimilation system like ORCHIDAS. Here the data quality of constraint is 

highly important as the error can be accumulated. The third method can be building simple regression formula between plant 720 

traits and the climatology where the plants reside in. In next step, these solutions will be attempted to test the generalization 

of process-based model performance at large scale.  

 

5 Conclusion 

Our study proposes a new mechanistic hydraulic architecture module, ORCHIDEE-CAN-NHA, which simulates dynamic 725 

xylem cavitation indicator of percentage loss of conductance (PLC) through modeling the water flow in soil-root-stem-leaf 

continuum and water charge from storage. The model was calibrated against observations from the Caxiuanã throughfall 

exclusion field experiment in the eastern Amazon, during 2001 to 2008, with regard to the seasonal variability in transpiration, 

soil moisture and productivity. Besides the improvement of hydraulic architecture, we also built a relationship between PLC 

and tree mortality rate via two empirical parameters, drought exposure duration, which determines the mortality frequency and 730 

the mortality fraction in each day once exceeding the exposure. Our model produces comparable annual tree mortality rates 

with observations over the study period. Introduction of mechanistic hydraulic architecture in land surface models can help 
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provide a window through which we can enable prediction for mortality under future possible drought events. We also call for 

more available hydraulic traits and vulnerability data for testing the generalization of model performance.  

 735 

6 Appendix  

 

Table A1 Plant hydraulics in major vegetation models. The column of validation indicates how the model performance be 

validated against observation.  

Model  Framework for modeling hydrodynamics  Validation  Reference 

CLM v5 Stomata optimization and supply-

demand theory 

Caxiuana site Kennedy et al. (2019) 

JULES-SOX  Optimization of stomatal conductance by 

maximizing the product of leaf 

photosynthesis and xylem hydraulic 

conductance 

70 global eddy flux sites Eller et al. (2020) 

CliMA Optimization-based stomatal model by 

maximizing the difference between leaf 

level carbon gain and risk  

Two flux sites in US Wang et al. (2021) 

CABLE Supply-demand theory Garden dry-down 

experiment across south-

east Australia 

De Kauwe et al. (2020) 

ORCHIDEE-

CAN 

Water supply via Darcy’s law without 

dynamics in stem water potential   

Europe Naudts et al. (2015) 

Ecosystem 

Demography 

Model 2 

Stomata optimization and supply-

demand theory  

Costa Rican field  Xu et al. (2016) 

TRIPLEX Loss of stem conductivity is related to 

soil water potential 

Canada boreal forests Liu et al. (2021a) 

SPAC Stomata optimization and supply-

demand theory 

13 temperate and tropical 

forest biomes across the 

globe 

Liu et al. (2017) 

One hydraulic 

module  

Two parameters: isohydricity factor and 

well-watered forcing pressure  

Leaf- and soil water 

potentials of 66 species 

Papastefanou et al. (2020) 
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under drought and non-

drought conditions  

SurEau Water mass conservation law  One forest site in east France Cochard et al. (2021) 

TFS v.1-Hydro Continuous porous approach with 

pressure-volume formula 

Caxiuana site  Christoffersen et al. (2016) 

SPA Stomata optimization and supply-

demand theory  

Caxiuana site  Fisher et al. (2007) 

 740 

Table A2 Parameters used in new hydraulic architecture model. These parameters are selected from the range recorded by 

literature that we have analyzed.  

Symbol Description Unit Value Source 

𝐶𝑙𝑒𝑎𝑓 Leaf capacitance mmol m-2 MPa-1 670 De Kauwe et al. (2020) 

𝐶𝑠𝑡𝑒𝑚 Stem capacitance kg m-3 MPa-1 130 Xu et al. (2016) 

𝐶𝑟𝑜𝑜𝑡 Root capacitance kg m-3 MPa-1 150 Modified from Cstem 

𝑆 Specific leaf area m2 kg-1 16.6 Kattge et al. (2011) 

𝐿 Leaf dry matter content g g-1 0.2 Kattge et al. (2011) 

𝛾 
mass of water per unit of 

sapwood volume 
mol m-3 25000 Suzuki (1999) 

𝛿 Wood density g cm-3 0.645 Chave et al. (2006) 

θ Root shoot ratio g g-1 0.25 Mokany et al. (2006) 

휀 
 

root water content 
mmol g-1 35 

Markesteijn and Poorter 

(2009) 

𝜌𝑟𝑜𝑜𝑡  Root density g cm-3 0.503 Schuldt et al. (2013) 
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kleaf, max 

Maximum leaf hydraulic 

conductance per unit leaf 

area 

mmol m-2 s-1 MPa-1 15 Sack (2006) 

kstem, max 

Maximum sapwood 

hydraulic conductance per 

unit leaf area 

mmol m-2 s-1 MPa-1 15* Hickler et al. (2006) 

kroot, max 

Maximum root hydraulic 

conductance per unit leaf 

area 

mmol m-2 s-1 MPa-1 10 Modified from kstem, max 

aleaf 
Shape parameter for kleaf vs. 

Ψleaf curve 
- -2.5 

[-3.8, -0.5] in Bartlett et al 

(2019) 

astem 
Shape parameter for kstem vs. 

Ψstem curve 
- -2.3 

[-3.8, -0.5] in Bartlett et al 

(2019) 

aroot 
Shape parameter for kroot vs. 

Ψroot curve 
- -3.0 

[-3.8, -0.5] in Bartlett et al 

(2019) 

Ψ50, leaf 
Ψleaf at 50% loss of leaf 

conductance 
MPa -1.1 

[-3, -0.75] in Bartlett et al 

(2019) 

Ψ50, stem 
Ψstem at 50% loss of stem 

sapwood conductance 
MPa -1.2 

[-3, -0.75] in Bartlett et al 

(2019) 

Ψ50, root 
Ψroot at 50% loss of root 

conductance 
MPa -1.1 

[-3, -0.75] in Bartlett et al 

(2019) 

gmax 
Maximum stomatal 

conductance in Eq. 24 
mmol m-2 s-1 700 Franks and Brodribb (2005) 

gmin 
Mininum stomatal 

conductance 
mmol m-2 s-1 10 Franks and Brodribb (2005) 
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Ψ50,gs 
Ψleaf at 50% decline in 

stomatal conductance 
MPa -1.2 Bartlett et al (2016) 

ags 
Shape parameter for gs vs. 

Ψleaf curve 
- -2.3 Bartlett et al (2016) 

𝐿 × 𝑅𝑎𝑑

𝐿 × 𝑅𝑎𝑑 + 𝐿𝑘
 

In this term, the function of 

short-wave radiation, is used 

to ensure the gs at night to be 

close to 0 

- - -- 

 
* In Hickler et al (2006), the maximum sapwood conductivity of 50*10-4 m2 s-1 MPa-1 can be converted to ~15 mmol m-2 s-1 

MPa-1 if we assume sapwood area/leaf area of 0.0016 (value falls in (Gotsch et al., 2010), and tree height of 30m.  745 

 

Table A3 Outputs variables calculated by ORCHIDEE-CAN-NHA.  

Category Symbol Description Unit 

Water potentials 

𝜓𝑠𝑜𝑖𝑙−𝑟𝑜𝑜𝑡  soil water potential in root zone MPa 

𝜓𝑟𝑜𝑜𝑡  Root water potential MPa 

𝜓𝑠𝑡𝑒𝑚 Stem water potential MPa 

𝜓𝑙𝑒𝑎𝑓  Leaf water potential MPa 

Hydraulic 

conductances 

𝑘𝑟𝑜𝑜𝑡 Root hydraulic conductance mmol m-2 s-1 MPa-1 

𝑘𝑠𝑡𝑒𝑚 Stem sapwood hydraulic conductance mmol m-2 s-1 MPa-1 

𝑘𝑙𝑒𝑎𝑓  Leaf hydraulic conductance mmol m-2 s-1 MPa-1 

Water storage 

𝑚𝑟𝑜𝑜𝑡 Water volume in the root mmol 

𝑚𝑠𝑡𝑒𝑚 Water volume in the stem mmol 

𝑚𝑙𝑒𝑎𝑓  Water volume in the leaf mmol 
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Cavitation PLC Percentage loss of stem conductance % 

Mortality 

NK 
Number of continuous days with  

PLC > 50%  (exposure) 
days 

CM 
Tree mortality for each circumference 

class due to exposure to PLC > 50%   
1 m-2 
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Code/Data Availability Statement  

The ORCHIDEE-CAN-NHA model (r7236) code used in this study is archived at https://doi.org/10.14768/8C2D06FB-0020-

4BC5-A831-C876F5FBBFE9. The detailed code used to reproduce the analysis and figures is publicly available at doi: 

10.5281/zenodo.5721245.  
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Figure 1 Schematic framework for hydraulic architecture in (a) ORCHIDEE-CAN, (b) ORCHIDEE-CAN-RS and (c) 

ORCHIDEE-CAN-NHA. The framed rectangles represent fixed values during the simulation. In ORCHIDEE-CAN and 

ORCHIDEE-CAN-RS, Rleaf is related to leaf conductivity and leaf area. Rstem is related to sapwood conductivity that can vary 1005 

with cavitation and sapwood area. Rroot is related to fine root conductivity and root biomass. In ORCHIDEE-CAN-NHA, 

transport conductance of each organ is a function of their organ-specific water potential, maximum conductance and water 

potential when loss of 50% conductance occurred. Cleaf, Cstem and Croot represent water storage capacitance. Jleaf, Jstem and Jroot 

are vertical water transport to leaf, stem and root, respectively. LA is total leaf area.  

 1010 

 

 

 
Figure 2 Modeled (ORCHIDEE-CAN-NHA) versus observed sap flow (monthly average values are displayed). The color of 

points indicates water deficit (negative difference between precipitation and evapotranspiration) with darker color meaning 1015 

more severe water deficit. The black dashed line is the 1:1 line. The red dashed line is the best fit between modeled and 

observed sap flow.  
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Figure 3 Modeled (ORCHIDEE-CAN-NHA) daily soil evaporation (E), canopy evaporation (CE) and transpiration (T) during 

2001-2008. The arrows point to the start of TFE in the beginning of 2002. The inserted red shaded bars denote the periods with 

water deficits during the simulation period, following the same color scale as Fig. 2.  1025 

 

 

 

 
 1030 

Figure 4 Modeled (ORCHIDEE-CAN-NHA, black line) versus observed (black dots) volumetric soil moisture content (SMC) 

at different depth. Due to the limited time duration of observation data, we only show the modeled SMC during 2001 to 2004. 

The grey shaded vertical area indicates the dry seasons from July to November.  
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Figure 5 Soil moisture content simulated by ORCHIDEE-CAN-NHA during 2001 to 2008 under CTL and TFE. It should be 

noted the 12 soil layers have different thicknesses and here we show the SMC in same depth interval to present the change in 

SMC in top layers clearly.    1040 

 

 

 

 
Figure 6 Modeled (ORCHIDEE-CAN-NHA) versus observed / modeled monthly mean GPP. The control model is compared 1045 

to flux tower observations (Carswell et al., 2002). In the case of TFE, as no observation is available, the locally calibrated 

model SPA is used. Due to GPP flux observation is unrealistically low in the start of 2001 (<5 gC m-2 d-1), we only keep flux 

data after the mid of 2001. The grey shaded vertical area indicates the dry seasons from July to November.  
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Figure 7 Ψleaf, Ψstem, and Ψroot simulated by ORCHIDEE-CAN-NHA. Water potential gradients of two cohorts (#5, #10) are 

shown as an example (May 2005 as wet season, Nov 2005 as dry season). Here the cohort refers to circumference class (mean 

height of #5 and #10 are 19m, and 35m, respectively).  The water potential gradient is composed by Ψleaf (labeled as L), Ψstem 

(labeled as S) and Ψroot (labeled as R). The heights of Ψleaf and Ψstem correspond to tree height and half of tree height, 1055 

respectively.  
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Figure 8 Percentage loss of daily stem conductance (PLC) (left) and tree mortality fraction simulated by ORCHIDEE-CAN-

NHA (right). The vertical axis is for the index of 20 tree cohorts represented in the model, a larger index indicating taller trees 

(see Table S4 for tree height and diameter in each cohort). Tree mortality fraction per year is calculated by totaling the number 

of dead trees in each year and dividing it by the tree density in the first day of each year.  1065 
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Figure 9 Tree biomass change simulated by model after mortality being triggered. The squares in the plot denote the 

observation. Biomass change relative to 2001 is calculated by dividing biomass during 2002-2008 by biomass in 2001.  
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Figure 10 Simulated components of biomass change and observed net biomass change during 2001 to 2008. The observed net 

biomass change data in each year from da Costa et al (2010) is plotted as black dot. The black line shows the net change of 

simulated biomass by ORCHIDEE-CAN-NHA.  
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Figure 11 Annual stem mortality rates during the study period (2001 - 2008). All 20 cohorts have been aggregated to three 1085 

classes according to DBH (<20cm, 20-40cm, >40cm). The value in bracket in title of each panel corresponds to the No. of 

cohorts falling in the class.   

 


