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Abstract.

In this study, we aim to assess the skill of a stochastic weather generator (SWG) to forecast precipitation in several cities of

Western Europe. The SWG is based on random sampling of analogs of the geopotential height at 500 hPa (Z500). The SWG is

evaluated for two reanalyses (NCEP and ERA5). We simulate 100-member ensemble forecasts on a daily time increment. We

evaluate the performance of SWG with forecast skill scores and we compare it to ECMWF forecasts.5

Results show significant positive skill score (continuous rank probability skill score and correlation) comparing to persistence

and climatology forecasts for lead times of 5 and 10 days for different areas in Europe. We find that the low predictability of

our model is related to specific weather regimes, depending on the European region. Comparing SWG forecasts to ECMWF

forecasts, we find that the SWG shows a good performance for 5 days. This performance varies from one region to another. This

paper is a proof of concept for a stochastic regional ensemble precipitation forecast. Its parameters (e.g. region for analogs)10

must be tuned for each region in order to optimize its performance.

1 Introduction

Ensemble weather forecasts were designed to overcome the issues of meteorological chaos, from which small uncertainties in

initial conditions can lead to a wide range of possible trajectories (Sivillo et al., 1997; Palmer, 2000). Hence, from a sufficiently

large ensemble of initial conditions, it is in principle possible to sample the probability distribution of future states of the system.15

Forecasts issued by meteorological centers are obtained by computing several simulations with perturbed initial conditions,

in order to sample uncertainties. Those experiments are rather costly in terms of computing resources and are generally limited

to a few tens of members (Hersbach et al., 2020; Toth and Kalnay, 1997), which can hinder a proper estimate of probability

distributions of trajectories. Moreover, obtaining information at local spatial scales can be difficult because the horizontal

resolution of the atmospheric models is around 18 km, e.g. for the European Centre for Medium-Range Weather Forecasts20

(ECMWF) ensemble forecast system.

From a mathematical point of view, computing the probability distribution of the trajectories of a (deterministic) system

makes the underlying assumption that the system behaves like a stochastic process, for which statistical properties are defined

naturally (Ruelle, 1979; Eckmann and Ruelle, 1985). This has justified the development of stochastic weather generators
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(SWG), which are stochastic processes that emulate the behavior of key climate variables (Ailliot et al., 2015). The advantages25

of stochastic models are a relative simplicity of implementation and a low computing cost. The challenge of their development

is to verify that the behavior of the simulations are realistic, according to well-defined criteria (van den Dool, 2007; Jolliffe and

Stephenson, 2011).

The first stochastic weather generators were devised to simulate rainfall occurrence by Gabriel and Neumann (1962) and

to simulate rainfall amounts by Todorovic and Woolhiser (1975). SWGs were developed and used to estimate the proba-30

bility distributions of climate variables such as temperature, solar radiation, and precipitation through extensive simulations

(Richardson, 1981).

Stochastic weather generators can be useful complements to atmospheric circulation models, in order to simulate large

ensembles of local variables, as they can be calibrated for small spatial scales comparing to numerical models (Ailliot et al.,

2015). This explains their wide applications in impact studies.35

A successful simulation with SWG relies on the choice of inputs. One of them consists in the use of the atmospheric circula-

tion as a predictor for other local variables. The (loose) rationale for this choice is that the circulation is modeled by prognostic

equations (Peixoto and Oort, 1992), that drive the other physical variables. Therefore the primitive equations of the atmosphere

(Peixoto and Oort, 1992, Chap. 3) suggest that reproducing temporal variability on daily time scales requires considering circu-

lation variables. The influence of large-scale circulation on local climate variables has been proven in previous studies such as40

the influence of atmospheric circulation on Mediterranean Basin (Mastrantonas et al., 2021) and Greece precipitation (Xoplaki

et al., 2000; Türkes et al., 2002). Similar influences have been found on precipitation and temperature over the North Atlantic

region (Jézéquel et al., 2018b).

Analogs of circulation were initially designed to provide "model-free" forecasts, by assuming that similar situations in atmo-

spheric circulation may lead to similar local weather conditions (Lorenz, 1969). The potential to simulate large ensembles of45

forecasts temperature with circulation analogs was explored by Yiou and Déandréis (2019), by considering random resamplings

of K best analogs (rather than only considering the best analog). This has lead to the development of a SWG in "predictive"

mode, which uses updates of reanalysis datasets (Kistler et al., 2001) as input.

Alternative systems of analogs to forecast precipitation have been proposed by Atencia and Zawadzki (2014). Those systems

are based on analogs of precipitation itself. Such systems are very efficient for nowcasting, i.e. forecasting precipitation within50

the next few hours. Considering the atmospheric circulation analogs allows to focus on longer time scales.

Yiou and Déandréis (2019) evaluated ensemble forecasts of the analog SWG for temperature and the NAO index with

classical probability scores against climatology and persistence. Reasonable scores were obtained up to 20 days. Through this

study, we aim to assess the skill of this SWG to forecast precipitation in different areas of Europe and for different lead times.

The previous study on this forecast tool was a proof of concept for temperature. In this study, we will adapt the parameters of55

the analog SWG to optimize the simulation of European precipitations. We then analyse the performance of this SWG for lead

times of 5 to 20 days, with the forecast skill scores used by Yiou and Déandréis (2019).

We will evaluate the seasonal dependence of the forecast skills of precipitation and the conditional dependence to weather

regimes. Finally, comparisons with medium range precipitation forecasts from the ECMWF will be performed.
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The paper is divided as follows: Section 2 is dedicated to describe the data used for the experiments. Section 3 explains the60

methodology (analogs, stochastic weather generator and forecast skill scores). Section 4 details the experimental set up and

justifies the choices that we made for the forecast parameters. Section 5 details results of simulations and the evaluation of the

ensemble forecast. Section 6 contains the main conclusions of the analyses.

2 Data

Daily precipitation data were obtained from the European Climate Assessment and Data (ECAD) project (Klein Tank et al.,65

2002) for four locations in western Europe (Berlin, Madrid, Orly, Toulouse), which are subject to contrasted meteorological

influences (Figure 1). ECAD provides station data, that are available at a daily time step from 1948 to 2019. The choice of

those stations was based on the availability of large and common period of observations with a low rate of missing data (less

than 10%). For verification issues, we used also the E-Obs data (Haylock et al., 2008), which are a daily gridded data available

from 1979 to present with a horizontal resolution of 0.25° × 0.25°. E-Obs data are spatial interpolations of ECAD data.70

We recovered the geopotential height at 500 hPa (Z500) and sea level pressure (SLP) fields from the reanalysis of the

National Centers for Environmental Prediction (NCEP: Kistler et al. (2001)) with a spatial resolution of 2.5° × 2.5° from 1

January 1948 to 31 December 2019.

We also used the atmospheric reanalysis (version 5) of the European Centre for Medium-Range Weather Forecasts (ECMWF)

(ERA5; Hersbach et al. (2020)). ERA5 data are available from 1950 to present with a horizontal resolution of 0.25° × 0.25°.75

There are fundamental differences between the two reanalyses, in the atmospheric models, assimilated data, and assimilation

schemes.

We considered the daily averages of Z500 from NCEP and ERA5, over the region covering 30°W – 20°E and 40°– 60°N to

compute circulation analogs. Daily averages of SLP were used over the region covering 80°W – 20°E and 30° – 70°N to define

weather regimes.80

In order to assess the predictive skill of our precipitation forecast model, a comparison with another forecast was made.

There are many available datasets that can be used for deriving this information. We considered the ECMWF ensemble forecast

dataset system 5 (Vitart et al., 2017). It is a daily gridded dataset interpolated over Europe to provide information covering the

all the domain. Data are available through the Copernicus Climate Data Store including forecasts created in real-time (since

2017) and hindcast forecasts from 1993 to 2019 (Vitart et al., 2017). The data are provided at an hourly time step with a85

horizontal resolution of 0.25° × 0.25°. We considered the grid points that include Berlin, Orly, Toulouse and Madrid, which

were identified in the ECAD database.
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3 Methodology

3.1 Analogs

The first step is to build a database of analogs of the atmospheric circulation. We outline the procedure of Yiou and Déandréis90

(2019), summarized in Figure 1a. For a given day t, we determine the similarity of Z500 for all days t′ that are within 30

calendar days of t but in a different year from t. The similarity is quantified by a Euclidean distance (or root mean square)

between the daily Z500 maps. Other types of distances are possible (Blanchet et al., 2018), but the expected impact on the

results is often marginal (Toth, 1991). We believe that the simplicity of the a Euclidean distance makes it more robust to

changes in horizontal resolution (e.g. from NCEP to ERA5), compared to more sophisticated distances that include local95

spatial gradients, which would require adjustments and additional tuning. This choice can be left open for future fine tuning,

depending on the region.

For each day t, we consider the K best analogs, i.e. for which the distances are the smallest. We compute the spatial rank

correlation between the Z500 best analogs and the Z500 at time t for a posteriori verification purposes.

As a refinement over the study of Yiou and Déandréis (2019), a time embedding of τ days was used for the search of analogs100

dates. This means that the field X(t) for which we compute analogs is X(t) = (Z500(t),Z500(t+ 1), . . . ,Z500(t+ τ)). This

ensures that temporal derivatives of the atmospheric field are preserved (Yiou et al., 2013). Hence the distance that is optimized

to find analogs of the Z500(x,t) field is:

D(t, t′) =

[∑
x

(
τ∑
i=0

|Z500(x,t+ i)−Z500(x,t′+ i)|2
)] 1

2

, (1)

where x is a spatial index, τ is the embedding time.105

We consider different geographic domains as showed in Figure 1 for the computation of analogs and weather regimes. The

computation of circulation analogs was performed with the "blackswan" Web Processing Service (WPS, Hempelmann et al.

(2018)). The "blackswan" WPS is an online tool that helps computing circulation analogs on various datasets (reanalyses,

climate model simulations) with a user friendly interface.

3.2 Configuration of stochastic weather generator110

We use a stochastic weather generator (SWG) based on a random sampling of the circulation analogs. The operation of the

SWG and its design are detailed by Yiou and Déandréis (2019). The aim is to generate random trajectories from the previously

computed analogs. Therefore, to generate a trajectory, we proceed as follows. For a given day t0 in year y0, we generate a set

of N = 100 simulations until a time t0 +T , with a lead time T ∈ {5,10,20} days. We start at day t0 and randomly select an

analog (out of K analogs) of day t0 + 1. The random selection of analogs of day t0 + 1 is performed with weights that are115

proportional to the calendar difference between t0 and analog dates, to ensure that time goes forward. We also exclude analog

dates with years that are equal to y0. This rule is important for the next iterations. We then replace t0 by the selected analog of
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Figure 1. Parameters of the analog computation. (a) For each day t in year y, we chose an analog day t′ with a similar sequence of τ

consecutive day Z500 patterns. t′ is selected within 30 calendar days of t, and in a year y′ 6= y. (b) Domains of computation of analogs, we

computed analogs over different domains, each one includes a part of the Atlantic and focus in a part of Western Europe, in order to test the

sensitivity of our model to different geographic areas, the optimising area was [30°W-20°E; 40°-60°N], indicated by the red rectangle.

t0 +1 and repeat the operation T times. Excluding analog selection in year y0 ensures that we do not use information from the

T days that follow t0. Hence we obtain a hindcast trajectory between t0 and t0 +T .
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This operation of trajectory simulation from t0 to t0+T is repeatedN = 100 times. The daily precipitation of each trajectory120

is time-averaged between t0 and t0 +T . Hence, we obtain an ensemble of N = 100 forecasts of the average precipitation for

day t0 and lead time T .

Then t0 is shifted by ∆t≥ 1 days, and the ensemble simulation procedure is repeated. This provides a set of ensemble

forecasts with analogs.

We made a hindcast exercise where the forecasts of precipitations based on atmospheric circulation (Z500) are started every125

∆t≈ T/2 day between January 1, 1948 and December 31, 2019. This yields a stochastic ensemble hindcast of precipitation and

atmospheric circulation (Z500). In this paper, we therefore analyze the properties of an ensemble forecast of mean precipitation

between t0 and t0 +T . To evaluate our forecasts, the predictions made with the SWG are compared to the persistence and

climatological forecasts. The persistence forecast consists of using the average value between t0−T and t0 for a given year. The

climatological forecast takes the climatological mean between t0 and t0 +T . The two "reference" forecasts are randomized by130

adding a small Gaussian noise, whose standard deviation is estimated by bootstrapping over T long intervals. We thus generate

sets of persistence forecasts and climatological forecasts that are consistent with the observations (Yiou and Déandréis, 2019) .

The simulations of this stochastic model will be called "SWG forecasts", as opposed to ECMWF forecasts.

3.3 Forecast Verification

Forecast verification is the process of determining the statistical quality of forecasts. A wide variety of ensemble forecast verifi-135

cation procedures exists. They involve measures of the relationship between a set of forecasts and corresponding observations.

To assess the quality of precipitation forecasts, we compute indicators such as the Correlation and Continuous Rank Probability

Skill Score (CRPSS) for each lead time T , for different seasons and months.

The temporal rank correlation (referred as correlation skill) is calculated between the precipitation observations and the

median of 100 simulations. This simple diagnostic is often used to assess forecast skills of indices (Scaife et al., 2014).140

The continuous ranked probability score (CRPS) is widely used for probability forecast verifications (Ferro, 2007). It is

sensitive to the distance between forecast and observation probability distributions.

If the ensemble forecast x yields a probability distribution P (x) for a value xa, the CRPS measures how the probability

distribution of x compares with xa (Hersbach, 2000).

The CRPS is computed as:145

CRPS(P,xa) =

+∞∫
−∞

(P (x)−H(x−xa))
2
dx, (2)

where xa is the observation and H is the Heaviside function of the occurrence of xa (H(y) = 1 if y ≥ 0, and H(y) = 0

otherwise). The decomposition and properties of the CRPS have been investigated by Ferro (2007), Hersbach (2000), and

Zamo and Naveau (2018). A perfect forecast would have a CRPS equal to 0, but the CRPS value obviously depend on the units

of the variable to forecast, so that quantifying what is a "good" forecast requires a normalization. It is hence difficult to compare150
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CRPS values for temperature and precipitation, within the same ensemble forecast. This issue is also acute for non Gaussian

variables with heavy tails (Zamo and Naveau, 2018), so that the interpretation of a given CRPS value might not always be

informative.

One way of circumventing this difficulty is to compare CRPS values to reference forecasts, such as persistence or climatol-

ogy. The continuous rank probability skill score (CRPSS) is a normalization of Eq. (2) with respect to such a reference.155

The CRPSS is hence computed by:

CRPSS = 1− CRPS

CRPSref
(3)

where CRPS is the time average of the CRPS of the SWG forecast and CRPSref is the time average of the CRPS of the

reference (either climatology or persistence). The CRPSS is interpreted as a fraction of improvement over a reference forecast.

The values of the CRPSS vary between −∞ and 1. The forecast is considered to be an improvement over the reference160

when the CRPSS value is close to 1 (i.e. when the CRPS is 0). Values of CRPSS equal to 0 indicate no improvement over the

reference. Values inferior to 0 mean that the forecast is worse than the reference.

We use the CRPSS values to determine the maximum lead time T for which the SWG forecast is better than references.

Then the SWG assessments will use the CRPS and directly compare the probability distributions of precipitation ensemble

forecasts.165

3.4 Dependence of forecast on weather regimes

We investigate the role of North Atlantic weather patterns on the forecast quality by attributing CRPS values of the SWG

precipitation simulations to weather regimes. Weather regimes are defined as large-scale quasi stationary atmospheric states.

They are characterised by their recurrence, persistence and stationarity (Michelangeli et al., 1995). They help describing the

features of the atmospheric circulation. Surface variables like temperature and precipitation are largely correlated with weather170

regimes (van der Wiel et al., 2019) .

The North Atlantic weather regimes were computed with the procedure of Yiou et al. (2008), with the NCEP reanalysis. The

first 10 principal components of SLP (large region in Figure 1b) are classified with a k-means algorithm onto four classes, over

a reference period between 1970 and 2010. The procedure is repeated 100 times with random k-means initialization. Then we

classify the resulting 100× 4 k-means weather regimes, in order to determine the most probable classification. This heuristic175

procedure increases the robustness of the obtained weather regimes. Figure 2 shows four weather regimes for each season

(winter and summer) that are coherent with the literature (Cassou et al., 2011; Ghil et al., 2008; Kimoto, 2001; Michelangeli

et al., 1995)

The winter weather regimes are the Scandinavian blocking (BLO), Atlantic ridge (AR), negative phase of the North Atlantic

oscillation (NAO-) and Zonal flow (ZO). The summer weather regimes are the negative phase of the NAO (NAO-), Atlantic180

ridge (AR), Scandinavian blocking (BLO) and Atlantic low (AL). The regimes are not the same in both seasons, due to the

seasonality of the large scale atmospheric circulation.
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For each day (in winter and summer) between 1948 and 2019, we classify the SLP by minimizing the root mean square to

four reference (1970–2010) weather regimes.
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Figure 2. Weather regimes over Europe from SLP fields: North Atlantic oscillation (NAO-),the Atlantic ridge (AR), the Scandinavian

blocking (BLO), and Atlantic zonal (NAO+). The figure summarises the different states of the atmosphere during summer (a to d) and winter

(e to h). It indicates the low and the high pressure over Europe and the direction of flow from the west (Atlantic) to the east. The isolines

show seasonal anomalies with respect to a June-July-August and December-January-February means, in hPa with 2 hPa increments.

For each day t (within a given season), we consider the analogs dates of all N = 100 simulations between t and t+T and185

the corresponding classification into weather regimes. Then we determine the most frequent weather regime of the N member

ensemble forecast between t and t+T . We hence obtain times series on the most likely weather pattern that dominates in the

ensemble forecast between t and t+T .

We evaluate the influence of the dominating weather regimes on the SWG forecast quality by plotting the probability dis-

tribution of CRPS values conditional to each weather regime. This is done separately for "good" forecasts (low CRPS values)190

and "poor" forecasts (high CRPS values).

We identify two classes of predictability from CRPS values:

– Low predictability is related to high values of CRPS that exceed the 75th quantile,

– High predictability is linked to low values of CRPS, below the 25th quantile.
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Then we associate the dominating weather regimes computed above with classes of high or low predictability. This procedure195

helps identifying atmospheric patterns that could lead to low or high predictability with the SWG model.

4 SWG parameter optimization

In order to obtain good forecast skill, we start by verifying the relationship between Z500 over the Euro-Atlantic region and

the precipitation in the four studied areas. We show the maps of the temporal rank correlation between the daily average of

Z500 and the precipitation in Appendix B1. We found significant negative correlation between Z500 and the precipitation with200

p-values ≤ 0.05.

Then, we adjust the parameters of the SWG simulations to obtain better forecasts. The first parameter is the geographical

area. We computed sample trajectories of the SWG for the four domains outlined in Figure 1b. We used different domains in

order to find an optimal region which allows verifying the relationship between precipitation and Z500 for the four studied

areas. Each domain includes a part of the Atlantic and a part of western Europe. We choose a widest domain with the coordi-205

nates 80°W – 20°E and 30°– 70°N in order to catch the variability in the whole Euro-Atlantic region. However, it gave poor

skill scores for precipitation forecasting for the studied areas as shown in Table 1. Then we focused on two smaller domains

(outlined in blue in Figure 1b): one centred over northern Europe and the other centred over southern Europe. We found good

forecast skills for specific locations. Same level of performance was found for the domain (outlined in red in Figure 1b) with

coordinates 30°W – 20°E and 40° – 60°N. Therefore, we kept this domain for the subsequent analyses, because it allows to210

optimise the correlations between Z500 and precipitation for the four studied areas and the time of computation of analogs at

the same time. We compared the skill scores over the geographic domain with the coordinates 80°W – 20°E ; 30° – 70°N and

30°W – 20°E ; 40° – 60°N. We determined that the SWG simulations showed better skill for the geographic domain (outlined

in red in Figure 1b) and the skill scores remained the highest ones as represented in the following Table 1.

Table 1. Correlation between observations and the median of 100 simulations for the winter (DJF) for the different studied domains repre-

sented in Figure 1b, with the coordinates 80°W – 20°E ; 30° – 70°N for the largest one (blue) and 30°W – 20°E ; 40° – 60°N for the red

rectangle for a lead time of 5 days.

Location
[80°W – 20°E ; 30° – 70°N] domain [30°W – 20°E ; 40° – 60°N] domain

Correlation 95% confidence interval Correlation 95% confidence interval

Berlin 0.32 0.30 – 0. 35 0.50 0.48 – 0.56

Madrid 0.35 0.33 – 0. 39 0.53 0.51 – 0.55

Orly 0.39 0.37 – 0. 41 0.58 0.56 – 0.59

Toulouse 0.34 0.31 – 0.36 0.40 0.39 – 0.44

The second parameter is the number K of best analogs that we use to simulate the precipitation. Our choice was based on215

numerical experiments. We performed different SWG simulations where we varied the number of analogs K = 5,10,20. We

notice an improvement on the skill scores by increasing the number of analogs as shown in table 2. Therefore, we considered
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K = 20 analogs to ensure that we have enough analog dates for the simulations. It appears that the Euclidean distance of

analogs grows rather slowly after K = 20. Our choice was also comforted by a theoretical study by (Platzer et al., 2021) who

showed that, for complex systems, the use of a large number of analogs (K > 30 analogs) does not change much the prediction220

properties with analogs. Indeed, we kept K = 20 best analogs for the rest of analyses.

Table 2. CRPSS versus persistence and climatology for SWG simulations with 5, 10 and 20 analogs for the [30°W – 20°E ; 40° – 60°N]

domain and for a lead time of 5 days.

Location
K = 5 analogs K = 10 analogs K = 20 analogs

Persistence climatology Persistence climatology Persistence climatology

Berlin 0.29 0.20 0.39 0.31 0.56 0.50

Madrid 0.32 0.31 0. 40 0.39 0.57 0.57

Orly 0.34 0.12 0. 40 0.23 0.60 0.53

Toulouse 0.34 0.24 0.38 0.45 0.41 0.48

We quantify the dependence of the forecast on the time embedding for the analogs τ by calculating the analogs based on

different embedding going from τ = 1 to 4 days. We find that an embedding of 4 days helped to better catch the persistence

and improve the skill scores for the forecast compared to 1 day, as shown in Table 3. Therefore we kept the forecast based

on a 4-day embedding. This choice was based on the numerical experiments performed for the studied locations. This is also225

supported by the study of Yiou et al. (2013), where the analog computation with delays was argued to improve the temporal

smoothness of simulations. With such an embedding, forecasts for lead times of T = 5 days yield at least two time increments.

Table 3. Correlation between observations and the median of 100 simulations for the winter (DJF) based on analogs computed with an

embedding of 1 and 4 days for the geographic domain with the coordinates 30°W – 20°E ; 40° – 60°N for a lead time of 5 days.

Location
τ = 1 day time embedding τ = 4 day time embedding

Correlation 95% confidence interval Correlation 95% confidence interval

Berlin 0.39 0.37 – 0. 43 0.50 0.48 – 0.56

Madrid 0.40 0.38 – 0. 42 0.53 0.51 – 0.55

Orly 0.42 0.39 – 0. 45 0.58 0.56 – 0.59

Toulouse 0.35 0.34 – 0.37 0.40 0.39 – 0.44

For comparison purposes, SWG simulations are obtained using analogs computed from reanalyses on the NCEP and ERA5

reanalyses. By comparing their skill scores, we found that CRPSS and correlations between observations and simulations are

positive in both cases, and showing positive improvement comparing to persistence and climatology forecasts. The CRPSS and230

correlation for simulations with analogs of NCEP are almost identical to those with ERA5, as shown in Table 4. Therefore, we

focus on SWG simulations with analogs from the NCEP reanalysis in the sequel as both NCEP and ERA5 (1950 to 2019) have

the same skill, as shown in Table 4, and NCEP is easier to handle, as its horizontal resolution is much lower. The computations
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were made using observations of precipitation from the ECAD (Klein Tank et al., 2002) and E-Obs (Haylock et al., 2008)

databases. We found the same results because the ECAD and E-Obs are highly correlated (by construction of E-Obs).235

Table 4. Comparison between the values of the CRPSS of SWG computed using different reanalysis dataset NCEP and ERA5 from 1979 to

2019 for a lead time of T = 5 days for winter (DJF)

Location CRPSS DJF (ERA5) CRPSS DJF (NCEP)

Berlin 0.50 0.50

Madrid 0.55 0.57

Orly 0.53 0.53

Toulouse 0.41 0.41

In summary, we made the forecast of the precipitation using K = 20 analogs computed from Z500 over the [30°W – 20°E;

40° – 60°N] domain (red rectangle in Figure 1 b). To compute analogs, we used NCEP reanalyses and an embedding of τ = 4

days. The computations were based on ECAD observations (Klein Tank et al., 2002).

5 Results

5.1 Sample forecast240

As an example, we illustrate the behavior of the trajectories in Orly for the summer and winter of 2002. Figure 3 shows

the observed and simulated values of precipitation for lead times of 5 and 10 days for summer (June–July–August: JJA) and

winter (December–January–February: DJF), for Orly precipitation data. We observe significantly positive correlations between

observed values and the median of the forecasts, for the four data sets as represented in Table 5 . The correlation is generally

smaller in the summer than in the winter. The correlation skill is low for some extremes values of precipitation. For a lead time245

of 10 days, SWG simulation still show capacity to predict precipitation especially for winter with a correlation equal to 0.23

(Orly), 0.30 (Berlin), 0.43 (Madrid), 0.31 (Toulouse).

Table 5. Correlation between observations and the median of 100 simulations for both seasons winter (DJF) and summer (JJA) for a lead

time of 5 days

Location Correlation DJF 95% confidence interval Correlation JJA 95% confidence interval

Berlin 0.50 0.48 – 0.56 0.22 0.21 - 0.23

Madrid 0.53 0.51 – 0.55 - 0.59 0.29 0.27 - 0.30

Orly 0.58 0.56 – 0.59 0.23 0.20 - 0.24

Toulouse 0.40 0.39 – 0.44 0.18 0.15 - 0.19
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We observe that the 5th and 95th quantiles of simulations include the different values of observations. This heuristically

confirms the good skill of SWG to forecast precipitation from Z500 for several seasons (winter and summer) in several locations

for T = 5 and T = 10 day lead times.250

The difference of the forecast correlation skills between the four studied locations may be related to the variation of the local

climate from one region to an other. The studied areas are in different climate types according to Köppen-Geiger’s climate

classification map (Peel et al., 2007). From the south western side of Europe, Madrid is in the arid zone (Peel et al., 2007),

which indicates that convective rains are less significant, so that the origin of precipitation might be the result of humidity

coming from the Atlantic. Conversely, Berlin is located in a cold zone characterised by warm summer and the absence of a dry255

season (Peel et al., 2007), so that the precipitation could be the result of both convective rains and Atlantic humidity.

In this paper, we decided (for simplicity) to use the same analogs to forecast precipitation for those four stations as discussed

in section 4. A refinement of the analog regions would be necessary when focusing on Madrid vs. Berlin.

5.2 Forecast probability skill

The CRPSS and correlation skill scores are computed for the four studied stations Orly Berlin, Madrid and Toulouse, as shown260

in illustrations represented in (Figure 4) and for lead times from 5 to 20 days. We represent skill scores for January and July in

order to show the skill of the SWG to predict precipitation in different conditions.

In this paper, we choose to present the results for summer and winter, to highlight the capacity of the SWG to forecast the

precipitation in extreme seasons.

The CRPSS against the persistence and climatology references show positive values for lead times of up to 20 days (Figure265

4). The values of CRPSS against the persistence reference (represented by squares) decrease with lead times in winter for the

different studied areas, showing high values over 5 days. However for summer, we notice that the values of CRPSS against

persistence increase with lead time, with high values over 20 days expect for Berlin. That indicates that for the summer until

20 days the SWG forecast is still better than the persistence forecast (the average of the CRPS of SWG is smaller than the

average of the CRPS of the persistence). That could be explain by the fact that summer precipitation in Orly (51% of the time,270

on average) comes in clusters contrary to precipitation in Berlin. Indeed, we computed the seasonal frequency of precipitation

(defined as the number of days when precipitation exceeds 0.5 mm/day). We found that for Berlin, precipitation exceeding 0.5

mm/day is more frequent than in the other stations (close to 50% of the time for both seasons).

This means that a persistence forecast for Orly is likely to be skillful, even for longer lead times, especially in the summer.

Therefore, the trends in CRPSS values for different lead times are probably due to the intrinsic time persistence of local275

precipitation.

The CRPSS against climatology reference (triangles) show lower values compared to the CRPSS against persistence refer-

ence, although they are positive for all lead times and for both seasons. However, we notice that for short lead time the SWG

is better than the climatology.
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Figure 3. Time series of analog ensemble forecasts for 2002, for lead times of 5 days (top) and 10 days (bottom) for summer (June to

August) a) and c) and winter (December to February) b) and d) for Orly. The median of 100 simulations is represented by red line. Black

line represent observations values. Gray lines represent the 5th and 95th quantiles. Blue lines represent persistence forecasts and green lines

represent the climatology forecasts. The y-axis represent the average of precipitation over T = 5,10 days.

The correlation skill is positive for both seasons but higher in winter (January) than in summer (July). For a lead time of 5280

days, the correlation is equal to 0.59 for Madrid, 0.50 for Berlin and to 0.40 for Toulouse. For a lead time of 10 days, it is equal

to 0.42 for Madrid, 0.30 for Berlin and to 0.41 for Toulouse.

The SWG was tested by Yiou and Déandréis (2019) to forecast temperature in western Europe. Comparing the performance

of the SWG to forecast those different meteorologic variables, we notice that the model shows good performance to forecast

the temperature in the winter, also the best performance of the model is at a lead time of 5 days. We find that the skill scores285

(CRPSS and correlation) decrease with lead times. The forecast skill of the SWG shows variability from one location to another.

However, the model was able to forecast temperature until 40 days in Berlin, Orly and Toulouse with positive skill scores.
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From a visual inspection of the CRPSS and correlations, we chose to focus on lead times of T = 5 days, for which the

correlation exceeds 0.5 in the winter. It is rather low in the summer, due to convective events leading to a high precipitation

variability (from no rain to very high values). Correlation scores become barely significant for lead times of 20 days, so that,290

like temperature, the SWG should not be used beyond that horizon.
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Figure 4. Skill scores for the precipitation of Orly, Madrid, Berlin and Toulouse for lead times of 5, 10, 20 days for January (blue) and

July (red) for analogs computed from reanalyses of (a) NCEP and (b) ERA5. Squares indicate CRPSS where the Persistence is the baseline,

triangles indicates CRPSS where the climatology is the reference, and boxplots indicates the probability distribution of correlation between

observation and the median of 100 simulations for all days. The boxplot upper whisker is: min{1.5(q75− q50)+ q50,max(CRPS)}. The

boxplot lower whisker is: max{q50− 1.5(q75− q50),min(CRPS)}.

5.3 Relation between weather regimes and CRPS

We investigate the role of North Atlantic weather patterns defined in Section 3.4 (Figure 2) on the forecast skill of the SWG

precipitation simulations.

We start by comparing the frequencies of the weather regimes from the observations and the most frequent weather regime295

found in SWG simulations for a given lead time T = 5 days. We find that the percentages are very similar (Figure 5). This

means that the weather regimes of the simulated trajectories do not yield major biases for the summer or winter seasons.
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Then we look at the relation between weather regime and the CRPS, by using the most frequent weather regime and the two

classes of quantiles of the CRPS that related to good quality of forecast (attributed to low values of CRPS ≤ q25) and poor

quality of forecast (attributed to high values of CRPS≥ q75). This relation is represented in Figure 6 for Orly and for the rest of300

the studied stations in Figure A1. We find a small influence of specific weather regimes on the CRPS distribution for summer.
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Figure 5. Percentage of each weather regime for observations dates (Obs) and the most frequent weather regime from SWG simulations

between t0 and t0+T = 5 days (Analog) over the period from 1948 to 2019 for summer (JJA) and winter (DJF). The percentage of weather

regime are the same in Obs and Analog.

The weather regime signal for "good" forecasts depends on the season and the considered station. When the forecast has

a low CRPS value (for Orly), we find that the Scandinavian Blocking regime slightly dominates (green bar in Figure 6a, b).

This is also the case for Berlin (in winter) and Toulouse Figure A1 (b, j). The low CRPS values in Madrid are obtained for the

Atlantic Ridge regime Figure A1 f.305

The weather regime signal for "poor" forecasts also yields a dependence on the season and station. Higher CRPS values

are obtained with the Atlantic Ridge regime in the summer for Orly (red line in Figure 6 c) and Berlin in winter and summer.

The Atlantic ridge regime favors high CRPS values (i.e. poor forecasts) for Madrid in winter Figure A1 h. The Atlantic ridge

regime favors high CRPS values for Toulouse in summer. The different impacts of the weather regimes on the studied areas
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is related to the position of the high and low pressure regions of each weather regime and their position regarding the studied310

areas.

This relation between predictability (or the CRPS distribution) and weather regimes, albeit weak, is consistent with previous

work of Faranda et al. (2017). Similar relation were found between weather regimes over Europe and the Temperature in a

recent study by Ardilouze et al. (2021) . We find that the sensitivity of the forecast to weather regime is larger for low values of

CRPS and in the winter. The sensitivity of forecast skill to weather regimes is rather small on average, even for low lead times.315
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Figure 6. Relation between CRPS and weather regimes for Orly, for SWG forecasts with lead time T = 5 days. Upper panels (a and b): CRPS

value distribution conditioned on four weather regimes, when CRPS is lower than q25. lower panels (c and d): CRPS is higher than q75. The

boxplots indicate the median (q50) of the distribution (thick bar). 25th (q25) and 75th (q75) quartiles (lower and upper segments). The boxplot

upper whisker is: min{1.5(q75− q50)+ q50,max(CRPS)}. The boxplot lower whisker is: max{q50− 1.5(q75− q50),min(CRPS)}.

5.4 Comparison with ECMWF forecast

We first compared the CRPSS of SWG forecasts for winter and summer with the CRPSS of ECMWF forecasts.

The CRPSS of ECMWF forecast is computed for different lead times going from 1 day to 10 day for precipitation (Haiden

et al., 2018) over the region 12.5°W – 42.5°E ; 35.0° – 75.0°N (ECMWF, 2020). It uses the climatology as a reference
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(Haiden et al., 2018). The values of CRPSS for Europe for 2020 decrease with lead times (Haiden et al., 2018). The CRPSS of320

ECMWF is about 0.16 in summer (JJA) and 0.25 in winter (DJF) for a lead time of T = 5 days (ECMWF, 2020). The CRPSS

of SWG simulations for a lead time of T = 5 days is shown in Table 4. The values suggest that the predictive skill of SWG is

qualitatively promising for short lead times, compared with ECMWF forecasts. However, we have to mention that the values

of CRPSS for ECMWF are computed over all Europe for both seasons (Haiden et al., 2018) while with the SWG we are doing

forecast for local stations.325

We made a quantitative comparison between the two forecasts for the different lead times. We computed the CRPS for the

ECMWF forcast. Then, we used the Kolmogorov-Smirnov (KS) test (von Storch and Zwiers, 2001, Chap.1) to compare the

probability distributions of the CRPS of SWG and ECMWF forecasts. The null hypothesis supposes that the CRPS of ECMWF

and SWG forecasts have the same distribution. The null hypothesis of KS test was rejected, which means that the two times

series do not have the same distribution with a p.values = 0.11. A similar result was found by Ardilouze et al. (2021), where330

they compared the efficiency between ECMWF and CNRM forecasts.

We found that 80%, 39% 50% and 40 % of the CRPS of SWG forecast are equal to zero for respectively Orly, Berlin, Madrid

and Toulouse, for a lead time of T = 5 days (Figure 7), which shows the capacity of the SWG to well simulate rain events.

One notable difference between SWG and ECMWF forecasts is that although the proportion of CRPS values close to zero

is higher in ECMWF, the CRPS for the worst forecasts are much higher than those of SWG. Indeed, we notice that the time335

average of CRPS of ECMWF (blue vertical lines) and SWG (red vertical lines) for T = 5 days are close, with higher values for

ECMWF 7. However, the median of CRPS of ECMWF are smaller compared to the SWG (dashed vertical lines) 7. Finally, we

computed the CRPSS for ECMWF forecasts taking as a reference the CRPS of SWG (Table 6). We hence compute the CRPSS

of ECMWF forecast by normalizing the CRPS by the CRPS of SWG forecast in Eq. (C1).

Table 6. CRPSS of ECMWF forecasts using as a reference the CRPS of SWG, for lead times of T = 5, 10 and 20 days. It shows that the

SWG has a positive improvement comparing to the ECMWF forecast as the CRPSS are above zero, expect for Toulouse.

Location Orly Berlin Madrid Toulouse

CRPSS T = 5 days -0.09 -0.02 -0.2 0.25

CRPSS T = 10 days -0.17 -0.54 -0.33 0.23

CRPSS T = 20 days -0.50 -0.36 -0.1 -0.08

This evaluates the added value of the ECMWF forecast over the SWG forecast. We find that the ECMWF forecast has no340

improvement over the SWG forecast for the different lead times because the CRPSS value are negative. At T = 5 days, we

notice that the improvement is negligible for Orly and Berlin, while it is much better for Madrid. However for Toulouse, the

ECMWF forecast still have better skills for lead times of T = 5,10 days. For a lead time of T = 10 days, the improvement

of SWG forecast over the ECMWF is important especially for Berlin and Madrid. There is a major improvement for a lead

time of T = 20 days for Orly and Berlin. This confirm the relatively good skill of the SWG to forecast precipitation, compared345

to ECMWF. And that could be explained by the difference on the average of the CRPS of the two forecasts. Indeed, as we
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Figure 7. Empirical cumulative distribution function of the CRPS of ECMWF (blue) and SWG (red) forecasts for 5 days for Orly (a), Berlin

(b), Madrid (c) and Toulouse (d). D is the maximum distance between both ECDFs (value of Kolmogorov-Smirnov test). m1 is the value

of the time average of CRPS of SWG and m2 is the value of the time average of CRPS of ECMWF. The vertical dashed lines represent the

median of CRPS of ECMWF (blue) and SWG (red).

mentioned before, the ECMWF forecast has good skill for small values of precipitations, we further explained that on Annexes

(Figure C1 and Table C1).

18



6 Conclusions

In this work, we have shown the performance of a stochastic weather generator (SWG) to simulate precipitation over different350

locations in western Europe and for various times scales from 5 to 20 days. The input of our model was analogs of geopotential

heights at 500 hPa (Z500). The choice of such input was made in order to evaluate the impact of large scale circulation on local

weather variables. SWG showed a good skill to predict precipitation for a lead time of 5 and 10 days from analogues of Z500.

This study complements the work of Yiou and Déandréis (2019), for precipitation. We explored the sensitivity of the SWG

model on analogs computed from different geographical areas and from different reanalyses (ERA5 and NCEP). We found that355

the NCEP and ERA5 reanalyses provide good performances for simulations, due to its longer length (≈ 70 years in NCEP and

ERA5). Therefore the length of the analog database does make a difference, as already suggested by Jézéquel et al. (2018a).

We evaluated the relation between the quality of the forecast and weather regimes over Europe, we found that low and high

predictability was related to specific weather regimes, this dependence is more significant in winter than in summer, especially

for the good predictability, it is found to be mainly related to Blocking.360

A comparison with the ECMWF forecast system over Western Europe confirmed the good performance of the SWG quantita-

tively and qualitatively, for lead times T ≤ 10 days. Of course, the SWG model cannot replace a numerical weather prediction,

as the SWG parameters (e.g. region of analogs) need to be tuned to local variables, and rely on the existence of a fairly large

database to compute analogs. Here we used the same domain of circulation analogs for stations from Madrid to Berlin. Obvi-

ously, this region should be optimized for each individual station. Therefore, the main utility of the SWG forecast system is to365

make local ensemble simulations, where its performances can challenge a numerical weather prediction, if the parameters are

well tuned.

This paper hence confirms the proof of concept to generate ensembles of (local) precipitation forecasts from analogs of

circulation. Its performance relies on the relation between precipitation and the synoptic atmospheric circulation, which is

verified for western Europe. Transposing this SWG to other regions of the globe requires observations covering several decades.370

Numerical weather models obviously do not yield this constraint.
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Appendix A: CRPS and weather regimes

To avoid a tedious redundancy we deferred the figures of evaluation of the forecast quality by weather regimes to this appendix

section.380
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Figure A1. Relation between CRPS and weather regimes for Berlin (a–d)), Madrid (e–h) and Toulouse (i–l), for SWG forecasts with lead

time T = 5 days. The panels (a, b, e, f, i and j) correspond to CRPS value distribution conditioned on four weather regimes, when CRPS is

lower than q25. The panels (c, d , g, h, k and l) correspond to higher CRPS value CRPS ≥ q75. The boxplots indicate the median (q50) of

the distribution (thick bar).
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Appendix B: Relation between Z500 and precipitation

In order to justify, the use of the Z500 as driver of precipitation. We computed the rank spatial correlation between the daily

average of Z500 over the Euro Atlantic region and the precipitation in each studied station (Madrid, Berlin,Toulouse and Orly).

We did the analysis for different seasons (DJF - JJA). We find a maximum correlation amplitude of -0.5 for Madrid and Orly,

and a correlation of -0.4 and -0.3 respectively for Toulouse and Berlin. The correlation is significant as we have a p.value385

< 0.05 for the different grid points. This indicates the relation between Z500 patterns and precipitation especially in western

Europe and that a decrease in Z500 is linked with precipitation.
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Figure B1. Maps of correlation between Z500 and precipitation in Berlin, Madrid, Orly and Toulouse for the period from 1948 to 2019 over

the Euro-Atlantic region. The rectangles represent the domains of computation of analogs. We highlight the optimized area [30°W-20°E;

40°-60°N] by the red rectangle.
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Appendix C: CRPSS of ECMWF versus SWG

We explain further the comparison that we made between ECMWF forecast and SWG forecast. As mentioned we found that

the SWG has improvement comparing to ECMWF forecast. This is related to the difference on the time average of the CRPS390

of the two forecasts. We computed the CRPSS as follow:

CRPSS = 1− CRPSECMWF

CRPSSWG

(C1)

with CRPSECMWF is the time average of the CRPS of the ECMWF forecast and CRPSSWG is the time average of the

CRPS of the SWG.

Table C1. CRPSS, average and median of CRPS of ECMWF and SWG forecasts for lead times of T = 5, 10 and 20 days. It shows that

the CRPS of SWG forecast has a smaller average than the CRPS of ECMWF forcast, which explains the values of CRPSS for the different

studied areas and the positive improvement of the SWG compared to ECMWF.

Location Orly Berlin Madrid Toulouse

CRPSECMWF / Median 1.87 / 0.04 16.56 / 0.05 18.73 / 0.003 12.76 / 0.01

CRPSSWG / Median 1.70 / 0.67 16.10 / 10.37 15.49 / 5.45 17.16 / 8.39

CRPSS T = 5 days -0.09 -0.02 -0.2 0.25

CRPSECMWF 1.70 / 0.05 18.1 / 0.06 20.03 / 0.1 14.87 / 0.09

CRPSSWG 1.44 / 0.78 11.67 / 5.45 15.04 / 6.13 19.45 / 7.89

CRPSS T = 10 days -0.17 -0.54 -0.33 0.23

CRPSECMWF 1.67 / 0.1 13.54 / 0.09 17.89 / 0.1 17.8 / 0.08

CRPSSWG 1.11 / 0.9 9.91 / 6.3 16.23 / 5.89 16.41 / 8.34

CRPSS T = 20 days -0.50 -0.36 -0.1 -0.08
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Figure C1. Boxplots of CRPS of ECMWF and CRPS of SWG for Orly, with lead time T = 5,10,20 days. The boxplots indicate the median

(q50) of the distribution (thick bar blue for ECMWF and red for SWG). 25th (q25) and 75th (q75) quartiles (lower and upper segments).

The upper whisker is min{max(X), q50 +1.5(q75− q25)}. We indicates also the average of CRPS of ECMWF and SWG forecasts with

horizontal dash lines. We notice clearly that the distribution is asymmetric as the median and the average are unequal. And that the average

of CRPS for SWG forecast is lower than the average of CRPS for ECMWF forecast. We do not show the outliers that are above the upper

whiskers.
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